
HAL Id: hal-03267042
https://hal.science/hal-03267042

Submitted on 22 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VS2N : Interactive Dynamic Visualization and Analysis
Tool for Spiking Neural Networks

Hammouda Elbez, Mohammed Kamel Benhaoua, Philippe Devienne, Pierre
Boulet

To cite this version:
Hammouda Elbez, Mohammed Kamel Benhaoua, Philippe Devienne, Pierre Boulet. VS2N : Interac-
tive Dynamic Visualization and Analysis Tool for Spiking Neural Networks. Content-Based Multime-
dia Indexing, Jun 2021, Lille, France. �hal-03267042�

https://hal.science/hal-03267042
https://hal.archives-ouvertes.fr


VS2N : Interactive Dynamic Visualization and
Analysis Tool for Spiking Neural Networks

1st Hammouda Elbez
Computer Science Department,

University Mustapha Stambouli of Mascara
Mascara , Algeria

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL,
F-59000 Lille, France
0000-0002-4444-1196

2nd Mohammed Kamel Benhaoua
Computer Science Department,

University Mustapha Stambouli of Mascara
Mascara, Algeria

LAPECI Laboratory, University of Oran1
Oran, Algeria

0000-0002-6145-1951

3rd Philippe Devienne
Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL,

F-59000 Lille, France
0000-0002-7023-1088

4th Pierre Boulet
Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL,

F-59000 Lille, France
0000-0002-0373-4478

Abstract—Bio-inspired computing architectures enable ultra-
low power consumption and massive parallelism using neuro-
morphic computing, which is apt to implement Spiking Neural
Networks (SNN). Such architectures are particularly suitable
for energy-constrained applications. A deeper understanding of
Spiking Neural Networks (SNN) behavior during training is
needed to improve these architectures. This paper presents VS2N,
a web-based tool for interactive visualization and analysis of SNN
activity over time. This simulator-independent tool offers a way
to examine, analyze and validate different hypotheses about SNN
activity. We present available analysis modules and use-cases of
the tool as an example.

Index Terms—Spiking neural networks, neuromorphic com-
puting, visualization, analysis, big data.

I. INTRODUCTION

Bio-inspired technology has attracted attention lately due to
the advantages that such technology offers, in particular the
massive parallelism and low power consumption, which makes
it suitable for energy-constrained applications, especially nat-
ural data processing applications. This technology provides
neuromorphic computing by using Spiking Neural Networks
(SNNs) and it is considered as one of the most promising
alternatives to the Von Neumann architecture for ”more-than-
Moore” computing.

With the increasing amount of data and the different data-
driven applications, managing multimedia data is becoming a
challenge and an active research field, involving media index-
ing, classification or retrieval in a limited time. Recently, the
use of neural networks in the field of multimedia has provided
significant progress, thanks to the different applications in
tasks like image classification [1] or Content-based image
retrieval [2], [3].

One of the reasons why Spiking Neural Networks can be
suitable for multimedia related tasks is that in contrast to clas-
sic neural networks, SNNs consider time during activity and
process natural signals while being robust to noise. In [4], the

author presents an SNN framework for sound classification,
which has proven to perform robust sound recognition tasks
and achieves promising performance. Another work [5] used
Spiking Cortical Model for content-based retrieval. It produces
better performance due to noise robustness and geometry
invariance that it provides for features extraction and texture
retrieval of images.

Due to the asynchronous nature of Spiking Neural Net-
works, it is crucial to understand how the network is evolving,
to help improve the network performance in the different
applications mentioned earlier, and easily tune the network
parameters to achieve desired results. In addition, a better
understanding of the Spiking Neural Networks learning behav-
ior helps close the gap between SNNs and the classic neural
networks in term of performance. In the SNN domain, many
simulators that provide the possibility to experiment [6]–[10].
Most of those simulators propose basic visualization of the
network activity as described in [11]. However, those visual-
izations are not suitable for analysis purposes since they are
static and do not offer the possibility to analyze the evolution
of the network parameters over time due to the enormous size
of the data to collect (traces of simulation or execution). This
big data makes it challenging to do the analysis manually,
without a dedicated tool to process collected data. This paper
presents VS2N, a web-based tool for post-mortem interactive
dynamic visualization and analysis of Spiking Neural Network
simulations. This tool offers a way to follow the network
learning behavior over time, to move back and forth in time
and various modules for analytic purposes.

The rest of this paper is composed as follows: Section II
represents related works concerning visualization and neural
networks. Section III presents analysis requirements. Sec-
tion IV presents more technical details on VS2N and the
different analysis modules. In Section V, we present use-
cases to showcase the utility of VS2N. Finally, we discuss



the limitations of VS2N and future works in Section VI.

II. RELATED WORK

With the increasing interest in Neural networks from dif-
ferent fields, an increasing need to better understand and
intercept causality in this type of network has appeared, mainly
when used in critical domains. Neural Networks are widely
considered as a Black-box since it is often hard to interpret
some results, and one of the ways to overcome this issue is to
use visual analytics. One of the first works in classic neural
networks that used visualization to understand the network
behavior better was [12]. The author reconstructed the features
detected by the network from the last layer to the input layer to
understand better how the network is reacting to input images.

In Convolutional Neural Networks (CNN), many tools exist
to answer a specific question or provide a better under-
standing of the network behavior, especially when dealing
with deep learning and deep neural networks. In [13], the
authors introduce a tool for interactive features selection to
understand better how predictive features are ranked across
feature selection algorithms. This tool leads to essential in-
sights when tested on a case study from the clinical research
field. Other tools presented for deep neural networks (DNNs)
[14], [15] help the user to better explore complex DNNs,
by providing visualization approaches to convolutional neural
network layers. Besides, a similarity display can reveal how
each layer perceives the input in a deep neural network. In
[16], a visual analysis tool is presented for recurrent neural
networks (RNNs) to understand the hidden state dynamics,
which leads to a better tuning of the network.

For Spiking Neural Networks (SNNs), due to the asyn-
chronous nature and spikes for communication, analyzing
large networks is challenging. In [17], they present a frame-
work for immersive and intuitive 3D visualization of the
network in virtual reality, which improves the user’s abilities to
explore and analyze SNNs. Another work [18] presents a 3D
visualization tool of SNN by visualizing individual neurons
and their connections while providing interactive control over
the 3D visualization. This work focuses on the clarity of
the network exploration and the implementation issues related
to 3D network representation. Another multi-purpose tool is
presented in [19] to visualize the network layers in 2D and
3D, using coordinated multiple views for massively parallel
neurophysiological data.

If we analyze the presented tools, we can see that they
have some points in common, such as being web-based tools,
targeting a specific problem or question and are limited to be
used with a specific simulator. We can summarize the novelty
of VS2N in four points: 1. Modular nature: we consider
the visualizations as modules. Anyone can add new modules
for a specific analysis. 2. Simulator-independent: we can use
any simulator as long as the collected data follows particular
schemas, which VS2N supports. 3. Scalability: backed by
the combination of Apache Spark and MongoDB for data
processing, we can deploy VS2N on multi-nodes or cluster for
better performance. 4. Dynamic analytics: VS2N provides the

possibility to move in time with the evolution of the network,
which is not possible with most of the existing tools based on
analyzing static data.

In MongoDB, we store data in collections, and each col-
lection contains documents in JSON, which are similar to
rows in a relational database. A document schema is a JSON
object that contains information about the shape, fields and
type of data stored in that document. In VS2N, we need
predefined schemas of the used collections to read the stored
data, and simulators need to respect it to use VS2N. More
information about the collections and their schemas for VS2N
in https://gitlab.univ-lille.fr/bioinsp/VS2N/-/wikis.

III. REQUIREMENTS ANALYSIS

For the analysis purpose of analyzing Spiking Neural Net-
works, we can divide the network components into three
entities:

A. Input Data

Neural networks are considered data-driven. That is why the
quality of the input data is critical for network performance. In
real-life applications, preparing and cleaning the input data is
a time-consuming operation. The analysis consists of studying
and observing the input data during the training, and the
network reaction, for any possible improvements.

B. Neurons

Neurons are the main components of the network. The
behavior of each neuron depends on the type of the neuron
and the activity in the network. The neuron analysis involves
the membrane activity, the spike frequency, and the neuron
behavior based on the input. By analyzing all neurons, we
can check the network performance and detect any possible
improvements or insights.

C. Synapses

Synapses keep the neurons connected and help transmit ac-
tivity over the network. The number of synapses in a network
is more than the number of neurons, making it challenging
to analyze their activity. By analyzing synapses, we can learn
more about the neuron’s reaction to specific input and the
learned features, which will be more challenging in multi-
layer networks. The analysis may help eliminate unnecessary
synapses while preserving good performance.

The simulator VS2N

Simulation and 
data collection

Select the 
modules to use

Pre processing
(if needed)

Explore the 
visualisations

Formulate 
hypotheses

5

The user

Apply modifications
on the network

6

1 2

3

4

Fig. 1. The visual analysis workflow



As represented in Figure 1, to use VS2N, the user would
(1) start by collecting the data from the simulation. In our
case, we used the N2S3 simulator [6] and Nengo [7]. We
can use any simulator as long as the collected data follows
the standard schemas from VS2N. (2) select the simulation
and the modules on VS2N. (3) launch the pre-processing by
VS2N (if needed), using Apache Spark. (4) start exploring
the visualizations and detect any patterns or phenomena. (5)
formulate hypotheses based on the observations. (6) apply
modifications to the network and start the simulation and data
collection again.

IV. VS2N

Dashboard (Flask)

MongoDB Spark

PyMongo

MongoDB Spark connector

PySpark

Fig. 2. VS2N components and used libraries for communication

VS2N is a web-based tool based on Flask [20], a micro web
framework written in Python. The backend is composed of two
main parts: MongoDB1, for storing data collected from the
simulation and Apache Spark2, for any required pre-processing
on the data. Due to the nature of MongoDB and Apache
Spark. This combination makes it possible to scale in terms of
computation power and deploy on the nodes of a distributed
cluster (see Figure 2). VS2N uses Dash library3 to create web
interfaces and interactive visualizations using Python.

In this section, we discuss the different analysis modules
in VS2N, the used visualizations, and the purpose of each
module.

A. General Analytics Module

This module represents an overview of the network perfor-
mance and general information, like the number of neurons
and layers, network accuracy, and the used dataset. This
module is the first one used with every analysis (see Figure 3).
It is composed of three main parts:

1) General information: represents static information on
the network accuracy, used topology, and dataset.

2) Network activity: a general visualization of the network
activity, such as spikes, neurons potential, synapses
update, and loss update during training. This part is
helpful to observe any repetitive pattern in the activity,
the learning process of the network, and any correlation
between the different graphs.

3) Dataset overview: represents insights on the actual
input of the network at that period. This visualization
represents the number of each input (grouped by labels

1www.mongodb.com
2www.spark.apache.org
3www.plotly.com/dash

1

32

Fig. 3. VS2N: General Analytics Module

if it is a labeled dataset, otherwise this visualization is
hidden), and it does not depend on the learning type
(supervised or unsupervised) but only on the type of
dataset (labeled or not).

B. Neuron Analytics Module

1
3

4 6

2

5

Fig. 4. VS2N: Neuron Analytics Module

This module contains a group of interactive visualizations
to observe the activity of each neuron individually or grouped
(see Figure 4). The different components of this module are:

1) Layer and neuron selector: when the user selects a
neuron, upon this selection, more visualizations regard-
ing this element are displayed (4, 5, and 6).

2) 3D spike frequency: this component provides a 3D
representation of the spike frequency per neuron in the
output layer (neuron id on the X-axis, spike frequency
on the Y-axis, and Z-axis for the detected class). This
visualization gives the user insight into the spike fre-
quency of the neurons compared to the detected class.

3) Neuron spikes per class: this component is visible
only when a neuron from a class is selected in the 3D
spike frequency component. This component provides
information on the number of spikes per neuron in the
selected class. This component is complementary to the



previous one, which provides more information for a
better analysis of the neuron activity in the same class.

Once the user selects one or more neurons, VS2N adds three
new visualizations to the screen. Those visualizations are:

4) Neuron spikes activity: which represents the spiking
activity of the selected neuron.

5) Neuron potential activity: this represents the mem-
brane potential activity of the selected neuron.

6) Neuron class activity: it represents the input class that
caused the selected neuron to spike. It is visible only if
the dataset is labeled.

Using the presented visualizations, the user can analyze the
behavior of the selected neuron with the help of spikes and
potential activity while considering the input that caused the
neuron to spike.

C. Synapse Analytics Module

1

3 4

2

Fig. 5. VS2N: Synapse Analytics Module

This module contains a group of interactive visualizations
to observe the synaptic activity of each neuron (see Figure 5).
The Components of this module are:

1) Layer and neuron selector: when the user selects a
neuron, upon this selection, more visualizations regard-
ing this element are displayed (3 and 4).

2) Layer heatmap: it represents an overview of the se-
lected layer heatmap at the end of the training. This
visualization helps the user to get a clear overview of the
features detected by the selected layer, which is helpful
to evaluate the learning process.

Once the user selects one or more neurons, VS2N adds two
other components, representing information about the activity
of the selected neuron. Those components are:

3) Synapses weight activity: this represents the mean
value of the selected neuron weights and a vertical
heatmap of the weights distribution activity during the
recorded period.

4) Neuron heatmap: this component is complementary
to the previous visualization. It represents the synapses

heatmap of the selected neuron. The main difference
between this representation and (2) is that this represen-
tation gets updated over time while the layer heatmap
represents the final values of synaptic weights.

These visualizations provide insight into how the synapses
react to input data. Any modification on the detected class
by the neuron can be spotted by a slight variation in the mean
synapse weights and the heatmap.

V. APPLICATIONS

In this section, we present two use-cases, where we use
VS2N to observe an activity, answer a question or validate
a hypothesis. For the simulation, we used the N2S3 simula-
tor, an open-source, scalable spiking neuromorphic hardware
simulator [6], and the Nengo simulator [7], which offers
the possibility to use neuromorphic hardware such as Loihi
and SpiNNaker. MNIST dataset [21] was used for testing. It
contains handwritten digits (60k for training, 10k for testing).

A. Use-Case: The MNIST last 10k effect

In this use case, we will try to validate one observed
phenomenon during simulation using a single layer network.
This phenomenon consists of an accuracy drop in the last 10k
of the MNIST dataset during training. This accuracy drop is
seen when using small or medium networks (with less than
1000 neurons). However, it does not appear in large networks,
which leads to the assumption that in the last 10k input, new
variations of handwritten digits are introduced to the network.
As a result, by training the same network while inverting the
MNIST dataset, this drop disappears, as seen in Figure 6, but
appears in the first 10k.

For this use case, we use Nengo for simulation.

inverted

Fig. 6. Network accuracy using 900 neurons with MNIST (1 batch = 10k)

Using VS2N, we will monitor the network activity during
training and the last 10k using the general analytics module.
The goal is to validate the existence of this phenomenon.



(A)

(B)

Fig. 7. Network activity, (A) during the first 15k input, (B) during the last
10k

As we can see in Figure 7(A), at the start of the training, the
number of spikes and neurons potential update is stable, while
synaptic weights update is decreasing and becomes stable after
a couple of inputs, which is expected due to training and the
nature of MNIST dataset. After 50k of input, we can see an
interesting pattern at the start of the last 10k (Figure 7(B)),
with a clear increase in synaptic weights update (more than
10%) that lasts until the end of the training. This increase
in synaptic weights update means that the patterns learned
by the neurons are changing, which will affect the network
performance, as reported in Figure 6.

B. Use-Case: Network Compression
One technique to compress the network is by pruning

synapses that are considered not critical to the network. The
criterion of selection is usually based on a defined threshold.
If the synapse weight value is below the threshold, the synapse
is considered not critical and removed. The threshold selection
is usually tuned experimentally, and it is interesting to observe
the effect of the prune operation on the network when executed
during training.

For this use case, we use N2S3 to simulate a single-
layer network and apply prune operation (threshold=0.2) after
training using half of the MNIST dataset. Using VS2N, we
will monitor the general activity of the network once pruned
and the effect on randomly selected neurons.

Fig. 8. Network activity and loss graph after 30k input (during the prune
operation)

In Figure 8, we can see the activity of the network before
and after the prune operation. The spikes and neurons’ po-

tential activity had a slight decrease in value after removing
more than 50% of the synapses, which is expected since only
the weak synapses were removed due to the MNIST dataset’s
nature that contains centered handwritten digits. We can see
a drop in values and a more regular graph after pruning for
the activity of the synaptic weights. Although the removed
synapses are weak, they are still updated during training, as
shown in the graph. We can see a slight increase just after
pruning for the loss graph, but it goes back to normal again.
We can see in Figure 8 that after the prune operation, there
was a period of silence in the network. This is due to the
pruning process in the simulator, which affects the simulation
time.

In Figure 9, we can see the synaptic activity of two
neurons using the synapse analytics module. After 15k of
input (Figure 9(A)), we can see the mean value of synapse
weights is close for both neurons. However, the distribution
of the synaptic weights over time (left) is different since the
two neurons are learning different classes, as we can see in
the heatmap (right). In Figure 9(B), we can see the effect of
applying the prune operation on the two visualizations. The
mean synaptic weights increased since weak synapses were
removed, and we can see a change in the distribution of the
synaptic weights (left). The heatmap (right) shows that the
selected threshold (0.2) does not affect the detected class, and
the network will produce good performances compared to the
non-pruned version.

VI. CONCLUSION

The ability to explain the results of a neural network plays
an essential role toward a better exploration of this technology,
especially in critical applications where every decision should
be justified.

In this work, we presented VS2N, a simulator-independent
tool for dynamic visual analysis for Spiking Neural Networks.
VS2N offers the possibility to analyze the network activity
interactively, with the possibility to add new modules. We
presented two use cases with data collected from two different
simulators.

This version mainly supports the analysis of shallow net-
works. Due to the complexity of the multilayer networks, more
work is needed to add modules that suit this type of networks,
like features reconstruction and 3D visualization of the activity
between the hidden layers. The pre-processing phase at the
first time (using Apache Spark) takes time due to the massive
amount of data, which we can reduce by deploying VS2N on
the nodes of a distributed cluster. We will address all those
limitations in the future.

Finally, it is worth mentioning that VS2N can be used to
analyze the activity during the simulation without the need to
wait for the simulation to finish, which can be useful when
simulating large networks that can take much time. However,
only the general analytics module will be available in this case
since the other modules require pre-processing, which is not
possible to do while simulating.



Fig. 9. Synapses activity of two randomly selected neurons, (A) during the first 15k input, (B) after 30k input

ACKNOWLEDGMENTS

This work was supported in part by IRCICA (Univ. Lille,
CNRS, USR 3380 – IRCICA, F-59000 Lille, France) under the
Bioinspired Project, PROFAS B+ 2019 and PRIMA program
under grant agreement No 1821, project WATERMED4.0. The
PRIMA programme is supported by the European Union.

REFERENCES

[1] P. Falez, P. Tirilly, I. Marius Bilasco, P. Devienne, and P. Boulet,
“Multi-layered spiking neural network with target timestamp threshold
adaptation and stdp,” in 2019 International Joint Conference on Neural
Networks (IJCNN), 2019, pp. 1–8.

[2] F. Sabahi, M. Omair Ahmad, and M. N. S. Swamy, “An unsupervised
learning based method for content-based image retrieval using hopfield
neural network,” in 2016 2nd International Conference of Signal Pro-
cessing and Intelligent Systems (ICSPIS), 2016, pp. 1–5.

[3] A. Sezavar, H. Farsi, and S. Mohamadzadeh, “Content-based
image retrieval by combining convolutional neural networks
and sparse representation,” Multimedia Tools and Applications,
vol. 78, no. 15, pp. 20 895–20 912, Aug 2019. [Online]. Available:
https://doi.org/10.1007/s11042-019-7321-1

[4] J. Wu, Y. Chua, M. Zhang, H. Li, and K. C. Tan, “A spiking
neural network framework for robust sound classification,” Frontiers
in Neuroscience, vol. 12, p. 836, 2018. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2018.00836

[5] R. Yang, C. Lyu, Y. Liu, W. Zhou, C. Chen, X. Jiang, P. Li, H. Chen,
R. Xu, and Y. Wang, “Spiking cortical model for geometry invariant and
antinoise texture retrieval,” in 2017 IEEE International Conference on
Real-time Computing and Robotics (RCAR), 2017, pp. 645–650.

[6] P. Falez, P. Devienne, P. Tirilly, M. Bilasco, C. LOYEZ, I. Sourikopou-
los, and P. Boulet, “Flexible Simulation for Neuromorphic Circuit
Design: Motion Detection Case Study,” in Conférence d’informatique
en Parallélisme, Architecture et Système (ComPAS), Sophia Antipolis,
France, Jun. 2017.

[7] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. Stewart, D. Ras-
mussen, X. Choo, A. Voelker, and C. Eliasmith, “Nengo: a python
tool for building large-scale functional brain models,” Frontiers in
Neuroinformatics, vol. 7, p. 48, 2014.

[8] M.-O. Gewaltig and M. Diesmann, “NEST (NEural Simulation Tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, Apr. 2007.

[9] M. L. Hines and N. T. Carnevale, “The neuron simulation environment,”
Neural Computation, vol. 9, no. 6, pp. 1179–1209, 1997.

[10] M. Stimberg, R. Brette, and D. F. Goodman, “Brian 2, an intuitive and
efficient neural simulator,” eLife, vol. 8, p. e47314, Aug. 2019.

[11] H. Elbez, K. Benhaoua, P. Devienne, and P. Boulet, “Visualization
Techniques in SNN Simulators,” in 3rd International Conference on
Multimedia Information Processing, CITIM’2018, Mascara, Algeria,
Oct. 2018.

[12] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in 2015 IEEE International Conference on
Computer Vision (ICCV), 2015, pp. 1520–1528.

[13] J. Krause, A. Perer, and E. Bertini, “INFUSE: interactive feature se-
lection for predictive modeling of high dimensional data,” Visualization
and Computer Graphics, IEEE Transactions on, vol. 20, no. 12, pp.
1614–1623, Dec 2014.

[14] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. Chau, “Activis:
Visual exploration of industry-scale deep neural network models,” IEEE
Transactions on Visualization and Computer Graphics, vol. 24, no. 1,
pp. 88–97, 2018.

[15] M. Zurowietz and T. W. Nattkemper, “An interactive visualization for
feature localization in deep neural networks,” Frontiers in Artificial
Intelligence, vol. 3, p. 49, 2020.

[16] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush, “Lstmvis: A
tool for visual analysis of hidden state dynamics in recurrent neural
networks,” IEEE Transactions on Visualization and Computer Graphics,
vol. 24, no. 1, pp. 667–676, 2018.

[17] S. Marks, “Immersive visualisation of 3-dimensional spiking neural
networks,” Evolving Systems, vol. 8, no. 3, pp. 193–201, Sep 2017.

[18] A. Kasiński, J. Pawłowski, and F. Ponulak, “‘snn3dviewer’ - 3d visu-
alization tool for spiking neural network analysis,” in Computer Vision
and Graphics, L. Bolc, J. L. Kulikowski, and K. Wojciechowski, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 469–476.

[19] J. Senk, C. Carde, E. Hagen, T. W. Kuhlen, M. Diesmann, and
B. Weyers, “Viola—a multi-purpose and web-based visualization tool
for neuronal-network simulation output,” Frontiers in Neuroinformatics,
vol. 12, p. 75, 2018.

[20] M. Grinberg, Flask Web Development: Developing Web Applications
with Python, 1st ed. O’Reilly Media, Inc., 2014.

[21] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2010.


