

Primary resistance to antiretroviral drugs of HIV strains in Chad: a retrospective investigation by analysis of frozen dried blood spot samples

A Keita, N Djimera, O Djarma, Y N'guyen, T. Bourlet, L. Andreoletti

► To cite this version:

A Keita, N Djimera, O Djarma, Y N'guyen, T. Bourlet, et al.. Primary resistance to antiretroviral drugs of HIV strains in Chad: a retrospective investigation by analysis of frozen dried blood spot samples. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 40, pp.1091 - 1095. 10.1007/s10096-020-04107-z . hal-03267073

HAL Id: hal-03267073 https://hal.science/hal-03267073

Submitted on 29 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	
2	European Journal of Clinical Microbiology & Infectious Diseases
3	Manuscript No. EJCM-D-20-01026 R1
4	Brief report
5	Primary Resistance to Anti-Retroviral drugs of HIV strains in Chad: a
6	retrospective investigation by analysis of frozen Dried Blood Spot samples
7	
8	1362 Words
9	
10	Keita A ¹ , Djimera N ² , Djarma O ² , N'Guyen Y ^{3,4} , Bourlet T ⁵ , Andreoletti L ^{4*} .
11	
12	¹ Institut National de Recherche en Santé Publique, Bamako, Mali
13	² Service de Maladies infectieuses, Hôpital Le Bon Samaritain, CHU Walia, N'Djamena,
14	Chad
15	³ Service de Médecine interne, Maladies infectieuses et Immunologie Clinique, Hôpital
16	Robert Debré, CHU Reims, France
17	⁴ Laboratoire de Virologie médicale et moléculaire, Hôpital Robert Debré CHU Reims & EA-
18	4684, Faculté de Médecine, Université Reims Champagne Ardennes, Reims, France
19	⁵ EA 3064, Faculté de Médecine, Université Jean Monnet, Saint-Etienne, France.
20	* Corresponding author: Tel: +33 326783993; Fax: +33 326784134; E-mail:
21	landreoletti@chu-reims.fr.
22	

1 Abstract: (98 words)

- *Purpose:* No data concerning Anti-Retroviral drugs (ARV) primary resistance mutation rates
 in Chad are available.
- *Methods:* We retrospectively analysed frozen-stored dried blood spot samples that were
 collected from 48 Chadian Human Immunodeficiency Virus (HIV)-1 seropositive patients
 naïve of ARV.

o flarve of AKV.

- 7 Results: HIV-1 protease and reverse transcriptase genes were successfully sequenced for 24
- 8 (60.0%) of the 40 patients displaying a viral load >1000copies/ml. Seven (29.2%) displayed
- 9 mutations conferring resistance against one or more classes of ARV.
- 10 Conclusion: We evidenced high levels of primary ARV resistance mutations in Chad,
- 11 but lower than those observed in patients with failure to first-line ARV.

12

- 13
- 14 **Keywords:** HIV; Chad; Non-Nucleoside Reverse Transcriptase Inhibitor; primary resistance.

15

1 Introduction:

2 Access to Highly Active Antiretroviral drugs (ARV) has significantly reduced Human 3 Immunodeficiency Virus (HIV) transmission in sub-Saharan African countries which still 4 support the highest burden of the pandemic [1]. However in these countries, access to free 5 but discontinuous first-line antiretroviral regimens consisting almost exclusively of Nucleoside Reverse Transcriptase Inhibitors (NRTI) combined with a Non Nucleoside 6 7 Reverse Transcriptase Inhibitors (NNRTI) with low genetic barrier to resistance could rapidly 8 lead to the emergence of antiretroviral drugs resistance among ARV-treated patients. In low-9 income countries of sub-Saharan Africa, monitoring of HIV plasma viral load that is 10 recommended by World Health Organization (WHO) since 2013 and genotyping tests 11 allowing the detection of HIV strains harbouring resistance mutations to antiretroviral drugs 12 are not continuously available. Horizontal or vertical transmission levels of such HIV strains 13 harbouring major resistance mutations to NNRTIs or NRTIs represent a major public health 14 problem and may significantly impact subsequent choices of antiretroviral drugs regimen for 15 newly HIV infected patients in sub-Saharan African countries.

16 Located in Central Africa, Chad had an estimated HIV seroprevalence of 1.3% among 17 the sexually active population (15-49 years) and ranked fifth in terms of HIV mortality rate 18 (71 per 1000) [2,3]. Moreover, Chad is partly bordered by Cameroon, where a wide diversity 19 of HIV strains has been evidenced [4]. Thus, Chadian HIV strains could present a great viral 20 genetic diversity including non M variants of HIV-1, group M non B subtypes or recombinant 21 strains potentially carrying mutations conferring resistance to antiretroviral drugs used as first 22 or second lines of treatment [5,6]. Only two previous investigations reported high rates of 23 viral mutations conferring resistance to antiretroviral drugs in Chadian patients with 24 virological failure [5,6]. To date, no published data concerning ARV primary resistance

mutation rates in Chad are available. In the present report, we retrospectively investigated
 frozen dried blood spot (DBS) samples from HIV-1 Chadian patients who were naïve of ARV.

3

4 **Patients and methods**

From August to November 2012, 48 successive newly HIV-1 seropositive adult patients who 5 were naïve of any ARV treatment (30 F/18 M, median age 32years [18-52]) and who were 6 7 attending to the chronic diseases centre of the hospital "le Bon Samaritain" (N'Djamena, 8 Chad) were enrolled in the present investigation. World Health Organization HIV disease 9 Clinical stage has been defined elsewhere [7]. Median Lymphocytes T-CD4 cells count 10 performed on FACS® count system was 273 cells per mm3 [13 - 1049] for these 48 patients. 11 An oral informed consent for medical research investigations was obtained from each study 12 patient and if needed from their relative family members. This study was approved by local 13 ethics committee. For each patient, blood samples were collected before ARV and sent abroad ("Université" Jean Monnet, Saint-Etienne, and "Université" Reims Champagne Ardennes, 14 15 France) as dried blood spots (DBS) after approximately one month of storage at room 16 temperature [8,9]. Each DBS sample was then stored at -80°C until performing HIV-RNA 17 viral load and genotyping assays in France according to previously described protocols [8,9]. 18 Protease gene and reverse transcriptase gene region were fully covered by sequencing 19 analysis and obtained sequences were compared against referenced subtype B HBX-2 strain 20 (Genbank accession number: K03455.1). All of our HIV-1 sequences were submitted to the 21 Genbank and obtained an original accession number (Table 1).Concerning drug resistance 22 mutations, interpretation of sequencing results was performed according to the French 23 National Agency for AIDS Research resistance algorithm [10]. HIV-1 subtypes were established using the Stanford HIV database and Sierra version 1.1 HIVdb 8.1.1 [11]. 24 Quantitative variables were compared using the Mann Whitney U-test and qualitative 25

variables were compared using Pearson's Chi-square test. Statistical analyses were performed
 using Stat view 5.0 software (SAS institute).

3 **Results**

Following RNA extraction from DBS [8], median HIV-1 viral load was estimated to 4.72 log copies/ml [3.24- 5.95] for 40 (83.3%) out of the 48 study patients with a detected viral load upper than 1000 HIV-RNA copies per ml. HIV-1 protease and reverse transcriptase genes were successfully amplified and sequenced for only 24 (60.0%) of the 40 patients with a detectable viral load (Table 1). Median HIV-1 viral load and median CD4 cells counts were respectively statistically higher and lower in patients who had successful sequences than in those that did not (Table 2).

11

12 Interestingly, 7 (29.2%) of the 24 successfully sequenced DBS samples exhibited 13 referenced nucleotide mutations conferring HIV-1-resistance against at least one antiretroviral 14 drug. The most frequently detected mutation was the V106I (20.8%) described as a natural 15 polymorphism in HIV-1 non-B subtypes and conferring resistance to etravirine when it is 16 associated to at least one other mutation, according to French National Agency for AIDS 17 Research resistance algorithm [9]. The K103N mutation that confers complete resistance to 18 efavirenz and nevirapine was found in 2 subjects (8.3%) out of the 24. One K65E and one 19 V179D were also detected in two distinct individuals conferring resistance to tenofovir and 20 rilpivirine, respectively. The L90M major protease inhibitor resistance mutation was found in 21 one patient (4.1%). Polymorphic mutations (L10I, G16E, K20I, M36I, I62V, V77I, L89M) 22 were evidenced in 21 sequences (87.5%). HIV-1 protease sequences predicting phenotypic 23 resistance to saquinavir and a combined resistance to nelfinavir, indinavir and atazanavir were 24 evidenced in 3 patients (12.5%).

1 The most prevalent HIV-1 subtype was Circulating Recombinant Form (CRF) 2 CRF11_CPX subtype and was identified in 7 of the 24 samples (29,2%). Others previously 3 described HIV recombinant forms accounted for 8 out of the 24 samples (33.3%) (Table 1).

All patients were treated by NRTI plus first generation NNRTI (such as efavirenz or nevirapine). Among these 24 patients, 4 died (16.6%) (None among those with mutations leading to resistance or possible resistance to NNRTI), and 14 (58.3%) were lost to follow-up which is consistent with the high attrition rates previously observed in Chad [12].

8

9 **Discussion**

10 In the present report we retrospectively analysed frozen-stored DBS sampled from a 11 series of HIV-1 seropositive patients who were naïve of Highly Active Antiretroviral drugs 12 (ARV) and were living in Chad (Ndjamena), 2012. All of these patients were newly HIV1-13 diagnosed and were sampled before initiation of ARV consisting of NRTI and NNRTI 14 combination. We evidenced a CRF11_CPX HIV subtype predominance in accordance with a 15 previously published investigation on Chadian HIV-1 infected patients [5]. Because this 16 previous study focused only patients with detectable viral loads after 6 months of ARV, the 17 reported rates of mutations conferring resistance to at least one antiretroviral drug was high 18 and estimated to 64% [5]. In 2018 Keita et al. observed in plasma samples from newly HIV-19 diagnosed Malian patients a significant increase of the ARV primary resistance mutation rates 20 evolving from 7.8% in 2010 to 17.5% in 2014, especially mutations conferring resistance to 21 NNRTI like K103N mutation or other natural polymorphic mutations conferring resistance or 22 potential resistance to etravirine, another NNRTI drug not yet currently used in Mali [8]. In 23 the present retrospective monocentric study including a limited series of patients, we showed 24 for the first time high rates of similar ARV primary resistance mutations (29.2%) in Chad,

whose levels were lower than those previously observed in Chadian patients (36-64%)
 displaying a failure to first-line ARV regimen [5,6].

3

4 Our HIV genotyping results could be due to the combined presence of viral RNA and DNA in DBS and the detection of archived mutations currently not detectable by classical 5 6 genotypic test on plasma RNA. It has been shown that high levels of HIV-1 DNA can induce 7 falsely positive results for the detection of HIV-RNA resistance mutations in about 35% of 8 cases on DBS [13]. However, even if genotyping assays efficiency declined after DBS storage 9 at room temperature [14], the use of DBS offers the advantage of a stable and easy to be 10 transported samples with a minimal biohazard risk. Moreover, sending collected blood 11 samples abroad as DBS for further genotyping analysis could be the most reliable way to 12 monitor resistance to antiretroviral drugs because of recurrent blackouts and material/reagent 13 stockouts in low-income countries such as Chad [5,6]. Samples to send abroad could be 14 randomly selected in case of global monitoring of circulation of strains harbouring resistance 15 or individually selected in suspected virological failure cases. In the absence of available 16 HIV-1 RNA load monitoring for each patient, absence of rise of lymphocyte T-CD4 count 17 under ARV is commonly used as a proxy for virological failure in central Africa. In this situation, first line ARV using NRTI plus NNRTI combination is empirically switched to a 18 19 second line treatment with Protease Inhibitor without waiting for of HIV RNA load results or 20 genotyping analysis performed abroad.

Taking into account the few previous published Sahelian reports and our present original results, we suggest that free-access to new cheap antiretroviral drugs with high genetic barrier to resistance should be prioritized over any implementation strategy of HIV genotyping assays in low-income central Africa countries such as Mali or Chad. Dolutegravir containing regimen could be a good candidate for new first-line ARV regimen in these low-

1	income countries, it could be used in association with rifampin and first line anti-tuberculous
2	agents as well as in pregnant women [15]. Dolutegravir containing regimen is now
3	recommended by WHO [15], but to date this ARV drug is not yet in full free-access for the
4	population of Chad.
5	
6	
7	
8	
9	
10	Acknowledgements: We thank Abbott for its support by providing us HIV genotyping
11	kits.We are indebted to Mrs Veronique Sauron and Audrey Jasserand for excellent technical
12	assistance.
13	Funding: this work was supported by grants from INRPS (Bamako Mali) and by local grants
14	from University Champagne Ardenne (URCA, France), University Jean Monnet (St Etienne,
15	France).
16	Conflicts of interest/Competing interests: none to declare
17	Ethics approval: not required in this non interventional study
18	Consent to participate: all patients were informed of the study and gave oral consent for the
19	analysis of their samples abroad.
20	
21	References:
22	1. HIV/AIDS Key facts. https://www.who.int/news-room/fact-sheets/detail/hiv-aids
23	2. UNAIDS. Prevalence of HIV, total (% of population ages 15-49)
24	https://data.worldbank.org/indicator/SH.DYN.AIDS.ZS?end=2016&name_desc=false&start=
25	1990&view=chart

Granich R, Gupta S, Hersh B et al. Trends in AIDS Deaths, New Infections and ART
 Coverage in the Top 30 Countries with the Highest AIDS Mortality Burden; 1990-2013.
 PLoS ONE. 2015;10:e0131353

4 4. Courtney CR, Agyingi L, Fokou A et al. Monitoring HIV-1 Group M Subtypes in Yaoundé,
5 Cameroon Reveals Broad Genetic Diversity and a Novel CRF02_AG/F2 Infection. AIDS Res
6 Hum Retroviruses. 2016; 32 : 381-5.

5. Koyalta D, Charpentier C, Beassamda J et al. High frequency of antiretroviral drug
resistance among HIV-infected adults receiving first-line highly active antiretroviral therapy
in N'Djamena, Chad.Clin Infect Dis. 2009; 49 : 155-9.

6. Adawaye C, Fokam J, Kamangu E et al. Virological Response, HIV-1 Drug Resistance
Mutations and Genetic Diversity Among Patients on First-Line Antiretroviral Therapy in
N'Djamena, Chad: Findings From a Cross-Sectional Study. BMC Res Notes . 2017 ;10:589.

13 7. World Health Organisation. WHO clinical staging of HIV disease in adults, adolescents14 and children.

15 https://www.who.int/hiv/pub/guidelines/arv2013/annexes/WHO_CG_annex_1.pdf?ua=1

16 8. Keita A, Sereme Y, Pillet S et al. Impact of HIV-1 primary drug resistance on the efficacy

17 of a first-line antiretroviral regimen in the blood of newly diagnosed individuals in Bamako,

18 Mali. J Antimicrob Chemother. 2019; 74 : 165-71.

19 9. Mbida AD, Sosso S, Flori P et al. Measure of viral load by using the Abbott Real-Time

20 HIV-1 assay on dried blood and plasma spot specimens collected in 2 rural dispensaries in

21 Cameroon. J Acquir Immune Defic Syndr. 2009; 52 : 9-16.

1 10. French National Agency for AIDS Research. Table of rules HIV1.
 2 http://www.hivfrenchresistance.org/

3 11. Stanford University HIV Drug Resistance Database. HIV Subtyping program.
4 http://www.hiv.db.stanford.edu/page/hiv-subtyper/

5 12. Djarma O, Nguyen Y, Renois F et al. Continuous free access to HAART could be one of
6 the potential factors impacting on loss to follow-up in HAART-eligible patients living in a
7 resource-limited setting: N'djamena, Chad. Trans R Soc Trop Med Hyg. 2014; 108 : 735-8.

8 13. Zida S, Tuaillon E, Barro M et al. Estimation of HIV-1 DNA Level Interfering With
9 Reliability of HIV-1 RNA Quantification Performed on Dried Blood Spots Collected From
10 Successfully Treated Patients. J Clin Microbiol . 2016;54:1641-1643.

11 14. García-Lerma JG, McNulty A, Jennings C, et al. Rapid decline in the efficiency of HIV

12 drug resistance genotyping from dried blood spots (DBS) and dried plasma spots (DPS)

13 stored at 37 degrees C and high humidity. J Antimicrob Chemother. 2009;64:33-6.

14 **15.** World Health Organisation. Update of recommendations on first- and second-line

15 antiretroviral regimens. https://www.who.int/hiv/pub/arv/arv-update-2019-policy/en/

16

1 **Table caption:**

- 2 Table 1: Virological data obtained from frozen-stored dried blood spot samples of 24
- 3 Chadian HIV-1 seropositive patients naïve of Highly Active Antiretroviral Drugs (ARV).
- 4

Patient	Viral	HIV-1	Protease	Reverse	Drug	Possible	Genbank
number	load	subtype	gene	transcriptase	resistance	Drug	reference
	(log/mL)		mutations	gene mutations		resistance	
1	4.57	CRF11_CPX	I62V, V77I				MW250374
2				K65E, V75E,			MW250369
	4.44	В		I135V, M164L,		TDF	
				I178M			
3	3.82	CRF11_CPX	G16E, V77I				MW250377
4				K73EQ, K122P,			MW250370
				I142V, K173T,			
	4.71	G		Q174K, D177E,			
				E174D, V292I,			
				D324E, I329V			
5			K20I, L24F,			RPV,	MW250372 (P)
	4.28	CRF45_CPX	M36I,	L74H, V179D,		EFV,	(1) MW250373
			L89M	K238N, V179D		NVP	(RT)
6			L90M,				MW250375
	4.37	A1	L10I, M36I,			SQV,	
			L89M		NFV	IDV, ATV	
7	4.00		K20I, M36I,				MW250376
	4.02	CRF13_CPX	V77I, I50N				
8	5.26		L10I, M36I,				MW250371
		CRF11_CPX	V77I, L89M				
9	4.78		L10I, M36I,				MW250353
		CRF11_CPX	V77I, L89M				
10	3.63		K20R,				MW250354
		D	M36I	V106I			
11	4.61	CRF45_CPX	K20X,				MW250356

			M36I,				
			L89M				
12			K20I, M36I,				MW250355
12	5.36	D	V77I, L89M	V106I			
13			L10I, K20I,				MW250357
	4.73	CRF45_CPX	M36I,				
			L89M			SQV	
14	4.99	CRF13_CPX	K20I, M36I,				MW250358
			L89M	V106I			
15	4.97	D	M36I, I62V	V106I			MW250359
16	5.79	D	K20R, M61	V106I			MW250360
17			K20I, M36I,				MW250361
	5.70	D.G	I62V, L89M			SQV	
18	5.43	G					MW250368
19			I62V, V77I,				MW250362
	5.75	CRF11_CPX	L89I				
20			K20I, M36I,		EFV,		MW250363
	5.56	CRF02_AG	L89M	K103N	NVP		
21	5.47	CRF11_CPX	I62V, V77I				MW250364
22			K20I, M36I,				MW250365
	4.38	CRF13_CPX	V77I				
23			K20I, M36I,				MW250366
	5.49	CRF02_AG	L63P,				
			L89M				
24					EFV,		MW250367
	5.95	CRF11_CPX	I62V, V77I	K103N	NVP		

Table 2 : Differences between patients with successfully amplified sequences than those

without. * The 8 patients with indetectable viral load were considered as missing data among the viral loads of patients without successfully amplified sequences.

	Patients with successfully	Patients without	Р
	amplified sequences	successfully amplified	
	(n=24)	sequences (n=24)	
Male sex (n%)	11 (45.80)	7 (29.10)	0.23
Median Age [range] (years)	33 [20-45]	30 [18-52]	0.23
Median World Health	3 [1-4]	2 [1-4]	0.15
Organization HIV disease			
Clinical stage [range]			
Median CD4 Cells counts	230 [22-1049]	415 [13-918]	0.01
[range] (/mm3)			
Median viral load [range]	4.87 [3.63-5.95]	4.03 [3.24-4.99]*	0.003
(log copies/ml)			