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A New Frequency Estimation Method for Equally
and Unequally Spaced Data

Fredrik Andersson, Marcus Carlsson, Jean-Yves Tourneret, and Herwig Wendt,

Abstract—Spectral estimation is an important classical problem
that has received considerable attention in the signal processing
literature. In this contribution, we propose a novel method for esti-
mating the parameters of sums of complex exponentials embedded
in additive noise from regularly or irregularly spaced samples.
The method relies on Kronecker’s theorem for Hankel operators,
which enables us to formulate the nonlinear least squares problem
associated with the spectral estimation problem in terms of a
rank constraint on an appropriate Hankel matrix. This matrix
is generated by sequences approximating the underlying sum of
complex exponentials. Unequally spaced sampling is accounted for
through a proper choice of interpolation matrices. The resulting
optimization problem is then cast in a form that is suitable for
using the alternating direction method of multipliers (ADMM).
The method can easily include either a nuclear norm or a finite
rank constraint for limiting the number of complex exponentials.
The usage of a finite rank constraint makes, in contrast to the
nuclear norm constraint, the method heuristic in the sense that the
problem is non-convex and convergence to a global minimum can
not be guaranteed. However, we provide a large set of numerical
experiments that indicate that usage of the finite rank constraint
nevertheless makes the method converge to minima close to the
global minimum for reasonably high signal to noise ratios, hence
essentially yielding maximum-likelihood parameter estimates.
Moreover, the method does not seem to be particularly sensitive
to initialization and performs substantially better than standard
subspace-based methods.

Index Terms—Alternating direction method of multipliers,
frequency estimation, Hankel matrix, irregular sampling, Kro-
necker’s theorem, missing data, spectral estimation.

I. INTRODUCTION

S PECTRAL estimation is a classical problem that appears in
an immense variety of problems encountered in signal and

image processing applications. These applications include as-
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tronomy, radar, communications, economics, medical imaging,
spectroscopy, to name but a few, (e.g., see [1] and the references
therein). One important class of spectral estimation problems
arises for signals that can be modeled as sums of complex ex-
ponentials (or sinusoids) in noise, i.e., for signals that admit the
parametric model

(1)

where is a complex frequency mode with fre-
quency parameter and damping parameter , is a com-
plex amplitude and is an additive noise term. Note that
the model (1) includes the case of exponentially damped sig-
nals defined by , with important applications notably in
spectroscopy (see for instance [2], [3] and references therein).
The main goal of frequency estimation is to estimate the
values of the parameter vector from a vector
of values defined by (1) sampled at positions ,
where is the number of samples. In the present contribu-
tion, the approach to this problem in addition has the capacity
to treat the case when is sampled at unequally spaced posi-
tions , a frequently appearing situation in many areas,
for instance in spectroscopic data analysis [2], [3] and synthetic
aperture radar [4], [5]. See also [6] for more examples. Note that
once estimates of have been obtained, the vector of complex
amplitudes can be determined by simple
linear regression, hence the focus lies on the estimation of the
modes .
The estimation problem associated with (1) has been studied

extensively for the case of regular sampling. Many estimation
methods exist, e.g., see [7]–[12] and [1] for an overview. Some
of these methods can be adapted to the unequally spaced sam-
ples, cf., [13] for a review. One prominent class of estimation
techniques for the model (1) is given by subspace methods, in-
cluding the popular MUSIC [14], ESPRIT [15] and min-norm
[16] methods. These methods are constructed on the basis of
the sample covariance of and rely on the assumption that the
noise is white. Subspace methods can provide high-resolution
estimates (i.e., below Nyquist sampling frequency resolution
and equal to numerical precision in the noise free case). How-
ever, they are known to be statistically suboptimal [17]–[20] and
cannot be applied to unequally spaced data samples.
As a second important class, maximum likelihood (ML) es-

timation has received considerable attention, cf., e.g., [1],[19],
[20], for an overview, [21], [22] for asymptotic properties,
[23] for an example of ML estimation for non Gaussian noise



and [24] for ML estimation for 2D data. For Gaussian noise,
ML spectral estimation consists of solving the nonlinear least
squares (NLS) problem [25] associated with (1), i.e., of mini-
mizing the cost function

(2)

with respect to the parameter vectors and . ML estimation
has been shown to be statistically optimal asymptotically and
can be used for unequally spaced data. A major practical short-
coming arises, however, from the fact that it is extremely dif-
ficult to find the global minimizer of (2) because the function

is strongly multimodal, with many local minima and a
very narrow valley at the global minimum (cf., e.g., [1] and ref-
erences therein). As a result, performance strongly depends on
the choice of initial values for the minimization procedure, lim-
iting the practical usefulness of the NLS formulation.
As an alternative, iterative (“greedy” type) strategies [2],

[26], [27] as well as the use of norm penalty [28]–[30] have
been proposed. Most of these methods can be adopted for the
unequally spaced data case. However, they do require the use
of a discrete (finite resolution) parameter grid and are hence
suboptimal, see [31].
A related problem concerns the estimation of the complex

frequencies for irregularly sampled data without making use
of the model (1). The Lomb-Scargle method [32]–[35] is for
instance targeted towards this problem and enables the peri-
odogram for unequally spaced data to be computed. Its fre-
quency resolution is by nature constrained to the Nyquist limit.
In this work, we develop a novel high-resolution method for

the estimation of in (1) which seeks to minimize the ML-cost
function (2) for a fixed choice of . The proposed method re-
lies on Kronecker’s theorem for Hankel matrices and the alter-
nating direction method of multipliers (ADMM). Kronecker’s
theorem [36]–[38] essentially states that if a function is uni-
formly sampled, then the Hankel matrix that is generated by
has rank if and only if coincides at the sample points with
a function that is a linear combination of exponential func-
tions. This theorem has been used for approximating functions
by sums of exponentials in the alternating projections method
[39] and the con-eigenvalue approach [40]. A main contribution
of this paper is to show that the Kronecker theorem can be com-
bined with the ADMM to solve the spectral estimation problem.
This work is a generalization of the one presented in [41] which
dealt with the particular case of regularly sampled data. A key
step is that the model (1) is imposed implicitly by constraining
the rank of the Hankel matrix generated by an approximation
(denoted by ) to equal . Moreover, we accommodate for the
unequally spaced sampling through the use of appropriate inter-
polation matrices. As a consequence, unlike the classical NLS
formulation, the minimum of (2) is not resolved directly in the
parameter space , but in the space of vectors which gen-
erate Hankel matrices of rank . The frequency modes are en-
coded in the Hankel matrix and can be extracted by considering
its con-eigenvectors. We note that this formulation is related to
structured sparse matrix estimation [42]–[45] and superresolu-
tion problems [46], [47]. The optimization problem yielding the

solution Hankel matrix is cast in a form that can be effectively
solved by the ADMM, see [48] and references therein. This iter-
ative technique has recently received considerable attention due
to its robustness, scalability and versatility with performance
comparable to dedicated problem-specific solvers.
In addition to the already mentioned areas of application,

the proposed Hankel ADMM frequency estimation method can
be used in the multi-dimensional case (for images notably).
Furthermore, if available, prior information on the reliability
(e.g., the noise variance) of data samples can be incorporated
using appropriate weighting. We will first derive the general
one dimensional algorithm for unequally spaced samples, then
consider regular sampling and missing data as special cases that
yield simpler algorithms. Finally the case of multi-dimensional
data will be addressed. The procedure yields a remarkably
simple and easy to implement algorithm that can be summa-
rized in only a few lines of code.
Due to the rank constraint on the Hankel matrices, the

problem considered here is nonconvex and thus there is no con-
vergence guarantee. However, numerical experiments indicate
that our Hankel ADMM formulation yields excellent parameter
estimates for the model (1) without requiring specific initial-
ization. At reasonably high signal to noise ratio (SNR), the
method finds the global minimum and hence the ML solution to
the problem. At low SNR values, it converges to a non-optimal
solution. Our numerical experiments indicate that even in the
latter case, approximations of the function are remarkably
precise. It is interesting to note that a similar algorithm could
be obtained for the convex problem obtained by replacing the
rank constraint by the nuclear norm, as proposed, e.g., in [49]
for system identification. Proximity problems with either rank
or nuclear norm constraints have been vastly studied during
the recent years, see, e.g., [50]. Advantages and disadvantages
of using either of these two approaches will be inherited in
the problem considered here. For this reason, we do not aim
at an exhaustive study of the advantages/disadvantages of the
two penalty approaches. Our numerical simulations, however,
indicate that the use of the finite rank constraint yields better
estimates than the use of the nuclear norm, and we will there-
fore focus mainly on this approach.
The remainder of this work is organized as follows. In

Section II, we recall Kronecker’s theorem and its consequences
for the estimation problem considered here. In Section III,
we derive the optimization problem associated with the ap-
proximation of functions by sums of complex exponentials
using Kronecker’s theorem for unequally spaced data. We
then formulate the ADMM based procedure for obtaining the
Hankel matrix solution of this problem. The strategy for ex-
tracting the frequency modes from the solution Hankel matrix
is summarized in Section III-C. In Section IV, we develop
modified versions of our algorithm for the practically important
special cases of real-valued data and equally spaced data with
missing samples. Concerning the real valued case, the primary
reason for the alternative formulation is that the model order
is reduced by one half as compared to the version for complex
data. In Section V, we evaluate the performance of the proposed
method by means of numerical simulations. Comparisons to
standard approaches such as ESPRIT and the Lomb-Scargle



method as well as to the iterative method in [2] are used for
illustrating the performance of the method. Systematic compar-
isons with the theoretical Cramér-Rao bounds are also provided
for quantifying optimal estimation performance (in terms of
estimation variance). Section VI develops and illustrates the 2D
case. Conclusions and future work are reported in Section VII.

II. HANKEL MATRICES AND COMPLEX EXPONENTIALS

A. Kronecker’s Theorem for Complex Exponentials

In the remainder of the paper, we assume the problem to be
normalized so that in (1) is a function defined on the interval

Suppose for the moment that we are given sampled
values of at the equally spaced nodes on the interval
defined by

(3)

We denote by the vector whose elements
are the sampled values , i.e.,

(4)

For completeness, we recall that a Hankel matrix has con-
stant anti-diagonals terms, i.e., if

. It can thus be generated elementwise from a vector
, such that ,

. The Hankel matrix generated by the vector will be de-
noted by , and we denote the set of Hankel matrices by .
Kronecker’s theorem [36]–[38] states that if the Hankel ma-

trix is of rank , with the exception of degenerate
cases, there exists and in such that is ob-
tained by sampling at the equally spaced nodes the function

(5)

The converse holds as well.
It follows that the best approximation (in the sense) of by

a linear combination of complex exponentials is given by the
vector which satisfies and minimizes the
norm of the difference . In other words, can be obtained
as the solution of the optimization problem

(6)

III. APPROXIMATION AND FREQUENCY ESTIMATION FOR
UNEQUALLY SPACED DATA

The problem considered here is to reconstruct the function
of the form (5) from knowledge of as in (1) at the unequally
spaced sample nodes for . The optimiza-
tion problem (6) does not apply directly to this situation be-
cause Kronecker’s theorem requires the function to be uni-
formly sampled. For this reason, we will work simultaneously
with the two sets of nodes; and the equally spaced

nodes defined in (3). Given a function or , rep-
resented by its sample points or via (4), we will use inter-
polation to evaluate the function at .
We assume that the sampling at the equally spaced grid is

sufficiently dense so that we can approximately recover the ex-
ponentials we are interested in by interpolation (essentially the
Nyquist sampling rate, but with proper adjustments for it being
on a finite interval [51]). We propose to recover the function
at the points by discrete convolution with a suitably
chosen function . The corresponding interpolation matrix
that maps samples from the equally spaced grid to
samples from the unequally spaced grid is then given
by

(7)

and , where is the interpolated value
of at . Note that an exact reproduction of all functions of
the form (5) is impossible, even with bounds on the values of
. The function is preferably a compactly supported func-

tion that is reminiscent of the sinc-function used in the Whit-
taker-Shannon interpolation formula. One can choose to sat-
isfy the Strang-Fix conditions whereby becomes capable of
reproducing polynomials of orders [52]. Another possi-
bility is Key’s interpolating function [53], [54]. A third alterna-
tive is to use the Lanczos function

if
if

where the number of lobes is controlled by the integer parameter
. However, in this case does not interpolate constant

functions correctly. A simple (but not optimal) remedy that is
commonly used to account for this deficiency is to normalize
the matrix by the sums of its rows. This trick also accounts
for boundary problemswhere the finite support of falls outside
the equally spaced nodes . The Lanczos function is very pop-
ular due to its flexibility in controlling the number of lobes and
its simplicity, whereas functions satisfying, e.g., the Strang-Fix
conditions quickly become complicated as increases. In our
simulations, we have used with and normalized
.

A. Problem Formulation for Unequally Spaced Data

With these definitions, the function that defines the best ap-
proximation of by a linear combination of complex expo-
nentials from the sampled values can be obtained as the
solution of the optimization problem

(8)

where are weights that can be chosen depending on the
specific application. We will usually work with the uniform case

, but there can be various reasons for choosing other
weights. For example, if we want the -norm in (8) to be as
close as possible to the -norm of the corresponding function

, i.e., , then one should let



be inversely proportional to the local density of samples near
. Another situation could be if data is more reliable in certain

regions or sample points. In this case, one is clearly interested
in giving higher weights to these measurements. Lastly, these
weights are suitable for dealing with the case of missing data on
a regular grid, as explained in detail in Section IV-B.
B. ADMM Based Approximate Solution

Let be an indicator function for
matrices defined by

if rank
otherwise.

The approximation/reconstruction problem (8) can now be for-
mulated as the following optimization problem

(9)

The optimization problem (9) has a cost function that consists of
two terms, each depending only on one of the variables and ,
along with a linear constraint. The problem formulation is there-
fore well suited to be solved using ADMM. ADMM is an iter-
ative technique in which a solution to a large global problem is
found by coordinating solutions to smaller subproblems. It can
be seen as an attempt to merge the benefits of dual decompo-
sition and augmented Lagrangian methods for constrained op-
timization. For an overview of the ADMM method see [48].
For a convex cost function, the ADMM is guaranteed to con-
verge to the unique solution (if the parameter of the aug-
mented Lagrangian (10) below tends to infinity during the iter-
ations). For non-convex problems, the algorithm can get stuck
at local minima, although it can work quite well in practice also
in these situations, cf. [48, Chapter 9], see also, e.g., [55]. Since
the rank constraint is nonconvex, the convergence of the
ADMM scheme associated with (9) is not guaranteed. However,
our numerical simulations indicate that the method works sub-
stantially better than established high resolution techniques like
ESPRIT. Moreover, it can be applied to cases where high reso-
lution methods such as MUSIC or ESPRIT are non-applicable,
e.g., to unequally spaced or missing data.
Note that a convex problem could be obtained by replacing

the term by the nuclear norm (as in [49], at the cost of biased
solutions. The numerical experiments reported in Section V-F
indicate that the solutions obtained when using are system-
atically better than those obtained using the nuclear norm.
Given matrices and , we write

for the scalar product, and we

use for the Frobenius norm . Note that the
linear constraint in (9) can be written as . Conse-
quently, the Lagrange multiplier is naturally represented as a

-matrix . The augmented Lagrangian
associated with (9) then takes the form

(10)

The factor in (9) has the effect that the ratio of the two norms
becomes independent of the sampling sizes and . Hence,
the size of (which needs to be chosen in the algorithm) does
not become affected by the sample densities. The corresponding
ADMM iterative steps are

(11)

(12)

(13)

1) Minimization With Respect to (w.r.t.) the Objective Vari-
ables : To compute the solution of the minimization (11), we
drop terms of the augmented Lagrangian defined in
(10) that are independent of and obtain

where is the following matrix

It follows that is equal to the best rank approximation
of the matrix . Let be the singular value
decomposition of . It then follows by the Eckart-Young the-
orem that

(14)

where is the diagonal matrix satisfying

if
otherwise.

2) Minimization w.r.t. the Objective Variables : The second
step (12) in the ADMM iteration is solved by the least squares
(LS) method. More precisely, after removing terms (10) that do
not depend on , incorporating the term as in the
previous section and finally multiplying everything by 2, we see
that is given by the minimum of

To simplify this expression, we introduce the weights

if
otherwise

where it is understood that the summation takes place for
. Note that is the number of times that

appears in the matrix . We also introduce the vector

(15)



which is obtained by summing the terms of
anti-diagonally. It is easy to check that the term

differs only by a constant from

Summing up we have that

(16)

with . The standard LS es-
timation theory leads to

(17)

where . This completes the derivation of the
ADMM algorithm for solving (9). The most time consuming
operation in each iteration step is SVD computation of . The
time complexity of the SVD operation is and hence the
time complexity of the total algorithm is , where is
the amount of iterations. For comparison, the ESPRIT method
requires the computation of one single SVD.
3) Stopping Criterion: Classical stopping criteria are based

on the primal and dual residuals, which are given by

The ADMM iterations terminate when the stopping criteria

are satisfied, where and can be chosen
using absolute and relative tolerances and
[48], i.e.,

We denote by and the values obtained at convergence. Due
to the term in (10), one usually does not have

. In other words, neither nor the vector obtained by
averaging the anti-diagonals terms of , i.e.,

will be equal to a sum of exponential functions. One way to
overcome this problem is to let the values of gradually increase
to as the algorithm gets closer to convergence. We will not

pursue this further here, thus keeping fixed. In this case, we
have observed that is a more suitable choice than . This
is to be expected since (16) forces the iterates of to be closer
to the usually noisy signal .

C. Frequency and Amplitude Estimation

Once the solution has been found, the parameter
vector can be obtained from the singular value decomposition
of . We outline a method for this below; assuming
for simplicity that exactly equals a sum of exponen-
tial functions. Since the rank of then equals , its
singular value decomposition can be written

(18)

where are the singular (column)-vectors corresponding to the
non-zero singular values . Since is (a sampled
version of) a sum of exponentials, each will also be a sum
of the same exponentials. Let

(19)

By (5), it is possible to write , where is the
Vandermonde matrix generated by sampling the func-

tions , i.e.,

and is some (invertible) matrix. Denote by
(resp. ) the matrix whose first row (resp. last

row) has been dropped. Clearly, we have ,
and the Vandermonde structure of leads to

It follows that

where denotes the pseudo inverse. Therefore, we can compute
the modes by computing the eigenvalues of , i.e., as

. This method can be computed in

time. Note that in the case of regular sampling,
the direct application of the above scheme to the samples
instead of yields the ESPRITmethod as described in [1].
Once the frequency modes have been computed, the ampli-

tudes are obtained by solving the linear LS problem

...
...

The complete algorithm in the case of unequally spaced data
with uniform weights , is summarized in the MATLAB
function described in Table I.

D. Model Order Estimation

As for the ESPRIT method, the number of modes, or the
model order, to be estimated is an input parameter to the re-
spective algorithms. We briefly discuss how to adapt one pop-



TABLE I
MAIN FUNCTION (IN MATLAB SYNTAX) FOR THE FREQUENCY ESTIMATION
PROBLEM (1) (IN THE CASE WITH UNIFORM WEIGHTS ) FOR DATA
SAMPLES ACQUIRED AT UNEQUALLY SPACED NODES (TOP), AND
AUXILIARY FUNCTIONS , AND USED FOR
HANKEL MATRIX MANIPULATION AND PARAMETER ESTIMATION (BOTTOM).
THE MATRIX IS COMPUTED FROM (7) WITH A SUITABLE CHOICE OF

ular method, namely the ESTER method introduced in [56], for
unequally spaced data. For any , let

(20)

using the notation of Section III-C for and , respectively.
In the absence of noise, the ESTERmethod relies on the fact that
if the function that is generating the Hankel matrix in (18) is a
linear combination of exponential functions, then the matrix

will vanish for , but not for other values. For this
reason, the ESTER method uses the quantity
as a measure of the model order.
Since the ESPRITmethod will not work for unequally spaced

data or missing data, the original ESTER approach can not be
applied to these cases. However, we propose a modification of
the ESTER method to adapt to the methods described in this
paper. For each , we denote by the computed approximate
solution to (8). We now define where
are the (left) singular vectors of . To replace (20), one can
verify that in the same spirit as done for the original ESTER, the
matrix

(21)

equals zero (in the absence of noise and approximation errors)
when if the original data was a sum of exponential
functions, but not for other values of . As a motivation to the
form (21), consider the case with no noise present and where
the data sampling is sufficient to correctly recover the expo-
nential functions when . The -th singular value
of the Hankel matrix generated by is zero, and thus the

and are generated by the same exponential func-
tions, implying that . Consequently, we propose
to estimate the model order P by looking for the maximum value
of .

E. Structure of the Iterates

Hankel matrices belong to the class of complex symmetric
matrices satisfying . For these matrices, one can choose
the matrices and appearing in the singular value decompo-
sition of such that (where the bar denotes
complex conjugation). This gives rise to the so called Takagi
factorization of ,

cf., [57]. This property can be used to simplify the expressions
(14) and (18). Moreover, it can also be used to show that the
iterates , and are complex symmetric matrices.

IV. REAL-VALUED AND EQUALLY SPACED DATA

In this section, we derive algorithms for the practically impor-
tant special cases of real data, and of uniformly sampled data,
including situations where samples are missing.

A. Real-Valued Data

In the case of real valued data, the frequency modes appear
in conjugate pairs , which leads to the representation

(22)

where and are vectors containing real ampli-
tudes and phase shifts. The application of the algorithm derived
in the previous section would thus require the estimation of
complex exponentials with frequency modes and in (22).
However, we can modify the problem formulation such that the
approximation is obtained as the real part of the linear combi-
nation of complex exponentials

(23)

This formulation is interesting since it allows fewer parameters
(half as many as in the complex case) to be estimated. The cor-
responding optimization problem reads (cf. equation (9))

(24)

We solve the above problem as in Section III, but updating
the real vector instead of . Clearly, the
first minimization step yielding remains unaltered and is
given by (14). Likewise, the update of given by (13) is
unchanged. However, the projection algorithm corresponding
to (17) needs to be modified. Since is real valued we have

, where denotes the zero matrix and



TABLE II
FUNCTION (IN MATLAB SYNTAX) FOR THE APPROXIMATION WITH WEIGHTS

AND FREQUENCY ESTIMATION USING COMPLEX EXPONENTIALS FOR
EQUALLY SPACED DATA

the concatenation of and . Following the calcula-
tions yielding (16), we obtain

where is unchanged and has been defined in (15). The step
corresponding to (17) then has to be modified as follows

(25)

The ADMM algorithm for solving (24) consists of iterating the
steps (13), (14) and (25) until the stopping criteria are satisfied.

B. Equally Spaced Data With Missing Points

We now consider the case when coincide with
, but where samples are missing at indices ,

i.e., . This case is potentially inter-
esting for the numerous signal and image processing applica-
tions requiring missing data to be handled (see [6] for examples
and more details). This situation can be handled by simply re-
placing by the equally spaced grid and
instead defining the following weights

if
otherwise.

In this case, we obtain a simple algorithm, since we do not need
to worry about interpolation, allowing the matrix to be set to
identity. Moreover, equals the number of ones in , and (17)
simplifies to

Note that the matrix to be inverted is diagonal, making this step
faster to execute than (17) and (25). The corresponding ADMM
algorithm is summarized in the simple MATLAB function of
Table II.

V. RESULTS

A. Numerical Simulations

We illustrate the performance of the proposed algorithms by
constructing functions with and exponentials
with parameters given in Table III. We set (corre-
sponding to equally spaced modes),
and . Estimation is performed based on
noisy data samples where

as in (1). We use independent re-
alizations of white Gaussian circular noise for various signal
to noise ratios (SNR) defined by

We use two different criteria for quantifying the estimation
error. The quality of the approximation of the function
by the estimate constructed using the estimates and is
assessed by the mean squared deviation of from evalu-
ated at the equally spaced locations . For better readability
across varying SNR values, we use the normalized root mean
squared error (nRMSE) defined as the mean squared deviation
normalized by the noise energy,

where stands for average over the independent realizations
and for the expectation. Furthermore, the estimation errors
for the frequency and damping parameters are quan-
tified using their bias, standard deviation and root mean squared
error (RMSE) defined as

where denotes the true value of the parameter vector
. The standard deviations and RMSEs of the estimators are
compared with the squared roots of the Cramér-Rao lower
bounds (CRB) for the parameters associated with the estima-
tion problem (available in [1], [3]). Note that the problem of
associating an estimate with the true parameter is not
trivial. Here, we adopt the simple rule of ordering both true
values and estimates w.r.t. the frequency and comparing the
ordered set of estimates to the ordered set of true values.
Different sets of unequally spaced sampling nodes re-

sult in different estimation problems and hence different CRBs.
We therefore draw one single random set of sampling nodes

on the interval and keep it fixed throughout
the numerical experiments. The functions and the samples

at fixed random positions used in the numerical experi-
ments are plotted in the top rows of Figs. 3(a) and 3(b), respec-
tively. Our algorithms are initialized with



TABLE III
FREQUENCY, DAMPING AND AMPLITUDE PARAMETERS USED IN
THE NUMERICAL EXPERIMENTS WITH (TOP) AND

(BOTTOM) COMPLEX EXPONENTIALS

and with all elements of the matrix set to zero. We assume the
number of modes to be known; the performance of the model
order estimation algorithm of Section III-D will be investigated
separately in Section V-E.

B. Periodogram and Lomb-Scargle Periodogram

We begin with an illustration of the performance of the
Lomb-Scargle periodogram for spectral density estimation
for unequally spaced data and compare it with the proposed
method. It is applied here to the real part of the function
composed of complex exponentials for 200 realiza-
tions of white Gaussian noise and (we set

—hence no damping—in order to avoid ambiguities
due to time-varying amplitudes). Averaged periodograms are
plotted as black solid lines in Fig. 1 for equally spaced data (top
row, standard periodogram) and unequally spaced data (bottom
row, Lomb-Scargle periodogram) together with the true fre-
quency locations (indicated by blue vertical lines). The averages
of the frequency estimates obtained with the proposed method
are indicated by red vertical lines. Furthermore, averages of
the standard periodograms of the reconstructions of at
equally spaced locations, obtained by using the estimates and
, are plotted as thin solid green lines. As expected, due to its
non-parametric nature, the periodogram fails to unambiguously
resolve the two closely spaced frequencies both in the equally
and unequally spaced case. Moreover, the Lomb-Scargle pe-
riodogram fails to identify the lowest frequency component
for this example of unequally spaced data. Indeed, the power
of the spectral density estimate is far below the artefact peaks
appearing over the entire frequency range. Note that it is even
difficult to conclude from the Lomb-Scargle periodogram that
the unequally spaced data have a line spectrum. In contrast,
the proposed method provides good estimates of the frequency
content for both equally and unequally spaced data.

C. Unequally Spaced Data

The objective of this Section is to quantify the estimation
error of the proposed method. Fig. 2 shows the RMSEs
(top row) and (bottom row) as a function of SNR for
and exponentials (left and right column, respectively),
together with the corresponding square roots of the CRBs for
unbiased estimators (dashed lines). The bias of the esti-
mators is found to be several orders of magnitude below the
standard deviations and is not further discussed here. For
sufficiently high SNR values ( for and

Fig. 1. Spectral density estimation for undamped cosines with fre-
quencies in white Gaussian noise for equally (top) and unequally (bottom)
spaced data: true frequencies (blue solid vertical lines); standard (top) and
Lomb-Scargle (bottom) periodogram (black solid lines); frequency estimates
obtained with the proposed method (red solid vertical lines) and standard
periodograms of the reconstructions from these frequency estimates (thin green
solid lines).

for , respectively), the RMSEs of the
estimators are close to the CRBs. This indicates that the pro-
posed procedure yields the global minimum of the NLS problem
(2) and hence provides the maximum likelihood estimator for
the white Gaussian noise case, despite the problem being non
convex. For lower SNR values, the performance of the proposed
estimation strategy decreases, indicating that it returns a non-op-
timal solution for (2). However, this does not imply that the ap-
proximation found by the algorithm is a bad estimate of the
true function . In order to illustrate this point, Fig. 3 shows
the means and standard deviations of the approximations for

and together with the true func-
tions . The means and standard deviations of the unequally
spaces samples are also displayed in this figure. Despite
the fact that the procedure may converge to a non-optimal so-
lution only for these SNR values, the results indicate that these
solutions correspond to functions that well approximate the
true function . This is further illustrated in Fig. 4, in which
the normalized mean squared errors are plotted as a function of

. At , the mean squared error increases
only by 2 dB and 4 dB w.r.t. the values ob-
tained for high SNR.

D. Equally Spaced Data With Missing Samples

We consider three scenarios for equally spaced data: first, no
missing samples (i.e., ); second, 100 samples missing
at fixed random positions; third, two blocks of 50 samples each
missing (at positions 21 and 188). We compare performance
with those of the ESPRIT method with missing data samples
replaced by zeros. By ESPRIT, we mean the version outlined
in [1] (also reproduced in Section III-C). Upon request during
the review, we also include results obtained with the iterative
method proposed in [2], termed dIAA, and with the popular for-
ward backward ESPRIT, also known as ESPRIT-CS (see e.g.,
[1], [58]). Note that the latter utilizes a symmetry which is not
present in the case of damped signals.



Fig. 2. RMSEs of (top row) and (bottom row) for unequally spaced data
for (left column) and exponentials (right column), respectively;
each mode is plotted in a different color. The dashed lines indicate the CRBs
for the standard deviations. Note that for modes, the CRBs of modes
number 5 and 8 are so close that they appear as one single line.

In Fig. 5, RMSEs of the different estimators are plotted for
these three scenarios (from top to bottom row, respectively)
for exponentials for the proposed Hankel ADMM
based approach (left column), ESPRIT and ESPRIT-CS (center
column) and dIAA (right column) together with the corre-
sponding square roots of the CRBs for unbiased estimators.
The results obtained with the proposed estimation algorithm
are similar to those obtained for unequally spaced data: at suf-
ficiently high SNR, the estimation errors are close to the CRBs
for all scenarios, indicating that the procedure converges to the
global minimizer of the NLS problem (2). The ESPRIT method
has estimation error slightly larger than the CRBs when there
are no samples missing and yields large errors in the missing
data case, and ESPRIT-CS does not work well for any of the
three scenarios due to the damping in the signal. The perfor-
mance of dIAA is largely determined by the resolution of the
frequency-damping parameter grid employed by the method.
We use the original parameter setup of [2] with and

frequency and damping grid points, respectively,
and iterations. The theoretical RMSEs for the grid
points closest to the modes are indicated by triangles in Fig. 5
(note that for modes 2 and 3, these values essentially coincide
and collapse in the plot). For sufficiently large SNR values, the
method succeeds in selecting the grid points closest to modes 3
and 4 and a grid point reasonably close to mode 2 for all three
missing sample scenarios. Yet, it fails to identify mode 1 for
any SNR value (the RMSE value for this mode is far larger
than the range plotted in Fig. 5 and hence not visible). The
computational cost of dIAA is , where
is the number of available data samples. Since

and , the dIAA has a worse time complexity than
the proposed method. Hence, despite performing significantly
worse, the computational cost of dIAA is about one order of
magnitude larger than that of the proposed method for this

Fig. 3. Top rows: real part of true noise-free function (blue solid) and unequally
spaced samples (blue discs) for (subfigure (a)) and mode (sub-
figure (b)) case. Second and third rows: Zooms on approximations in the region
highlighted in the top rows for and (second
and third rows, respectively). True function (blue solid), averaged approxima-
tion (black dashed) with 1.96 standard deviation error tube (red solid), averaged
sample values (blue discs) with 1.96 standard deviation error bars (blue solid).

Fig. 4. nRMSE (in dB) of approximations obtained for unequally spaced data
for (left column) and exponentials (right column).

example. Similar conclusions are drawn from Fig. 6, plotting
the normalized mean squared errors of the approximations:
nRMSE values for ESPRIT are consistently roughly 1 dB
above those of the proposed method for the regular sampling
case and are large for the missing data cases. The dIAA method
has large approximation error in all of the three scenarios. We



Fig. 5. RMSEs of for exponentials obtained with the proposed
method (left column), ESPRIT (center column: standard (solid lines), ES-
PRIT-CS (dotted)) and dIAA (right column), respectively; each mode is plotted
in a different color. The dashed lines show the square roots of the CRBs. Top
row: no missing data. Second row: 100 samples missing at random locations.
Bottom row: 2 blocks of 50 missing samples.

have noted that similar results (not reported here for space
reasons) are obtained for ESPRIT when applied to interpolated
data instead of missing data replaced by zeros, i.e.,
when mimicking the unequally spaced algorithm rather than
using the weighted algorithm. The performance is further
illustrated in Fig. 7, where averages and standard deviations
of the approximations are plotted together with the true
function . Averages and standard deviations of the available
samples for are also displayed for the case of
two blocks of missing samples. The Hankel ADMM procedure
yields good approximations of the true function , including
in the zones where no data is available. In contrast, both the
ESPRIT and dIAA method yield only rough approximations
with large errors. Similar results have been obtained for
exponentials and lead to the same conclusions.

E. Model Order Estimation

This section is testing the modified ESTER criterion on the
two cases and . The left panel of Fig. 8 shows error
bar plots for the criterion in blue
and red for 100 independent noise realizations. For

each realization was normalized to have a maximum value
of 1, to account for the relative certainty in each simulation. The
right panel of Fig. 8 shows histograms of the outcomes of using
the modified ESTER criterion for model order selection for the
two cases and , respectively. Clearly, the criterion
yields excellent model order estimates for large SNR values.
For SNR values below 7.5 dB (10 dB) for ,
the performance of the method degrades. This is consistent with
the above results indicating that for low SNR values, the error
of the Hankel ADMM based estimates from which the ESTER
criterion is computed also increases significantly, see Fig. 2.

Fig. 6. nRMSE (in dB) of approximations obtained for equally spaced data
with the proposed Hankel ADMM approach (left column) , ESPRIT (center
column; standard (blue circles) and ESPRIT-CS (red crosses)) and dIAA (right
column). Top row: no missing data. Second row: 100 samples missing at random
locations. Bottom row: 2 blocks of 50 samples missing.

Fig. 7. Top row: real part of true noise-free function (blue solid) and equally
spaced samples (blue discs) for exponentials and missing data. Second
to fourth row: Zooms on approximations for the regions highlighted in the top
rows for . The second row is obtained with the proposed Hankel
ADMM based approach, the third row corresponds to ESPRIT, the fourth row
to dIAA. True function (blue solid), averaged approximation (black dashed)
with 1.96 standard deviation error tube (red solid), averaged sample values (blue
discs) with 1.96 standard deviation error bars (blue solid).

F. Convex Relaxation Using Nuclear Norm

This section investigates the potential use of the nuclear norm
replacing in the Hankel ADMM based procedure. We con-
sider the representative example of unequally spaced samples
with for exponentials. Fig. 9 (top left)
plots the normalized mean squared errors obtained with the pro-
posed method as a function of the augmented parameter (blue,



Fig. 8. Left: Error bar plot of the ESTER model criterion for the two unequally
spaced cases ( and in blue and red, respectively). Right: His-
togram of model selection outcome using the criterion. The -axis gives the
SNR in dB.

Fig. 9. Top left: nRMSE of approximations obtainedwith rank constraint (blue,
circles) and nuclear norm (red, crosses) as a function of augmented parameter
and nuclear parameter , respectively. Top right: averaged number of com-

plex exponentials selected by nuclear norm as a function of iteration number
for various values of the nuclear parameter . Bottom row: root mean squared
distance between the true function and its estimate versus iteration number
for rank constraint (left, for various values ) and for nuclear norm (right, for
various values of , fixed).

circles) and with nuclear norm as a function of the nuclear norm
penalty parameter (red, circles; the augmented parameter is
fixed).
Clearly, the proposed method yields solutions that are con-

sistently better than those obtained with the nuclear norm for
which nRMSE values are more than 2.5 dB higher. This can also
be observed in Table IV, where RMSEs of parameters obtained
with the rank constraint are compared to those obtained with
the nuclear norm with optimal parameter . Moreover, Fig. 9
(top left) indicates that the proposed method is very robust with
respect to the precise choice of the tuning parameter . In con-
trast, the nuclear norm alternative is very sensitive to the choice
of : there exists only a small zone around the “optimal” value

TABLE IV
RMSES OF ESTIMATORS AND FOR THE PROPOSED METHOD WITH

NON-CONVEX RANK CONSTRAINT AND WITH NUCLEAR NORMWITH OPTIMAL
PARAMETER

of for which the performance is reasonable. This renders the
selection of difficult while it is at the same time critical since
it has a strong impact on the model order selected by the algo-
rithm (cf., Fig. 9, top right).
We finally illustrate the convergence of the Hankel ADMM

based approach. Root mean squared residuals between the ap-
proximations and the true function are plotted in Fig. 9
(bottom) w.r.t. iteration number for rank constraint (bottom
left) and nuclear norm (bottom right). For reasonable choices of
, the proposed method converges in about iterations.

VI. THE TWO-DIMENSIONAL CASE

The proposed method is fairly straightforward to generalize
to higher dimensions. We will briefly discuss the two-dimen-
sional (2D) case and illustrate it with an example. As in the one-
dimensional case, there is a relationship between block-Hankel
matrices and sums of exponentials. A block Hankel matrix is
generated by a sampled function of two variables. Assume that

where the complex frequencies are assumed to be
distinct. Consider two sets of equally spaced nodes

and let for
define a 2D sampling of a function as in

(4). A block-Hankel matrix can be generated by as follows

. .
.

. .
.

... . .
.

. .
. ...

. .
.

. .
.

... . .
.

. .
. ...

For the minimization counterparts of (6) and (8) in 2D
we simply replace the Hankel matrix by a block-Hankel
matrix. The ADMM based methods for obtaining approx-
imate solutions based on (9) is easy to generalize using
block-Hankel matrices instead of Hankel matrices. We briefly
describe the necessary changes in the main algorithm of
Table I. The operation now corresponds to the



construction of the block-Hankel matrices above and the
operation computes sums over matrices of size

according to
the Hankel indexing above. For the interpolation matrix ,
the definition (7) is replaced by a tensor product of one-di-
mensional interpolating functions (see, e.g., [59], [60]). The
only difficult part in the generalization of the main algorithm in
Table I concerns the computation of the modes .
If and , it is possible to find the modes using
each independent variable separately. For the general case, one
can obtain the modes by finding the roots of a system of two
polynomials in two variables, as suggested in [61]. This last
approach will be used in this paper.
We conclude this section with a simple numerical illustration

of the method. We are interested in recovering the function

from 20 quasi-random samples in the box .
equals 4 in this example since two exponential functions are as-
sociated with each cosine. An example of function and the
corresponding samples are shown in Fig. 10. The top panel of
the figure shows the function as a transparent surface plot,
along with the sampled data indicated by red and blue dots.
The color of the dots is related to their sign (blue for positive
and red for negative sign, respectively). Moreover, the location
in the -plane is depicted with black dots, and blue and red
lines that connect the projection onto the -plane with the sam-
pled points on the graph of . To further illustrate the 3d-shape,
curves connecting each data point with its two closest neighbors
(in the -plane) are depicted. The bottom left panel of Fig. 10
shows the same setup but viewed from above.
The bottom middle and right panels show the correct and

its reconstruction obtained by the proposed algorithm (viewed
as images), using and . The actual and
reconstructed images are indistinguishable by eye. The average
point-wise error in the reconstruction is 0.0025 (and the max-
imum amplitude of is 1). The estimated values of
are given in Table V. This example illustrates the fact that the
proposed method can estimate sums of exponentials in two di-
mensions.

VII. CONCLUSIONS

We have developed a parametric frequency estimation proce-
dure based on approximations with sums of complex expo-
nentials. Kronecker’s theorem is used to cast the approximation
problem in terms of generating functions for Hankel matrices
of rank . The corresponding optimization problem is solved
by an ADMM type procedure (using interpolation matrices to
accommodate for irregular sampling) allowing an appropriate
Hankel matrix to be estimated. The parameters of the complex
exponentials associated with the proposed frequency estimation
model are then estimated from the solution Hankel matrix. This
is in contrast with other methods, such as classical NLS, sub-
space methods, or greedy approaches.
The proposed Hankel ADMM based procedure can be ap-

plied to irregularly sampled data, as well as to equally spaced
samples, including situations with missing data. If available,

Fig. 10. Top panel: 20 quasi-random data samples (red and blue points) of a
sum of two 2D cosine functions. For illustration purpose, the underlying func-
tion is shown as a surface and each data sample and its two closest neigh-
bors are connected by lines o this surface. Bottom panels from left to right:
The quasi-random sampling seen from above; the original underlying function;
the reconstruction obtained by the proposed algorithm given the 20 unequally
spaced samples.

TABLE V
ESTIMATED VALUES FOR THE 2D ESTIMATION PROBLEM

prior information on the reliability (e.g., noise variance) of data
samples can be incorporated using appropriate weighting.
The optimization problem studied in this work is non convex

due to the rank constraint on the Hankel matrices. However, nu-
merical simulations indicate that the method performs well both
for the unequally spaced and regular sampling cases. For suffi-
ciently high SNR values, the procedure yields ML parameter
estimates, without the need of initializing at a “good” starting
point as is crucial for classical NLS in order to avoid local
minima. The proposed estimation strategy also consistently out-
performs a convex variant in which the rank constraint is re-
placed by the nuclear norm. The proposed algorithm is practi-
cally attractive due to its simplicity and ease of implementation.
The proposed method is also relevant in other contexts,

including, e.g., image restoration, source detection and seismic
data processing. Future work will also include applications in
the context of direction of arrival estimation, extending recent
work of the authors on the problem in [62]. In the multidi-
mensional case, the proposed method can be relevant, e.g., in



synthetic aperture radar (SAR) [4], [5] where, under suitable
assumptions, data acquisition gives rise to unequally spaced
Fourier data (e.g., on polar grids), and sampling constraints
often induce missing data situations.
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