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Abstract

Convolutional neural networks (CNNs), in a few decades, have out-
performed the existing state of the art methods in classi�cation context.
However, in the way they were formalised, CNNs are bound to oper-
ate on euclidean spaces. Indeed, convolution is a signal operation that
are de�ned on euclidean spaces. This has restricted deep learning main
use to euclidean-de�ned data such as sound or image. And yet, numer-
ous computer application �elds (among which network analysis, compu-
tational social science, chemo-informatics or computer graphics) induce
non-euclideanly de�ned data such as graphs, networks or manifolds. In
this paper we propose a new convolution neural network architecture, de-
�ned directly into graph space. The convolution operator is de�ned in
graph domain thanks to a graph matching procedure between the input
signal and a �lter. We show its usability in a back-propagation con-
text. Experimental results show that our model performance is at state
of the art level on simple tasks. It shows robustness with respect to graph
domain changes and improvement with respect to other euclidean and
non-euclidean convolutional architectures.
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1 Introduction

Graphs are frequently used in various �elds of computer science, since they con-
stitute a universal modeling tool which allows the description of structured data.
The handled objects and their relations are described in a single and human-
readable formalism. Hence, tools for graphs supervised classi�cation and graph
mining are required in many applications such as pattern recognition [19], chem-
ical components analysis [9], structured data retrieval [18]. Graph classi�cation
can be operated on graph space. For instance, it can be done via a k-nearest
neighbour setting using graph matching [19, 4, 15, 14]. Alternatively, graph
classi�cation can also be achieved through vector-based representation of graph
and classic pattern recognition techniques (vector space graph classi�cation)
[19].

1.1 Euclidean and geometric deep learning

Deep learning has achieved a remarkable performance breakthrough in several
�elds, most notably in speech recognition, natural language processing, and com-
puter vision. In particular, convolutional neural network (CNN) architectures
currently produce state-of-the-art performance on a variety of image analysis
tasks such as object detection and recognition. Most of deep learning research
has so far focused on dealing with 1D, 2D, or 3D Euclidean structured data such
as acoustic signals, images, or videos.

Recently, there has been an increasing interest in geometric deep learning, at-
tempting to generalize deep learning methods to non-Euclidean structured data
such as graphs and manifolds, with a variety of applications from the domains
of network analysis, computational social science, or computer graphics.

1.2 Graph Neural Networks

Among geometric deep learning methods are graph neural networks. These neu-
ral networks often try to apply convolution to graphs so that it mimics classical
convolutional neural networks. De�ning on graph space is not trivial. There is
indeed no straightforward de�nition. However, one can identify two families of
de�nitions in the existing literature [5]. The �rst family (spectral approaches
among which [7, 11]) relies on the convolution theorem. This theorem states
that the convolution operator on the spatial domain is equivalent to the prod-
uct operator on the frequency domain. Although this theorem was only proven
on euclidean spaces, spectral approaches postulate its validity on the graph
space.Such approaches have two main limitations. The �rst one is their sen-
sitivity to topological variations: a slight deformation of the graph structure
changes the resulting convolution signal drastically. The latter is that there is
no Fast Fourier Transform on the graph space: as previously stated, accessing
the graph frequency domain relies on matrix diagonalization and therefore inver-
sion. Inverting a matrix is a costly operation. The second family of approaches
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(the spatial ones, [22, 2, 17, 24, 16]) tries to come up with analogies of the orig-
inal convolution de�nition. However, existing approaches don't rely solely on
the graph domain as they use approximations of graphs (through aggregations
[10], expression as manifolds [16], . . . ).

In this paper, we propose a graph convolution operator which operates solely
on graph space. This is made possible by using graph matching to de�ne local
convolutional operation. By doing so, we try to establish a link between two
scienti�c communities who respectively work on graphs and deep learning. More
speci�cally, we de�ne graph-based computations using operators from the graph
matching litterature in a deep learning (neural network) framework.

2 State of the Art

Every graph neural network layer can then be written as a non-linear function:
H(l+1) = f(H(l), A).

As an example, let's consider the following very simple form of a layer-wise
propagation rule: f(H(l), A) = σ

(
D−1AH(l)W (l)

)
. σ(.) is a non-linear activa-

tion function like the ReLU. Multiplying the input with D−1A now corresponds
to taking the average of neighboring node features from the layer l. It is also
called in the literature "average neighbor messages" and it acts like passing
average node features from one layer to another. In [11], a better (symetric)

normalization of the adjacency matrix is proposed i.e. D−
1
2AD−

1
2 . A per-

neighbor normalization is performed instead of simple average, normalization

varies across neighbors: f(H(l), A) = σ
(
D̂−

1
2 ÂD̂−

1
2H(l)W (l)

)
with Â = A+ I,

where I is the identity matrix and D̂ is the diagonal node degree matrix of Â.
More operations have been investigated in the literature [17]. A complete

family of operations can be used :
I: this identity operator does not consider the structure of the graph and

neither provide any aggregation. Used alone this operator makes the GNN a
composition of |V |MLP completly independent. One MLP for each node feature
vector.
A: The adjacency operator gather information on the node neighborhood (1
hop).
D: D = diag(A1). This degree operator gather information on the node degree.

D is node degree matrix (a diagonal matrix). Aj : Aj = min(1, A2j ). It encodes
2j-hop neighborhoods of each node, and allow us to aggregate local information
at di�erent scales, which is useful in regular graphs.
U : U is matrix �lled with ones. This average operator, which allows to broadcast
information globally at each layer, thus giving the GNN the ability to recover
average degrees, or more generally moments of local graph properties.

Let us denote A = {I,D,A,A1, · · · , AJ , U}. A GNN layer is de�ned as :

f(H(l),A) = σ
(∑

B∈ABH
(l)W

(l)
B

)
. Ω = {W (l)

1 , · · · ,W (l)
|A|},W

(l)
B ∈ Rm(l)×m(l+1)

are trainable parameters.
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Key distinctions are in how di�erent approaches aggregate messages. So far,
proposals have aggregated the neighbor messages by taking their (weighted)
average, but is it possible to do better? In [10], a GNN called GraphSAGE
is proposed. The aggregation of neighbors information is more complex. The
very general scheme of aggregation can written thanks to the function AGG:
H(l+1) = σ

(
AGG(H(l))W (l)

)
. Let us de�ne N (u) is the set of nodes in the

1-hop neighborhood of node u.

mean : AGGu = 1
|N (u)|

∑
v∈N (u)H

(l)
v ∀u ∈ V =⇒ AGG = D−1AH(l).

max : AGGu = max({H(l)
v , ∀v ∈ N (u)}) ∀u ∈ V . Transform neighbor

vectors into a matrix and apply a max pooling element-wise.

LSTM : AGGu = LSTM([H
(l)
v , ∀v ∈ π(N (u))]) ∀u ∈ V . Where π is a

random permutation. The idea is to provide to the LSTM a sequence composed
of neighbor embeddings. So the input sequence is composed of vectors. The
sequence is randomly permuted by the function π.

In [16], the graph structure is locally embedded into a vector space. The
distribution of local structures in the local space is estimated by a Gaussian
Mixture Model. The AGGu function is then expressed by a mixture of Gaus-
sians. The Gaussian parameters are covariance matrix and mean vector and
they are learnt during the training of the neural network.

A notable variant of GNN is graph attention networks (GAT), which was �rst
proposed in [24]. This model includes the self attention mechanism to evaluate
the individual importance of the adjacent nodes and therefore it can be applied
to graph nodes having di�erent degrees by specifying arbitrary weights to the
neighbors [24]. For further reading, good surveys about graph neural networks
have been published [28, 27, 25].

Deadlocks, contributions and motivations From the literature, two main
deadlocks can be drawn. First, in many of the related works [11, 17, 24], edge
features are not well considered. However, the edge information is of �rst interest
to boosts the structural knowledge in the computation of the node embedding.
Second, most of the aforementioned approaches do not take full advantage of
the graph topology [16, 11]. The graph structure is locally embedded into a
vector space (i.e. the tangent space at a given point of a riemannian manifold).
In this paper, we propose CNN architectures that remain in the graph domain.
Especially, we design a convolution operator onto graph space through the so-
lution of a graph matching problem. The problem of graph matching under
node and pair-wise constraints is fundamental to capture topological informa-
tion. It takes into account the nodes and edge features along with their neigh-
borhood structure. Therefore, graph matching-based convolution can release
deadlocks related to edge information integration, domain changes sensitivity
and Euclidean space projection. Graph matching can be seen as added local
constraints in the machine learning problem. We promote a truly novel class of
neural network architecture where layers contain a combinatorial optimization
scheme that plays a fundamental role in the construction of the entire neural
network architecture. Consequently, we highlight the interplay between machine
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Table 1: Frequently used notations
Notation Description
GI An input graph
GF A �lter graph
giI Neighbourhood subgraph rooted at vertex i in I
i, j Vertices in graph GI

ij An edge in graph GI between i and j
a A vertex in GF

ab An edge in GF between a and b
µ Labelling function for vertices
ζ Labelling function for edges
GW

F A �lter graph and its associated weights
µ(a) Vertex label of a
µW (a) Vertex label of a parametrized by W
|Ωij | Cardinality of Ωij

δyx Kronecker delta of x and y

learning and combinatorial optimization.

3 Graph Convolutional Neural Network

Frequently used notations are summarized in Table 1.

3.1 Graph matching

To de�ne our convolution operator, we must de�ne the graph matching function
that will be pointwisely used.

Let G1 and G2 be attributed graphs: G1 = (V1, E1, µ1, ζ1) and G2 =
(V2, E2, µ2, ζ2)

GMS(G1, G2) = max
y

s(G1, G2, y), (1a)

subject to y ∈ {0, 1}n1n2 (1b)
n1∑
i=1

yi,a = 1 ∀a ∈ [1, · · · , n2] (1c)

n2∑
a=1

yi,a ≤ 1 ∀i ∈ [1, · · · , n1] (1d)

|V1| ≥ |V2| (1e)

The similarity function s is de�ned as follows:

s(G1, G2, y) =
∑
yia=1

sV (i, a) +
∑
yia=1

∑
yjb=1

sE(ij, ab) (2a)

sV (i, a) = µ1(i).µ2(a) (2b)

sV (i, ε) = sV (ε, a) = 0 (2c)
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sE(ij, ab) = ζ1(ij).ζ2(ab) (2d)

sE(ij, εε) = sE(εε, ab) = 0 (2e)

Let π(G1, G2, e) denote an assignment of element (edge or vertex) e ∈ V1∪E1

to some element in V2 ∪ E2 ∪ {ε, εε}:

π(G1, G2, i) = a ⇐⇒ ∃a ∈ V2 : yia = 1 (3a)

π(G1, G2, i) = ε ⇐⇒ ∀a ∈ V2 : yia = 0 (3b)

π(G1, G2, ij) = ab ⇐⇒ ∃ab ∈ E2 : yia = 1 ∧ yjb = 1 (3c)

π(G1, G2, ij) = εε ⇐⇒ ∀a, b ∈ V2 : yia = 0 ∨ yjb = 0 (3d)

The similarity function can be rewritten as follows:

s(G1, G2, y) =
∑
i∈V1

sV (i, π(G1, G2, i)) +
∑

ij∈E1

sE(ij, π(G1, G2, ij)) (4a)

3.2 Graph convolution based on graph matching

Now that our matching operator is formulated, we can apply it over an input
graph to compute the result of a convolution.

Let GI and GF be attributed graphs: GI = (VI , EI , µI , ζI) and GF =
(VF , EF , µF , ζF ). GI and GF are respectively referred to as the input graph
and the �lter graph.

3.2.1 Graph convolution operator �

The graph convolution operator is a function G × G → G and is de�ned as
follows:

GI �GF = (VI , EI , µ, ζ) (5a)

with µ : VI → R such that µ(i) = GMS(giI , GF ) (5b)

ζ : EI → R such that ζ(ij) = score(ij,GI , GF ) (5c)

where giI and score are de�ned as follows.

3.2.2 Vertex neighbourhood graph (l-hops)

giI is de�ning the neighbourhood (which is a subgraph) for vertex i in GI :

giI = (N l
I [i], Ei

I , µI , ζI) (6a)

with N l
I [i] the l-hops closed neighbourhood of i in GI (6b)

and Ei
I = {kl ∈ EI s.t. k, l ∈ N l

I [i]} (6c)
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3.2.3 Edge attribute in convolved graph

score is a function mapping an edge to its matching score in the found GMS.
The problem is that it might be assigned multiple times:

let Ωij = {gkI ∀k ∈ VI : ij ∈ gkI } ∀ij ∈ EI (7)

Ωij potentially contains more than one element. Therefore, score can be de�ned
as follows:

score(ij,GI , GF ) = θ ({sE(ij, π(gI , GF , ij)) ∀gI ∈ Ωij}) (8a)

with θ : some statistical estimator (max or avg) (8b)

3.3 Convolution layer

Now that the convolution operator is de�ned, it is possible to use it as a base to
build a convolution layer. This layer can be included in a graph neural network.

3.3.1 Graph convolution �lter: the �lter graph

A graph convolution �lter is an attributed graph GW
F . Its role is analogous to

that of a vanilla CNN kernel: it modi�es the output and gets modi�ed through
backpropagation. Every attribute function is parametrized with respect to a
weight vector W ∈ R|V |+|E|.

GW
F = (VF , EF , µ

W
F , ζWF ) (9a)

with µW
F (a) = Wa (9b)

ζWF (ab) = Wab (9c)

3.3.2 Graph convolution layer

A convolution layer is a set of convolution �lters {Gp
F }1≤p≤n applied on a same

input graph GI . The output of the layer consists of all �lters results (analogous
to euclidean convolution feature map) stacked up.

Let u be the output function of the layer s.t.:

u : G→ G u(GI) = ψ({up(GI)}1≤p≤n) (10a)

with ψ : Gn → G ψ({up(GI)}1≤p≤n) = (VI , EI ,M,Z) (10b)

M : VI → Rn (M(i))p = µp
F (i) (10c)

Z : EI → Rn (Z(ij))p = ζpF (ij) (10d)

n the number of �lters (10e)
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ψ function keeps only a single graph structure and concatenates each ver-
tex/edge attribute. The output function of the layer is a graph with same
topology as GI but with attributes as vectors composed by attributes of every
�lters outputs.

Graph convolution computation can be seen as a step-by-step process. The
�rst step is neighbourhood extraction: for each vertice i in GI (the input graph),
the neighbourhood graph gi is extracted. It is composed of every neighbour of
i in a given range (it can be 1-hop away but also n-hops away). gi and GF

(the �lter graph) are matched. The matching score GMS(gi, GF ) becomes the
output of the convolution at i.

3.4 About graph matching di�erentiation

In our method, a di�erentiation of the convolution operator is proposed. This
di�erentiation does not take into account the dependencies between the optimal
graph matching ŷ and the variables {µI(k)}k∈EI

and {ζI(kl)}kl∈VI
. As these

variables are used to calculate the possible matchings, it is trivial to conclude
such dependencies exist. Nevertheless, the matching solver in use (see Subsec-
tion 3.8) is not di�erentiable, at least a priori. We therefore assumed ŷ as a
constant in the gradient calculus with respect to these variables.

3.5 A "no edge matching" version of the graph convolu-

tion layer

This section presents a degraded model. It ignores topology at a local level
by not matching edges. It therefore reduces the graph matching problem to
a node assignment problem inside a given neighborhood. One concern on this
simpli�cation could be that we do not take advantage of the graphs topology
and edges. However, topology and edge information is used when computing
vertices neighbourhoods. If no edge exist between nodes i and j, i won't be
included in gj1 and neither will j in gi1. In any case, edge attributes are never
used. Additionally, this model has lower time complexity as edge information
is not taken into account (see details in Subsection 3.8.)

Used graphs are 3-uplets (V,E, µ) and the similarity function is simpli�ed
as follows:

s(G1, G2, y) =
∑
yia=1

sV (i, a) (11a)

sV (i, a) = µ1(i).µ2(a) (11b)

As a consequence of the edge attributes deletion in the �lter graph, its pa-
rameter becomes vector W ∈ R|V | (as many parameters as vertex). The �lter
is de�ned as follows:

GW
F = (VF , EF , µ

W
F ) (12a)

8



with µW
F (a) = Wa (12b)

The output function of the �lter u : G→ G is de�ned as follows:

u(GI) = GI �GW
F (13a)

= (VI , EI , µ) (13b)

3.6 Graph pooling

As in euclidean convolutional neural nets, we want to implement not only convo-
lutional layers but also pooling/downsampling layers. In the existing literature,
downsampling is view as graph coarsening [5]. A recurrent graph coarsening
algorithm choice seems to be Graclus [8] (used in [16, 7]). We propose to use a
community detection algorithm (Louvain method [3]) as the base of our graph
pooling layer. Louvain method deals with weighted graphs. In our case, edge
weights are computed by scalar products of involved vertices. This choice is
brought by the following intuition: the higher nodes attributes scalar product
get, the more these vertices probabilities to fall in the same cluster increases
(because a higher scalar product implies vector similarity).

3.7 Hyperparameterization

As in any neural network, graph neural networks have parameters that won't
be optimized from gradient descent. The �rst one is the graph �lter (its number
of nodes and adjacency matrix). The number of nodes in the graph �lter is
analogous to the size of a classic convolution kernel (for example, 3 × 3 ker-
nel �lter is equivalent to a 9 nodes �lter graph with grid-like adjacency). The
second hyperparameter is the size of extracted neighbourhoods graphs which
is the maximum node distance in a given node neighbourhood. A 2-hop-sized
neighbourhoods will include nodes that can be reached from the origin node in
two hops or less. These hyperparameters could be optimized through grid or
random search. However, to restrain our study, we will consider the following
postulate: a graph �lter should be congruent with the neighbourhoods. In other
words, �lters and neighbourhoods should have equal sizes and identical topolo-
gies as much as possible. This postulate comes from classic graph convolution
where each kernel coe�cient is matched with one and only one image coe�-
cient. As we only experimented with the "no edge-matching" model, the �lters
topologies weren't to be de�ned. However we set the �lters size to the average
neighbourhood size in the dataset.

3.8 Choosing the graph matching solver

The algorithm for solving the graph matching problem is a critical element for
the model. The �rst reason is that it is potentially the highest in complexity
since graph matching problems are up to NP-hard. Additionally, graph match-
ing is solved as many times as there are vertices in the input graph (the size of
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every problem to solve being that of every vertex neighbourhood). We opted
for a bipartite (BP) graph matching algorithm [21]. Complexity of such an al-
gorithm is among the lowest (polynomial time) for solving error-tolerant graph
matching problems suboptimally. Bipartite graph matching algorithm reduces
graph matching to vertex matching by embedding an estimation for edge costs
in the vertex costs. This edge cost estimation is computed by solving an edge-
assignment problem for every node-matching possibility. Therefore, BP has to
solve as many matching problems as there are edge-costs.

We used a variant of BP called Square Fast BP [23] where the cost ma-
trix for vertex matching is of size max(|gI |, |GF |) × max(|gI |, |GF |) with |GF |
and |gI | being number of vertices in �lter graph GF and neighbourhood graph
gI . Assuming both neighbourhood and �lter graphs are complete, a match-
ing problem complexity is O(max(|gI |, |GF |)3). As a consequence, worst case
complexity with fast bipartite matching is O(max(|gI |, |GF |)5). Some prelim-
inary experiments showed impracticable computation time of the full model.
As a �rst workaround, the experimental part of this paper will focus on "no
edge matching" model. This workaround allowed to keep processing to an ac-
ceptable level (that is suitable for small classi�cation experiments). Edge cost
estimation by edge matching is no longer required. The simpli�ed model has
O(max(|gI |, |GF |)3) as pointwise complexity.

We should stress that the choice of the graph matching solver is critical
because it de�nes our model capabilities of handling rich graph data: if the GM
operator can handle oriented attributed graphs, so can our model.

4 Experimental work

In this section, we test the model according to several parameters. We want to
test our model with a simple classi�cation task on MNIST digit images. Code for
running the model can be found at https://github.com/prafiny/graphconv

4.1 Baselines

Our approach was compared with three other approaches: a◦) a Vanilla CNN
layer, b◦) MoNET [16] a mixture model graph CNN and GraphSAGE [10]. Same
network topology was used for all approaches. It consists of classical ConvPool
blocks linearly connected. Figure 1 shows the exact network structure in use.
In case of graph convolution, n× n convolution �lters equivalents are n2 nodes
�lters and 2×2 pooling becomes 4 nodes pooling. n is set depending on average
graph connectivity in a given dataset: if the average number of neighbours in
a given dataset is 9, n = 9. The last layer is a global pooling one. As in the
euclidean case, it consists in aggregating each �lter feature map in one scalar
value. In our case, feature maps are aggregated by taking its average value.
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n× n conv, 32

maxpool/2
n× n conv, 64

maxpool/2
n× n conv, 128

maxpool/2
global avgpool

fc, n

Figure 1: Network structure used for graph convolution experiments

4.2 Data

4.2.1 MNIST

Quantitative experiments in this section are operated on digit images of MNIST
dataset [13]. We chose this dataset as this was in use in the graph convolution
literature. MNIST is a good "hello world" machine learning (ML) dataset.
MNIST helps at quickly iterating on the learning model. Performance informa-
tion gathered from experiments on MNIST can be great for judging how the
model might perform on much harder and larger datasets like ImageNet. In
addition to the original MNIST dataset, a rotated version was used [12]. To
compare results with MNIST-rotated, MNIST-reduced has been extracted from
MNIST to match MNIST-rotated cardinalities (see Table 2). Note that the test
set of MNIST-reduced is larger than the training set by a factor 5, thus the
generalization ability is better assessed.

Table 2: Di�erent MNIST-based graph datasets
Dataset Training set Validation set Testing set

MNIST-original 48 000 12 000 10 000
MNIST-rotated

10 000 2 000 50 000MNIST-reduced
MNIST-mixed

Lastly, to test rotation invariance, a third MNIST-based dataset was added:
MNIST-mixed. It was generated by combining MNIST-reduced train and val-
idation sets and MNIST-rotated test set. It is design so that the models are
trained on rotation-free images but tested on rotated images. As MNIST is an
image dataset, a graph-based representation of images has to be chosen. Rep-
resentations used in [16] are superpixels graphs and grid graphs. We used 1

4
grids (28 × 28 images resized to 14 × 14) and generated 75 superpixels Region
Adjacency Graphs (RAG) using SLIC algorithm [1] with superpixel adjacency
as edges (see Table 3). Sample graphs are depicted in Figure 2.
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Figure 2: MNIST graphs. Left is 1
4 grid, right is 75 superpixels RAG. Red

symbolizes vertex frontiers and green shows edges.

Table 3: MNIST representations
Representation Nb nodes Vertex at-

tributes

Edge at-

tributes
1
4
grid 142 Pixel intensi-

ties
Relative polar
coordinates

75 superpixels 75 (average) Average super-
pixel intensities

4.2.2 IAM graphs

Classi�cation experiments have been conducted on graph-based data: IAM
graph datasets Web, Mutagenicity and AIDS [20]. Mutagenicity and AIDS
are a graph collection composed of molecular data: nodes and edges are re-
spectively representing atoms and chemical bonds. The classi�cation tasks for
these two sets is to infer a given chemical property for each graph. Web graphs
represent web pages in terms of text they contain: nodes are words occuring
in a given page and edges represent context relationships between words. The
classi�cation task for Web is to identify each page category. Table 4 describes
in further details every dataset.

Database size (tr, va, te) # classes node labels edge labels |V | |E| max |V | max |E| balanced

AIDS (250, 250, 1 500) 2 Chemical symbol Valence 15.7 16.2 95 103 N

Mutagenicity (1 500, 500, 2 337) 2 Chemical symbol Valence 30.3 30.8 417 112 N

Web (780, 780, 780) 20 Word and frequency Section type 186.1 104.6 834 596 N

Table 4: Summary of graph data set characteristics, viz. the size of the training
(tr ), the validation (va) and the test set (te), the number of classes, the label
alphabet of both nodes and edges, the average and maximum number of nodes
and edges, whether the graphs are uniformely distributed over the classes or not
(balanced) [20]

4.3 Parameterization

Following hyperparameters were set after preliminary tests were conducted:
models are trained during 100 epochs using Adaptive Moment (Adam) gra-
dient descent (learning rate 10−4). Neighbourhood reach in use is 1-hop and
�lter size was set in accordance with average neighbourhood size (9 nodes).

4.4 Protocol

Following experiments were conducted:
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Experiment 1 Models are tested on MNIST digit images classi�cation task

Experiment 2 Models are tested on IAM graph datasets classi�cation tasks

Experiment 3 Several neighbourhood connectivities are tested on our model
(1 and 2 hops)

Experiment 4 Rotation invariance is investigated. Spatial information for
our datasets is conveyed by edge attributes. In such a frame, as our "no
edges" model ignores edge attributes, it is theoretically rotation-invariant.
Experiment 3 aims at experimentally validating this claim. This is done by
training models on unrotated images and testing on rotated ones. MNIST-
mixed set is used to this end.

Experiment 5 Graph based methods are tested on regular grids and on irregu-
lar graphs (75 superpixels RAG) for testing sensitivity to domain changes

Experiment 6 A sample �lter is visualized on some MNIST example images

As stated before and because of technical limitations, experiments involv-
ing MNIST datasets will focus on the two �rst MNIST classes (referred to as
MNIST-2class)

4.5 Results

On MNIST-2class (Experiment 1), results are depicted in Table 5. Our model
competes in a 3% margin with used baselines. On IAM Graph (Experiment 2),
the results are reported in Table 6. They show that our method achieved similar
or better results than baselines except on the Web database where GraphSAGE
performed better. This exception can be explained by the fact that the connec-
tivity of the Web database is the lowest among all the data sets. The web data
set has more nodes than edges in average. GraphSAGE has speci�c parameters
only de�ned for the node' features without considering the neighborhood. This
can give a strong advantage in that case. Our model performed well on the IAM
database due to the importance of node information during matching (in the
contrary to MNIST experiments): when classifying an image, edge information
is mainly used to orient the �lter (as in classical CNN). In the contrary, it might
be di�erent on other types of data such as molecules or pages. Extending the
neighbourhood size (Experiment 3) did not have any signi�cant e�ect on per-
formance (see Table 7). A possible reason is that experiments were performed
with the �no edge-matching" model where edge attributes are not taken into
account. Therefore, increasing the size of neighbourhoods provides only little
information because this information is not spatially de�ned. The bigger the
neighbourhood gets, the more critical spatiality becomes. On MNIST-mixed
(Experiment 4), no performance loss was observed on testing for our method.
This is especially visible on grid graphs results where only classic CNN and
MoNet show a 10 percent loss. A trivial explanation of how is this invariance
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Table 5: Recognition rates on MNIST 2class
Representation Dataset CNN MoNet Ours

Valid Test Valid Test Valid Test

1
4
grid

MNIST reduced 100 % 99.88 % 97.56 % 99.40 % 99.51 % 97.76 %
MNIST mixed 100 % 89.87 % 97.76 % 88.90 % 99.27 % 95.63 %

75 superpixels
MNIST reduced 94.13 % 92.70 % 93.64 % 91.62 %
MNIST mixed 94.13 % 92.90 % 94.62 % 94.17 %

Table 6: Recognition rates on IAM graph datasets
Dataset MoNet GraphSAGE Ours

Valid Test Valid Test Valid Test
AIDS 80.00% 79.73% 79.60% 79.40% 96.39% 96.93%
Mutagenicity 68.20% 69.41% 69.60% 67.65% 74.00% 76.42%
Web 26.92% 29.74% 40.00% 47.82% 31.79% 31.66%

obtained is that our graph convolution �lters are non-oriented because edge at-
tributes are ignored. In the contrary, MoNet loss seems lower on irregular grids.
This is possibly due to the fact that the model is less �tted, therefore less prone
to over�tting when used on new data. Also, the RAG representation is likely
to in�uence the results. A particular concern on graph convolution operators is
sensitivity to domain changes, i.e. capacity to identify similarities on irregular
graphs (Experiment 5). Both graph convolution tested show little performance
loss between regular (grids) and irregular (75 superpixels RAG) results.

Experiment 5: Visualizing graph convolution on images As an addi-
tional experimental material, we tried to visualize the result of a handcrafted
�lter on images. As for euclidean convolution, the most straightforward �lter
operation is edge detection. This is usually done by using Sobel operator that
calculates intensity gradient at each spatial point of the image.

A potential equivalent graph convolution �lter is (−1 1) (the �lter is a 2-
nodes graph with respective attributes −1 and 1.) The intuition behind this
�lter is that the nodes will be matched respectively to the lowest (for the at-
tributed −1 node) and highest (for the attributed 1 node) intensities. As a
consequence, this �lter will �nd the highest node attribute di�erence in every
node neighbourhood, making it a sort of eager edge detection �lter.

We applied this �lter on grid graphs to visualize the output graph as an
image (as the graph-to-image transformation is trivial). Figure 3 shows example

Table 7: Recognition rates for di�erent neighbourhood sizes on MNIST reduced
2 class

Representation 1 hop 2 hops
Valid Test Valid Test

1
4
grid 99.02% 97.55% 98.04% 96.47%

75 superpix-
els

97.55% 93.74% 96.82% 93.62%
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Table 8: Epoch durations on MNIST 2class (Models use di�erent implementa-
tions/hardware: CNN is Keras on GPU, MoNet is Theano on GPU and Ours
is Keras on CPU)

RepresentationCNN MoNet Ours
1
4
grid 1s 1s 17min 29s

75 superpix-
els

NA 1s 2min 42s

applications of this �lter on both original and rotated examples. This last �gure
suggests rotation invariance.

Figure 3: MNIST graph convolution examples (respectively original, convoluted
and rotated convoluted versions)

Training duration As mentioned in Subsection 3.8, complexity of the model
makes experiment tedious to lead. Epoch durations are given in Table 8.

5 Conclusion and perspectives

In this paper, a graph convolutional neural network layer is proposed where
graph matching is used as a convolution operator. The proposal was tested in
a simpli�ed form. Our model performance is at state of the art level on simple
tasks. It shows robustness with respect to graph domain changes. Following
improvements could highly bene�t to performances and computational costs.

The bipartite solver is not the most suitable choice for our use. Using a less
complex solver would allow the full model to be used in practice and applied
to larger graphs. More and more combinatorial components are embedded into
deep learning architectures [26, 6]. The goal is to make them more e�cient but
it comes at the price of a higher time complexity. Graph matching has never
been used as a convolution operator before and our implementation depends on
the graph matching solver. Fast and di�rentiable graph matching solvers like in
[26] could be seen as a mean to speed up our model. These solvers rely on full
GPU implementations and therefore run in a highly parallel and optimized way.
Using the edge information would probably enhance performances signi�cantly
as it will probably help with solving more complex problems. Another point
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of improvement is regarding di�erentiation: the gradient must then be approx-
imated by neglecting contribution of the non-di�erentiable solver intermediary
states. Finding a di�erentiable solver would enhance trainability of the model.
Addressing these issues will not only enhance the current degraded version of
the model but also allow to implement the full model in a usable form. This
model has the peculiarity to learn edge attributes as well as vertex attributes.
It is to our knowledge the only graph convolution formulation that suggests to
modify the spatiality of edge attributes. Finally, investigating our downsam-
pling layer would justify a whole study for itself. It would be interesting to
study the quality of the downsampled graphs but also to study the e�ect of
weighting edges regarding vertex similarity.

Our core contribution is about bringing this new direction that is graph-
matching based GCNN and using combinatorial methods in deep learning. This
is, from our point of view, the reason why these models are not outperforming
the state of the art yet. The work that is presented here is still at its pre-
liminary stage. In another point-of-view, adding complexity to models is also
done in hope of increasing learning performances, as for example work involving
Transformers [6].
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