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Abstract

Numerical calculations based on a recent version of the eddy-damped quasi-
normal model (EDQNM-LMFA) are carried out for homogeneous isotropic
turbulence (HIT) with the aim of investigating the dependency on the Reynolds
number of second and third order velocity structure functions. The quantities
investigated include the energy spectrum E, the non-linear energy transfer T
as well as the second (S2) and third (S3) order moments of the longitudinal
velocity increment. Both free decaying HIT and (steady state) forced HIT
are considered. The analysis of the structure functions for Reλ ∈ [50, 106]
indicates that, regardless of whether one considers decaying or forced HIT,
the large scales affect S2 and S3 in the scaling range. In that range, forcing
affects S2 and S3 differently. For forced HIT, S2/(εr)

2/3 exhibits a distinct
”bump” near the upper end of the scaling range while no such bump is seen
for S3/(εr). The latter quantity remains approximately constant for values
of r which extend to the scale corresponding to the forcing. For decaying
HIT, there is no discernible bump in either S2/(εr)

2/3 or S3/(εr). The slope
of S3 in the scaling range approaches the theoretical value of 1, when Reλ
is sufficiently large. However, at similar Reλ, the slope of S2 has not yet
reached a constant for either decaying or forced HIT.
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1. Introduction1

The study of homogeneous isotropic turbulence (HIT) using two-point
statistics has proven to be quite fruitful, particularly as a result of the ma-
jor contribution by Von Karman & Howarth [1] who developed a transport
equation for the two-point longitudinal velocity correlation f(r, t) defined
as f(r, t) = u(x, t)u(x + r, t)/U2(x, t), where x is a spatial position, r is
the magnitude of the longitudinal separation r and U2 = 2

3
K(t) (K(t) is

the turbulent kinetic energy); the over-bar represents an ensemble aver-
age. Here u(x, t) is the longitudinal velocity component of the velocity u
i.e. u(x, t) = u(x, t) · r/r The transport equation for f(r, t), now referred to
as the Karman–Howarth (hereafter denoted KH) equation and written below

∂f(r, t)U2(t)

∂t
−2U3(t)

(
∂h(r, t)

∂r
+

4

r
h(r, t)

)
= 2νU2(t)

(
∂2f(r, t)

∂r2
+

4

r

∂f(r, t)

∂r

)
+Wf

(1)
where h(r, t) = u(x, t)u(x, t)u(x + r, t)/(U2(x, t))3/2 is the third order ve-2

locity correlation, marked a milestone for the theory of HIT. The term Wf3

represents the correlation between a volume source term (forcing) and the4

velocity fluctuation in the Navier–Stokes equations. This term is zero for5

decaying HIT. Equally useful two-point statistical quantities for the theory6

of HIT are the so-called longitudinal velocity structure functions defined as7

Sn(r, t) = [u(x + r, t)− u(x, t)]n = (δu)n. (2)

where δu = u(x+ r)− u(x) is the velocity increment. Of particular interest
are the 2nd and 3rd order structure functions. The former is related to f(r)
as follows

S2(r, t) =
2

3
K (1− f(r, t)) , (3)

Its transport equation, which can be derived from the Navier-Stokes equa-8

tions in similar fashion to equation (1), can be expressed as9

2

3

∂K
∂t

(t) = −2

3
ε =

1

2

∂S2

∂t
+

1

6r4
∂r4S3

∂r
− ν

r4
∂

∂r

(
r4
∂S2

∂r

)
+WS (4)

where ε is the ensemble average of the instantaneous turbulent energy dissi-
pation rate and WS is the spatial counterpart of Wf . Assuming an infinitely
large Reynolds number and considering that turbulence at small-scales is in
a statistically steady state, allowed Kolmogorov [2] to drop the first term on
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the right side of (4) in his K41 theory. After integration with respect to r,
one obtains:

S3(r, t) = −4

5
εr + 6ν

∂

∂r
S2(r, t) + Z. (5)

After neglecting the second term on the right of (5) and Z, which represents
the effects of the energy injected at large scales and, for convenience, will be
denoted loosely as ”turbulence production” hereafter, eq. (5) reduces to the
4/5 law [2]

S3(r, t) = −4

5
εr. (6)

The dropping of ∂S2

∂t
, i.e. the first term on the right side of (4), is critical

for the establishment of (5). This term reflects the contribution of the large
scales to all scales of motion and if reinstated in (5) yields [3, 4]

S3(r, t) = −4

5
εr + 6ν

∂

∂r
S2(r, t)−

3

r4

∫ r

0

s4
∂S2

∂t
ds+ Z (7)

In decaying HIT, Z = 0 and ∂S2/∂t 6= 0, which reflects the statistical time10

evolution of HIT features such as the energy spectrum E(k, t) (k is the wave11

number space of the spectral transform). However, ∂S2/∂t 6= 0 can also be12

associated with the non-homogeneity either in time (e.g, 3D periodic box13

turbulence) or in space (e.g. grid turbulence). In direct numerical simula-14

tions (DNS) of a forced steady state 3D periodic turbulence, ∂S2/∂t = 0 and15

the term Z represents the imposed forcing at given (mainly large) scales.16

Notice that Z and the third term on the right side of (7), which may also be17

considered as a some sort of forcing caused by the large scales, represent a18

cumulative effect suggesting that the impact of different forms of forcing on19

the transport of S2(r) at a given scale may be felt differently. This would be20

consistent with the results of Thiesset et al. [5] and Antonia et al. [6], who21

showed that, at finite Reynolds numbers, the balance between the longitu-22

dinal velocity derivative and the destruction coefficient of enstrophy in the23

transport equation for ε depends on the type of large-scale forcing and thus24

differs from flow to flow. Further, Tang et al. [7] showed that the impact of25

the forcing in various turbulent flows at small and moderate Reλ, the Tay-26

lor microscale Reynolds number, felt at scales of the order of λ, the Taylor27

microscale, depends on the types of flow under consideration. For example,28

they found that for a given Reλ this impact is largest on the centreline of a29

fully developed channel flow but smallest for stationary forced periodic box30

turbulence. For decaying-type flows, the strength of this impact lies between31

the previous two cases. These observations corroborate the results of Qian32

[8], Antonia & Burattini [9] and Tchoufag et al. [10] who showed that the33
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magnitude of the maximum of C3 = −S3/(εr) is affected differently in forced34

and decaying turbulent flows; for a fixed Reλ, the maximum is larger for35

forced turbulence than decaying turbulence. Tchoufag et al. [10] observed36

that C3 ≈ 4/5 for Reλ ≥ 103 in forced turbulence and argued that Reλ should37

be larger than about 106 before the same maximum is observed in both types38

of turbulence. These observations and results illustrate the impact of the last39

term on the right side of (7). They further indicate that this impact is not40

only flow dependent but also Reynolds number dependent for a given flow41

when the Reynolds number is finite.42

As noted in [11], Eq. 6 has yet to be verified convincingly on the basis43

of either experimental or DNS data. The expectation is that Eq. 6 is more44

likely to be verified when forcing is applied. Indeed, the maximum value of45

4/5 can be reached in a periodic box (e.g. the DNS data of Iyer et al. (2020)46

[12] at Reλ ≈ 1300). It is clear however that a plateau for S3/(εr) has yet to47

be established over a range of scales when η � r � L. It is equally unclear48

that S2 exhibits an unambiguous power-law behaviour in this range. It is49

therefore imperative to significantly extend the magnitude of Reλ in order to50

ascertain if S2 can, like S3, exhibit a power-law behaviour when η � r � L.51

In the present work, the evolution with Reλ of several second and third-52

order statistical moments of HIT are investigated. The physical quantities in-53

clude the energy spectrum E, the non-linear energy transfer T and the struc-54

ture functions S2(r), S3(r). The evolution of the velocity increment skewness55

S(r) = S3(r)/S
3/2
2 is also considered. The analysis is performed with calcu-56

lations based on the eddy-damped quasi-normal model (EDQNM). In partic-57

ular, the EDQNM-LMFA model is employed [13]. The EDQNM model has58

been extensively used in the open literature to perform investigations of en-59

ergy spectra, non-linear energy transfer and second and third order structure60

functions (see, among the others, references [14, 15, 16, 17, 18, 19, 20]). The61

novelty aspects of the present work are i) the investigation of the sensitivity62

of HIT to finite Reynolds number effects, over a Reynolds number interval63

of almost four decades and ii) a comprehensive comparison of EDQNM data64

with previously published experimental / DNS data for both decaying and65

forced turbulence. (i) & (ii) allow us to focus on the important difference66

in behavior of second and third-order structure functions, between decaying67

and forced HIT, as Reλ is increased significantly beyond values that are cur-68

rently possible either in experiment or DNS. The use of the EDQNM model69

seems appropriate for this purpose given that the approaches of Qian [8]70

and Antonia & Burattini [9] essentially assume S2 in order to calculate S3,71

while the EDQNM obtains S2 from the calculation of E and T . Since no72

intermittency phenomenology is introduced in the constitutive hypotheses73
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of the EDQNM, the simulation captures only the Reynolds number depen-74

dence and the effect of the production mechanisms on the physical quantities75

investigated, with the expectation that FRN effects identified via EDQNM76

are at least comparable to those described by the Navier-Stokes equations.77

If so, these findings can provide insight for the analysis of results obtained78

with more powerful numerical tools, such as DNS. As previously introduced,79

an extensive comparison of EDQNM-LMFA results with experimental and80

DNS data is also performed. The comparison shows that there is adequate81

agreement for low to moderate Reynolds numbers. Thus, one can reasonably82

expect that EDQNM data for much higher Reynolds numbers (the maxi-83

mum value of Reλ in the present study is 106) can provide an estimation of84

the sensitivity of the turbulence to FRN effects. It will also be shown that85

results obtained via the EDQNM-LMFA for high Reynolds number are in86

agreement with those, based on an empirical model for S2, by Antonia et al.87

[11]. Three main sets of EDNQM-LMFA calculations are performed, one for88

freely decaying HIT and the other two for statistically steady forced HIT,89

using different forcing terms.90

The paper is structured as follows. The EDQNM model is described in91

general terms in Section 2; the distribution of the forcing term F , representing92

production mechanisms in the spectral space, is also discussed in this Section.93

Section 3 contains a comprehensive discussion of the results. Conclusions are94

given in Section 4. Specific features of the adopted EDQNM model are given95

in more detail in the Appendix A.96

2. The EDQNM model97

The EDQNM model [21, 22, 23] is briefly described in this section, while
an extended discussion is provided in the Appendix A. The EDQNM is a tur-
bulence closure in spectral space and it relies on the numerical discretization
of the Lin equation:

∂E(k, t)

∂t
+ 2νk2E(k, t) = T (k, t) + F (k, t) (8)

where T (k, t) is the non-linear energy transfer due to triadic interactions and98

F represents the spectral transform of production mechanisms. The EDQNM99

closure is used to estimate T (k, t) via the calculated value of E(k, t) and an100

eddy-damping term. The limitations of this model include the fact that inter-101

mittency effects are not taken into account and only second and third-order102

velocity structure functions can be directly calculated. The model version103

used to perform the present analysis is the EDQNM-LMFA proposed by Bos104
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& Bertoglio [24]. The main difference between this model and the classi-105

cal EDQNM proposal is that a single-time closure is used to determine the106

eddy damping model used to estimate T (k, t). This closure does not rely on107

heuristic constants to determine the intensity of the damping term. Instead,108

it is calculated within the EDQNM closure resolving an evolution equation109

for the velocity-displacement cross-correlation spectrum FCC , which is ob-110

tained using the formalism proposed in the Direct Interaction Approximation111

(DIA) theory [25]. More details about the implementation are provided in112

the Appendix A. For convenience, the EDQNM-LMFA model will simply113

be referred to as EDQNM. Physical quantities, such as the turbulent kinetic114

energy K(t) or the velocity derivative skewness S(t) are derived via manipula-115

tion / integration of E(k, t) and T (k, t). In the present analysis, calculations116

are performed for both freely decaying HIT (i.e. F (k, t) = 0) and statistically117

steady forced turbulence (F (k, t) = F (k)).118

Several proposals for the forcing distribution were investigated for the
case of statistically steady forced turbulence. However, forced HIT results
are here restricted to two forcing schemes. These two schemes were cho-
sen according to their different distribution (local or global) in the spectral
space. In addition, both forcing terms comply well with the very large scale
requirements imposed by the adaptive spectral mesh strategy employed in
the calculations [26] which will be described in the following. The first scheme
is a single wavenumber forcing:

F (k) =

{
γF · ε(0) if k = kL(0)

0 if k 6= kL(0)
(9)

where γF is a positive scalar.119

The second forcing scheme employed is derived in order to obtain con-
servation of the large-scale features i.e. ∂E(k, t)/∂t = 0 for k < kL, where
kL(t) = L−1(t) is the wave number associated with the integral length scale
L. Artificial damping is applied at large wavenumbers viz.

F (k) =

{
2νk2E(k)− T (k) if k ≤ kL(0)

(2νk2E(k)− T (k)) · r−k/kL(0)F if k > kL(0)
(10)

The parameter rF = 1.1 has been set to obtain a bump between the120

integral length scale region and the scaling range. This feature has been121

observed in several experimental and numerical analyses reported in the lit-122

erature [27, 28, 29].123

Initial conditions are imposed using an energy spectrum functional form
suggested by Pope [30] and Meyers & Meneveau [31]:

EI(k) = CK ε
2/3k−5/3fL(kL)fη(kη) (11)
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with

fL(kL) =

(
kL

[(kL)1.5 + cL]1/1.5

)5/3+σ

, fη(kη) = exp(−β([(kη)4 + c4η]
1/4− cη))

(12)
where CK ∈ [1.4, 1.6] is the Kolmogorov constant, L is the integral length124

scale and η is the Kolmogorov length scale. The free coefficients have been125

set to cη = 0.4, β = 5.3; cL has been chosen in order to obtain L(0) = 1.126

Calculations are performed by fixing an initial value (= 2) of the parameter σ.127

This parameter controls the shape of the energy spectrum at large scales, and128

the value chosen corresponds to the well known case of Saffman turbulence.129

Early tests choosing a value of σ = 4 (Batchelor turbulence) showed that the130

EDQNM prediction of S2 and S3 is not sensitive to the parameter σ. The131

initial Reynolds number has been set to Reλ = 106 for the free decay case and132

to Reλ ∈ [50, 106] for the forced cases. The initial transient regime in free133

HIT decay is governed by the features of the functional form prescribed for134

t = 0. An increase of the Reynolds number is observed up to Reλ ≈ 2× 106
135

for t ≈ t0, where t0 = K(0)/ε(0) is the initial turnover time. After this first136

phase, the statistics progressively lose memory of the initial condition and a137

classical power law decay is observed [32, 17]. For the present analysis, data138

are sampled in the range 106 ≥ Reλ ≥ 50. For the forced simulations, E(k)139

will converge towards a forced solution from the initially prescribed functional140

form EI(k). The statistically steady solution is clearly governed by the shape141

of the forcing term F . Finally, calculations are performed using an adaptive142

spectral mesh strategy [26] which conserves the large-scale resolution for the143

free decay case. The condition kL(t)/kmin(t) = 103 has been imposed, where144

kmin is the smallest resolved mode. This choice allows confinement effects to145

be excluded.146

The present study focuses on the prediction of the energy spectrum E, the147

non-linear energy transfer T and the structure functions S2 and S3. These148

quantities are connected via the following integral relations [33, 23]:149

S2(r, t) =

∫ +∞

0

4E(k, t)

[
1

3
− sin(kr)− (kr) cos(kr)

(kr)3

]
dk (13)

S3(r, t) =

∫ +∞

0

12T (k, t)
3(sin(kr)− (kr) cos(kr))− (kr)2 sin(kr)

(kr)5
dk(14)

using the EDQNM prediction for E(k, t) and T (k, t).150

The spectra calculated using the EDQNM may exhibit remarkable differ-151

ences. First, a visualization of the energy spectrum E and of the multiscale152

forcing term F in Equation 10 is shown in Figure 1 (a)-(b). One can see153
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Figure 1: (a) Energy spectrum E and (b) forcing F for the case of statistically steady
forced HIT using the forcing in Equation 10 for Reλ ≈ 105. (c) Normalized energy spec-
trum E and (d) non-linear energy transfer T for the cases of decaying HIT and statistically
steady forced HIT (equation 9) for Reλ ≈ 105. (e) Second-order velocity structure function
and (f) third-order velocity structure function for free decaying HIT and forced HIT.
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the bump in the energy spectrum for k = kL(0) = 1. The free decay case154

and the other forcing scheme (equation 9) are instead shown in Figure 1 (c)-155

(f). The single wavenumber distribution for F is responsible for the sharp156

increase in the energy spectrum E(k) near the peak, as shown in figure157

1(c). Comparison of the non-linear energy transfer in figure 1(d) indicates158

that, for similar Reλ, the free decay case exhibits a shorter scaling range.159

The results for the forced case show an almost perfect plateau just outside160

the energy production region. The analysis of the compensated third-order161

velocity structure function −S3/(εr) in figure 1 (f) provides similar informa-162

tion. This behaviour is intimately connected with the triadic interactions163

associated with very energetic modes, as discussed by Meldi & Sagaut [34].164

Because of the connection between T and S3 in equation (14), this mecha-165

nism is also responsible for the emergence of a clearer plateau at moderate166

Reλ for the third-order structure function in the case of forced HIT. Also,167

results from every EDQNM calculation in figure 1 (e)-(f)collapse at the small168

scales, indicating that the large scale behaviour does not influence the dy-169

namics of the small scales. In addition, all the computed spectra exhibit a170

power-law range proportional to knE , nE ≈ −5/3 in the inertial region, once171

the Reynolds number is high enough. This is shown in figure 2 with the local172

calculation via polynomial fitting of the relation E ∝ knE for the free decay173

case. For the highest Reynolds number considered, Reλ = 106, the averaged174

deviation of the power law exponent within the scaling range from the K41175

behaviour is nE + 5/3 = 5× 10−3 (the overbar here represents the averaged176

value of nE calculated in the range 10−6 ≤ kη ≤ 10−2), which is around 0.3%.177

This value is sensibly smaller than the intermittency corrections usually re-178

ported in the literature for the energy spectrum, for which E(k) ∝ k−5/3−µ/9,179

µ ∈ [0.1, 0.3].180

Once the distribution of F is prescribed, the production term Z(F ) =181

Z(r, t) in (7) can be calculated exactly via the integral relation [35]:182

Z(r, t) = 12r

∫ ∞
0

(
1

15
+

sin(kr)

(kr)3
+ 3

cos(kr)

(kr)4
− 3

sin(kr)

(kr)5

)
F (k) dk (15)

Using equations (13), (14) and (15) the budget terms in (7) can be anal-183

ysed using the EDQNM data. This is shown in figure 3. Recall that Z = 0184

in decaying HIT while ∂S2/∂t = 0 for the statistically steady forced HIT.185

The values of S3 calculated using (7), where each term on the right side186

of the equation are evaluated, and those using (14) are in good agreement;187

very small differences are observed for r/η ≈ 1 which are due to the dis-188

cretization procedures used to calculate the derivatives of S2. As expected,189

the viscous term is dominant for r/η ≤ 5 while the large-scale contributions190
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Figure 2: Local slope, nE(k), of the spectrum E(k) for decaying HIT.

associated with Z or ∂S2/∂t dominate at large r/η. Quite interestingly, the191

oscillatory tail behaviour exhibited by Z in figure 3(b) is also observed in192

the experimental data of forced turbulence by Moisy et al. [36]. Note that193

there is a small range of r where Z/(εr) exceeds 0.8; over this range, S3/(εr)194

must change sign in order to satisfy Equation 7. This effect is governed by195

the prescribed distribution of F . Note also that, at Reλ = 106, −S3/(εr) is196

approximately constant (≈ 0.8 within 0.1%) over not much more than one197

decade in r for decaying HIT compared with three decades for forced HIT.198

This clearly reflects the difference between the distributions of − 3
r4

∫ r
0
s4 ∂S2

∂t
ds199

and Z. These budget terms are never exactly zero in the scaling range, so200

that −S3/(εr) = 0.8 is never obtained for both decaying and forced HIT.201

For forced HIT, the scaling range, as a result of the particular choice of Z,202

extends to values of r/L which exceed 0.1 (see Figure A.15 (b)).203

3. Results204

3.1. Energy Spectrum E and interscale energy flux Π205

In this subsection the results obtained using the EDQNM model are206

validated via comparison with experimental and DNS data for moderate207

Reλ. As opposed to structure functions, comparisons of energy spectra and208

non-linear energy transfer are much less common in the literature. First,209

the three-dimensional energy spectrum E(k) and the interscale energy flux210

Π(k) =
∫ +∞
k

T (k)dk are considered. Comparisons with DNS results for both211
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Figure 3: Budget terms (normalized by (εr)) in Eq. 7 obtained from the EDQNM results
for S3. Results are shown at Reλ = 106 for (a) decaying HIT and (b) statistically steady
forced HIT using the single wavenumber model in equation 9. Continuous black lines
represent the terms (a) − 3

r4

∫ r
0
s4 ∂S2

∂t ds and (b) Z, respectively, while the dashed lines

represent the viscous term 6ν ∂S2

∂r . Grey lines represent S3. White markers represent the

sum of the normalized four budget terms of Eq. 7 i.e. 4/5− (6ν ∂
∂rS2(r)− 3

r4

∫ r
0
s4 ∂S2

∂t ds+
Z)(εr)−1

forced HIT (Ishihara et al. [37]) and decaying free turbulence (Lamballais et212

al. [38]) are shown in figure 4. Overall, a good agreement is observed. The213

main differences are associated with the prediction of the bottleneck region214

of three-dimensional energy spectra. A larger peak in the bottleneck region215

is observed in the DNS distributions. This difference could be due to the216

EDQNM modelling as well as to the DNS discretization error due to a lack217

of small scale resolution. The difference between EDQNM and DNS results218

appears to be more marked for the data of Ishihara et al, where a mesh res-219

olution kmaxη ≈ 1 is employed. On the other hand, the data of Lamballais220

et al. are obtained for kmaxη ≈ 7.5, which is much closer to the EDQNM221

resolution (kmaxη > 10). For the forced cases, a satisfactory agreement is222

observed for the energy flux in figure 4(b) for kη ≥ 6× 10−3 and figure 4(d)223

for kη ≥ 10−2. Similarly, the agreement for −S3/(εr) shown in figure A.16(c)224

seems adequate in the intermediate scale range. It is perhaps surprising that225

EDQNM and DNS results show a good match for the quantities determined226

by the non-linear energy transfer T (k, t), which is the only modelled term227

in the EDQNM. Once T is obtained, the calculation of E in the EDQNM228

framework is virtually exact, as the energy spectrum is directly derived from229

the Lin equation. Thus, the differences observed for the three-dimensional230

energy spectrum in Figure 4(a)-(c) are most probably due to the forcing231

11



schemes employed, which are different for DNS and EDQNM. For the forced232

cases, one can also see that the variation of the interscale energy flux Π is233

less abrupt for the multiscale forcing proposed in Equation 10. The large234

scale behaviour in this case is more similar to the DNS data by Ishihara et235

al. [37], which were also obtained using a large-scale forcing.236

A quantitative measure of the discrepancy between a given spectrum E ′237

and the reference spectrum E ′′ with which E ′ is compared is provided by the238

function239

N (E ′, E ′′) =

√√√√∫ +∞
0

(E ′ − E ′′)2dk∫ +∞
0

(E ′′)2dk
(16)

240

For freely decaying HIT, the comparison of the EDQNM spectrum with241

results from Lamballais et al. [38] provides a discrepancy ofN (EEDQNM , EDNS) =242

0.1044 i.e. a global difference of ≈ 10%. The measure of the discrepancy for243

the EDQNM forced cases with the DNS data from Ishihara et al. is glob-244

ally much higher because of the differences observed at the large scales due245

to the different forcing employed as well as for the tails observed in the246

DNS at the small scales. However, if these two regions are excluded, the247

measured discrepancy is N (EEDQNM , EDNS) = 0.116 for Reλ = 1131 and248

N (EEDQNM , EDNS) = 0.1246 for Reλ = 471. The discrepancy is slightly249

higher for the lower Reλ. This result is somehow expected considering that250

the EDQNM hypotheses should be better fulfilled for very high Reλ, when a251

clear scale separation is obtained.252

The EDQNM data are now compared with one-dimensional energy spec-253

tra measured in grid turbulence. The three-dimensional EDQNM spectra are254

manipulated to obtain the 1D spectra via the isotropic relation:255

E11(k1) =

∫ +∞

k1

E(k)

k

(
1− k21

k2

)
dk (17)

The results for freely decaying HIT calculated via the EDQNM model are256

compared with the grid turbulence measurements of Mydlarski & Warhaft257

[39] in figure 5 for Reλ = 448, 199. There is a reasonable agreement be-258

tween the shapes of the spectra. In particular, both the EDQNM and259

experimental compensated spectrum E11(k1)/(ε1
2/3 k

−5/3
1 ) exhibit a maxi-260

mum at about k1η1 ' 0.05. In this case, the measured discrepancy is261

N (EEDQNM
11 , EExp

11 ) = 0.092 for Reλ = 448 and N (EEDQNM
11 , EExp

11 ) = 0.1338262

for Reλ = 199, which is comparable to the discrepancy measured between263

DNS and EDQNM data. An adequate comparison is also obtained with264

the one dimensional energy spectra by Bodenschatz et al. [40] for Reλ =265
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Figure 4: Comparison of EDQNM and DNS data for moderately high Reλ. The com-
pensated (left column) energy spectrum and (right column) energy flux are shown. DNS
data are taken from Ishihara et al. [37] ((a) to (d)) and Lamballais et al. [38] (e).
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Figure 5: Comparison of EDQNM and grid turbulence results for low Reλ. The com-
pensated one-dimensional energy spectrum is shown. Grid turbulence data are taken from
Mydlarski & Warhaft [39]

1370, 1620, as shown in Fig. 6. Here, the magnitude N is larger, namely266

N (EEDQNM
11 , EExp

11 ) = 0.193 for Reλ = 1620 and N (EEDQNM
11 , EExp

11 ) = 0.195267

for Reλ = 1370. However, the value of N for the two experimental spectra is268

N (E
Exp(Reλ=1370)
11 , E

Exp(Reλ=1620)
11 ) = 0.08 while a similar comparison between269

the EDQNM spectra provides a result ofN (E
EDQNM(Reλ=1370)
11 , E

EDQNM(Reλ=1620)
11 ) =270

0.0049, i.e. about 16 times smaller. The relatively high difference observed271

between the experimental spectra, which were obtained in the same wind272

tunnel but at slightly different values of Reλ, suggests that the larger dis-273

crepancy between EDQNM and experiments for this case may be at least274

partially attributed to other reasons. Indeed, it is unrealistic to expect a275

perfect match between numerical and experimental results owing to the in-276

trinsic differences in the way experiments are set up (and the associated277

uncertainties).278

Further, EDQNM results are compared with one-dimensional spectra in279

the research work by Comte-Bellot & Corrsin [41] for Reλ ≈ 65. Results280

are shown in Figure 7 (a). The two spectra extracted from [41] shown in281

the figure were obtained for U0t/M = 42, 171 where U0 is the asymptotic282

velocity, t is the time and M the mesh size (see Ref. [41] for a full de-283

scription of the experimental set-up). These spectra are affected by noise,284

considering they have been calculated using the same acquisition system at285

similar Reλ. The EDQNM data are consistent with the experimental spec-286

tra, in particular for U0t/M = 171. The measure of the discrepancy between287

the three spectra is comparable , i.e. N (EEDQNM
11 , E

Exp(U0t/M=42)
11 ) = 0.349,288

N (EEDQNM
11 , E

Exp(U0t/M=171)
11 ) = 0.231 andN (E

Exp(U0t/M=42)
11 , E

Exp(U0t/M=171)
11 ) =289

0.406. Further, following the work by Cambon et al. [42] we performed a290
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Figure 6: Comparison of EDQNM and grid turbulence results for moderate Reλ. The
compensated one-dimensional energy spectrum is shown. Grid turbulence data are taken
from Bodenschatz et al. [40]

comparison of three-dimensional spectra. Comte-Bellot & Corrsin [41] pro-291

posed an analytic formula for E(k) (which is the inverse of equation 17)292

to provide an estimation of the complete three-dimensional spectrum from293

measurements of E11 in HIT:294

E(k) =
1

2
k3

∂

∂k

(
1

k

∂

∂k
E11

)
(18)

The results reported by Comte-Bellot & Corrsin [41] are compared with295

the three-dimensional EDQNM spectrum in Figure 7 (b). One can see that296

in this case the comparison is not as good as for the one-dimensional spectra297

in Figure 7 (a). For 10−2 ≤ k1η1 ≤ 1, comparisons for compensated E11 and298

E provide similar indications. However, significant differences arise outside299

of this range. Equation 18 provides an over prediction of the density of300

turbulent kinetic energy at the large scales and an under prediction in the301

small scale region, which were not observed for E11. These results are mainly302

due to the approximation in Equation 18.303

The previous comparison at moderate Reynolds numbers highlights the304

capability of the EDQNM model to provide satisfactory predictions for E(k, t)305

and T (k, t), which are the essential elements for the calculation of second306

and third order velocity structure functions. The principal advantage of the307

EDQNM model is that it can be performed at very high Reynolds regimes,308

currently unachievable with either experiments or DNS.309

15



10
-2

10
-1

10
0

10
-2

10
-1

10
0

10
-2

10
-1

10
0

10
-2

10
-1

10
0

(a) (b)

Figure 7: Comparison of EDQNM and grid turbulence results for moderate Reλ. (a)
The compensated one-dimensional energy spectrum and (b) the three-dimensional energy
spectrum obtained via Eq. 18 are shown. Grid turbulence data are taken from Comte-
Bellot & Corrsin [41]

3.2. Second-order structure function S2310

S2 has been extensively studied over the last few decades. The scope of the311

present section is to provide a fairly extensive comparison between the present312

EDQNM results and those reported in the literature up to values of Reλ not313

much larger than 103. The Reynolds range covered by the EDQNM model314

is very large (50 ≤ Reλ ≤ 106). This was possible because of the limited315

computational resources required by the model. Results for decaying and316

forced HIT are shown. For the latter, very minor variations were observed317

in the shapes of S2 and S3 for r ≈ L when using the two proposals for the318

forcing F . For this reason, results are here reported using the distribution of319

F (k) in equation (9) only.320

Results for the normalized distribution S2/(4K/3) versus r/η are shown321

in figures 8(a) and 8(b) for both decaying and forced HITs, respectively.322

In both cases, one can see the emergence of three distinct regions with an323

increasing Reλ; they are, in order of increasing r/η, the dissipative range,324

the scaling range and the large-scale range. The shape and evolution of325

S2/(4K/3) appear identical for both cases. To test if S2 has a scaling range326

i.e. (εr)ζ2 with ζ2 = 2/3 we plot in Figures 8(c) and (d) S2/(εr)
2/3 versus327

r/η using a linear scale for the vertical axis. While both cases exhibit good328

collapse in the dissipative range (r/η < 100), the two cases differ substantially329

in the scaling range. In neither case can we identify a region where S2 ∼330

(εr)2/3, which should have been marked by a plateau. The forced HIT, which331

shows a stronger departure from a plateau than the decaying HIT, exhibits332

a well defined bump in S2/(εr)
2/3 as the large scale region is approached.333
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Interestingly, the magnitude of this bump for the two largest values of Reλ334

is the same, suggesting that it may have become independent of Reλ. In the335

scaling range, the local slope nS2 = d log(S2)/d log(εr) continues to evolve336

with Reλ although the possibility that it may eventually reach a constant for337

larger values of Reλ than considered here cannot be excluded. The magnitude338

of nS2 is shown in Figure 9. If a power law S2 ∼ (εr)nS2 exists, then nS2 should339

be constant. The figure reveals that this is not strictly verified, so that the340

concept of a scaling range is at best only approximate. For Reλ = 106 in341

both cases, nS2 approaches a value of about 0.674 in the scaling range; 1%342

larger than 2/3. This value is very close to that (0.679) obtained by McComb343

et al. [43] in forced HIT but smaller than that (0.72) found by Iyer et al.[44,344

45, 12] also in forced HIT. This discrepancy reflects the different approaches345

employed to estimate the power law exponent. In Iyer et al.[44, 45, 12] nS2 is346

obtained via a global measure over almost two decades for r/L. The present347

values and those of McComb et al. [43] are instead estimated locally.348

One can observe a difference in the way the constancy of nS2 is approached349

for forced HIT (Figure 9 (b)). In decaying HIT, nS2 decreases monotonically350

from 2 to 0 with increasing r. In forced HIT, nS2 first decreases, then, at least351

for Reλ larger than 471, increases slightly before decreasing to zero. This be-352

haviour, at least up to the largest Reynolds numbers investigated, prevents353

nS2 to reach the same values as in decaying HIT in the scaling range. Similar354

observations have been reported by Lohse & Muller-Groeling [46]. Such a355

behaviour of nS2 is associated with modified energy mode interactions which356

are responsible for an independent interscale energy flux from k in the scaling357

range, which leads to a steeper energy spectrum for k > kL, discernible in358

Figure 1 (a) and which results in an energy pile-up. The intensity of this359

energy mode interactions is governed by the energy production mechanisms,360

represented here by F (k). Further, the EDQNM results show that, for very361

large Reynolds number, while the energy pile up is restricted to the borders362

of the scaling range, it spreads over at least one decade in the spectral space.363

This can explain the apparent deviation from the 5/3 law observed at mod-364

erate Reλ. It is worth noting that the distribution of nS2 is the same for both365

decaying and forced HITs in the range 0 ≤ r/η ≤ 10, for all Reλ, reflecting366

the universality of the dissipative range.367

3.3. Third-order structure function S3368

The evolution of S3 with the Reynolds number is reported in figure 10.369

The results are in agreement with previous results reported in the literature.370

In particular, the present results confirm the approach towards an establish-371

ment of the 4/5 law as Reλ continues to increase. Figure 11, which reports372

the variation of C3 = max(−S3/(εr)) with Reλ, confirms the results of Qian373
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Figure 8: Structure function S2. (left column) free HIT decay and (right column) forced
HIT obtained with EDQNM.
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Figure 9: Local value of the slope, nS2
(r) ∼ d log(S2)/d log(εr) for (a) decaying HIT and

(b) forced HIT.
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[8], Antonia & Burattini [9] and Tchoufag et al. [10]. While both cases ex-374

hibit a similar evolution, the value of Reλ at which C3 ≈ 0.8 is first attained375

is, as expected, much lower for forced than for decaying HIT. The present376

results, which have been obtained by a single model run, match almost per-377

fectly the fit proposed by Antonia & Burattini [9]. On the other hand, the378

EDQNM results of Briard et al. (as reported in [23]) indicate higher values379

of C3, in particular for lower Reynolds numbers (Reλ < 102). This difference380

is due to the different strategy used to obtain C3. Briard et al. performed a381

large number of simulations with initial spectra prescribed for several Reλ.382

For each calculation, they sampled C3 after 20 turn-over times, which may383

not be long enough to eliminate any lingering effects associated with the ini-384

tial conditions. This would support the idea that a departure from a pure385

free decay HIT would result in a larger C3 yielding a larger rate at which386

the 4/5 law is reached with increasing Reλ. It is also interesting to observe387

that the data by Briard et al. match pretty well C3 values obtained from the388

reconstructed three-dimensional spectra from Comte-Bellot & Corrsin [41]389

and Cambon et al. [42]. As previously discussed, these spectra are affected390

by a significant noise and may exhibit as well a non-negligible departure391

from a freely decaying dynamic behaviour. Thus, one can expect that most392

flow configurations studied in realistic applications, where production and393

anisotropy effects cannot be completely eliminated, should fall in the area394

between the black line corresponding to the forced HIT prediction and the395

grey line representing the HIT free decay behaviour.396

Finally, the variation of the slope nS3 = d log(S3)/d log(εr), is shown in397

figure 12. For both decaying and forced HIT, a linear dependence of S3 on r398

emerges in the scaling range as Reλ increases. There is a remarkable differ-399

ence between the behaviour of S3 and S2 in the scaling range when forcing400

is applied. Indeed, S2 exhibits a noticeable bump at the upper end of the401

scaling range; such a bump is absent in S3. While this difference has yet402

to be explained, one can speculate that the bump observed in S2 is linked403

to the energy spectrum which also exhibits a peak at the lower wavenum-404

bers. The product between the geometric function and E in the integrand405

of Eq. (13) exhibits very high values when r/η is in the wavenumber range406

corresponding to the forcing. This is consistent with the analysis by Lohse407

& Muller-Groeling [46]. On the other hand, the product between the geo-408

metric function and T in the integrand of Eq. (14) shows an oscillatory tail409

behaviour at larger values (almost by a factor of 3) of r/η, which are repre-410

sented in Figure 3(b). This can explain the difference in the scaling range411

behaviour between S2 and S3.412

19



10
0

10
2

10
4

10
6

10
8

0.2

0.4

0.6

0.8

10
0

10
2

10
4

10
6

10
8

0.2

0.4

0.6

0.8

(a) (b)

Figure 10: Structure function S3 for (a) decaying and (b) forced HIT obtained with
EDQNM.
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Figure 11: Maximum value C3 for the normalized longitudinal structure function S3.
Lines: present EDQNM; white symbols: reference data for HIT free decay; black symbols:
reference data for forced HIT.
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Figure 12: Local value of the slope, nS3(r) ∼ d log(S3)/d log(εr). (a): decaying HIT ;(b)
forced HIT.

3.4. Skewness factor of the velocity increment, S(r)413

We conclude this EDQNM analysis of S2 and S3 by presenting (Figure414

13) the distributions of S(r) = S3/S
3/2
2 , the skewness factor of the velocity415

increment δu for different Reλ. Two interesting observations can be made.416

Firstly, when r → 0, S(r) approaches a plateau with the same value in both417

decaying HIT and forced HIT as Reλ increases. As expected, the value of418

S(r → 0) is practically identical to the velocity derivative skewness shown in419

Figure A.14 in the appendix. Also both exhibit the same sensitivity to Reλ.420

Secondly, S(r) shows a tendency to form a plateau in the scaling range when421

Reλ increases. One can expect that S(r) may become constant in the scaling422

range as Reλ increases to infinitely large values. This behaviour seems to423

conform with K41.424

4. Conclusions425

Numerical calculations, based on a EDQNM model, for both decaying426

and forced HIT have been carried out with the aim of comparing the depen-427

dence on the Reynolds number of second and third-order statistical moments428

between the two cases. A recent EDQNM model [13] has been used, which429

has yielded adequate matching with experimental and DNS data at low to430

moderate Reλ. The extensive validation of this matching suggests that the431

extrapolation towards high Reynolds numbers should be reliable or that at432

least FRN effects identified via EDQNM should be comparable to those de-433

scribed by the Navier-Stokes equations. In fact, the 4/5 law remains a sine434

qua non benchmark which can only be rigorously satisfied when Reλ is very435
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Figure 13: Skewness factor S(r) of δu. EDQNM results for (left column) decaying HIT
and (right column) forced HIT.

large. Since EDQNM captures the asymptotic 4/5 behavior as the Reynolds436

number increases (i.e. the second term, the third term and the fourth term437

of the right-hand side of equation 7 become negligible in the scaling range),438

its predictive capability at very large Reλ should not be mistrusted. Also,439

the comparison between freely decaying and forced turbulence is performed440

using the same EDQNM model and, given that this model captures the dif-441

ference between these two types of turbulence at the maximum values of Reλ442

currently possible in experimental or DNS data, there is no valid reason why443

the results from the model should not be meaningful at very high Reynolds444

numbers. The present EDQNM results are also in reasonable agreement with445

a recent extrapolation [11] based on an empirical model for S2. Particular446

attention has been given to the way S2 and S3 vary in freely decaying and447

forced HIT when the Reynolds numberReλ increases to very large values, well448

beyond the reach of experiments and direct numerical simulations (DNSs).449

The results show that450

1. reasonable agreement between EDQNM data and DNS / experimental451

results is observed, in the context of E and T , for moderate Reλ. In452

particular, the compensated one-dimensional spectra E11 obtained from453

the EDQNM three-dimensional spectrum E is in reasonable agreement454

with grid turbulence results obtained by different authors.455

2. the Kolmogorov normalized distributions of S2 and S3 in decaying and456

forced HIT collapse very well onto a single distribution in the dissipative457

range. This reinforces the analysis of Antonia et al. [47] and supports458

the argument that the dissipative range is likely to be unaffected by459

the large scales. The Kolmogorov-based similarity between decaying460
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and forced HIT distributions extends towards the scaling range as Reλ461

increases (see figure 1(e)-(f)). One expects that, with increasing Reλ,462

the EDQNM distributions of S2 and S3 will asymptotically approach a463

state which is consistent with the first similarity hypothesis of K41.464

3. as Reλ increases, S3 reaches a reasonably convincing power-law be-465

haviour over the scaling range, especially when forcing is applied. This466

behaviour is fully consistent with the 4/5 law, Eq. 6, but it should467

be emphasized that, with forcing, this behaviour extends to values of468

r/L (see Figure A.15(b)) which approach 1 and is therefore difficult to469

reconcile with the classical concept of an inertial range. Over the same470

range, S2 continues to evolve with Reλ. For forced HIT, S2 exhibits471

a bump at the upper end of the scaling range where the forcing is in-472

troduced. As Reλ increases, and whilst the scaling range extends to473

larger separations, the bump does not vanish, but its impact on smaller474

separations decreases, paving the way towards a power-law behaviour.475

The overriding conclusion that emerges from the present EDQNM results476

is that, although S3 exhibits a behaviour consistent with Eq. 6 when Reλ477

is sufficiently large, S2 continues to evolve with Reλ over the same range of478

scales. While the EDQNM is not able to capture intermittency, the present479

results suggest that observations of anomalous behaviors for nS2 may not480

only be due to intermittency effects, but to the interactions (possibly non-481

linear) between several different aspects which include intermittency and482

finite Reynolds number effects. If these observations are, in the future, con-483

firmed by DNS for progressively higher Reλ, this would raise some doubt484

as to whether S2 exhibits an anomalous scaling behaviour, as is usually re-485

ported in the literature. This topic has also been recently discussed under the486

perspective of Holder/Cauchy-Schwarz mathematical constraints [48]. The487

present Reλ trend in the scaling range does not exclude the possibility that,488

irrespectively of whether the turbulence is decaying or forced, S2 → (εr)2/3489

at even larger Reynolds numbers than considered here.490

Also, it is difficult to discount the difference in the relative behavior of491

S2 and S3 between decaying and forced HIT. This difference is evident in492

experimental and DNS data and it is captured by the present EDQNM model.493

The model shows that it persists when Reλ is several orders of magnitude494

larger than are currently achievable via experiment or DNS. An obvious495

inference is that conclusions, e.g. with regard to the magnitudes of nS2496

and nS3 , drawn from forced turbulence studies do not necessarily apply to497

decaying turbulence and vice versa.498
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[51] J.-C. André and M. Lesieur. Influence of helicity on the evolution of632

isotropic turbulence at high reynolds number. J. Fluid Mech., 81:187–633

207, 1977.634

[52] M. Meldi and P. Sagaut. Further insights into self-similarity and self-635

preservation in freely decaying isotropic turbulence. Journal of Turbu-636

lence, 14:24–53, 2013.637

[53] Y. Gagne, B. Castaing, C. Baudet, and Y. Malecot. Reynolds de-638

pendence of third-order velocity structure functions. Phys. Fluids,639

16(2):482–485, 2004.640

Appendix A. Numerical details about the EDQNM model641

The EDQNM model [21, 22, 23] is a turbulence closure in spectral space.642

The non-linear energy transfer T in equation 8 is obtained via two important643

approximations:644

• The fourth order cumulants, which represent the deviation of the ve-645

locity derivative pdf from a Gaussian distribution, are approximated646

using an eddy-damping term (eddy damping hypothesis)647

• Time integration is simplified via a Markovianization procedure. Marko-648

vian processes have been extensively used for the analysis of a large649

number of applications for turbulent flows (see the review article by650

Meyer and Saggini [49] and references therein). Its application within651

the EDQNM formalism implies that local non-linear times are much652

shorter than the large-eddy turnover time, which is strictly tied with653

scale separation observed for very high Reynolds numbers654

A closed expression for the non-linear energy transfer T (k, t) is obtained via
shell integration of radius k:

TEDQNM =

∫
p+q=k

ΘkpqgE(q, t)
[
E(p, t)pk2 − E(k, t)p3

] dpdq
pq

(A.1)

where Θkpq is a characteristic time resulting from the Markovian approxima-
tion and g is a geometric function. In the present article, a recent proposal
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by Bos & Bertoglio [13] is used to calculate the term Θkpq in equation A.1.
In the classical EDQNM formulation [21, 22] the term is calculated as:

Θ−1kpq = ηE(k, t) + ηE(p, t) + ηE(q, t), (A.2)

where ηE is the EDQNM damping factor. This last term is usually calculated
following the proposal by Pouquet et al. [50]:

ηE(k, t) = A

√∫ k

0

p2E(p, t) dp+ νk2. (A.3)

The free coefficient A ∈ [0.3, 0.5] is chosen to optimize the value for655

the constant CK in the relation E(k, t) = CKε2/3k
−5/3 [51]. One of the656

major drawbacks of such a procedure is that it is not possible to derive an657

optimal value for which every HIT statistical quantity exhibits a behaviour658

in agreement with experiments and DNS in the literature. For this reason,659

the damping factor ηE is here calculated resolving an evolution equation for660

the velocity-displacement cross-correlation spectrum FCC [24]:661 (
∂

∂t
+ νk2

)
FCC(k, t) =

8∑
i=1

T Fi (k, t) + E(k, t) (A.4)

The terms T Fi are calculated via integration in the spectral space, similarly662

to TEDQNM in equation A.1:663

T F1 (k, t) = −1

8

∫
p+q=k

ΘF
kpqf1(k, p, q)p

3E(q, t)F (k, t)
dpdq

pq
(A.5)

T F2 (k, t) = −1

8

∫
p+q=k

ΘF
kpqf2(k, p, q)q

3E(p, t)F (k, t)
dpdq

pq
(A.6)

T F3 (k, t) = +
1

8

∫
p+q=k

ΘF
kpqf3(k, p, q)k

3E(p, t)F (q, t)
dpdq

pq
(A.7)

T F4 (k, t) = +
1

8

∫
p+q=k

ΘF
kpqf4(k, p, q)k

3E(q, t)F (p, t)
dpdq

pq
(A.8)

T F5 (k, t) = −1

4

∫
p+q=k

ΘF
qpkf5(k, p, q)p

3E(k, t)F (q, t)
dpdq

pq
(A.9)

T F6 (k, t) = +
1

4

∫
p+q=k

ΘF
qpkf6(k, p, q)k

3E(p, t)F (q, t)
dpdq

pq
(A.10)

T F7 (k, t) = −1

4

∫
p+q=k

ΘF
qpkf7(k, p, q)q

3E(k, t)F (p, t)
dpdq

pq
(A.11)

T F8 (k, t) = −1

4

∫
p+q=k

ΘF
qpkf8(k, p, q)q

3E(p, t)F (k, t)
dpdq

pq
(A.12)
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664

where the terms fi are geometrical functions and the spectral time scale665

ΘF
kpq is defined as:666

(ΘF
kpq)

−1 = ηXE (k, t) + ηE(p, t) + ηE(q, t), (A.13)

667

The algebraic relation between ηE and FCC is:

ηE(k, t) = E(k, t)/FCC(k, t) + νk2. (A.14)

The term νk2 in (A.14) was included in the earlier work by Bos &668

Bertoglio [24] but was then excluded in their most recent formulation [13].669

In the present work, it is employed after initial tests provided a more accu-670

rate prediction of numerous physical quantities. The term ηXE in equation671

A.13 is instead set to zero. Comparison between the classical EDQNM and672

the present proposal (EDQNM-LMFA) [13] show that results for free decay673

regimes are in qualitative agreement, as shown in figure A.14 (a) for the674

velocity skewness S. The high-Reynolds number asymptotic limit for the675

velocity derivative skewness S is in the second case S ≈ −0.57, which is676

approximately 7% smaller than the result (S ≈ −0.53) obtained with the677

classical EDQNM version [52] or with that observed in the majority of ex-678

perimental data [6]. The results obtained with the EDQNM-LMFA model679

appear to be slightly more sensitive to FRN effects. This larger sensitiv-680

ity is associated with a slow convergence towards the expected behaviour681

FCC(k, t) ∝ k−7/3 in the inertial range, which is clearly observed only for682

Reλ > 107 [15]. In addition, the EDQNM-LMFA model provides predictions683

for the structure functions S2 and S3 which are closer to experimental and684

DNS data for moderate Reλ, as will be shown next. In figure A.14 (b) a685

comparison of the compensated structure function S2/(ε r)
2/3 is shown at686

Reλ = 105. One can see that the classical EDQNM prediction is not close to687

the expected maximum value max(S2/(ε r)
2/3) ≥ 2 which is usually observed688

using high precision tools such as DNS.689

A comprehensive preliminary analysis of second and third-order structure690

functions has been performed. First, EDQNM results for freely decaying691

and forced HIT are presented in Figure A.15. The terms − 3
r4

∫ r
0
s4 ∂S2

∂t
ds692

(freely decaying HIT) and Z (forced HIT) of Equation 7 provide very different693

contributions in the large scale region for r/L ≈ 1 for S3 in Figure A.15694

(b). In particular, −S3/(εr) is approximately equal to 0.8 for values of r/L695

extending well beyond 0.1 for forced HIT. Also, −S3/(εr) changes sign for696

r/L ≈ 3, which is not far from the wavelength at which forcing is applied697

(kL = 1). Results for S2 and S3 using the EDQNM-LMFA method are698
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Figure A.14: Comparison of results obtained using the classical version of the EDQNM
and the recent EDQNM-LMFA proposal for freely decaying HIT. (a) Velocity derivative
flatness S behaviour in the range Reλ ∈ [200, 5×105]. (b) Compensated structure function
S2/(ε r)

2/3 for Reλ = 105.
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Figure A.15: Comparison between results for decaying and forced HIT of (a) the second-
order structure function S2 and (b) the third-order structure function S3 at Reλ = 105.
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Figure A.16: EDQNM prediction for S2 and S3. Comparisons are shown for: (a) S2 with
DNS data of forced HIT (McComb et al. [43]) and decaying HIT (Lamballais et al. [38])
for Reλ ≈ 204, (b) S2 with experimental data for a plane jet for Reλ = 550, (c) for S3

with DNS data of forced HIT for Reλ = 1131 and (d) for S3 with experimental plane jet
data [53] for Reλ = 550.
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compared in Figure A.16 with DNS / experimental results in the literature699

[53, 37, 43, 38]. The agreement is generally adequate.700
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