Edouard Batot
email: ebatot@uoc.edu

Sebastien Gerard
email: sebastien.gerard@cea.fr

Jordi Cabot
email: uocjordi.cabot@icrea.cat

A Survey-driven Feature Model for Software Traceability Approaches

Keywords: Software Engineering, Model-Driven Development, Traceability, Feature Model, Explainability !

Traceability is the capability to represent, understand and analyze the relationships between software artefacts. Traceability is at the core of many software engineering activities. This is a blessing in disguise as traceability research is scattered among various research subfields which impairs a global view and integration of the different innovations around the recording, identification and management of traces. This also limits the adoption of traceability solutions in industry. In this sense, the goal of this paper is to present a characterization of the traceability mechanism as a feature model depicting the shared and variable elements in any traceability proposal. The features in the model are derived from a survey of papers related to traceability published in the literature. We believe this feature model is useful to assess and compare different proposals and provide a common terminology and background that could speed up the creation of new ones on top of them. Beyond the feature model, the survey we conducted also help us to identify a number of challenges to be solved in order to move traceability forward, especially in a context where, due to the increasing importance of AI techniques in Software Engineering, traces are more important than ever in order to be able to reproduce and explain AI decisions.

INTRODUCTION

The need for traceability has always been salient in software and systems development. Across the years, there has been a continuous interest in developing techniques to facilitate the representation and analysis of traces and links between related artefacts. It helps explaining their execution and evolution as required in many software engineering activities and disciplines such as codegeneration, program understanding, software maintenance, and debugging.

The importance of traceability was first recognized in system engineering especially related to the development and certification of critical systems where it is a primary concern. As an example, traceability is part of any certification mechanism in all commercial software-based aerospace systems as stated in documents like the RTCA DO-178C (2012) [START_REF] Paz | A requirements modelling language to facilitate avionics software verification and certification[END_REF][START_REF] Moy | Testing or formal verification: Do-178c alternatives and industrial experience[END_REF]. The consideration of various levels of abstraction in software development and the meaning of verification in model-based development paradigmwhich figures abstract representations (models) as the core artefact for conceptualization -was latter introduced with companion documents (specifically, DO-331). The automotive industry has followed the same path with the construction of an international standard for functional safety [START_REF]Road vehicles -Functional safety[END_REF].

Despite these important evidences on the need for explicit (and automated) tracing abilities in software development, traceability is not widely adopted, even less automated, and there is little feedback from its concrete use in industry [START_REF] Michael | Successful deployment of requirements traceability in a commercial engineering organization[END_REF] beyond the critical domains above.

There is a lack of global techniques to ease the manipulation of traces and automate tracing processes. Thereby, traceability in the industry, when required, ends up being mostly a manual process [START_REF] Mader | Motivation matters in the traceability trenches[END_REF]. Moreover, with no standard definition or representation of traces, it is difficult to bridge the gaps between the different par-tial traceability solutions existing in research subfields [START_REF] Antoniol | Grand challenges of traceability: The next ten years[END_REF][START_REF] Wohlrab | Collaborative traceability management: a multiple case study from the perspectives of organization, process, and culture[END_REF][START_REF] Winkler | A survey of traceability in requirements engineering and model-driven development[END_REF]. Even the software engineering body of knowledge do not seem to properly consider the key relevance of traceability in software engineering as it only mentions traceability once [START_REF]SWEBOK: Guide to the Software Engineering Body of Knowledge[END_REF].

All this in a context where artificial intelligence techniques are being integrated in development processes, raising the need for more powerful reproducibility and explainability concerns, both requiring the assistance of traceability mechanisms. This paper aims to provide a comprehensive perspective on the state of the art of traceability techniques in software development and their limitations with the short-term goal of facilitating the evaluation and comparison of current solutions. And with the mid-term goal of accelerating the development of new traceability solutions that could benefit from the existing ones thanks to our new conceptualization in the form of a feature model describing the potential dimensions and concerns a traceability solution may wish to consider. We do not create the feature model or just based on our (partial) knowledge and expertise in the domain. Instead, we ground our classification with a survey of the published literature in this field. According to this survey, we group the traceability features in three main dimensions: trace definition, trace identification and trace management, with the corresponding feature hierarchies for each of them.

The paper is organized as follows. After a brief introduction, we discuss in Section 2 how our work compares to other meta studies and characterizations of traceability research. We then introduce some basic traceability terminology in Section 3. Section describes how we conducted our literature review and Section presents a detailed feature model derived from the survey of the retrieved works. This analysis also helps us to propose a number of discussion points and open challenges in Section 6 before concluding this work.

STATE OF THE ART

Cite [START_REF] Lindval | Practical impli-cations of traceability[END_REF]. Cite [START_REF] Lin | Traceability transformed: Generating more accurate links with pre-trained bert models[END_REF][START_REF] Holtmann | Cutting through the jungle: Disambiguating model-based traceability terminology[END_REF] Traceability was proposed, from the very beginning of software engineering, as a measure to ensure that a system being developed actually reflects its design. Already in the original NATO working conference, quality projects were praised for making "the system that they are designing contain explicit traces of the design process" [START_REF] Randel | Towards a methodology of computing system design[END_REF]. From that point on, traceability has been studied from a myriad of perspectives, dimensions and applications.

As such, it is no surprise that there have been other previous attempts to characterize and summarize the state of the art in the traceability field. In what follows, we compare our own proposal with previous surveys of traceability papers and related work aiming to systematize what we know about traceability. As we will see, ours stands out by combining both types of works, i.e. by proposing a traceability systematic description grounded on a thorough analysis of traceability proposals in the literature, instead of just offering a more descriptive survey or an individual and/or partial traceability model.

Publications around traceability started to grow in the 90's with a seminal work from Gotel et al. [START_REF] Gotel | An analysis of the requirements traceability problem[END_REF] with, probably, the first systematic analysis of the traceability problem. Since then, many researchers attempted to draft general traceability frameworks and methods. For instance, in 2007, Cleland Huang et al. described best practices that remain essential today [START_REF] Cleland-Huang | Best practices for automated traceability[END_REF]. They distinguish three categories of concern: the purpose and constraints of tracing in a specific environment; the creation of traceable artefacts with a project glossary, quality requirements and rich, organized content; and the automation of tracing processes. As we will see in the next section, these concerns are an important part of the feature model.

With the proliferation of traceability purposes, some authors explicitly asked for better sharing of experiences in using traceability [START_REF] Gotel | Traceability Fundamentals -Software and Systems Traceability[END_REF] and evaluating the solutions existing so far [START_REF] Shin | Guidelines for benchmarking automated software traceability techniques[END_REF]. Surveys and literature reviews trying to group and compare them began to appear as well, though most of them focused on specific subareas such as requirement engineering [START_REF] Gotel | An analysis of the requirements traceability problem[END_REF][START_REF] Bouillon | A survey on usage scenarios for requirements traceability in practice[END_REF], model-driven development [START_REF] Galvao | Survey of traceability approaches in model-driven engineering[END_REF][START_REF] Winkler | A survey of traceability in requirements engineering and model-driven development[END_REF][START_REF] Paige | Building model-driven engineering traceability classifications[END_REF][START_REF] Santiago | Esperanza Marcos. Model-driven engineering as a new landscape for traceability management: A systematic literature review[END_REF][START_REF] Mustafa | The need for traceability in heterogeneous systems: A systematic literature review[END_REF], software product lines [START_REF] Vale | Software product lines traceability: A systematic mapping study[END_REF][START_REF] Anquetil | A model-driven traceability framework for software 1[END_REF], benchmarking [START_REF] Shin | Guidelines for benchmarking automated software traceability techniques[END_REF], and information retrieval [START_REF] De | Information retrieval methods for automated traceability recovery[END_REF][START_REF] Borg | Recovering from a decade: a systematic mapping of information retrieval approaches to software traceability[END_REF][START_REF] Guo | Semantically enhanced software traceability using deep learning techniques[END_REF]. To complement this more scientific surveys, Konigs et al. survey industrial application of traceability approaches [START_REF] Frederick Königs | Traceability in systems engineering -review of industrial practices, state-of-the-art technologies and new research solutions[END_REF], showing its limited penetration. Neumuller et al. show that the adoption is worse in small businesses where traceability is even less automated [START_REF] Neumuller | Automating software traceability in very small companies: A case study and lessons learne[END_REF]. Finally, Charalampidou et al. review traceability approaches in the prism of their empirical evaluation. Authors add to the conclusion of other surveys that "although many studies include some empirical validation", there is still much to be done with respect to validation and reproducibility [START_REF] Charalampidou | Empirical studies on software traceability: A mapping study[END_REF].

These surveys point to some shared concerns, like the crucial lack of a common terminology and that existing traceability solutions struggle to achieve satisfactory cost/benefit ratios, in part because of the nonexistence of such common traceability knowledge base that facilitates the reusability and improvement of available traceability tools and techniques. This is aggravated by the fact that, as pointed out above, many of the proposals belong to different research subfields, which limits the discovery and awareness of alternative solutions. For instance, Winkler et al. point out that researchers in requirement engineering and in model-based development do not communicate enough among each others [START_REF] Winkler | A survey of traceability in requirements engineering and model-driven development[END_REF]. This lack of communication and shared understanding is one of the open challenges in the traceability domain [START_REF] Cleland-Huang | Software traceability: Trends and future directions[END_REF][START_REF] Antoniol | Grand challenges of traceability: The next ten years[END_REF].

To solve this issue several works aim at proposing specific traceability models. Unfortunately, many investigations suffer a lack of generalizability due the specific nature of the problem being solved (e.g., certification conformity [START_REF] Kokaly | Safety case impact assessment in automotive software systems: An improved model-based approach[END_REF], model transformation coevolution [START_REF] Guana | End-to-end modeltransformation comprehension through fine-grained traceability information[END_REF]), or the specific nature of the solution considered (e.g., w.r.t. its language: SysML [START_REF] Nejati | A sysml-based approach to traceability management and design slicing in support of safety certification: Framework, tool support, and case studies[END_REF], w.r.t. its engineering field: SPL [START_REF] Anquetil | A model-driven traceability framework for software 1[END_REF]).

As an example, the automatic identification of trace links is one of the most studied features. There are plenty of proposals to achieve this but as they are evaluated using different datasets and configurations, they cannot be directly compared [START_REF] Seiler | Comparing traceability through information retrieval, commits, interaction logs, and tags[END_REF][START_REF] Guo | Semantically enhanced software traceability using deep learning techniques[END_REF][START_REF] Borg | Recovering from a decade: a systematic mapping of information retrieval approaches to software traceability[END_REF]. Another example would be model-driven engineering, where the proposal and usage of traceability languages and models shoud be more "natural". Nevertheless, not even there we find a unified traceability representation model: Mustafa et al. argue that "the main issues in traceability nowadays are building traceability models that can accommodate the capturing of traceability information and providing common semantics for trace links" [START_REF] Mustafa | The need for traceability in heterogeneous systems: A systematic literature review[END_REF]. Proposals tend to focus also on a specific model-driven engineering problem: the co-evolution of models and transformations [START_REF] Amar | Automatic co-evolution of models using traceability[END_REF][START_REF] Santiago | Towards the effective use of traceability in model-driven engineering projects[END_REF][START_REF] Paige | Rigorous identification and encoding of trace-links in model-driven engineering[END_REF][START_REF] Feldmann | Managing inter-model inconsistencies in model-based systems engineering: Application in automated production systems engineering[END_REF] instead of aiming for more general solutions.

As a result of this confusing situation, a few authors asked for more standardized practices. These proposals are however restricted to specific application or engineering domains and miss their general target. Debiasi et al. propose to build a common body of knowledge on traceability. They refer to requirements traceability and focus on the organizational challenges of the implementation of traceability approaches [START_REF] Debiasi Duarte | Tracebok: Toward a software requirements traceability body of knowledge[END_REF]. Heisig et al. [START_REF] Heisig | A generic traceability metamodel for enabling unified end-to-end traceability in software product lines[END_REF] present Capra, an Ecore implementation of a framework for the traceability of software product lines.

We agree with these authors that this lack of de juro / de facto traceability standard is hampering the benefits of current traceability solutions and hindering evolution in the field. This paper intends to cover this gap by proposing a traceability characterization that stems from the analysis of all existing proposals. We believe this model can be useful to researchers trying to improve traceability techniques in any subfield and to practitioners looking for a way to compare and choose the traceability solution that best suits their needs.

TOWARDS A COMMON TRACEABLILITY TERMI-NOLOGY

A clear conclusion of the previous section is the lack of a common conceptualization for traceability that helps evaluating, comparing and reusing traceability solutions over a variety of scenarios and application domains. Thus, the incoherency problem still arises in traceability research [START_REF] Watts | Should social science be more solutionoriented?[END_REF]. Even if an individual article makes a claim that withstood rigorous testing and statistical analysis, it might not use the same words as an adjacent article, or it would use the same words but intend different meanings. For instance, the term traceability is used to designate both the ability to trace system elements, and the traceability links (the relations) themselves [START_REF] Bouillon | A survey on usage scenarios for requirements traceability in practice[END_REF][START_REF] Antoniol | Grand challenges of traceability: The next ten years[END_REF].

Therefore, before proposing our global traceability model, we first recap the different usages of the key traceability concepts and propose a unified definition that we will use in the rest of the paper.

Traceability components

Traceability research refers mainly to a definition from Gotel et al. that defines traceability as the ability to describe and follow the life-cycle of a requirement, from its initial specification to the design and code elements of the system implementing it [START_REF] Gotel | An analysis of the requirements traceability problem[END_REF]. This is still the most popular meaning for traceability [START_REF] Bouillon | A survey on usage scenarios for requirements traceability in practice[END_REF][START_REF] Badreddin | Requirement traceability: A model-based approach[END_REF] even if modeling approaches try to generalize this notion by seeing traceability as a valuable tool to link all types of linking artefacts at either the same or different levels of abstraction [START_REF] Mader | A traceability link model for the unified process[END_REF][START_REF] Bedir Tekinerdogan | Metamodel for tracing concerns across the life cycle[END_REF].

Regardless the specific interpretation of traceability we observe a division of knowledge into four main areas:

• Strategizing traceability. It involves defining the explicit traceability purpose for the project at hand and how to best reach that goal.

• Trace and artefact representation. It covers the design / adaptation of a language to be used to define the traces and decisions regarding its syntax, expressiveness, variability, integrations, etc. For instance, this can be done by means of creating a full traceability domain-specific language.

• Trace link identification. It designates the identification of traces in a software system, be it a post-requirement assisted elicitation, a live record during a system execution or an automatic AI-based inference process. This latter approach is the clear trend right now to help the identification of links between heterogeneous artefacts.

•

Trace management. It refers to the ways to use and maintain the traces. This includes tool support for the persistence, retrieval, and analysis of traces.

The first area is a high-level concern that influences the requirements on the other three to cover the specific needs of a project. These three will therefore be used to structure our feature model later on. Note that the representation component should be part of any traceability solution as it is the base component to be able to, at the very least, express traceability information.

Traceability glossary

We propose some general definitions for the most frequently encountered traceability terms while searching for and studying solutions for traceability in any of the above categories. These definitions, partly borrowed from past literature [START_REF] Gotel | Traceability Fundamentals -Software and Systems Traceability[END_REF], aim to encompass the different uses and dimensions of traceability depicted above. Our set of terms is not exhaustive but provide a common core generic enough to be then adapted to specific scenarios. This is also why we try to be precise with the definitions while also offering room for slightly different (but compatible) interpretations.

-Traceability is the ability to trace different artefacts of a system (of systems). It is defined in the IEEE Standard Glossary of Software Engineering Terminology [START_REF]Ieee standard glossary of software engineering terminology[END_REF] as

1)
The degree to which a relationship can be established between two or more products of the development process, especially products having a predecessor-successor or master-subordinate relationship to one another. [...] 2) The degree to which each element in a software development product establishes its reason for existing.

Gotel et al. define traceability as "requirements traceability

[which] refers to the ability to describe and follow the life of a requirement, in both a forwards and backwards direction" [START_REF] Gotel | An analysis of the requirements traceability problem[END_REF]. Aizenbud-Reshef and colleagues extend the Gotel's definition of traceability and define MDE traceability as "any relationship that exists between artifacts involved in the software engineering life cycle" [START_REF] Aizenbud-Reshef | Model traceability[END_REF]. -End-to-end traceability refers to a complete and ubiquitous traceability application, comprising a set of traces that extend throughout the entire life of a development project, from the requirements phase to, test, exploitation and retirement phases. "End-to-end traceability weaves artifacts together in tandem with the various phases of the life cycle" [START_REF] Hazeline | An end-to-end industrial software traceability tool[END_REF]. -A trace is a path from one artefact to another. A trace is composed of atomic links that directly relate artefacts with each others. The representation of traces, their data structure and behaviour, is defined in a traceability grammar or metamodel [START_REF] Drivalos | Engineering a dsl for software traceability[END_REF] depending on how the trace language is defined. In any case, the language definition specifies the concepts and relationships available to define traces. As discussed before, no standard language has emerged yet. -An artefact can be any element of a system -e.g., unstructured documentation, source code, design diagrams, test cases and suites... The nature of artefacts follows two main dimensions: the life cycle phase they belong to (e.g., specification, design, implementation, test), and their type (e.g., unstructured natural language, grammar-based code, model-based artefact). The granularity of artefacts is the level to which artefacts can be decomposed into sub parts. We call a fragment, the resulting product of the decomposition of an artefact. A fragment can be itself broken down into smaller parts (or sub-fragments), and so on. -A link is a direct relationship between two artefacts.

Links can be typed to better support the heterogeneous nature of traceability applications. The type of the link can help express the rationale behind the relationshipit informs not only how artefacts are linked but also why [START_REF] Mader | Motivation matters in the traceability trenches[END_REF]. Typing is a primary concern in conceptual modeling in general [START_REF] Olivé | Representation of generic relationship types in conceptual modeling[END_REF]. This link definition is consistent with the concept of link in popular modeling languages like UML or SysML, where link is a specialization of the concept of Dependence (which is itself a specialization of DirectedRelationship) which is used to explicitly model a traceability relation between two sets of elements. We add the need of additional typing to this relationship. Links can be explicit or implicit. An implicit link show artefacts bondage at a syntactic or semantic level without the need for an explicit link to be part of the model (e.g., a binary class and its respective source code artefact are implicitly "linked" to each other) [START_REF] Paige | Building model-driven engineering traceability classifications[END_REF]. -A referee is the (human) actor accountable for an artefact, or a link. -Application and engineering traceability domains: the specific nature of a traceability project follows two dimensions: i) the domain of the target -that is, the application domain, and ii) the domain of solution considered -the engineering domain. -Trace integrity is the degree of reliability that bares a trace. It is an indirect measure that includes, for example, both the age of a trace, the volatility of artefacts targeted by the trace, and the automation level of tracing features. This indication is supported by evidences that can be quantitative or qualitative. For example, how long (how many versions ago) has the trace been identified in the system? Or, has the trace been identified manually or automatically? Is there an automated co-evolution mechanism between traces and targeted artefacts? What is the level of experience of the trustee who identified it? The volatility of source and target artefacts are also factors that may influence the relevance and accuracy of a trace. -Pre-requirement and post-requirement traceability refer to, respectively, traces identified during specifications elicitation and during the implementation (design and code) step of a specification [START_REF] Gotel | An analysis of the requirements traceability problem[END_REF]. The IEEE Guide for Software Requirements Specifications mentions forward and backward traceability, referring to the ability to follow traceability links from a source to a specific artefact, or the opposite from the artefact to its source respectively [START_REF]Ieee guide for software requirements specifications[END_REF] but, technically, the direction of traceability link (from source to target, or from target to source) does not make a difference. -Vertical traceability refers to the linkage between artefacts at different levels of abstraction (e.g., derives, implements, inherits) whereas horizontal traceability refers to artefacts at the same level (e.g., uses, depends on). -Time related traceability goes along two dimensions: the evolution of (a group of) elements through successive development tasks, or the evolution of artefact properties during an execution of the system. Some of these concepts will explicitly appear in our feature traceability model while others act as requirements and usages that should be supported/facilitated by the features in the model and taken into account when choosing a specific traceability solution depending on how well that solution covers the specific features of interest for the project at hand.

TRACEABILITY SURVEY METHOD

In this section we depict the methodology we followed to collect papers proposing traceability solutions, including at the very least the core representation component (see previous section). The analysis of these papers will give rise to the feature model we will present next.

The selection process combined the manual selection of a few approaches based on our own experience working in this field and on the works covered by other meta-studies [START_REF] Gotel | Traceability Fundamentals -Software and Systems Traceability[END_REF][START_REF] Antoniol | Grand challenges of traceability: The next ten years[END_REF][START_REF] Cleland-Huang | Software traceability: Trends and future directions[END_REF][START_REF] Guo | Semantically enhanced software traceability using deep learning techniques[END_REF] together with a systematic literature search by mining bibliographic data sources following the literature review process established by Kitchenham and Charters [START_REF] Kitchenham | Systematic literature reviews in software engineering -a systematic literature review[END_REF]. Fig. 1 depicts the three main steps of the process.

Data source and search strategy

We used DBLP (2020-07-01 [1]) as our core electronic database to search for primary studies on traceability. To avoid missing possibly relevant approaches, we decided not to put a specific period constraint for the search, but we limited the scope of the search to paper of five pages or more to avoid opinion and vision papers, posters, tool demos and other types of short papers to reduce the number of results while maximizing their quality.

Based on the topic of this survey, we defined the terms of the search query according to the recommendations of Kitchenham and Charters [START_REF] Kitchenham | Systematic literature reviews in software engineering -a systematic literature review[END_REF]. We apply the query on the title and abstract of potential relevant publications. As using very generic terms like "trace" or "traceability" returned thousands of results, we decided to combine in the search query trace-related keywords with language-related ones since any traceability proposal should discuss how traces need to be represented. As many traceability languages are model-based, as part of the language variations we included model, modeling and other core MDE concepts. This brought down the results to 203 papers.

Here is the exact query we applied:

. * (([Tt]rac(eability|ing))|([Tt]race[rs])). * AND . * (([Mm]odel[-])(([Dd]riven)|([Bb]ased))| MD[DAE]|Model[l]ing|[Tt]ransformation| DSL|[Ll]anguage). *

Pruning

In what follows we describe our inclusion and exclusion criteria. We further explain how we applied these criteria on the previous set of papers.

Inclusion criteria 1) the paper is a technical contribution 2) the paper is about tracing in software engineering 3) traceability is the main concern of the paper Exclusion criteria 1) the paper is not a primary study 2) the paper is not a white paper Before we applied these criteria on the potential papers fetched by our query, we removed automatically papers of less than 5 pages long. We also automatically extracted papers whose titles mentioned "biology", "education", "kinetics", "logistics", "physiology", "physics", "neuroscience", "agriculture", and "food" which appeared each in a couple of results. We manually examined the 183 papers left and excluded 40 papers that did not fulfilled the criteria or were duplicates.

Snowballing

At the end of the previous steps, we double-checked that we did not miss any potentially relevant approach due to a number of reasons, e.g., some workshop papers are only indexed by ACM or papers that may be using different synonyms to traceability like "composition" or "extension".

Finally, we added papers we were aware of (if not already in the resultset) and a few more we found by snowballing on the selected papers references. They amount to a total of 10 papers. We also manually added the papers of a specific event on traceability, the ECMFA workshop on traceability (i.e., ECMFA-TW).

This lead to a final result of 159 papers. Among them, there are 41 journal articles, 82 in conference proceedings, and 36 workshop reports (see Table 1). Fig. 2 shows the chronological distribution of the selected publications.

Threats to validity in the selection process

We acknowledge limitations in the execution of our survey method. First, we only used DBLP as a source database. Yet, it is recognized as a representative electronic database for scientific publications on software engineering and already contains more than five million publications from more than two million authors.

Setting the limit based on the number of pages alone to elude short papers is another threat to validity. Yet, it is a reproducible practice that limits the number of papers to analyse and thus helps concentrate on the topic rather than the engineering of the survey. Finally, the vocabulary related to traceability is scattered among various fields of application with their respective nuances. We mitigate the risk of missing papers by manually adding papers that were not using variations of this term but were still referenced by papers that did. Still, focusing on traceability as a key term was also a conscious decision as we wanted to characterize the works in this field, focusing on those papers that define themselves as part of it.

A FEATURE MODEL TO CHARACTERIZE SOFT-WARE TRACEABILITY

This section presents our conceptualization of traceability by means of a feature model describing the traceability features and dimensions found in the analysis of the literature conducted in the previous section. Our feature model groups them by similarity and provides additional descriptions on the most important aspects of each one, e.g., different existing alternative implementation of the same feature and/or the most/the least studied ones in each group.

Next subsections provide some background on feature modeling and then zoom in each of the three main dimensions of traceability: trace representation, trace identification, and trace management. These dimensions are depicted in Fig. 3, Fig. 4, and Fig. 5, respectively.

Introduction to feature modelling

A feature model leverages features as the abstraction mechanism to reason about product variability. It is a hierarchically arranged set of features, where relationships between a parent feature and its child features may be categorized as: and -all sub-features must be selected, alternative -only one subfeature can be selected, inclusive or -one or more can be selected, mandatory -features that are required, and optional -features that are optional [START_REF] Kyo | Form: A feature-;oriented reuse method with domain-;specific reference architectures[END_REF]. Each feature represents an increment in product functionality.

Feature modeling is a technique that has been intensively used for documenting the points of variability in a software product line, how the points of variability constraint one another, and what constitutes a complete configuration of the system. But beyond product lines, feature model are also more and more used to shed light on complex domains by representing the core concerns and variation points in a complex ecosystems (e.g., [START_REF] Brunelière | A feature-based survey of model view ap-proaches[END_REF]), as we do in this paper.

Trace definition and representation

All approaches must discuss their representation of trace artefacts even if they can differ already based on the type of traces they consider and their foreseen application. Representations are so diverse that our survey selected more than 80 papers mentioning their own distinct definitions with 20 metamodels effectively depicted in those papers. Some researchers present generic graph-based representations [START_REF] Schwarz | Graphbased traceability: a comprehensive approach[END_REF][START_REF] Grammel | Model matching for trace link generation in model-driven software development[END_REF] while others focus on representations much more specific to a concrete application like this metamodel for change impact analysis [START_REF] Goknil | Change impact analysis for requirements: A metamodeling approach[END_REF] or multi-model consistency [START_REF] Szabo | A model-driven approach for ensuring change traceability and multi-model consis[END_REF].

Fig. 3 shows the hierarchy of features related to the definition and the representation of trace artefacts. A peculiar focus is put on the typing of the traces relationships. Typing relationships is important to add semantics to the trace so that the engineer can know not only what are the linked artefacts but also why they are linked. As such, it facilitates the application of traceability solutions to specific domains. We also detail the genericity of the language, the artefacts covered by the traceability proposal and the possibility to annotate traces with quality properties.

We would like to remark the contribution of model-based approaches for traceability in this subsection. The use of MDE tooling such as ATL [START_REF] Santiago | Measuring the effect of enabling traces generation in ATL model transformations[END_REF][START_REF] Jiménez | Model-driven development of model transformations supporting traces generation[END_REF], or the Eclipse Modeling Framework (EMF) allows the automated generation of traceability information as a side effect of executing operations [START_REF] Galvao | Survey of traceability approaches in model-driven engineering[END_REF][START_REF] Winkler | A survey of traceability in requirements engineering and model-driven development[END_REF]. The modeling community has proposed metamodels for end-to-end traceability [START_REF] Heisig | A generic traceability metamodel for enabling unified end-to-end traceability in software product lines[END_REF][START_REF] Haidrar | Towards a generic framework for requirements traceability management for SysML language[END_REF], as well as metamodels specific to engineering domain such as model transformation [START_REF] Jiménez | Model-driven development of model transformations supporting traces generation[END_REF][START_REF] Anquetil | A model-driven traceability framework for software 1[END_REF][START_REF] Manuel Vara | Dealing with traceability in the mddof model transformations[END_REF][START_REF] Bondé | Traceability and Interoperability at Different Levels of Abstraction in Model-Driven Engineering[END_REF] or software product line [START_REF] Jiménez | Model-driven development of model transformations supporting traces generation[END_REF][START_REF] Manuel Vara | Dealing with traceability in the mddof model transformations[END_REF]. Paige et al. call for more flexible modeling where models of different formats are associated to each others' with annotations that allow automated bond or dependency inference between both application and engineering domains [START_REF] Seiler | Comparing traceability through information retrieval, commits, interaction logs, and tags[END_REF][START_REF] Paige | The changing face of model-driven engineering[END_REF].

Artefacts targeted

In relation to the artefacts targeted by traceability purposes we distinguish between the nature of the artefact and its granularity as both dimensions are important and used in the literature.

For the nature aspect, on the one hand, investigations differ on the development phase they target. Linking requirement specifications to design and code level predominate in the literature with more than 50% of the papers in the survey addressing requirement traceability. Other phases such as test and verification are targeted as well but in a lesser proportion. On the other hand, the type of the artefacts is important to deduce the level of potential generalization to other phases of the software lifecycle. Papers focus on four different types: unstructured document, structured as grammar-, and model-based artefacts, and binaries.

With regard to the granularity of the artefacts targeted, i.e., their level of decomposition, some approaches go for a customiz-able granularity to adapt to artefact hierarchies while others focus on specific types of artefacts (e.g., to concentrate their work on specific optimizations of trace identification).

Language

Languages specific to traceability provide the ability to represent trace artefacts with increased relevance and accuracy. Yet, they often suffer the limitation to be built ad hoc and lack a significant power of reusability other domains and risk of ending up reinventing the wheel. Among these domain-specific languages for traceability, some authors attempt a generic definition of traceability [START_REF] Heisig | A generic traceability metamodel for enabling unified end-to-end traceability in software product lines[END_REF][START_REF] Azevedo | Modeling traceability in software development: A metamodel and a reference model for traceability[END_REF] while others provide a language specific to a single domain, e.g., traceability for software product lines [START_REF] Anquetil | A model-driven traceability framework for software 1[END_REF].

We found few studies interested in the use of general-purpose software language for traceability -even though this would be appealing to industrial partners interested in instrumenting their legacy systems code with traceability information to facilitate future evolutions or migrations [START_REF] Nejati | A sysml-based approach to traceability management and design slicing in support of safety certification: Framework, tool support, and case studies[END_REF]. Another type of general languages for traceabiity could involve representing traces in spreadsheets, text files, or databases. This shows better learning curves than using a domain specific language at the cost of a cognitive gap between software engineers and domain experts. As an unfortunate consequence, "the maintenance costs turns out to grow accordingly [to the usability of generic representations] and team members fail to keep the trace artefacts up-to-date" [START_REF] Cleland-Huang | Best practices for automated traceability[END_REF].

A potential sweet spot could be to "plug" traceability concerns on top of other languages like SysML [START_REF] Nejati | A sysml-based approach to traceability management and design slicing in support of safety certification: Framework, tool support, and case studies[END_REF] to benefit from an existing language structure while keeping most of the benefits of using a DSL.

Relationship types

As many authors have demonstrated, offering the ability to the user to define personalized types of relations between the artefacts of a system fosters the comprehensibility of the traces produced [START_REF] Olivé | Representation of generic relationship types in conceptual modeling[END_REF]. We distinguish between approaches offering predefined types, most often relating to the field of software engineering (implements, inherits, uses, executes ...) and approaches allowing custom typing.

Obviously a fixed typing facilitates the analysis of the traces as the potential set of semantics and interpretations are fixed while offering domain-specific types increases the usability and comprehensibility of the approach. As an example, SysML v2 is offering a more powerful mechanism to define links between artefacts. Compared to the previous SysML version (where we had a sole dependency-like mechanism) we now have the "Connection" concept that is customizable and that could be regarded as a good equivalent for our trace link concept.

The literature shows also a distinction between approaches considering relationships with multiple sources and targets and relationships allowing only a single source.

Trace quality

In most of the papers we studied, quality aspects were barely mentioned. It seems quality of the generated traces is not a major concern, or at least storing and annotating the traces with such information is not.

Yet, a few studies mention coverage and integrity. The coverage of a set of execution traces is used in approaches for software testing [START_REF] Gannous | Integrating safety certification into model-based testing of safety-critical systems[END_REF]. Coverage is also used by Rath et al. who address the problem of missing links between commits and issues with a classifier they train on textual commit information to identify missing links between issues and commits (i.e., a lack in the coverage indicates such missing links) [START_REF] Rath | Traceability in the wild: Automatically augmenting incomplete trace links[END_REF]. Integrity of traces is addressed in work on model transformation where co-evolution figures an automatic verification of their coherence with other (versatile) software artefacts [START_REF] Szabo | A model-driven approach for ensuring change traceability and multi-model consis[END_REF][START_REF] Slotosch | Modeling and safety-certification of model-based development processes[END_REF]. The co-evolution of traces implies measuring distances between artefacts (syntactic, cognitive, geographic, cultural...) [START_REF] Bjarnason | A theory of distances in software engineering[END_REF]. It also refers to the analysis of the changes of the system that impact traceability artefacts [START_REF] Goknil | Change impact analysis for requirements: A metamodeling approach[END_REF][START_REF] Von Knethen | Change-oriented requirements trace-tency[END_REF]. In our survey, nine papers address artefacts co-evolution and 17 tackle model transformation limitations. These latter are a valuable tool to automate co-evolution tasks. In the many studies focusing on the optimization of link identification, the quality of the results is mainly evaluated with precision and recall measurements. Few researchers include a user feedback [START_REF] Borg | Recovering from a decade: a systematic mapping of information retrieval approaches to software traceability[END_REF].

A few publications relate the quality of their work to the computation of aggregated values, evaluated against company (or project specific) thresholds [START_REF] Bünder | A domain-specific language for configurable traceability analysis[END_REF]. They make use of rules to automate the computation of customizable analyses and show that query, metric and rules are a powerful combination to measure the productivity of new initiatives.

Trace identification

Fig. 4 shows the hierarchy of features related to the identification of traces with four main possible categories: the manual elicitation of traces, their live record during execution and evolution, rulebased alternatives to assist the user with automation potential, and AI-augmented identification with domain contextualization.

Manual elicitation

Manual elicitation makes possible to create traces in an ad hoc manner. As an example, one of our industrial partner chose to hire a developer to elicit trace links necessary for a certification commitment. This was chosen rather than a (semi-)automated approach as they were not convinced the effort of augmenting an existing tool would pay off for that specific project.

Recording instrumentation

Teams can instrument the live record of traces during the execution and the evolution of software artefacts. This way traces recording the system changes are a side-effect of those same changes. There are initiatives to instrument existing languages such as ATL with rich log generation [START_REF] Santiago | Measuring the effect of enabling traces generation in ATL model transformations[END_REF][START_REF] Béziers La Fosse | Injecting execution traces into a model-driven framework for program analysis[END_REF], while others consider trace record an aspect that can be weaved with current existing languages [START_REF] Pfeiffer | Language-independent traceability with lassig[END_REF][START_REF] Santiago | Measuring the effect of enabling traces generation in ATL model transformations[END_REF]. Ziegenhagen et al. mix execution traces with metadatas [START_REF] Ziegenhagen | Expanding tracing capabilities using dynamic tracing data[END_REF], and use developer interaction records [START_REF] Dennis Ziegenhagen | Using developer-tool-interactions to expand tracing capabilities[END_REF] to enrich existing traceability artefact.

Model transformations are considered the hearth and soul of software modeling and, consequently, numerous studies attempt to enrich trace generation during transformation execution [START_REF] Manuel Vara | Dealing with traceability in the mddof model transformations[END_REF][START_REF] Saada | Recovering model transformation traces using multi-objective optimization[END_REF][START_REF] Béziers La Fosse | Injecting execution traces into a model-driven framework for program analysis[END_REF]. This ubiquitous integration (see Fig. 5, bottom branch) allows a semantically rich tracing of target and source artefacts [START_REF] Paige | Rigorous identification and encoding of trace-links in model-driven engineering[END_REF]. Unfortunately, this option can only be applied when we are building the system, not when the system is already in place.

Arbitrary rules

Once a system is in place, teams can identify rules that help retrieve and maintain traceability relations [START_REF] Mäder | Rule-based maintenance of post-requirements traceability relations[END_REF][START_REF] Spanoudakis | Rule-based generation of requirements traceability relations[END_REF]. Antoniol et al. use the mnemonics for identifiers to establish trace identification rules [START_REF] Antoniol | Recovering traceability links between code and documentation[END_REF]. At the model level, Grammel et al. use a graphbased model matching technique to exploit metamodel matching techniques for the generation of trace links for arbitrary source and target models [START_REF] Grammel | Model matching for trace link generation in model-driven software development[END_REF], and Saada et al. recover execution traces of model transformation using genetic algorithms [START_REF] Saada | Recovering model transformation traces using multi-objective optimization[END_REF].

Domain contextualisation

Borillo et al. published an article on the use of information retrieval techniques for linguistics applied to spatial software engineering [START_REF] Borillo | Applying linguistic engineering to spatial software engineering: The traceability problem[END_REF]. This precursor work opened the box for AIaugmented traceability where machine learning algorithms help extract knowledge specific to the application domain. This is specially useful when the source (or target) of the trace link is an unstructured document or when such document is key to infer traces among other artefacts.

Researchers first extracted word vectors from natural language. Vectors intend to take account of the neighbouring words a term may relate to in the application domain [START_REF] De | Information retrieval methods for automated traceability recovery[END_REF]. This effort made the identification of bonds between requirement specifications and other artefacts possible with a gradually improving precision. Since then, many other information retrieval techniques for natural language processing were applied with success [START_REF] Arunthavanathan | Support for traceability management of software artefacts using natural language processing[END_REF]. Studies shows that mixing expertise both in information retrieval techniques and engineering domains gives far better results than when taken separately [START_REF] Poshyvanyk | Feature location using probabilistic ranking of methods based on execution scenarios and information retrieval[END_REF]. Today, domain contextualization by means of machine learning for topic modeling, word embedding, and more generally knowledge extraction from unorganized text documents is the most popular traceability feature [START_REF] Guo | Semantically enhanced software traceability using deep learning techniques[END_REF][START_REF] Wohlrab | Collaborative traceability management: a multiple case study from the perspectives of organization, process, and culture[END_REF]. We found 22 approaches dedicated to this topic alone in our survey.

Teams are also using genetic algorithms here, not to recover traces themselves but to cope with the variety of algorithms and parameters these approaches use [START_REF] Cristina Marcén | Traceability link recovery between requirements and models using an evolutionary algorithm guided by a learning to rank algorithm: Train control and management case[END_REF][START_REF] Panichella | How to effectively use topic models for software engineering tasks? an approach based on genetic algorithms[END_REF], and structural information to foster methodologies interweaving [START_REF] Panichella | When and how using structural information to improve ir-based traceability recovery[END_REF]. Unfortunately, a common critique rose against these positive results. Too many teams compete with each others to accomplish a better precision and recall when there is no standard to the effective quantification of traces artefacts into such variables. Too few attempt at qualifying the overall relation between these measurement and the effective impact on software development [START_REF] Cleland-Huang | Software traceability: Trends and future directions[END_REF].

In that regard, Shin et al. propose guidelines for benchmarking automated traceability techniques. Their evaluation (of 24 approaches) shows that methods of evaluation (when they are used appropriately) sometimes are not suitable to other application domains and that the variation in evaluation results across project is not investigated [START_REF] Shin | Guidelines for benchmarking automated software traceability techniques[END_REF]. This corroborate Borg et al. who, in a systematic literature mapping on information retrieval approaches to traceability, notice that there are no empirical evidence that any IR model outperforms another model consistently [START_REF] Borg | Recovering from a decade: a systematic mapping of information retrieval approaches to software traceability[END_REF]. The ability to continuously improve the learning process is mentioned in the literature but we found no evidence of its application.

Trace management

Fig. 5 shows the hierarchy of features related to the management of trace artefacts. We distinguish between the actual maintenance of trace artefacts, the evaluation of their integrity, the means of persistence, and the level of integration in running software systems.

Trace Maintenance

Trace links may be affected by changes on the artefacts they are linking to (directly or transitively) and therefore can easily become obsolete. This gradual decay must be seriously taken into account to avoid having to re-elicit traces every time they need to be analyzed. A manual maintenance is not always impossible but not typically feasible in practice due to the amount of information such inspections would involve. Co-evolution techniques [START_REF] Mäder | Rule-based maintenance of post-requirements traceability relations[END_REF][START_REF] Drivalos-Matragkas | A state-based approach to traceability maintenance[END_REF][START_REF] Rahimi | Evolving software trace links between requirements and source code[END_REF] attempt to tackle the burden to maintain trace links up-to-date [START_REF] Seibel | Dynamic hierarchical mega models: comprehensive traceability and its efficient maintenance[END_REF][START_REF] Bünder | A domain-specific language for configurable traceability analysis[END_REF].

Beyond being able to manipulate traces, we also need to offer proper ways to visualize and inspect them [START_REF] Fittkau | Live trace visualization for comprehending large software landscapes: The explorviz approach[END_REF]. The use of graphical representations stimulate human perception and the integration of such technique in traceability frameworks is a useful feature to augment user awareness [START_REF] Heisig | A generic traceability metamodel for enabling unified end-to-end traceability in software product lines[END_REF]. In parallel, allowing a rich formulation of queries to assist the exploration of existing traces will help to reduce the amount of information users need to navigate through [START_REF] Bünder | A domain-specific language for configurable traceability analysis[END_REF]. More precisely, structured text, in the form of metamodel instances or XML sheets allows query-based mining of trace datasets [START_REF] Dietrich | Learning effective query transformations for enhanced requirements trace retrieval[END_REF]. Interaction wise, hyper-text links is a de facto standard to browse trace links. Indeed, following links through successive clicks has become almost natural. Querying depends on the type of representation of traceability artefacts. SQL-like languages benefit from a long history of information mining while dedicated languages offers better legibility. Genetic programming has also permitted the automation of query formulation [START_REF] Pérez | Utilizing Automatic Query Reformulations as Genetic Operations to Improve Feature Location in Software Models[END_REF].

Trace Integrity

To cope with the decay and volatility mentioned above, we need a way to determine the integrity of existing traces. Work on these questions, although called out loudly by literature studies, is scarce in practice [START_REF] Winkler | A survey of traceability in requirements engineering and model-driven development[END_REF][START_REF] Antoniol | Grand challenges of traceability: The next ten years[END_REF]. The first option is given with manual annotation or vetting of trace links to inform about their level of reliability. Annotations allow a qualitative and quantitative evaluation [START_REF] Robert | Modelling mobile app requirements for semantic traceability[END_REF]. This is the case for back-propagation of verification and validation results between design and requirements [START_REF] Hegedus | Back-annotation of simulation traces with changedriven model transformations[END_REF].

Some approaches enable the definition of invariant rules while manipulating traces or their targets [START_REF] Bünder | A domain-specific language for configurable traceability analysis[END_REF]. If the invariant is violated, an exception for that trace is automatically generated. For example, we could define a rule that is violated when a change occurs in an artefact targeted by a trace if the corresponding link was identified more than two versions prior to the current version. Many different storage alternatives exist for traceability artefacts. An option is to use SQL-like grammar to store and retrieve traces with the power of database tooling, or to use XML documents to represent trace matrix in a transformable format. The industry uses a lot of informal format and link representations often remain implemented in spreadsheets, text files, databases or requirement management tools. These links deteriorate quickly during a project as time pressured team members fail to update them. Researchers aiming at a generalizable approach favour model-based representations able to express specifically defined concepts related to traceability (often in a specific domain of application). The burden of maintaining traces coherent is eased in model-based solutions [START_REF] Cleland-Huang | Best practices for automated traceability[END_REF]. Elamin et al. propose to implement traceability artefact in graph based databases to improve software quality [START_REF] Elamin | Implementing traceability repositories as graph databases for software quality improvement[END_REF].

Another concern lies in the recording of trace evolution. The trace creation should be recorded, with the successive changes that affect it, for evolution analysis. Integrity measures respective to evolution events (e.g., creation, modification...) should be recorded as well to evaluate their evolution during a period of time. Rahimi et al. ensure the co-evolution of artefacts and traces [START_REF] Rahimi | Evolving software trace links between requirements and source code[END_REF] using a set of heuristics coupled with refactoring detection and information retrieval to detect changes scenario between contiguous versions of software systems.

System integration

Like most of the MDe approaches, Helming et al. use of the same modeling language for both traceability and system artefacts to track changes [START_REF] Helming | Traceabilitybased change awareness[END_REF]. The conjunct use of EMF and a dedicated traceability metamodel (both written in Ecore) facilitates the integration of traceability features including graphical versions to stimulate human perception and standard analysis of traces in the native (Ecore) environment of the traced system. Galvao et al. in their seminal work on traceability and MDE call for more loosely coupled traceability support that can integrate external relationship with independent representations (in another, ideally common language) [START_REF] Galvao | Survey of traceability approaches in model-driven engineering[END_REF] as also elaborated by Azevedo et al. [START_REF] Azevedo | Modeling traceability in software development: A metamodel and a reference model for traceability[END_REF].

DISCUSSION

The feature model is a first step towards the shared understanding of all dimensions involved in a traceability solution. Ideally, a company interested in a certain set of such dimensions could try to create its perfect traceability solution by combining the top solutions for each dimension. But this is not yet a real possibility as those solution would be difficult to combine and, more importantly, several of the features in the feature model do not really have a great solution yet. This section elaborates on this discussion by presenting some open challenges in software traceability research.

Common traceability metamodel. We have counted over 20 different metamodel proposals. Some are solutions to specific problems the authors present as case studies. And these metamodels are rarely reused, if ever. This proliferation is a challenge to make different traceability solutions interoperate. The research community should agree in a unified proposal that facilitates the composability of traceability solutions. We believe Eclipse Capra [START_REF] Heisig | A generic traceability metamodel for enabling unified end-to-end traceability in software product lines[END_REF], even though build to address software product line tracing, could provide a solid foundation for this unified metamodel as it already comes with good tool support to build on. :::::: Precise: ::: for ::::::: MBSE. :::::::::::

Customization ::: and ::::::::::: visualization ::::::: tooling.

::::::

Generic :::: link :::::::: definition. ::::::: External ::::::: language ::::: based ::: on ::::::::: Ecore/XMI. Complete traceability metamodel. Following up on the previous point, to agree on a core traceability representation may not seem difficult but it would ignore many of the aspects in the feature model that we believe are key in any non-trivial and industrial traceability application, such as the quality and temporal annotation of traces. A core model with an extension mechanism could be a good compromise here.

Security of trace data. Considering that traceability is a major aspect in certification and other critical applications, it is surprising to see very little interest in security concerns related to trace artefacts. We believe security mechanisms (even simple rulebased access control) for traceability are needed to control who can modify what trace data, given the implication such changes can have.

Library of trace types and semantics. We already mentioned the importance of having a rich set of types for traces to let engineers express the reasons behind the creation of a given trace. But at the same time, complete freedom makes reusability of analysis techniques difficult. We would like to see a rich yet predefined set of types for traces that could then be imported in new traceability projects.

Usefulness of identified traces. Managing a large number of traces is time consuming. As such, we should make sure every explicit trace is actually useful. So far, algorithms aimed at automatically identifying traces are compared based on standard properties like precision and recall. But they should be evaluated on "usefulness": are those traces useful for the end-user? or are just redundant noise?

Verification, validation and testing of traces. Our ample literature on verification, validation and testing methods for software engineering should be extended to deal with trace data, especially from a temporal perspective, where temporality would depend on pure timestamp values (i.e. how long since the trace was created) and on evolution lag (i.e. how many times the linked artefacts have changed since the trace was created). Reasoning on outdated and potentially incorrect trace data could have strong damaging impacts on the system as a whole. So far, very few approaches target these aspects except for the specific problem of coevolution in model-driven engineering. The ability to justify -with evidences and uncertainty evaluation -the quality and integrity of traces is a prerequisite to robust and reliable traceability. And given the effort required to create traces in the first place, this is important to instill more confidence to practitioners wondering whether creating traces is worthwhile.

Traceability as first-class concern in general languages. Another important step towards the mainstream adoption of traceability in industry is the integration of the common traceability metamodel in popular modeling languages like UML or SysML, in the form of a profile (to be able to directly reuse existing modeling tools available for those languages) or new packages in the respective standards. This way, traceability would become a first-class citizen in software development while still being a rich concept and not just the plain dependency relationship we can use right now in those languages.

Working together with Industry. Orthogonal to all the others, we (the research community) should aim to have more frequent exchanges with practitioners to better understand why they end up creating traces manually instead of trying to reuse any of the dozens existing solutions covered in our survey. Some reasons have been already hinted in this paper, based on our own experience in industrial projects involving some type of traceability need and based on the survey we have conducted, but there could be others we are not aware of. Or a different prioritization than the one we have in mind. If we want traceability research to transfer to industry, more and better communication flows should be part of the agenda.

CONCLUSION

Our survey reveals a continuous interest in traceability even if, often, it does not have the spotlight it deserves 1 given the key role it plays in a number of software engineering tasks. Work relating to traceability is indeed disseminated within established research communities (e.g., debugging, SPL). Existing conceptualizations vary greatly depending on the community to which its authors belong to as well as the objectives they aim at. As a consequence, a clear and measurable idea of the costs and benefits to software traceability is slow to emerge To help visualize, classify and compare the different traceability approaches, we propose a feature model covering all important traceability aspects, as derived from a thorough analysis of the traceability literature. Following the existing body of work, we put special emphasis in separating how traces are represented from how they are identified and managed.

Beyond the feature model, our analysis highlights several limitations of current traceability approaches that should be further developed. Especially given the new challenges the growing use of AI in Software Engineering [START_REF] Shafiq | Machine learning for software engineering: A systematic mapping[END_REF][START_REF] Watson | A systematic literature review on the use of deep learning in software engineering research[END_REF] is introducing (e.g. in terms of reproduciblity and explainability of the AI decisions). In this sense, we hope this paper serves as a "wake-up call" to make sure any new AI proposal comes together with a proper traceability mechanism that assists engineers in recording and understanding the impact of the new AI components in the software engineering process.

As further work, we plan to work on some of the roadmap items above, starting with the proposal of a general traceability metamodel (kind of a superset of all the surveyed ones) that could be used as a starting point in any new traceability project. To facilitate the reuse of such metamodel, we will also release the modeling infrastructure to adapt/refine/deploy it. Once we have this core element, we plan to start working with some of the authors of other proposals to map and bridge their algorithms and techniques to this "unified" metamodel and study how to embed it in other modeling languages (like UML or SysML) to further facilitate its adoption.

Fig. 2 :

 2 Fig. 1: Survey Process.

Fig. 3 :

 3 Fig. 3: Features related to the representation of a trace.

Fig. 4 :

 4 Fig. 4: Features related to the identification of trace links

Fig. 5 :

 5 Fig. 5: Tool support for traceability management.

TABLE 1 :

 1 Publication types of the selected papers.