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Abstract 

The applicability of an alloy as a hydrogen storage media mostly relies on its pressure-

composition-temperature (PCT) diagram. Since the PCT diagram is composition-

dependent, the vast compositional field of high entropy alloys, complex concentrated 

alloys or multicomponent alloys can be explored to design alloys with optimized 

properties for each application. In this work, we present a thermodynamic model to 

calculate PCT diagrams of body-centered (BCC) multicomponent alloys. The entropy of 

the phases is described using the ideal configurational entropy for interstitial solid 

solutions with site blocking effect. As a first approximation, it is assumed that the 

hydrogen partial molar enthalpy of a phase is constant, so the enthalpy of hydrogen 

mixing varies linearly with the hydrogen concentration. Moreover, the hydrogen partial 

enthalpy of a phase for a multicomponent alloy was approximated by a simple ideal 

mixture law of this quantity for the alloy’s components with the same structure. 

Experimental data and DFT calculations were used for parametrization of the enthalpy 

terms of eight elements (Ti, V, Cr, Ni, Zr, Nb, Hf, and Ta), which are the components of 

the alloys tested in this work. Experimental PCTs of six BCC multicomponent alloys of 

four different systems were compared against the calculated ones and the agreement was 

remarkable. The model and parameters presented here can be regarded as a basis for 

developing powerful alloy design tools for different hydrogen storage applications. 

Key words: high entropy alloys, multicomponent alloys, metal hydrides, thermodynamic 

model, pressure-composition-temperature. 
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1. Introduction 

Metal hydrides (MHs) are strategic materials for the widespread use of hydrogen-

based energy systems. Tanks for solid-state hydrogen storage, heat-storage systems, heat-

pumps, hydrogen compressors, fuel cells and batteries are some of the applications in 

which MHs play a key role [1–6]. For each application, a different set of properties is 

required, and the pressure-composition-temperature (PCT) diagram of a metal-hydrogen 

(M-H) system usually determines its applicability. As many thermodynamic properties, 

the PCT diagrams can be tuned by changing the composition of the metallic material of 

the M-H system.  

The use of alloys instead of pure metals for M-H system is not new. However, since 

the advent of the concepts of high entropy alloys (HEA), multi-principal element alloys 

(MPEA), complex concentrated alloys (CCA) or, more generally, multicomponent alloys, 

the vast unexplored compositional space that can be assessed for the discovery of new 

alloys with optimized properties was brought to light [7,8]. To efficiently navigate in the 

endless sea of compositions available, computational tools to predict phase stability and 

properties are paramount. Otherwise, time-consuming experimental measurements would 

inevitably postpone the finding of new promising materials. 

In 2016, M. Shalberg et al. [9] were the first to report a body-centered cubic (BCC) 

HEA with promising hydrogen storage properties. The TiVZrNbHf alloy absorbed 

hydrogen by forming a body-centered tetragonal (BCT) hydride with high hydrogen 

storage capacity. The structural changes during hydrogenation of this alloy were studied 

in detail in [10]. In 2018, C. Zlotea et al. [11] presented the TiZrNbHfTa alloy, which also 

crystallized as single BCC solid solution. The authors reported that during the 

hydrogenation of this alloy two different hydrides could be observed. A monohydride 

with BCT structure stable at lower pressures and an FCC dihydride stable at higher 

pressures. In 2019, M. Nygard et al. [12] reported the hydrogenation of different single 

BCC multicomponent alloys, such as TiVNbZr, TiVNbHf, TiVNb, TiVNbTa and 

TiVNbCr. During hydrogenation, all these alloys formed an FCC dihydride. Moreover, 

an undistorted BCC monohydride was also observed for some of them, such as TiVNb 

and TiVNbCr. Such BCC monohydride was also reported for some Mg-containing HEA 

such as the Mg0.68TiNbNi0.55 alloy [13]. The understanding of the hydrides’ stability at 

different pressures and temperatures is essential to determine the applicability of an alloy. 

However, PCT diagram measurements are very time-consuming and explore the 
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thermodynamic properties of a large number of compositions experimentally is 

unpractical. Therefore, the possibility of predicting the PCT diagram of an alloy based on 

its chemical composition would boost the search of alloys with optimized properties for 

each specific hydrogen storage application. 

In this work we revisited the thermodynamic fundamentals of M-H systems and 

present a thermodynamic model to calculate the pressure-composition-temperature (PCT) 

diagram of multicomponent M-H systems. Since most of the recent works in 

multicomponent alloys for hydrogen storage deals with BCC alloys [9,11–17], this class 

of alloys was firstly considered. The enthalpy terms for eight metal elements, namely Ti, 

V, Cr, Ni, Zr, Nb, Ta, and Hf, which are the components of the alloys considered here, 

were parametrized by combining experimental data and total energy calculations trough 

density functional theory (DFT). The calculated PCTs of six different multicomponent 

alloys were compared against experimental data to evaluate the prediction capability of 

the model, which was remarkable. 

  

2. Theory:  Thermodynamic of M-H systems 

In multicomponent M-H systems, the complete equilibrium (CE) condition is attained 

when the chemical potential of all elements in the system are the same in all co-existing 

phases. CE is only possible when the mobility of all atoms is sufficiently high. In this 

case, the chemical composition of the phases is free to adjust in order to minimize the 

Gibbs free energy of the system.  However, at the low or moderate temperatures typically 

employed in most hydrogen storage applications, the mobility of the metal atoms is 

limited. In this case, it can be assumed that only the hydrogen atoms are mobile while the 

metal atoms are “frozen”. In this situation, an equilibrium condition is also attained 

because the mobility of hydrogen allows the hydrogen chemical potential to be the same 

in the co-existing phases. Such condition is called para-equilibrium (PE) and it is the 

equilibrium condition that will be treated in this manuscript. T.B. Flanagan and W.A. 

Oates have already presented the main aspects of the different degrees of equilibrium that 

can be found in M-H systems and the readers are encouraged to refer to [18] for more 

details.  

Let us consider a single-phase multicomponent alloy. The alloy composition is 

defined by the variable 𝑐𝑖 that is the atomic fraction of the metal element i. Therefore, 
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∑ 𝑐𝑖 = 1. Since we are dealing with PE, the composition of all possible phases in terms 

of this compositional variable will be the same. Another compositional variable (𝑐𝐻) 

determining the amount of hydrogen in the phase is defined as: 

𝑐𝐻 =
𝑛𝐻

𝑛𝑀
    (1) 

where 𝑛𝐻 and 𝑛𝑀 are the number of mols of hydrogen and metal atoms in the phase, 

respectively.  

In this case, the Gibbs free energy (∆𝐺𝑚) of the possible phases in the system will 

depend on 𝑐𝐻 as shown in Figure 1 (a). It is worth noting that the Gibbs free energy of the 

phases depends only on 𝑐𝐻 because of the PE condition. Therefore, the Gibbs free energy 

curves presented in Figure 1 (a) can be simply understood as the Gibbs free energy of 

hydrogen mixing in the α- and β-phase, which is given by equation 2. 

∆𝐺𝑚(𝑐𝐻) = ∆𝐻𝑚(𝑐𝐻) − 𝑇∆𝑆𝑚(𝑐𝐻)     (2) 

∆𝐺𝑚(𝑐𝐻) represents therefore the change in Gibbs free energy between a phase 

having composition 𝑐𝐻 and a reference state. For simple M-H systems the chosen 

reference state is usually H2 at 1 atm and M in its stable form. In this case, since we are 

dealing with BCC alloys, it will be chosen as reference state the BCC alloy with  𝑐𝐻 = 0 

and H2 at 1 atm. Therefore, the enthalpy and entropy of hydrogen mixing are defined by 

equations 3 and 4, respectively. 

∆𝐻𝑚(𝑐𝐻) = 𝐻(𝑀𝐻𝑐𝐻
) − 𝐻(𝑀𝐵𝐶𝐶) −

𝑐𝐻

2
𝐻𝑜(𝐻2)    (3) 

∆𝑆𝑚(𝑐𝐻) = 𝑆(𝑀𝐻𝑐𝐻
) − 𝑆(𝑀𝐵𝐶𝐶) −

𝑐𝐻

2
𝑆𝑜(𝐻2)       (4) 

where 𝐻(𝑀𝐵𝐶𝐶) and 𝑆(𝑀𝐵𝐶𝐶) are the enthalpy and entropy of the alloy in its BCC form, 

𝐻(𝑀𝐻𝑐𝐻
) and 𝑆(𝑀𝐻𝑐𝐻

) are the enthalpy and entropy of the phase (α or β) having 

composition 𝑐𝐻, and 𝐻𝑜(𝐻2) and 𝑆𝑜(𝐻2) are the standard enthalpy and entropy of the H2 

gas, i.e., when 𝑃𝐻2
 = 1 atm. It is important to consider the temperature dependence of the 

𝑆𝑜(𝐻2), which is given by equation 5 according to [19].  

𝑆𝐻2

𝑜 = 𝐴 ln(𝑡) + 𝐵𝑡 +
𝐶𝑡2

2
+

𝐷𝑡3

3
−

𝐸𝑡−2

2
+ 𝐺 [

𝐽

𝑚𝑜𝑙 𝑜𝑓 𝐻2
]    (5) 
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where 𝑡 = 𝑇(𝐾)/1000,  𝐴 =  33.066178, 𝐵 = −11.363417, 𝐶 = 11.432816, 𝐷 =

 −2.772874, 𝐸 =  −0.158558, and 𝐺 =  172.707974. This equation is only valid 

between 298 K and 1000 K. 

The hydrogen chemical potential of H2
 gas per mol of hydrogen (taking 𝑃𝑜 = 1 atm 

as standard state) is given by equation 6, while the hydrogen chemical potential of the α- 

and β-phase are given by equations 7 and 8, respectively. 

𝜇𝐻
𝐻2 =

1

2
𝑅𝑇𝑙𝑛 (

𝑃𝐻2

𝑃𝑜
)     (6) 

𝜇𝐻
𝛼(𝑐𝐻) =

𝑑∆𝐺𝑚
𝛼 (𝑐𝐻)

𝑑𝑐𝐻
     (7) 

𝜇𝐻
𝛽(𝑐𝐻) =

𝑑∆𝐺𝑚
𝛽

(𝑐𝐻)

𝑑𝑐𝐻
     (8) 

Since the metal atoms are “frozen” and the composition of α- and β-phase in terms of 

𝑐𝑖 are the same, the chemical potential of the metal atoms (M) in both phases is also a 

function of 𝑐𝐻 and is given by equations 9 and 10.  

𝜇𝑀
𝛼 (𝑐𝐻) = ∆𝐺𝑚

𝛼 (𝑐𝐻) − 𝑐𝐻𝜇𝐻
𝛼(𝑐𝐻)   (9) 

𝜇𝑀
𝛽 (𝑐𝐻) = ∆𝐺𝑚

𝛽 (𝑐𝐻) − 𝑐𝐻𝜇𝐻
𝛽(𝑐𝐻)        (10)    

It is worth noting that M stands for the whole set of metallic elements in the alloy and 

not for a specific element. Phases are in equilibrium when their chemical potential of 

hydrogen and M are the same. Therefore, for a given temperature, the phases in 

equilibrium will depend on the hydrogen pressure since 𝜇𝐻
𝐻2 depends on 𝑃𝐻2

. In this 

situation, there is only a single 𝑃𝐻2
value in which the three phases α, β and H2 can coexist 

in equilibrium, i.e., 𝜇𝐻
𝐻2 = 𝜇𝐻

𝛼(𝑐𝐻 𝑝𝑙𝑎𝑡
𝛼 ) = 𝜇𝐻

𝛽
(𝑐𝐻 𝑝𝑙𝑎𝑡

𝛽
) and 𝜇𝑀

𝛼 (𝑐𝐻 𝑝𝑙𝑎𝑡
𝛼 ) = 𝜇𝑀

𝛽
(𝑐𝐻 𝑝𝑙𝑎𝑡

𝛽
). 

The equilibrium condition is represented by the common tangent of the Gibbs free energy 

curves of α and β phases (represented by the blue line in Figure 1 (a)). It represents the 

equilibrium between the α-phase with composition 𝑐𝐻 𝑝𝑙𝑎𝑡
𝛼 , the β-phase with composition 

𝑐𝐻 𝑝𝑙𝑎𝑡
𝛽

 and the hydrogen gas at the plateau pressure (𝑃𝑝𝑙𝑎𝑡). Figure 1 (b) presents the 

pressure-composition-isotherm (PCI) diagram for the given temperature. The 𝑃𝑝𝑙𝑎𝑡, 

which is determined by the equilibrium condition, can also be expressed by equation 11. 
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1

2
𝑅𝑇𝑙𝑛 (

𝑃𝑝𝑙𝑎𝑡

𝑃𝑜
) =

∆𝐺𝑚
𝛽

(𝑐𝐻𝑝𝑙𝑎𝑡
𝛽

) − ∆𝐺𝑚
𝛼 (𝑐𝐻𝑝𝑙𝑎𝑡

𝛼 )

𝑐𝐻𝑝𝑙𝑎𝑡
𝛽

− 𝑐𝐻𝑝𝑙𝑎𝑡
𝛼

       (11) 

Below the plateau pressure, only the α-phase coexists in equilibrium with H2 gas and 

its  𝑐𝐻 composition will depend on the 𝑃𝐻2
. Conversely, above the plateau pressure, only 

the β-phase will be in equilibrium with H2 gas. 

 

 

Figure 1: (a) Gibbs Free Energy of α and β-phase as function of 𝑐𝐻 for a M-H system 

under PE condition for a given temperature and (b) its corresponding pressure-

composition-isotherm diagram. 
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3. Thermodynamic Model 

 

3.1. Entropy of mixing 

The entropy of a phase can be expressed as the sum of the configurational (𝑆𝑐) and 

non-configurational (𝑆𝑛𝑐) terms as given by equation 12. 

𝑆 = 𝑆𝑐 + 𝑆𝑛𝑐     (12) 

In this work, it is assumed that the difference between the non-configurational terms 

of  𝑀𝐻𝑐𝐻
 and 𝑀 is negligible.  Therefore, ∆𝑆𝑚 given by equation 4 becomes equation 13. 

∆𝑆𝑚(𝑐𝐻) = 𝑆𝑐(𝑀𝐻𝑐𝐻
) − 𝑆𝑐(𝑀) −

𝑐𝐻

2
𝑆𝑜(𝐻2)     (13) 

 𝑆𝑐(𝑀) is the configurational entropy of the alloy in the reference state, which will 

be considered as the ideal configurational entropy of a random solid solution given by 

equation 14. 

𝑆𝑐(𝑀) = −𝑅 ∑ 𝑐𝑖𝑙𝑛𝑐𝑖

𝑖

       (14) 

where R is the ideal gas constant. 𝑆𝑐(𝑀𝐻𝑐𝐻
) is the configurational entropy of the 

hydrogen solid solution or the hydride phases. 𝑆𝑐(𝑀𝐻𝑐𝐻
) is the sum of the configurational 

entropy of the substitutional solid solution of the metal lattice and the interstitial solid 

solution of hydrogen atoms in the interstitial sites. In this work, the configurational 

entropy expression proposed by J. Garcés in [20], which considers site blocking effect 

(SBE), will be used. When SBE takes place, the occupation of an interstitial site is 

prevented by the prior occupation of a neighboring site. The effective repulsion between 

near neighbor interstitial atoms or short-range order (SRO) between interstitial atoms may 

be chemical and/or strain in origin and is usually reported for M-H systems [18,21,22]. 

The main consequence of the SBE is to produce a dramatic decrease in the number of 

possible configurations, which directly affects the configurational entropy of the phase. 

In the model proposed by J. Garcés [20], the occupancy of one site by an interstitial atom 

excludes the occupancy of (𝑟 − 1) neighboring vacant site. Thus, the set of vacant sites 

is divided in two different species: 𝑛𝑓 free vacant sites and 𝑛𝑏 = 𝑟 − 1 blocked vacant 

sites associated with each interstitial atom. The blocked vacant sites do not participate in 

the mixing process and, as consequence, it could be assumed that a new chemical specie 



8 
 

of size 𝑟 is formed. For a 𝑀𝐻𝑐𝐻
 phase, in which only hydrogen atoms are considered as 

interstitial atoms, the expression for configurational entropy is given by equation 15.    

𝑆𝑐(𝑀𝐻𝑐𝐻
) = −𝑅 [∑ 𝑐𝑖𝑙𝑛𝑐𝑖

𝑖

+ 𝑐𝐻 ln (
𝑐𝐻

𝜃 − [(𝑟 − 1)𝑐𝐻]
)

+ (𝜃 − 𝑟𝑐𝐻) ln (
𝜃 − 𝑟𝑐𝐻

𝜃 − [(𝑟 − 1)𝑐𝐻]
)]      (15) 

Where 𝜃 is the number of interstitial sites per metal atom. For more details regarding the 

deduction of this expression refers to [20]. Therefore, by replacing equation 15 and 14 

into 13,  ∆𝑆𝑚(𝑐𝐻) becomes equation 16. 

∆𝑆𝑚(𝑐𝐻) = −𝑅 [𝑐𝐻 ln (
𝑐𝐻

𝜃 − [(𝑟 − 1)𝑐𝐻]
) + (𝜃 − 𝑟𝑐𝐻) ln (

𝜃 − 𝑟𝑐𝐻

𝜃 − [(𝑟 − 1)𝑐𝐻]
)]

−
𝑐𝐻

2
𝑆𝑜(𝐻2)       (16) 

It is worth noting that when 𝑟 = 1, no SBE is taking place. Equation 16 shows that ∆𝑆𝑚 

does not depend on the configurational entropy of the metal lattice but only on the 

configurational entropy of the hydrogen interstitial solid solution. Thus, 𝜃 and 𝑟 are the 

only parameters necessary to model ∆𝑆𝑚 for each phase. 

 

3.2.Enthalpy of mixing 

As a first approximation, in this work we assume that the H partial molar enthalpy of 

a phase is constant for a given alloy composition. Therefore, the enthalpy of hydrogen 

mixing in a phase varies linearly with the H concentration as given by equation 17.  

∆𝐻𝑚(𝑐𝐻) = 𝐻𝑀 + ℎ𝑀 ∙ 𝑐𝐻        (17) 

where 𝐻𝑀 is a constant and ℎ𝑀 is the hydrogen partial molar enthalpy. 

 

3.3. Chemical Potentials 

The thermodynamical equilibrium of the M-H system depends on the 𝜇𝐻 of the 

possible phases in the system. Using equations 16 and 17, 𝜇𝐻 of a phase can be derived 

analytically resulting in equation 18.  
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𝜇𝐻(𝑐𝐻) = ℎ𝑀 − 𝑇 [−𝑅𝑙𝑛 (
𝑐𝐻[𝜃 − (𝑟 − 1)𝑐𝐻](𝑟−1)

[𝜃 − 𝑟𝑐𝐻]𝑟
) −

𝑆𝐻2

𝑜

2
]   (18) 

𝜇𝑀 can be calculated using equation 19. 

𝜇𝑀(𝑐𝐻) = ∆𝐺𝑚(𝑐𝐻) − 𝑐𝐻 ∙ 𝜇𝐻(𝑐𝐻)     (19) 

In possession of 𝜇𝐻(𝑐𝐻) and 𝜇𝑀(𝑐𝐻), the equilibrium of the system can be easily 

assessed. 

 

4. Parametrization 

 

4.1. Phases 

Three phases are usually observed in the hydrogenation of BCC multicomponent 

alloys. The α-phase is the hydrogen dilute solid solution. In the α-phase of BCC metals, 

such as V, Nb and Ta, the hydrogen atoms usually occupy the tetrahedral interstitial sites 

(T-sites) [23].  

The β-phase is an intermediate hydride that can have different structures. For Nb and 

Ta, the β-phase has an orthorhombic structure with the hydrogen atoms at some 

preferential T-sites. In the case of V, the β-phase has a monoclinic structure with 

hydrogen atoms at some preferential octahedral sites (O-sites). As already mentioned, 

M.M. Nygard et al. [12] reported the formation of intermediate hydrides with undistorted 

BCC structure for different alloys such as TiVNb and TiVCrNb. The same was observed 

for the Mg0.68TiNbNi0.55 alloy in [13]. C. Zlotea et al. [11] reported the formation of an 

intermediate hydride with body-centered structure (BCT) for the TiZrNbHfTa alloy. 

According to the authors, the BCT structure can be understood as a preferential 

occupancy of hydrogen atoms in some preferential O-sites. Regardless the crystal 

structure, the β-phase can be understood as an expanded (distorted or undistorted) BCC 

lattice with hydrogen atoms at some preferential interstitial site. 

The δ-phase is a face centered cubic structure (FCC) with hydrogen atoms at the T-

sites in a CaF2-type structure. This phase is usually observed during hydrogenation of 

pure elements such as VH2, NbH2, TiH2, and for several multicomponent BCC alloys 

such as TiVNb, TiVNbCr and TiNbZrHfTa [12,13]. δ-phase with BCT structure has also 

been reported for the TiVZrNbHf alloy [9,17]. The BCT structure is only a slight 
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distortion of the FCC structure. The formation of such distorted δ-phase during 

hydrogenation has been reported for some pure metals and other alloys as well. This is 

the case of ZrH2, HfH2, (TiZr)Hx, and (TiHfZr)Hx hydrides [24–26].  

 

4.2.Entropy of mixing  

For the entropy of mixing of each phase it is necessary only to define the values of  𝜃 

and 𝑟 parameters of equation 16.  

In this work, we will assume that for the α-phase the hydrogen atoms occupy the T-

sites of the BCC structure, therefore, 𝜃 = 6. In the BCC structure, a tetrahedral site has 

four first T-site neighbors, two second T-site neighbors and eight third T-site neighbors 

at distances of 𝑎√2/4, 𝑎/2 and 𝑎√6/4, respectively. Thus, 𝑟 = 5 if only the first T-site 

neighbors are blocked by the prior occupation of a T-site. If first and second neighbors 

are blocked, then 𝑟 = 7. And if the first, second and third neighbors are blocked, 𝑟 = 15. 

For the β-phase, the H atoms can occupy either some preferential T-sites or O-sites. 

For the cases in which T-sites are occupied, we will assume that only a fraction of them 

is initially available (ordered structure). In this case we chose 𝜃 = 4 (an intermediate value 

between the α- and δ-phase). When the O-sites are occupied, 𝜃 = 3. If we consider that 

only one T- or O-site is blocked by the prior occupation of a T- or O-site, 𝑟 = 2. If two 

sites are blocked, then 𝑟 = 3. 

In the δ-phase, the hydrogen atoms occupy the T-sites of the FCC structure, therefore, 

𝜃 = 2. No SBE is considered to occur in the δ-phase, therefore, 𝑟 = 1.  Table 1summarizes 

𝜃 and 𝑟 values that can be used for each phase. 

Table 1: Possible 𝜃 and 𝑟 entropy parameters for the different phases. 

 𝜽 𝒓 

α-phase 6 5, 7 or 15 

β-phase 4 or 3 3 or 2 

δ-phase 2 1 

 

 



11 
 

4.3.Enthalpy of mixing 

 

4.3.1. Total Energy Calculation by DFT 

For the parametrization of the 𝐻𝑀 and ℎ𝑀 enthalpy terms, the total energy of different 

structures was calculated using first principles calculations in the framework of the 

density functional theory (DFT).  The calculations were carried out using the WIEN2k 

program, which is based on a full-potential (considers all electrons – core and valence) 

augmented plane wave plus local orbitals (APW+lo) method to solve the Kohn–Sham 

equations of DFT [27,28]. The exchange and correlation energy were treated using the 

generalized gradient approximation (GGA) parametrized by Perdew, Burke and 

Ernzerhof (PBE) [29]. The cut-off energy is defined as RMT*Kmax, where RMT is the 

smallest atomic sphere radius in the unit cell and Kmax is the largest k-vector in the 

planewave expansion. In this work, the structures containing hydrogen atoms were 

calculated using RMT*Kmax = 4.0. The calculation of the structures having only metal 

atoms was carried out using RMT*Kmax = 7.5. For all calculations, 10.000 k-points were 

used in the irreducible part of the Brillouin zone. The energy convergence criterion for 

the self-consistent field calculation was 0.0001 Ry. The total ground state energy and the 

equilibrium volume of the structures at 0 K were found by calculating the total energy of 

the structures with different lattice parameters and fitting the results with the Murnaghan 

equation of state. 

 

4.3.2. Parameterization of 𝑯𝑴 

As the BCC metal or alloy with 𝑐𝐻 = 0 is taken as reference state, 𝐻𝑀
𝛼 = 0. Since the 

β-phase is an expanded and un/distorted BCC phase, we can assume that when 𝑐𝐻 →0, 

the α- and β-phase are practically the same, therefore, 𝐻𝑀
𝛽

= 0.  

In this work, the δ-phase will be treated only as an FCC phase and possible distortions 

will be neglected. In this case, 𝐻𝑀
𝛿  represents the enthalpy of phase transition from the 

metal or alloy in the reference state (BCC) to the FCC structure. For the pure metals, we 

can approximate this value by simply calculating the difference between the total energies 

of the FCC and BCC structure. For multicomponent alloys, we consider that the total 

energy of random solid solution is divided among the M-M bonds between the first 
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neighbor atoms. The number of bonds considered per metal is therefore equal to the 

coordination number of the structure (8 for BCC and 12 for FCC) divided by two. In this 

case, the total energy of α-phase and δ-phase when 𝑐𝐻 = 0 is given by equations 20 and 

21, respectively, and 𝐻𝑀
𝛿  is given by equation 22. 

𝐸𝑡𝑜𝑡𝑎𝑙
𝛼 = 4𝜀𝑀−𝑀

𝛼       (20) 

𝐸𝑡𝑜𝑡𝑎𝑙
𝛿 = 6𝜀𝑀−𝑀

𝛿        (21) 

𝐻𝑀
𝛿 = 𝐸𝑡𝑜𝑡𝑎𝑙

𝛿 − 𝐸𝑡𝑜𝑡𝑎𝑙
𝛼         (22) 

where 𝜀𝑀−𝑀
𝛼  and 𝜀𝑀−𝑀

𝛿  is the bond energy of the first neighbor atoms of α- and δ-

phase, respectively. In this work, it will be assumed that for a multicomponent alloy 𝜀𝑀−𝑀
𝛼  

and 𝜀𝑀−𝑀
𝛿  assumes an average value of all the existing bond types in the structure 

weighted by their probability of appearance as given by equation 23. 

𝜀𝑀−𝑀 = ∑ 𝛿𝑖𝑗 ∙ 𝑝𝑖𝑗 ∙ 𝜀𝑖−𝑗

𝑖≥𝑗

     (23) 

where 𝜀𝑖−𝑗 is the energy of a bond between element i and j; 𝑝𝑖𝑗 is the probability of 

appearance of the bond i-j, which for a random solid solution is simply given by 𝑐𝑖 ∙ 𝑐𝑗; 

and 𝛿𝑖𝑗 is the degeneracy of the bond i-j, which is 1 for 𝑖 = 𝑗 and 2 for  𝑖 ≠ 𝑗. 

To calculate the energy values of (i-i)-type bonds (𝜀𝑖−𝑖), the total energies of the BCC 

and FCC structures of metal i were calculated by DFT and the values of 𝜀𝑖−𝑖
𝛼  and 𝜀𝑖−𝑖

𝛿  

were determined using equation 20 and 21, respectively. To find the values of 𝜀𝑖−𝑗
𝛼  (i.e. 

𝑖 ≠ 𝑗), the total energies of B2 structures (as shown in Figure 2 (a)) were calculated and 

equation 23 applied. To find 𝜀𝑖−𝑗
𝛿 , the total energies of L10 structures with c/a = 1 (Figure 

2 (b)) were calculated. In this case, the value of the 𝜀𝑖−𝑗
𝛿  is found using equation 24. 

𝐸𝑡𝑜𝑡𝑎𝑙
𝐿10 = 4𝜀𝑖−𝑗

𝛿 + 𝜀𝑖−𝑖
𝛿 + 𝜀𝑗−𝑗

𝛿     (24) 

Table 2 shows the values of 𝜀𝑖−𝑗
𝛼  and 𝜀𝑖−𝑗

𝛿  and Figure S1 of the supplementary data 

file shows the  𝜀𝑖−𝑗 vs bond length curves for the atomic pairs considered in this work. It 

is worth stressing that we choose to use the minimum values of 𝜀𝑖−𝑗. In this case, it is 

assumed that all the bonds are in the equilibrium distance for each atomic pair. Therefore, 

the total energy calculated using equations 20, 21 and 24 can be regarded as a lower 
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boundary energy. It is important to bear in mind that this model intends only to find 

reasonable values for 𝐻𝑀
𝛿  and not an accurate description of the total energies and 

enthalpies of multicomponent alloys, for which higher order atomic interactions and 

temperature might have important effects. 

 

 

Figure 2: (a) B2 unit cell having 8 bonds with energy 𝜀𝑖−𝑗
𝛼 .(b) L10 unit cell having 16 

bonds with energy 𝜀𝑖−𝑗
𝛿  , 4 bonds with energy  𝜀𝑖−𝑖

𝛿  and 4 bonds having energy  𝜀𝑗−𝑗
𝛿 . 
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Table 2: 𝜀𝑖−𝑗
𝛼 and 𝜀𝑖−𝑗

𝛿  bond energies in kJ/mol for the atomic pairs considered in this work. 

𝜺𝒊−𝒋
𝜶  Ti V Cr Ni Zr Nb Hf Ta 𝜺𝒊−𝒋

𝜶  

 -560421.1 -591764.2 -625097.6 -779338.3 -1461425.9 -1534040.5 -5235125.7 -5408502.9 Ti 

𝜺𝒊−𝒋
𝜹   -623110.6 -656445.6 -810672.3 -1492766.4 -1565384.6 -5266468.0 -5439848.9 V 

Ti -373615.0  -689776.6 -843996.9 -1526098.3 -1598717.9 -5299801.2 -5473183.0 Cr 

V -394508.8 -415403.3  -998231.4 -1680343.3 -1752948.9 -5454044.2 -5627411.5 Ni 

Cr -416729.4 -437623.9 -459844.9  -2362431.4 -2435044.2 -6136130.7 -6309505.1 Zr 

Ni -519564.3 -540455.6 -562671.0 -665488.5  -2507661.1 -6208744.5 -6382124.0 Nb 

Zr -974285.1 -995177.5 -1017397.7 -1120235.8 -1574955.1  -9909830.0 -10083205.7 Hf 

Nb -1022693.3 -1043586.6 -1065807.2 -1168642.9 -1623361.7 -1671769.0  -10256586.5 Ta 

Hf -3490085.2 -3510978.4 -3533199.2 -3636036.0 -4090755.0 -4139162.4 -6606555.1  𝜺𝒊−𝒋
𝜶  

Ta -3605668.2 -3626562.9 -3648783.8 -3751617.8 -4206336.2 -4254744.8 -6722137.1 -6837720.5  

𝜺𝒊−𝒋
𝜹  Ti V Cr Ni Zr Nb Hf Ta 𝜺𝒊−𝒋

𝜹  
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4.3.3. Parametrization of 𝒉𝑴 

ℎ𝑀 represents the hydrogen partial molar enthalpy of the phase. As a first treatment, 

we will assume that the ℎ𝑀 of a multicomponent phase will be approximately the mean 

value of the hydrogen partial molar enthalpy of the pure elements in the same phase, as 

given by equation 25. 

ℎ𝑀 = ∑ 𝑐𝑖 ∙ ℎ𝑖

𝑖

      (25) 

where 𝑐𝑖 and ℎ𝑖 are the atomic fraction and hydrogen partial molar enthalpy for element 

i in the phase, respectively. 

For ℎ𝑖
𝛼 and ℎ𝑖

𝛽
we used the experimental values of enthalpy of hydrogen solution at 

infinite dilution (∆𝐻∞ ) of the elements. These values were chosen based on two 

observations described by Y. Fukai [21]. First, for elements existing in different allotropic 

forms, ∆𝐻∞ are approximately the same regardless the allotropic form. Second, for BCC 

metals, the standard enthalpy of formation (∆𝐻𝑓
𝑜) of the intermediate hydrides (β-phase) 

are often remarkably close to ∆𝐻∞ for the respective metals. This is true even for V, in 

which H atoms occupy the T-sites in the α-phase and the O-sites in the highly distorted 

β-phase. According to Y. Fukai [21], the enthalpy of H solution in these phases is more 

related to the electronic structure of the host metal than its crystal structure or the 

hydrogen content. The values of ∆𝐻∞ for the eight elements considered in this work were 

taken from the compilation made by R. Griessen and T. Riesterer in [30]. Table 3 presents 

the values of ℎ𝑖
𝛼 and ℎ𝑖

𝛽
for the eight elements.  

For the δ-phase, the values of ℎ𝑖
𝛿 was determined using DFT calculation. The total 

energy of δ-MH2 hydrides and δ-M metal (i.e. M with FCC structure) was calculated and 

ℎ𝑖
𝛿 was determined by equation 26: 

ℎ𝑖
𝛿 =

𝐸𝑡𝑜𝑡𝑎𝑙
𝛿−𝑀𝐻2 − 𝐸𝑡𝑜𝑡𝑎𝑙

𝛿−𝑀 − 𝐸𝑡𝑜𝑡𝑎𝑙
𝐻2

2
     (26) 

where 𝐸𝑡𝑜𝑡𝑎𝑙
𝐻2  is the total energy of the H2 gas, which was determined using the 

experimental data of ∆𝐻𝑓
𝑜 for δ-VH2, δ-TiH2 and δ-NbH2. ∆𝐻𝑓

𝑜can be approximated using 

equation 27. 
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∆𝐻𝑓
𝑜(𝑀𝐻2) = 𝐸𝑡𝑜𝑡𝑎𝑙

𝛿−𝑀𝐻2 − 𝐸𝑡𝑜𝑡𝑎𝑙
𝑀 − 𝐸𝑡𝑜𝑡𝑎𝑙

𝐻2     (27) 

where 𝐸𝑡𝑜𝑡𝑎𝑙
𝑀  is the total energy of M in its standard state, which is BCC for V and Nb and 

HCP for Ti. Table 4 summarizes the results and Figure S2 of the supplementary data file 

shows the 𝐸𝑡𝑜𝑡𝑎𝑙 vs unit cell volume curves for the calculated structures. The mean value 

of 𝐸𝑡𝑜𝑡𝑎𝑙
𝐻2 = -3073.3 kJ/mol was used to calculate ℎ𝑖

𝛿 using equation 26. Table 3 also 

presents the calculated values of ℎ𝑖
𝛿 for the eight elements considered in this work. Figure 

S3 of the supplementary data file shows the 𝐸𝑡𝑜𝑡𝑎𝑙 vs unit cell volume curves for the 

calculated structures. 

Table 3: Values of  ℎ𝑖
𝛼, ℎ𝑖

𝛽
 and ℎ𝑖

𝛿for the elements considered in this work. Values in 

kJ/mol of M.  

𝑬𝒍𝒆𝒎𝒆𝒏𝒕 𝒊 𝒉𝒊
𝜶 = 𝒉𝒊

𝜷
 𝒉𝒊

𝜹 

Ti -58.2 -64.2 

V -29.5 -31.8 

Cr +52.0 2.2 

Ni +16.0 18.5 

Zr -64.0 -74.4 

Nb -35.3 -40.8 

Hf -38.0 -52.0 

Ta -36.0 -6.4 

 

Table 4: Experimental value of ∆𝐻𝑓
𝑜(𝛿 − 𝑀𝐻2) and calculated values of 𝐸𝑡𝑜𝑡𝑎𝑙

𝛿−𝑀𝐻2, 𝐸𝑡𝑜𝑡𝑎𝑙
𝑀  

and 𝐸𝑡𝑜𝑡𝑎𝑙
𝐻2  for M = V, Ti and Nb. All values are given in kJ/mol of M or H2. 

𝑴 ∆𝑯𝒇
𝒐 [Ref] 𝑬𝒕𝒐𝒕𝒂𝒍

𝜹−𝑴𝑯𝟐 𝑬𝒕𝒐𝒕𝒂𝒍
𝑴  𝑬𝒕𝒐𝒕𝒂𝒍

𝑯𝟐  

V -40.6  [21] -2495556.7 -2492442.5 -3073.6 

Ti -134.0 [30] -2244891.6 -2241695.3 -3062.3 

Nb -40.6 [21] -10033769.0 -10030644.6 -3083.9 
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5. Materials and Methods 

 

5.1. PCT Calculation 

In this work, we wrote a simple code in Microsoft Excel using the VBA and solver 

tools to find the equilibrium conditions of the systems. This was done by varying 𝑐𝐻 of 

the phases and minimizing the differences between 𝜇𝐻 and 𝜇𝑀 of them, i.e., finding the 

common tangents of the Gibbs free energy curves. To do so, the Gibbs free energy of the 

phases should be described in all 𝑐𝐻 range. Because the natural logarithm in the 

configurational entropy expression, this quantity can be calculated using equation 16 only 

up to 𝑐𝐻 = 𝜃/𝑟. To solve this problem, we fitted the configurational entropy curves with 

a sixth order polynomial equation. For 𝑐𝐻 ≥ 𝜃/𝑟 the polynomial equations were used to 

describe the configurational entropy. Figure S4 of the supplementary data file shows the 

fitting for the different possible values of 𝜃 and 𝑟 presented in Table 1. 

 

5.2 Materials and experimental PCT measurement. 

Samples of four multicomponent alloys, namely (TiVNb)85Cr15, Ti28.3V1.3Nb55.4Cr15, 

(TiVNb)96.8Ni3.2 and Ti32.1V36.1Nb28Ni3.8, were produced by arc-melting. 

Characterization through X-ray diffraction (XRD), scanning electron microscopy (SEM) 

and energy dispersive X-ray spectroscopy (EDX) showed that the (TiVNb)85Cr15 and 

Ti28.2V1.3Nb55.4Cr15 were single BCC solid solutions with high chemical homogeneity. On 

the other hand, the (TiVNb)96.8Ni3.2 and Ti32.1V36.1Nb28Ni3.8 presented a microstructure 

composed of a major BCC matrix and a small fraction of Ni-rich intermetallic. It is worth 

mentioning that no diffraction peaks of the Ni-rich intermetallic phase could be observed 

in the XRD patterns of these alloys, indicating a volume fraction lower than five percent. 

SEM analyses showed that this phase was formed at the interdendritic spaces and 

confirmed the low volume fraction.  The chemical composition of the BCC matrixes was 

determined through SEM-EDX analyses, resulting in Ti31.7V32.4Nb33.7Ni2.2 for the 

(TiVNb)96.8Ni3.8 alloy and Ti30.1V35.5Nb32.2Ni2.2 for the Ti32.1V36.1Nb28Ni3.8 alloy. The 

compositions of the BCC matrixes were used to calculate the PCT diagrams. 

PCI measurements were carried out in a Sieverts-type apparatus.  Small sample pieces 

(cut using a manual shear cutter) were used for measurements. Initially, the samples were 

subjected to an activation procedure at 390 ºC under dynamic vacuum for 12 hours to 
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facilitate hydrogen absorption. PCI measurements at three different temperatures at least 

were obtained in absorption and desorption conditions applying variable doses of 

hydrogen up to the maximum pressure of 100 bar. The low-pressure limit of the pressure 

gauge was 10-3 atm.  

 

6. Results 

In addition to the four alloys presented in section 5.2, two alloys whose PCT 

measurements were reported in literature, namely, TiZrNbHfTa [11] and TiVZrNbHf [17] 

were also analyzed. Table 5 shows the 𝜃 and 𝑟 parameters used to describe configurational 

entropy as well as the calculated values of 𝐻𝑀 and ℎ𝑀 of the three phases for all studied 

alloys. The same values of 𝜃 and 𝑟 were used for the α- and δ-phase for the six alloys. 

For the α-phase, it was considered the blocking of first and second T-site neighbors. 

However, due to the possible differences in the nature of the β-phase for each alloy, the 

values of 𝜃 and 𝑟 for the β-phase were adjusted to better describe the experimental results.  

Table 5: 𝜃 and 𝑟 parameters used to describe the configurational entropy and the 

calculated values of 𝐻𝑀 and ℎ𝑀to describe the enthalpy of mixing of the three phases for 

each alloy. The values of 𝐻𝑀 and ℎ𝑀 are in kJ/mol. 𝐻𝑀
𝛼 = 𝐻𝑀

𝛽
= 0. 

Alloy 
α-phase β-phase δ-phase 

𝜽 𝒓 𝒉𝑴 𝜽 𝒓 𝒉𝑴 𝜽 𝒓 𝑯𝑴 𝒉𝑴 

(TiVNb)85Cr15 6 7 -27 4 2 -27 2 1 +15.6 -38.4 

Ti28.3V1.3Nb55.4Cr15 6 7 -28.6 4 2 -28.6 2 1 +16.9 -40.9 

Ti31.7V32.4Nb33.7Ni2.2 6 7 -39.5 4 3 -39.5 2 1 +8.7 -44.0 

Ti30.1V35.5Nb32.2Ni2.2 6 7 -38.9 4 3 -38.9 2 1 +9.1 -43.3 

TiZrNbHfTa 6 7 -46.3 3 2 -46.3 2 1 +3.2 -47.6 

TiVZrNbHf 6 7 -45 4 2 -45 2 1 +2.5 -52.6 

 

 Figure 3 presents the comparison of the calculated and experimental PCTs for the six 

alloys. All the calculated Gibbs free energy curves as well as the common tangents that 

determine the equilibrium plateaus are presented in Figures S5 to S10 of the 

supplementary data file. The calculated PCT of the (TiVNb)85Cr15, Ti28.3V1.3Nb55.4Cr15, 

Ti31.7V32.4Nb33.7Ni2.2 and Ti30.1V35.5Nb32.2Ni2.2 alloys presented two plateaus. The first 

plateau at low hydrogen concentration between the α- and β-phase, and a second plateau 
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at higher hydrogen concentration between the β- and δ-phase. The experimental results 

confirmed the presence of two plateaus. However, only the second plateau could be 

experimentally determined. XRD after partial absorption at room temperature confirmed 

that in all cases the β-phase was an expanded and undistorted BCC phase. We suppose 

that when the β-phase is undistorted, the hydrogen atoms continue to occupy the T-sites 

and for this reason we chose 𝜃 = 4 to describe the configurational entropy of this phase. 

The experimental results show that hysteresis of approximately one order of magnitude 

takes place in the second plateau for all the alloys. For the (TiVNb)85Cr15 alloy, the 

calculated PCIs were in between the plateaus measured in absorption and desorption. On 

the other hand, for the Ti28.3V1.3Nb55.4Cr15, Ti31.7V32.4Nb33.7Ni2.2 and Ti30.1V35.5Nb32.2Ni2.2 

alloys, the calculated second plateaus were close to the experimental desorption plateau.  

It is worth noting that for the four compositions, the calculated values of 𝑐𝐻𝑝𝑙𝑎𝑡
𝛽

 in the 

second plateau reasonably agree with the experimental ones. On the other hand, the 

calculated values of 𝑐𝐻𝑝𝑙𝑎𝑡
𝛿  are higher than the experimental ones. The model predicts that  

𝑐𝐻𝑝𝑙𝑎𝑡
𝛿 decreases with the increase of temperature, however, the decreasing in the 

calculated values of 𝑐𝐻𝑝𝑙𝑎𝑡
𝛿  are lower than those observed experimentally.  Despite this, 

one can see that for the four alloys the agreement between the calculated plateau pressures 

with the experimental results was remarkable. 

Table 6 presents the calculated values of plateau enthalpy (∆𝐻𝑝𝑙𝑎𝑡) and plateau 

entropy (∆𝑆𝑝𝑙𝑎𝑡), which are defined by equation 28 and 29, respectively.  

∆𝐻𝑝𝑙𝑎𝑡 =
∆𝐻𝑚

𝛿 (𝑐𝐻𝑝𝑙𝑎𝑡
𝛿 ) − ∆𝐻𝑚

𝛽
(𝑐𝐻𝑝𝑙𝑎𝑡

𝛽
)

𝑐𝐻𝑝𝑙𝑎𝑡
𝛿 − 𝑐𝐻𝑝𝑙𝑎𝑡

𝛼
    (28) 

∆𝑆𝑝𝑙𝑎𝑡 =
∆𝑆𝑚

𝛿 (𝑐𝐻𝑝𝑙𝑎𝑡
𝛿 ) − ∆𝑆𝑚

𝛽
(𝑐𝐻𝑝𝑙𝑎𝑡

𝛽
)

𝑐𝐻𝑝𝑙𝑎𝑡
𝛿 − 𝑐𝐻𝑝𝑙𝑎𝑡

𝛽
    (29) 

Experimentally, ∆𝐻𝑝𝑙𝑎𝑡 and ∆𝑠𝑝𝑙𝑎𝑡 are estimated using the so called Van’t Hoff 

relationship (equation 30). 

1

2
𝑙𝑛(𝑃𝑝𝑙𝑎𝑡) =

∆𝐻𝑝𝑙𝑎𝑡

𝑅𝑇
−

∆𝑆𝑝𝑙𝑎𝑡

𝑅
     (30) 

In this case, it is assumed that ∆𝐻𝑝𝑙𝑎𝑡 and ∆𝑠𝑝𝑙𝑎𝑡 are constant over temperature and, 

therefore, these quantities can be found directly by the linearization of 
1

2
𝑙𝑛(𝑃𝑝𝑙𝑎𝑡) vs 1/𝑇. 
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However, neither  ∆𝐻𝑝𝑙𝑎𝑡 nor ∆𝑆𝑝𝑙𝑎𝑡 is actually constant over temperature since the phase 

boundaries, i.e. 𝑐𝐻𝑝𝑙𝑎𝑡
𝛽

 and 𝑐𝐻𝑝𝑙𝑎𝑡
𝛿 , varies with temperature. Moreover, since 𝑆𝐻2

𝑜  varies 

with temperature (equation 5), ∆𝑆𝑝𝑙𝑎𝑡 would not be constant even if 𝑐𝐻𝑝𝑙𝑎𝑡
𝛽

 and 𝑐𝐻𝑝𝑙𝑎𝑡
𝛿  

were. Because of the variation of ∆𝐻𝑝𝑙𝑎𝑡 and ∆𝑆𝑝𝑙𝑎𝑡 with temperature is often small, the 

value obtained from the linearization of equation 25 is often a good approximation of the 

actual values. Table 6 also shows the values of ∆𝐻𝑝𝑙𝑎𝑡 and ∆𝑆𝑝𝑙𝑎𝑡 determined 

experimentally. Figure 4 presents a Van’t Hoff plot comparing the calculated and 

experimental values of the plateau pressure over temperature. Tables S1 to S6 of the 

supplementary data file presents all the calculated plateau properties for the six studied 

alloys. 

One can see that the agreement between the calculated and experimental values of  

∆𝐻𝑝𝑙𝑎𝑡 for the (TiVNb)85Cr15 and Ti28.3V1.3Nb55.4Cr15 are also remarkable. Moreover, the 

experimental ∆𝑆𝑝𝑙𝑎𝑡 lies between the values of calculated at 25 ºC and 200 ºC, also 

showing a good agreement. For the Ti31.7V32.4Nb33.7Ni2.2, the calculated ∆𝐻𝑝𝑙𝑎𝑡 were 

slightly overestimated (-39 kJ/mol against -32 to -35 kJ/mol) and the experimental and 

calculated values of ∆𝑆𝑝𝑙𝑎𝑡 were in good agreement. For the Ti30.1V35.5Nb32.2Ni2.2 alloy, 

the experimental values of ∆𝐻𝑝𝑙𝑎𝑡 had a larger variation between absorption and 

desorption measurements (-34.2 and -38.1 kJ/mol, respectively), which comprises the 

calculated values. In this case, the experimental values of ∆𝑆𝑝𝑙𝑎𝑡 was slightly higher than 

the calculated ones.   

Figure 3 (e) shows the calculated PCT for the TiZrNbHfTa alloy as well as its 

experimental absorption PCI at 300 ºC taken from [11]. C. Zlotea et al. [11] suggested that 

the β-phase for this alloy is BCT with the H at O-sites. For this reason, we chose 𝜃 = 3 

and 𝑟 = 2 to describe the configurational entropy of this phase. The calculated PCT also 

presented a first plateau between the α- and β-phase and a second plateau between the β- 

and δ-phase. One can see that at 300 ºC the experimental absorption of the second plateau 

pressure is about 20 atm, whereas the calculated one is 2 atm. Considering the one order 

of magnitude hysteresis observed for the other BCC alloys, we believe that the calculated 

value of 𝑃𝑝𝑙𝑎𝑡 is probably close to the actual one. The calculated values of  ∆𝐻𝑝𝑙𝑎𝑡 and 

∆𝑆𝑝𝑙𝑎𝑡 for the TiZrNbHfTa alloys are presented in Table 6. Unfortunately, experimental 

data for these values are still missing.  
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The PCT diagram measured at 289 ºC, 317 ºC and 341 ºC for the TiVZrNbHf were 

reported in  [17] and its comparison with the calculated PCT is presented in Figure 3 (f). 

Differently from the other alloys, the calculated PCT of the TiVZrNbHf alloy presented 

only a single plateau between α- and δ-phase. The results were the same for all possible 

configurations of 𝜃 and 𝑟 used to describe the β-phase.  The calculated PCT predicts a 

plateau between the α-phase with 𝑐𝐻 ~ 0.5 and δ-phase with 𝑐𝐻 ~ 0.75. Above this 

concentration, the hydrogen concentration of the δ increases with increase of pressure. D. 

Karlsson et al. [17] reported the in-situ hydrogenation/dehydrogenation of the TiVZrNbHf 

using synchrotron XRD measurements. Indeed, no intermediate hydride formation 

between the α- and δ-phase was observed. The shape of the absorption experimental PCT 

and the calculated one is quite similar. However, the experimental equilibrium pressures 

are one order of magnitude higher than the calculated ones, which is probably related to 

hysteresis.  In [17], the authors reported an in-situ experiment in which the fully 

hydrogenated TiVZrNbHf alloy was subjected to dynamic vacuum (10-2 atm according 

to the authors) at 400 ºC.  In this experiment, the δ-phase phase did not transform back to 

α-phase, however, the volume of the unit cell was reduced indicating a reduction in the 

hydrogen concentration in the phase. Therefore, we may imagine that the actual 𝑃𝑝𝑙𝑎𝑡 at 

400 °C should be lower than 10-2 atm and even lower for the lower temperatures in which 

the PCI measurements were carried out, which is in good agreement with our results. The 

calculated values of ∆𝐻𝑝𝑙𝑎𝑡 and ∆𝑆𝑝𝑙𝑎𝑡 are also presented in Table 6.  
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Figure 3: Comparison between calculated and experimental PCT diagrams of (a) 

(TiVNb)85Cr15, (b) Ti28.3V1.3Nb55.4Cr15, (c) Ti31.7V32.4Nb33.7Ni2.2, (d) 

Ti30.1V35.5Nb32.2Ni2.2, (e) TiZrNbHfTa (Experimental data taken from [11]), and (f) 

TiVZrNbHf (Experimental data taken from [17]). 

 

Table 6: Comparison between the calculated and experimental values of ∆𝐻𝑝𝑙𝑎𝑡 and 

∆𝑆𝑝𝑙𝑎𝑡.  ∆𝐻𝑝𝑙𝑎𝑡 and ∆𝑆𝑝𝑙𝑎𝑡 are given in kJ/mol of H and J/K.mol of H, respectively. 

Alloy 
Calculated Experimental 

∆𝑯𝒑𝒍𝒂𝒕 ∆𝑺𝒑𝒍𝒂𝒕 ∆𝑯𝒑𝒍𝒂𝒕 ∆𝑺𝒑𝒍𝒂𝒕 

(TiVNb)85Cr15 -32.4a / -34.3b -75.2a / -87.2b -32.0abs / -34.9des -83.1abs/-81.1des 

Ti28.3V1.3Nb55.4Cr15 -34.1a / -36.0b -74.6a / -86.5b -31.5abs / -34.4des -82.3abs/-79.3des 
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Ti31.7V32.4Nb33.7Ni2.2 -39.3a / -38.7b -74.5a / -79.7b -32.0abs / -35.2des -81.8abs/-76.0des 

Ti30.1V35.5Nb32.2Ni2.2 -38.2a / -37.8b -74.9a / -80.4b -34.2abs / -38.1des -86.2abs/-82.4des 

TiZrNbHfTa -44.5c / -44.1d -74.3c / -79.9d - - 

TiVZrNbHf -51.8e / -52.5f -68.7e / -72.4f - - 

a Calculated at 25 °C; b Calculated at 200 °C; c Calculated at 100 °C; d Calculated at 300°C; 
e Calculated at 260 °C; f Calculated at 360 °C abs Absorption measurements; des Desorption 

measurements. 

 

 

 

Figure 4: Van’t Hoff plots comparing experimental and calculated values of plateau 

pressures. Only for the TiVZrNbHf alloy the plateau pressure between α- and δ-phase is 

presented. For all others, the pressure of β-δ plateau is presented. The experimental data 

for the TiZrNbHfTa alloy was taken from [11]. Since the plateau of the TiVZrNbHf was 

not clearly observed in the PCT data of [17], the experimental plateau pressure for this 

alloy is not presented here. 

 

7. Discussion 

The good agreement between the calculated and experimental PCTs for the alloys 

tested here brought to light some important aspects of the thermodynamic of hydrogen-

multicomponent alloy systems that is worth to discuss.  

Firstly, we can evaluate the role of the configurational entropy of the phases on the 

PCT calculation.  When PE condition is considered, the high ideal configurational entropy 

of the metal host in multicomponent alloys does not have any impact on the stability of 
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the hydrides as can be seen in equation 16. The entropy variation caused by the interstitial 

hydrogen solution is the important entropy term to calculate the PCT. The good 

agreement between the experimental and calculated values of ∆𝑆𝑝𝑙𝑎𝑡 shows that the ideal 

configurational entropy for interstitial solid solution with SBE proposed by J. Garcés [20] 

is a suitable model to predict the entropy change during hydrogenation reaction. The 

common assumption that most entropy change during hydrogenation reaction comes from 

the vanishing of H2 gas and, therefore, that the entropy difference between the solid 

phases has a small effect on the plateau pressures is often used [31,32]. Although we agree 

that the major contribution to ∆𝑆𝑝𝑙𝑎𝑡 comes from the conversion of molecular hydrogen 

gas to dissolved hydrogen, we will show that the difference between the entropies of the 

solid phases in the plateau is not negligible for PCT calculation. Take as example the 

(TiVNb)85Cr15, which the calculated ∆𝐻𝑝𝑙𝑎𝑡 is -32.4 kJ/mol of H and ∆𝑆𝑝𝑙𝑎𝑡 is -75.2 

J/K.mol of H for the β-δ plateau at 25 ºC, resulting in a 𝑃𝑝𝑙𝑎𝑡 of 3.2x10-4 atm. If the 

difference between the configurational entropies of δ- and β-phase was not considered, 

∆𝑆𝑝𝑙𝑎𝑡would be -65.3 J/K.mol of H, resulting in a 𝑃𝑝𝑙𝑎𝑡 of 3.0x10-5 atm, i.e., one order of 

magnitude lower. Such difference would be true for any temperature. Therefore, a good 

description of the entropy of the solid phases is crucial for PCT calculation aiming at 

alloy design. Interestingly, the difference between the configurational entropies of the 

hydrogen interstitial solid solutions seems to be enough to predict the experimental 

results, which suggests that the difference between the non-configurational terms is 

indeed probably small.  Therefore, we believe that a better understating of how the 

chemical composition affects the hydrogen site occupancy (tetrahedral or octahedral) 

mainly for the β-phase is crucial to allow us to select the 𝜃 and r parameters of the 

configurational entropy model, allowing the application of predictive high-throughput 

calculations. 

A second point that is worth discussing is the good agreement between the calculated 

and experimental values of ∆𝐻𝑝𝑙𝑎𝑡. In this work, we use the simple approximation of the 

hydrogen partial molar enthalpy following an ideal mixture law of the alloy’s 

components. The good agreement between the calculated and experimental results shows 

that at least for the TiVNbCr and TiVNbNi systems in the range of composition studied 

here, this is a good approximation. However, we believe that this might not be a universal 

rule. Maybe for other systems, or for other compositions, for example, in the Cr-rich or 

Ni-rich region of these systems, some deviation from the ideal mixture law might be 
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important. Recent experimental and theoretical studies using neutron scattering and 

reverse Monte Carlo structure modelling showed that hydrogen atoms can preferentially 

occupy some more energetic favorable sites in multicomponent alloys [33,34].  The 

results reported by M. Nygard et al. show that for the TiVNb, TiVNbZr and TiVNbCr 

alloys, the stability of the tetrahedral sites of the δ-phase with respect to deuterium 

occupation is correlated with the average valence electron concentration (VEC) of the 

four coordination metals [33,34]. In this case, the probability of hydrogen occupation of 

different tetrahedral sites would be different and vary with hydrogen concentration. 

Consequently, ∆𝐻𝑚(𝑐𝐻) for the different phases would not vary linearly with 𝑐𝐻. 

Moreover, since the occupation of the interstitial sites by hydrogen would not be 

completely random, ∆𝑆𝑚(𝑐𝐻) would also differ from that calculated with equation 16. In 

this initial work, we considered that the hydrogen atoms would be randomly distributed 

in the interstitial sites and, therefore, the Gibbs free energy of the phases were described 

considering only the average structure and composition without any consideration of local 

order or local chemistry. The good agreement between the calculated and experimental 

PCTs suggests that this approximation seems to be reasonably good to describe the 

macroscopic properties of the alloys, at least for the ones tested here. However, we 

acknowledge that including considerations of local chemistry and local order to the model 

would be beneficial for the calculation of the PCT diagrams. To do so, the energy of each 

different interstitial site as well as the probability of hydrogen occupation of each site 

must be modelled as a function of the alloy composition. These models could then be 

incorporated into the equations of ∆𝐻𝑚(𝑐𝐻) and ∆𝑆𝑚(𝑐𝐻) for the different possible 

phases. We believe that adding local chemistry and local order considerations in our 

model would be a bold step for calculating accurate PCT diagrams and it should be a next 

step of investigation.  

It is also important to discuss the difference between the calculated and experimental 

plateau widths, i.e., the difference between the hydrogen concentration of the two phases 

in the equilibrium plateau. It was shown that for the (TiVNb)85Cr15, Ti28.3V1.3Nb55.4Cr15, 

Ti31.7V32.4Nb33.7Ni2.2 and Ti30.1V35.5Nb32.2Ni2.2 alloys, the calculated values of 𝑐𝐻𝑝𝑙𝑎𝑡
𝛽

 in the 

second plateau reasonably agree with the experimental ones. However, the calculated 

values of 𝑐𝐻𝑝𝑙𝑎𝑡
𝛿  were higher than the experimental ones, resulting in larger plateau widths 

for the calculated PCTs. Although the model predicted that 𝑐𝐻𝑝𝑙𝑎𝑡
𝛿 decreases with the 

increase of temperature, the decreasing in the calculated values was lower than those 
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experimentally observed. The reduction of the 𝑐𝐻𝑝𝑙𝑎𝑡
𝛿  with the increase of temperature 

might be related to the effect of temperature on the SBE. In this work, we considered that 

no SBE takes place in the δ-phase and that all tetrahedral sites can be occupied regardless 

the temperature. Recently, M. Nygard et al. showed that a fraction of the octahedral sites 

can also be occupied by hydrogen in the δ-phase of the TiVZrNbHf alloy [34]. Therefore, 

we could hypothesize that the 𝜃 value for the δ-phase could also be composition 

dependent. Another hypothesis is that the number of blocked sites by the prior occupation 

of an interstitial site by hydrogen could also be temperature dependent. In this case, as 

the temperature increases the 𝑟 value would also increase reducing the maximum 

hydrogen capacity of the phase. This could be justified by the higher vibrational energy 

of the hydrogen atoms that could increase the repulsive H-H interactions. Thus, both 𝜃 

and 𝑟 could be composition and temperature dependent. In future works, adding the 

composition and temperature dependency in the configurational entropy terms could 

result in more accurate predictions of the plateau widths, which is an important aspect of 

the PCT diagrams since they determine the amount of hydrogen that can be readily cycled. 

Finally, in our approach the SBE was considered only in the entropy and not in the 

enthalpy formulation. If the strain caused by the H interstitial solid solution in the host 

metal lattice and repulsive H-H interactions were considered in the enthalpy formulation, 

the H partial molar enthalpy of a phase would not be constant, but it would depend on the 

H concentration. Indeed, since the classical work of R. Lacher in 1935 [35],  many authors 

have used the approach of describing the hydrogen partial molar enthalpy as a linear 

function of the hydrogen concentration [36–38]. In our approach, we consider that when 

such increase of energy caused by H-H interactions or lattice strain manifests, the system 

responds by organizing the hydrogen atoms in a new ordered phase that eliminate this 

excess energy. Therefore, the new phase with lower configurational entropy 

(mathematically expressed by the lower 𝜃 parameter) is formed. Since in this work we 

use the same ℎ𝑀 value to describe the enthalpies of the α-phase and β-phase, the first 

plateau between these two phases is only a result of their different configurational 

entropies. For the case where the β-phase continues to be BCC with hydrogen atoms at 

specific tetrahedral sites, the spinodal decomposition could be described only by the 

different configurational entropies of the two phases. In this case, the lattice strain and H-

H interactions would manifest on the SBE and it would be account into the 𝑟 term of the 

configurational entropy equation. Determining stress/strain field and local H-H 
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interaction energy is rather complicated. Therefore, the possibility of calculating 

reasonably accurate PCTs without the need of these quantities makes the model much 

more useful for alloy design and high-throughput calculations. Therefore, we reinforce 

that a deeper evaluation of the hydrogen ordering in the interstitial sites of 

multicomponent alloys is of fundamental importance to improve the predictability of PCT 

calculations. 

 

 

8. Conclusions 

In this work we presented a thermodynamic model to calculate PCT diagrams. The 

configurational entropy of the phases was described using the equation formulated by J. 

Garcés for interstitial solid solution with site blocking effect. The enthalpy of hydrogen 

mixing in the possible phases was considered to vary linearly with the hydrogen 

concentration, meaning a constant hydrogen partial molar enthalpy. For multicomponent 

phases, the partial molar enthalpy was approximated by an ideal mixture law of the alloy’s 

components, and the values for the pure elements were parametrized either by 

experimental data or DFT calculation. The model was applied to six BCC 

multicomponent alloys and the calculated PCTs were compared against the experimental 

ones. The good agreement between the calculated and experimental results shows that 

this model can be used as a basis for calculating reasonably accurate PCTs and become a 

powerful tool for alloy design and high-throughput calculations.  
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