
HAL Id: hal-03267217
https://hal.science/hal-03267217

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Simulating the Respect of a Functional Condition in a
Mechanical System with Mobilities
Denis Teissandier, Vincent Delos, Sonia García

To cite this version:
Denis Teissandier, Vincent Delos, Sonia García. Simulating the Respect of a Functional
Condition in a Mechanical System with Mobilities. Procedia CIRP, 2020, 92, pp.106-111.
�10.1016/j.procir.2020.05.195�. �hal-03267217�

https://hal.science/hal-03267217
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Available online at www.sciencedirect.com

Procedia CIRP 00 (2019) 000–000 www.elsevier.com/locate/procedia

CIRP CAT 2020

Simulating the Respect of a Functional Condition in a Mechanical System
with Mobilities

Denis Teissandiera, Vincent Delosb, Sonia C. Garcı́aa,∗

aUniv. Bordeaux, I2M, UMR 5295, F-33400 Talence, France
bCNRS, I2M, UMR 5295, F-33400 Talence, France

Abstract

Geometric tolerance analysis with sets of constraints is an issue to address to model over-constrained architectures. This article is based on the
implementation of sets of constraints with prismatic polyhedra. The conformity of a mechanical system with respect to a functional condition is
formalized by the inclusion of a resulting polyhedron in a functional polyhedron. After giving the definition of a functional condition, the general
inclusion method is presented. An example illustrates the inclusion conditions.
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1. Introduction

Geometric tolerancing analysis of over-constrained mecha-
nisms consists in closing contacts loops where degrees of free-
dom are suppressed in a redundant way. One of the means to
achieve this goal is to use operations on sets of constraints
(SOC). The latter can characterize not only the geometric vari-
ations but also the contacts.

These operations are the Minkowski sum and the intersec-
tion. A sum is required for the serial contact architectures while
an intersection has to be performed for the parallel contact ar-
chitectures. The reduction of a mechanical system architecture
combining sums and intersections allows to determine the rel-
ative location between two faces of two parts in any mechani-
cal system with the corresponding SOC. The inclusion of the
resulting SOC in a functional SOC –modelling a functional
requirement– simulates the conformity of a mechanical system
[1].

Among the works realized in tolerancing analysis [2], the
domains proposed by Giordano et al. and the T-Maps intro-
duced by Davidson et al. can process simultaneously geometric
variations of the parts and their contacts following this type of
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approach [3]. However, the applications are always performed
in a subspace of the bounded displacements where the resulting
SOC and the functional SOC are closed. Nevertheless, in gen-
eral the functional requirement and the architecture of a mecha-
nism will generate unbounded SOCs due to the degrees of free-
dom in a space of dimension 6.

This paper proposes the general formulation of the inclusion
of a prismatic polyhedra (resulting SOC) in an other one (func-
tional SOC) in dimension 6. This formulation remains valid if
the SOC are polytopes.This paper shows how to describe and
compute this inclusion with sets of constraints modelled by
prismatic polyhedra. The prismatic polyhedra formalism allows
to decompose a set of R6 operands (3 rotations, 3 translations)
into a sum of a bounded set (a polytope) with straight lines. The
polytope characterizes the limits of the bounded displacements,
into an affine subspace whose dimension is lower than 6 [4].

These displacements are limited by part tolerances or joint
clearance. The sum of the straight lines characterize the affine
subspace generated by the surface invariance degree or the joint
mobility degree. One of the difficulties in tolerancing is to dif-
ferentiate the bounded displacements from the unbounded ones
-which are theoretically unlimited [5]. The prismatic polyhe-
dron integrates both bounded and unbounded displacements
into the same model.

This work has been carried out under hypothesis of (i) in-
finitely rigid bodies, and (ii) the assumption that small displace-
ments of nodes deriving from meshed surfaces can lead to lin-
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ear constraints. The first hypothesis means that the deformation
of the constitutive parts of the mechanisms are not taken into
account while the second one allows to model the dependen-
cies between rotations and the translations as linear relations.
The mesh of the toleranced features allows to generate linear
boundaries, in order to manipulate only linear objects (polyhe-
dra). Although T-maps and domain models are initially able to
handle quadratic constraints [11, 12], the constraints are finally
linearized because of the complexity of summing convex non-
linear constraints in dimension 6.

2. Simulating variations with prismatic polyhedra

2.1. Characterizing an operand with a prismatic polyhedron

An operand SOC describes the displacement restrictions of
a surface. This surface simulates the manufacturing defects rel-
ative to a nominal surface in a tolerance zone or the displace-
ment restrictions between two surfaces potentially in contact
(see Figure 1):

∀Ni ∈ S 0,∀i ∈ {1, ...,m} : din f ≤ tNi .ni ≤ dsup (1)

The vector tNi is the translation of a point Ni belonging to
the nominal surface S 0. It is possible to write this translation
in a point M rigidly linked to the points Ni where r designates
the rotation vector between the surfaces S 0 and S 1 according to
small displacements hypothesis :

∀i ∈ {1, ...,m} : din f ≤
(
tM + NiM × r

)
.ni ≤ dsup (2)

After having defined in the basis (u, v,w) these vectors:
r = (ru, rv, rw)t

tM = (tu, tv, tw)t

NiM = (diu, div, diw)t

ni = (niu, niv, niw)t

We get the following relation:

din f ≤
(
nivdiw − niwdiv

)
x1 +

(
niwdiu − niudiw

)
x2

+
(
niudiv − nivdiu

)
x3 + niux4 + nivx5 + niwx6 ≤ dsup

(3)

with x1 = ru, x2 = rv, x3 = rw, x4 = tu, x5 = tv, x6 = tw, ∀i ∈
{1, ...,m}.

The relation 3 defines two R6 half-spaces. Intersecting all of
them generates a R6 polyhedron such as:

Γ =

2m⋂
k=1

Hk (4)

where, Hk =
{
x ∈ R6 : bk + ak1x1 + ... + ak6x6 ≥ 0

}
,∀k ∈

{1, ..., 2m}.
The polyhedron Γ is bounded if the toleranced surface is

classified as complex or if the contact between the two sur-
faces is a permanent connection where all the degrees of free-
dom are suppressed. In all the other cases, the polyhedron Γ is
not bounded. Decomposing a polyhedron Γ in a sum of a poly-
tope P and a polyhedral cone C is always possible -although not
unique- according to the Minkowski-Weyl theorem [6] :

Γ = P ⊕C with C =
∑

i

αiai, αi ≥ 0, ai : vector of Rn (5)

A systematic decomposition of Γ in the sum of a polytope
P and a polyhedral cone C has been proposed by Arroyave et
al. [4]. The principle is to isolate the bounded displacements
by the restrictions of a surface inside a zone (or between two
surfaces potentially in contact) in the polytope P from the un-
bounded displacements in the polyhedral cone C. In the concept
of screw [7] bounded and unbounded displacements belong to
two orthogonal sub-spaces in the affine space.

The polyhedral cone C is a sum of linearly independent R6

straight lines ∆ j. Each line ∆ j is defined by its pluckerian co-
ordinates: it is induced by a rotation mobility or a translation
mobility to the point M rigidly linked to the points Ni gener-
ating the restrictions. The pluckerian coordinates of a straight
line define a “twist screw” [7].

The hyperplane H∆ j , orthogonal to ∆ j, defines a “wrench
screw” (forces and torques compliant with ∆ j mobility): it cor-
responds to the dual sub-space of the unbounded displacements,
i.e. the bounded displacements sub-space. Finally we get:

Γ =

2m⋂
k=1

Hk =

 2m⋂
k=1

Hk ∩

⋂
j

H∆ j


 +

∑
j

∆ j = P +
∑

j

∆ j

with H∆ j⊥∆ j (6)

For more details see [4] and [8].

2.2. Formulating a functional requirement

We consider the system depicted in Figure 2. This system is
a sub-set of a sharpening device coming from a flexible mate-
rial cutting machine –such as textile. A pulley 3 is in turning
pair following the straight line (C, z) with a mobile arm 2. This

2



Author name / Procedia CIRP 00 (2019) 000–000 3

Fig. 1. Displacement restrictions of a surface in a tolerance zone [5].

joint results from the parallel association of two spherical pairs
coming from the rolling bearings. To simplify the model, the
level of details has been reduced. The mobile arm 2 is globally
in prismatic pair with the tension arm 1 according to the line
(B, x). More precisely, this prismatic pair is a parallel combina-
tion of a cylindrical and a ball-and-plane pairs. The cylindrical
pair according to the straight line (B, x) is ensured by the couple
of cylindrical surfaces 2,3 and 1,3. A no-headed screw linked to
part 1 ensures a bilateral ball-and-plane pair at point A accord-
ing the y-axis through the cylindrical surface 1,2 in contact with
the sides of the groove 2,2.

Fig. 2. The sharpening system.

The Functional Condition FC consists in controlling the par-
allelism between the external surface 3,2 from the pulley 3 and
the cylindrical hole 1,1 from the tension arm 1. It is modelled
as stated by the following method. The surfaces 1,1 and 3,2

are FC terminal surfaces. They are respectively included in two
tolerance zones. These two zones are located and/or oriented
between them according to internal mobilities. The two zones
are two coaxial cylinders whose respective median cylinders
are the nominal cylinders of the surfaces. These two zones have
been assigned functional tolerances t f1,1 and t f3,1 , see Figure 3.
The prismatic polyhedron associated to the Functional Condi-
tion FC is defined by the relation 7 where the internal mobili-
ties between the two zones are represented by a sum of straight
lines:

Γ f = P f ⊕
∑

w

∆w

= Γ f 1,1 ⊕ Γ f 3,2 ⊕
∑

c

∆c

=

P f 1,1 ⊕
∑

u

∆u

 ⊕ P f 3,2 ⊕
∑

v

∆v

 ⊕∑
c

∆c

(7)

The prismatic polyhedron Γ f is the Minkowski sum of the
polyhedra coming from the terminal surfaces 1,1 and 3,2 and a
sum of straight lines ∆c. The polyhedra Γ f1,1 and Γ f1,3 are defined
as two SOC operands according to (6). The straight lines ∆c rep-
resent for the designer the mobilities that he wants to integrate
or not into the Functional Condition. If the sharpening system is
considered as a unique fictive part, then the sum of the lines ∆c

is the neutral element , that is to say the origin in the R6 space
of displacements. The sub-space of unbounded displacements
by FC does only depend on intrinsic mobilities to the terminal
surfaces and to their relative locations in the sharpening system
nominal model. This sub-space is defined by the sum of two
unbounded displacements sub-spaces:

∑
u ∆u +

∑
v ∆v.

In our example where τ1,1 and τ3,1 are ”twist screw” sub-
spaces respectively associate to the terminal surfaces 1,1 and
3,1 at point M, we get (8):

3
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∑
u

∆u = τ1,1 =

[
z, 0
0, z

]
=

[
0 0 1 0 0 0
0 0 0 0 0 1

]
∑
v

∆v = τ3,1 =

[
z,MN ∧ z

0, z

]
=

[
0 0 1 0 −L 0
0 0 0 0 0 1

]
∑
u

∆u ⊕
∑
v

∆v = τ1,1 ∪ τ3,1 =

 z, 0
z,MN ∧ z

0, z

 =

 0 0 1 0 0 0
0 0 1 0 −L 0
0 0 0 0 0 1


(8)

In this case, FC is an orientation condition. Consequently,
we have to add a translation mobility according to the x-axis be-
tween the two zones following the x direction. It finally comes
to (9):

∑
u

∆u ⊕
∑

v

∆v ⊕
∑

c

∆c = τ1,1 ∪ τ3,1 ∪ τc =


z, 0

z,MN ∧ z
0, z
0, x

 =


0 0 1 0 0 0
0 0 1 0 −L 0
0 0 0 0 0 1
0 0 0 1 0 0

 with τc = [0, x] (9)

Figure 3 shows graphically the projections of the polyhedra
Γ f ,Γ f1,1 ,Γ f3,1 in the sub-spaces of the rotations (Figure 3b) and
translations (Figure 3c). These polyedra derive from the CAD
space (Figure 3a). The notation Π() designates the orthogonal
projection from the R6 displacement space to a R3 sub-space:
the one of rotations or translations. Figure 3b illustrates the 2D
sub-space of the bounded rotations (rotations according to x-
axis and y-axis) and the 1D sub-space of the unbounded rota-
tions (rotation according to z). Figure 3c shows the 0D sub-
space of the bounded translations (the origin of the space) and
the 3D sub-space of the unbounded translations.

2.3. Simulating a system compliance with respect to a require-
ment

Simulating a system compliance with respect to a require-
ment relies on three main steps. The first one consists in for-
mulating SOC operands, this process has been previously de-
scribed in the section 2.1.

The contacts allow to set up the relations between parts and
can be formalized thanks to a graph. Such an example has been
provided in section 2.2. Each edge from the graph is associated
to a prismatic polyhedron. Computing the relative position be-
tween two surfaces in a mechanical system can be performed
through a graph reduction. This reduction is the second step.
It is based on summing serial edges and intersecting parallel
edges and finally comes to a single edge connected to to the
two main vertices. These vertices correspond to FC terminal
surfaces. The algorithms summing and intersecting prismatic
polyhedra are presented in [9] and [8].

Figure 4 depicts the graph reduction applied to the sharp-
ening system. The 3D prismatic polyhedra in Figure 4 are 6D
projections into the sub-space of the rotations according to the
3 directions x, y and z. This choice comes from the fact that
the Functional Condition FC is an orientation condition, so we
can visualize the polyhedra by projecting them from R6 into R3.
The last step checks the inclusion of the polyhedron Γr resulting
from the graph reduction into the target polyhedron Γ f .

3. Formalizing the inclusion

Let Γr be the polyhedron resulting from the graph reduction.
Let Γ f be the target polyhedron modelling the Functional Con-
dition FC. In a mechanical system, the geometric variations of
the parts are compliant with FC if and only if :

Γr ⊆ Γ f with Γr = Pr ⊕
∑

u

∆u and Γ f = P f ⊕
∑

v

∆v

(10)
Moreover we get:

Pr =
⋂
kr

Hkr ∩

⋂
u

H∆u

 ,with H∆u⊥∆u

P f =
⋂
k f

Hk f ∩

⋂
v

H∆v

 ,with H∆v⊥∆v

(11)

Checking the inclusion can be even more difficult if the
bounded displacement sub-spaces coming from Γr and Γ f are
not the same.

So we consider the following property taking into account
(10) and (11):

∑
u

∆u ⊆
∑

v

∆v and Pr ⊆ P f ⇒ Γr ⊆ Γ f (12)

We are going to check at first that Γr unbounded displace-
ment sub-space is included into Γ f unbounded displacement
sub-space. In other words, we want to verify that the mobili-
ties inherent to the architecture of the mechanical system are
compliant with the Functional Condition. If it is not the case,
satisfying equation (10) is impossible whatever tolerances and
clearances are. It would happen if, for example, the ball-to-
plane pair between the surfaces 1,2 and 2,2 disappeared (see
Figures 2, 4 and 3 right). The rotation DOF between parts 1 and
2 according to the x-axis would prevent from controlling the
parallelism between surfaces 1,1 and 3,2.
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Fig. 3. Modelling the Functional Condition FC.

Fig. 4. The contact graph reduction.

∑
u

∆u ⊆
∑

v
∆v ⇔ ∀u : ∆u ⊥

(
∩
v

H∆v

)
(13)

We want to use property 13 because it can check that
the ubounded displacements space of Γr is orthogonal to the
bounded displacements space of Γ f .

From a mechanical point of view it means that any un-
bounded displacement (twist screw) of the prismatic polyhe-
dron Γr generates a null power following the bounded displace-
ments (wrench screw) of the prismatic polyhedron Γ f . This is
equivalent to computing the product of a twist screw and of a
wrench screw that must be null.

Important remark: the property 13 can be satisfied only if

dim

∑
u

∆u

 ≤ dim

 ∑
v

∆v

 (14)
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Fig. 5. Including the resulting polyhedron into the functional one.

If the relation 13 was verified (see Figures 3 left), including
the polyhedron Γr into the polyhedron Γ f only depends on in-
cluding the polytope Pr into the polytope P f . It can be easily
done checking that all vertices of Pr are included into all the
half-spaces defining Γ f .

Pr ⊆ P f ⇔ ∀v ∈ V (Pr) ,∀k f : v ∈ Hk f (15)

4. Conclusion

After having introduced the concept of a Functional Condi-
tion between two surfaces, this paper explains how to charac-
terize the inclusion of a prismatic polyhedron into another one
in R6 when their underlying polytopes do not share the same
dimension. This method is especially interesting when check-
ing the inclusion depends on a mobility of the system. If it is
the case, it immediately concludes that satisfying the Functional
Condition is impossible. If not, we can assess whether the filling
of the functional polyhedron has been optimized or not. This
opens the way to choosing better tolerances and clearances.
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