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Abstract

In this paper, we consider the optimal power flow (OPF) problem which consists in determining the power

production at each bus of an electric network by minimizing the production cost. Our contribution is an

exact solution algorithm for the OPF problem. It consists in a spatial branch-and-bound algorithm based on

a compact quadratically constrained convex relaxation. This compact relaxation is computed by solving the

rank relaxation once at the beginning of the algorithm so that the lower bound at the root node of the tree

is equal to the rank relaxation value. Then, at every sub-nodes of the branch-and-bound, the lower bound is

obtained by solving a quadratic convex problem. To construct this compact relaxation, we add onlyO(n+m)

variables that model the squares of the initial variables, where n is the number of buses in the power system,

and m the number of transmission lines. Since the relations between the initial and auxiliary variables are

non-convex, we relax them to get a quadratic convex relaxation. Finally, in our branch-and-bound algorithm,

we have only O(n +m) equalities to force to prove global optimality. Our first experiments show that our

new algorithm Compact OPF (COPF) is more efficient than other quadratic convex relaxation based methods

we compare it with.

Key words: Global optimization, Optimal Power Flow, Quadratic Convex Relaxation, Semidefinite

programming, Quadratically constrained Quadratic Programming
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1. Introduction

The Optimal Power Flow (OPF) problem consists in the determination of the power production at different

buses of an electric network that minimizes a production cost. The electrical transmission network is modeled

by a mutli-digraph G = (B,L), where each network point belongs to the set B of nodes (i.e the set of buses),

and their connections (i.e. the set of transmission lines) are modeled by the set of edges L. Every line is

represented by two anti-parallel arcs, and L is partitioned in two sets L0, L1, with |L0| = |L1|. We denote by

n = |B| the number of buses, and m = |L| the number of lines. We assume that there is an electric demand

at each node also called load. We distinguish two classes of nodes: B = Bg ∪Bd, where Bg is the set of nodes

that generates and flows the power (the generator nodes), and Bd is the set of nodes that only flows the power

(the consuming nodes). The aim of the OPF problem is to satisfy demand of all buses while minimizing the

total production costs of the generators such that the solution obeys Ohm’s law and Kirchhoff’s law, and

follows the physical limits of the electrical transmission network.

This problem is naturally formulated with complex variables. Let Y ∈ Cn×n be the admittance matrix,

which has component Yij = Gij + jBij for each line (i, j) of the network, and Gii = gii −
∑
i ̸=j

Gij , Bii =

bii −
∑
i ̸=j

Bij , where gii (resp. bii) is the shunt conductance (resp. susceptance) at bus i, and j2 = −1. Let

pi, qi be the real and reactive power output of the generator node i, and pi,qi the given real and reactive

power output of the load node i. For each line (i, j) ∈ L, we consider the complex power in the rectangular

form: Sij = srij + jscij , and for each bus i ∈ B, the complex voltage in the rectangular form: Vi = ei + jfi

where |Vi|2 = e2i +f2
i is the voltage magnitude, and we denote by δ(i) the set of adjacent nodes of bus i. With

the above notation, the OPF problem can be modeled by the well known rectangular formulation of Torres

& Quintana [1998]:
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(OPF )



minh(p) =
∑
i∈Bg

(
Ciip

2
i + cipi

)
s.t.

pi − pi = gii(e
2
i + f2

i ) +
∑

j∈δ(i)

srij i ∈ Bg (1)

−pi = gii(e
2
i + f2

i ) +
∑

j∈δ(i)

srij i ∈ Bd (2)

qi − qi = −bii(e
2
i + f2

i ) +
∑

j∈δ(i)

scij i ∈ Bg (3)

−qi = −bii(e
2
i + f2

i ) +
∑

j∈δ(i)

scij i ∈ Bd (4)

srij = −Gij(e
2
i + f2

i ) +Gij(eiej + fifj)−Bij(eifj − ejfi) (i, j) ∈ L (5)

scij = Bij(e
2
i + f2

i )−Bij(eiej + fifj)−Gij(eifj − ejfi) (i, j) ∈ L (6)

vi ≤ e2i + f2
i ≤ vi i ∈ B (7)

(srij)
2 + (scij)

2 ≤ Sij (i, j) ∈ L (8)

p
i
≤ pi ≤ pi i ∈ Bg (9)

q
i
≤ qi ≤ qi i ∈ Bg (10)

(p, q) ∈ (R|Bg|,R|Bg|), (e, f) ∈ (Rn,Rn), (sr, sc) ∈ (Rm,Rm) (11)

where C ∈ S+
|Bg| is a diagonal and semidefinite matrix, c ∈ R|Bg| is the vector of linear costs of the power

injection at each generator node, (v,v) ∈ (Rn,Rn) are the bounds on the voltage magnitude, Sij the thermal

limit of line (i, j), and (p,p,q,q) ∈ (R|Bg|,R|Bg|,R|Bg|,R|Bg|). This formulation has 2(n+ |Bg|+m) variables,

2n quadratic equalities (1)-(4) that enforces the active and reactive power balances at each node, 2m quadratic

equalities (5)-(6) that define the power at each line, 2n quadratic inequalities (7) that models the voltage

magnitude, m quadratic inequalities (8) that ensure the thermal line limits, and 4|Bg| box constraints (9)-(10).

The first results of the literature for solving the OPF problem were focused on optimal local solutions,

mostly by adapting interior point methods, see, e.g., Wu et al. [1993]; Torres & Quintana [1998]; Jabr et al.

[2002]; Wang et al. [2007]. In the context of global optimization, one requires furthermore to determine lower

bounds on the OPF problem. For this, the second-order cone programming (SOCP) and the semidefinite

programming (SDP) relaxations were first used (see Bai & Wei [2009]; Bai et al. [2008]; Jabr [2006]; Lavaei &

Low [2012]; Zohrizadeh et al. [2020]). The most used SDP relaxation, also named the rank relaxation, leads

to very tight lower bounds on the OPF problem. In particular, it was proven in Gan et al. [2015] that this

relaxation is exact for a restricted class of problems and under some assumptions. In other cases, where it is

not exact, the rank relaxation can be used within a branch-and-cut algorithm as it is done with a complex

formulation of the OPF in Chen et al. [2017]. The approach called SDP-BT Gopinath et al. [2020] tightened

the rank relaxation with RLT inequalities, and then iterates with Bound Tightening techniques until reaching

global optimality. Another approach is to strength it following the ideas of the hierarchy of moment relaxation
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problems Lasserre [2001]; Parrilo [2003], that can be applied to any polynomial optimisation problem. This

approach was specialized in the context of the OPF problem in Josz et al. [2015], and showed its efficiency

to solve small-size problems. It was also used in Molzahn & Hiskens [2015] to strengthen the lower bounds

for larger problems. Unfortunately, in practice, using interior point methods for solving several large SDP

relaxations, with increasing sizes at each rank of the hierarchy, is intractable for large networks. Several

specialized algorithms that exploit the sparsity of power networks were thus proposed as in Jabr [2006, 2012];

Madani et al. [2015]; Molzahn & Hiskens [2015]; Molzahn et al. [2013].

More recently, several cheaper computable convex relaxations were introduced for the OPF problem. For

instance, linear and quadratic envelopes for trigonometric functions in the polar formulation of the OPF

problem are constructed in Coffrin et al. [2016]; Coffrin et al. [2017]; Coffrin & Hentenryck [2014], and strong

SOCP relaxations were introduced in Kocuk et al. [2016, 2018]. These bounds, that can be computed in

polynomial time, may then be used within a spatial branch-and-bound framework to solve the OPF problem

to global optimality.

Exact algorithms have also been proposed for a variant of problem (OPF ) where the thermal line limits

(Constraints (8)) are not considered. In this case, variables srij and scij can be replaced in Constraints (1)-(4)

by their expression given by Constraints (5)-(6), which reduce the total number of variables and constraints of

the formulation. In Phan [2012], a sub-gradient algorithm is proposed to solve the Lagrangian dual of (OPF ),

which is used as a bound in a global solution approach. In Foster [2013], the spatial branch-and-bound is

based on a piece-wise linear approximation. Another exact solution approach called RC-OPF was proposed

in Godard et al. [2019], that is a specialization of the Quadratic Convex Reformulation approach proposed

in Elloumi & Lambert [2019] for generic quadratic problems. It consists in a branch-and-bound algorithm

based on a quadratic convex relaxation of the OPF problem. This convex relaxation, whose value reaches

that of the rank relaxation, is computed in a pre-processing step by solving the rank relaxation. Then, at

each node of the branch-and-bound tree, the bound is obtained by solving a convex problem with a quadratic

convex objective function and linear constraints. The size of the relaxation is a quadratic function of the

number of initial variables, since it relies on the introduction of one additional variable for each possible

product of the original variables. Unfortunately, and as illustrated in Section 4, in practice the spatial

branch-and-bound can be very time consuming for the OPF problem.

Our contribution is an exact solution algorithm for problem (OPF ), called Compact Quadratic Convex

Reformulation (COPF), that relies on a quadratic convex relaxation whose size is a linear function of the

number of initial variables. This compact relaxation is a quadratically constrained quadratic problem that

also reaches the optimal value of the rank relaxation. The key advantage of COPF over RC-OPF is that the

spatial branch-and-bound has to enforce a significantly smaller number of equalities between the additional

variables and the products that they model to prove global optimality, which speeds up the resolution. An

additional contribution in comparison to method RC-OPF is to provide a quadratic relaxation based method

that handles the thermal line limits.
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The paper is organized as follows. In Section 2, we present a new family of compact quadratic convex

relaxations to (OPF ). In Section 3, we show how to calculate the tightest quadratic convex relaxation within

this family. Finally, in Section 4, after by a brief recall of method RC-OPF and of the variant it applies, we

present a computational comparison of the two approaches. Then, we evaluate COPF on instances of problem

(OPF ) and we compare it with the method SDP-BT of Gopinath et al. [2020]. Section 5 draws a conclusion.

2. Building a compact family of quadratic convex relaxations

We start by observing that the structure of the formulation (OPF ) is specific. First, only variables p are

involved into the objective function. Moreover, the matrix C is diagonal and positive semidefinite, hence the

objective function is convex and separable. It follows that the non convexities only come from the quadratic

constraints (1)-(7). Moreover, in the constraints, variables e and f are only involved into quadratic forms,

while variables p and q only in linear forms, while variables sr and sc appear both in linear and quadratic

forms.

Starting from the latter observations, our idea is to build an equivalent problem to (OPF ), where the

original constraints are convexified thanks to 2(n + m) auxiliary variables z = (ze, zf ) ∈ R2n, and w =

(wsr , wsc) ∈ R2m, that model the squares of the initial variables e, f , sr, and sc, respectively:

zei = e2i i ∈ B (12)

zfi = f2
i i ∈ B (13)

wsr

ij = (srij)
2 (i, j) ∈ L (14)

wsc

ij = (scij)
2 (i, j) ∈ L (15)

Using these new variables it is easy to rewrite Constraints (1)-(4), (7) and (8) into a linear form, and we get:

pi − pi = gii(z
e
i + zfi ) +

∑
j∈δ(i)

srij i ∈ Bg (16)

−pi = gii(z
e
i + zfi ) +

∑
j∈δ(i)

srij i ∈ Bd (17)

qi − qi = −bii(z
e
i + zfi ) +

∑
j∈δ(i)

scij i ∈ Bg (18)

−qi = −bii(z
e
i + zfi ) +

∑
j∈δ(i)

scij i ∈ Bd (19)

vi ≤ zei + zfi ≤ vi i ∈ B (20)

wsr

ij + wsc

ij ≤ Sij (i, j) ∈ L (21)

We now focus on the convexification of the quadratic equality constraints (5)-(6). For this, our first step

is to transform each equality into two inequalities. We thus introduce for all (i, j) ∈ L, Constraints (22)-(25)
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obviously equivalent to Constraints (5)-(6):

srij +Gij(e
2
i + f2

i )−Gij(eiej + fifj) +Bij(eifj − ejfi) ≤ 0 (i, j) ∈ L (22)

−srij −Gij(e
2
i + f2

i ) +Gij(eiej + fifj)−Bij(eifj − ejfi) ≤ 0 (i, j) ∈ L (23)

scij −Bij(e
2
i + f2

i ) +Bij(eiej + fifj) +Gij(eifj − ejfi) ≤ 0 (i, j) ∈ L (24)

−scij +Bij(e
2
i + f2

i )−Bij(eiej + fifj)−Gij(eifj − ejfi) ≤ 0 (i, j) ∈ L (25)

Then, recall that Inequalities (22)-(25) are only quadratic on variables e and f . To make them convex, we

apply the smallest eigenvalue method introduced in Hammer & Rubin [1970]. Denote by Ar
ij (resp. Ac

ij) the

sub-matrix of the Hessian of the (i, j)th Constraints (5) (resp. (6)) that corresponds to the quadratic terms

involving variables e and f only. Let λ(Ar
ij) be the smallest eigenvalue of matrix Ar

ij , and d(λ(Ar
ij)) be the

diagonal matrix where each diagonal term equals λ(Ar
ij). To rewrite Inequality (22) (resp. (23)) as a convex

function, we add to it the quadratic quantity −λ(Ar
ij)

∑
k∈B

(e2k+f2
k−zek−zfk ) (resp. −λ(−Ar

ij)
∑
k∈B

(e2k+f2
k−zek−

zfk )). As a consequence the Hessian matrix of the new function is Ar
ij − d(λ(Ar

ij)) (resp. −Ar
ij − d(λ(−Ar

ij)))

that is obviously a positive semidefinite matrix. Moreover, the value of the convexified function remains the

same as soon as for all k ∈ B, e2k + f2
k − zek − zfk = 0, or equivalently when Equalities (12)-(13) are satisfied.

We thus obtain the set S of convex constraints:

S =



srij +Gij(e
2
i + f2

i )−Gij(eiej + fifj) +Bij(eifj − ejfi)− λ(Ar
ij)

∑
k∈B

(
e2k + f2

k − zek − zfk

)
≤ 0 (i, j) ∈ L

−srij −Gij(e
2
i + f2

i ) +Gij(eiej + fifj)−Bij(eifj − ejfi)− λ(−Ar
ij)

∑
k∈B

(
e2k + f2

k − zek − zfk

)
≤ 0 (i, j) ∈ L

scij −Bij(e
2
i + f2

i ) +Bij(eiej + fifj) +Gij(eifj − ejfi)− λ(Ac
ij)

∑
k∈B

(
e2k + f2

k − zek − zfk

)
≤ 0 (i, j) ∈ L

−scij +Bij(e
2
i + f2

i )−Bij(eiej + fifj)−Gij(eifj − ejfi)− λ(−Ac
ij)

∑
k∈B

(
e2k + f2

k − zek − zfk

)
≤ 0 (i, j) ∈ L

By replacing Constraints (1)-(8) by Constraints (12)-(21), together with set S in (OPF ), we then obtain

an equivalent problem to (OPF ).

We now introduce a parameterized family of compact quadratic convex relaxations of (OPF ). For sim-

plicity, we start by rewriting the initial equality constraints (1)-(6) by using the notation x = (e, f) ∈ R2n,

s = (sr, sc) ∈ R2m, and y = (p, q) ∈ R2|Bg|, as follows:

⟨Ak, xx
⊤⟩+ ay⊤k y + as⊤k s = bk k ∈ C

where C = (Bg,Bg,Bd,Bd,L,L), with |C| = 2(n+m), and ∀ k ∈ C, Ak ∈ S2n is the Hessian matrix of constraint

k (i.e. matrices Arg
k , Ard

k , Acg
k , Acd

k , Ar
k, and Ac

k for Constraints (1)-(6) respectively), (ayk, a
s
k) ∈ (R2|Bg|,R2m)

are the vectors of linear coefficients of constraint k, and b ∈ R2(n+m), where coefficient bk is the the right-hand

side of constraint k.
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Let (ϕ, γ, δ) ∈ (R2(n+m),Rn,Rm) be three vector parameters, we build the following parameterized ob-

jective function:

hϕ,γ,δ(x, y, s, z, w) =h(y) +
∑
k∈C

(
ϕk(⟨Ak, xx

⊤⟩+ ay⊤k y + as⊤k s− bk)
)
+
∑
i∈B

γi

(
x2
i + x2

i+n − zi − zi+n

)
+

∑
(i,j)∈L

δij

(
(sij)

2 + (si+m,j+m)2 − wij − wi+m,j+m

)

where h(y) is the initial objective function, and we recall that for all i ∈ B, xi = ei, xi+n = fi, zi = zei ,

zi+n = zfi , and for all (i, j) ∈ L, sij = srij , si+m,j+m = scij , wij = wsr

ij , and wi+m,j+m = wsc

ij .

Observe that there exist parameters (ϕ, γ, δ) such that hϕ,γ,δ is a convex function. Indeed, as mentioned

above, function h(y) is convex and separable. Now, the two additional terms are linear in y, z and w,

separable in s, and quadratic in x. By taking ∀ k ∈ C, ϕ̄k = 0, and ∀i ∈ B, γ̄i ≥ 0, and ∀(i, j) ∈ L, δ̄ij ≥ 0,

the associated function hϕ̄,γ̄,δ̄(x, y, s, z, w) is obviously convex.

By denoting ∀k ∈ C, λk = λmin(Ak) and λ′
k = λmin(−Ak), we are now able to build a family of equivalent

formulations to (OPF ):

(OPFϕ,γ,δ)



minhϕ,γ,δ(x, y, s, z, w)

s.t.

(9)(10)(12)− (21)

⟨Ak, xx
⊤⟩+ ay⊤k y + as⊤k s− λk

2n∑
i=1

(x2
i − zi) ≤ bk k ∈ C (26)

⟨−Ak, xx
⊤⟩ − ay⊤k y − as⊤k s− λ′

k

2n∑
i=1

(x2
i − zi) ≤ −bk k ∈ C (27)

x = (e, f) ∈ R2n, s = (sr, sc) ∈ R2m, y = (p, q) ∈ R2|Bg| (28)

z = (ze, zf ) ∈ R2n, w = (wsr , wsc) ∈ R2m (29)

where Constraints (26)-(27) are Constraints of set S written in a compact form. It is easy to see that

problem (OPFϕ,γ,δ) is equivalent to problem (OPF ), in the sense that any optimal solution from one is an

optimal solution from the other. Indeed, hϕ,γ,δ(x, y, s, z, w) = h(y) when Constraints (16)-(19), (26), (27)

and (12)-(15) are satisfied.

We already observed that we can choose parameters such that the objective function hϕ,γ,δ is a convex

function. Thus, the only constraints that remain non-convex are Constraints (12)-(15). To derive a quadratic

convex relaxation of (OPFϕ,γ,δ), we relax the latter equalities. For this, we need upper and lower bounds on

each variable xi and sij . For variables xi, some trivial initial bounds can easily be deduced from Constraints

(7), i. e. −
√
vi ≤ xi ≤

√
vi, and −

√
vi ≤ xi+n ≤

√
vi. We denote by (ℓ, u) ∈ (R2n,R2n) these bounds

(i.e. ℓ = (−
√
v,−

√
v) and u = (

√
v,

√
v)). To deduce bound for variables sij , we use Constraints (8), i.

e. −
√

Sij ≤ sij ≤
√
Sij , and we denote by (ℓ′, u′) ∈ (R2m,R2m) these bounds (i.e. ℓ′ = (−

√
S,−

√
S) and
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u′ = (
√
S,

√
S)). Then, we replace Constraints (12)-(15) by the following set of convex inequalities:

D = (x, s, z, w)



zi ≤ (ui + ℓi)xi − uiℓi

zi ≥ x2
i

wij ≤ (u′
ij + ℓ′ij)sij − u′

ijℓ
′
ij

wij ≥ s2i

Finally, we get (OPFϕ,γ,δ), a compact family of quadratic convex relaxations to (OPF ):

(OPFϕ,γ,δ)


minhϕ,γ,δ(x, y, s, z, w)

s.t. (9)(10)(16)− (21)(26)− (29)

(x, s, z, w) ∈ D (30)

For any parameters ϕ, γ, and δ such that hϕ,γ,δ is a convex function, problem (OPFϕ,γ,δ) is a convex

QCQP and can thus be solved in polynomial time. Our aim is to embed it within a spatial branch-and-

bound algorithm. Performing such an algorithm is highly dependant on the quality of the bound at the root

node. Moreover, we know that for many instances of the OPF, the rank relaxation provides a tight lower

bound. This is why in the rest of the paper, we focus on the computation of a quadratic convex relaxation

of (OPF ) whose value equals to the optimal value of the rank relaxation.

3. Computing a strong quadratic convex relaxation

We are now interested in the best parameters (ϕ∗, γ∗, δ∗) that maximize the optimal value of (OPFϕ,γ,δ)

while making the parameterized function hϕ,γ,δ convex. We prove that these best parameters can be deduced

from the dual optimal solution of the rank relaxation of (OPF ). For simplicity, we denote by γ′ = (γ, γ) ∈

R2n, and δ′ = (δ, δ) ∈ R2m. With this notation, we can rewrite function hϕ,γ,δ as follows:

hϕ,γ,δ′(x, y, s, z, w) =
∑
i∈Bg

(
Ciiy

2
i + ciyi

)
+ ⟨

∑
k∈C

ϕkAk + d(γ′), xx⊤⟩+ ⟨d(δ′), ss⊤⟩+
∑
k∈C

ϕk(a
y⊤
k y + as⊤

k s− bk)− γ
′⊤z−δ

′⊤w

where d(v) is the diagonal matrix of whose the ith-diagonal coefficient equals vi. We formally pose the

problem we aim to solve as follows:

(P )



max
ϕ,γ,δ

v(OPFϕ,γ,δ)∑
k∈C

ϕkAk + d(γ′) ⪰ 0

d(δ′) ⪰ 0

γ′ = (γ, γ), δ′ = (δ, δ)

where v(OPFϕ,γ,δ) is the optimal value of problem (OPFϕ,γ,δ).

We state in Theorem 3 that the optimal value of (P ) equals the optimal value of the following the so-called

rank relaxation of (OPF ):
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(SDP )



minh(Y, y) =
∑
i∈Bg

(
CiiYii + ciyi

)
s.t.

⟨Ak, X⟩+ ay⊤
k y + as⊤

k s = bk ∀k ∈ C (31)

Xii +Xi+n,i+n ≤ vi i ∈ B (32)

−Xii −Xi+n,i+n ≤ −vi i ∈ B (33)

Wk+1,k+1 +Wk+m+1,k+m+1 ≤ Sk k = (i, j) ∈ L (34)

p
i
≤ pi ≤ pi i ∈ Bg (35)

q
i
≤ qi ≤ qi i ∈ Bg (36) 1 y⊤ s⊤

y Y ⋆
s ⋆ W

 ⪰ 0 (37)

X ⪰ 0 (38)

y = (p, q) ∈ R2|Bg|, s ∈ R2m, (Y,X,W ) ∈ (S2|Bg|,S2n,S2m)

where Constraints (31) are the compact form Constraints (1)-(6).

pi − pi = gii(Xii +Xi+n,i+n) +
∑

k=(i,j):j∈δ(i)

sk i ∈ Bg

−pi = gii(Xii +Xi+n,i+n) +
∑

k=(i,j):j∈δ(i)

sk i ∈ Bd

qi − qi = −bii(Xii +Xi+n,i+n) +
∑

k=(i,j):j∈δ(i)

sk+m i ∈ Bg

−qi = −bii(Xii +Xi+n,i+n) +
∑

k=(i,j):j∈δ(i)

sk+m i ∈ Bd

sk = −Gij(Xii +Xi+n,i+n) +Gij(Xij +Xi+n,j+n)−Bij(Xi,j+n −Xj,i+n) k = (i, j) ∈ L
sk+m = Bij(Xii +Xi+n,i+n)−Bij(Xij +Xi+n,j+n)−Gij(Xi,j+n −Xj,i+n) k = (i, j) ∈ L

Theorem. The optimal value of (P ) equals the optimal value of (SDP ).

Proof.

⋄ To prove that v(P ) ≤ v(SDP ), we show that for any feasible solution (ϕ̄, γ̄, δ̄) to (P ), we have v(OPF ϕ̄,γ̄,δ̄) ≤

v(SDP ), which in turn implies that v(P ) ≤ v(SDP ) since the right hand side is constant. Let (ȳ, s̄, Ȳ , X̄, W̄ )

be a feasible solution of (SDP ), and build the solution (x = 0, y = ȳ, s = s̄, z = D(X̄), w = D(W̄ )), where

D(M) is the vector composed of the diagonal terms of matrix M . We prove that: i) (x, y, s, z, w) is feasible

for (OPF ϕ̄,γ̄,δ̄), and ii) its objective value is smaller or equal than v(SDP ). Since both (OPF ϕ̄,γ̄,δ̄) and

(SDP ) are minimization problems, (OPF ϕ̄,γ̄δ̄) ≤ v(SDP ) follows.

i) We show that (0, ȳ, s̄,D(X̄),D(W̄ )) is feasible to (OPF ϕ̄,γ̄,δ̄). Obviously, Constraints (9)-(10), and (16)-

(21) are satisfied. We now prove that Constraints (26), (27), and (30) are satisfied.

(a) Constraints (26). We start by observing that, since x = 0, Constraints (26) can be rewritten as

bk − ay⊤k ȳ − as⊤s̄− λk

2n∑
i=1

X̄ii ≥ 0, and by Constraints (31), we have:

bk − ay⊤k ȳ − as⊤s̄− λk

2n∑
i=1

X̄ii = ⟨Ak, X̄⟩ − λk

2n∑
i=1

X̄ii = ⟨Ak − diag(λk), X̄⟩ ≥ 0

9



by Constraint (38) and since Ak − diag(λk) ⪰ 0

(b) Constraints (27). Similarly, since x = 0, Constraints (27) can be rewritten as −bk + ay⊤k ȳ+ as⊤s̄−

λ′
k

2n∑
i=1

X̄ii, and with Constraints (31) we have:

−bk + ay⊤k ȳ + as⊤s̄− λ′
k

2n∑
i=1

X̄ii = ⟨−Ak, X̄⟩ − λ′
k

2n∑
i=1

X̄ii = ⟨−Ak − diag(λ′
k), X̄⟩ ≥ 0

by Constraints (38) and since −Ak − diag(λ′
k) ⪰ 0

(c) Constraints (30). Since x = 0, the set D becomes:{
X̄ii ≤ vi

X̄ii ≥ 0

Since X ⪰ 0, we have X̄ii ≥ 0. The first inequality comes from X̄i+n,i+n ≥ 0 and Constraints (32).

ii) Let us now compare the objective values of the two problems to show that v(OPF ϕ̄,γ̄,δ̄) ≤ v(SDP ).

Since x = 0, the objective function of (OPF ϕ̄,γ̄,δ̄) can be rewritten as:

hϕ̄,γ̄,δ̄(0, ȳ, s̄,D(X̄),D(W̄ )) =
∑
i∈Bg

(
Ciiȳ

2
i + ciȳi

)
+ ⟨d(δ̄′), s̄s̄⊤⟩+

∑
k∈C

ϕ̄k(a
y⊤
k ȳ + as⊤s̄− bk)− γ̄

′⊤D(X̄)− δ
′⊤D(W̄ )

We prove below that ∆ = hϕ̄,γ̄,δ̄(0, ȳ, s̄,D(X̄),D(W̄ ))− h(Ȳ , ȳ) ≤ 0

∆ =
∑
i∈Bg

(
Ciiȳ

2
i + ciȳi

)
+ ⟨d(δ̄′), s̄s̄⊤⟩+

∑
k∈C

ϕ̄k(a
y⊤
k ȳ + as⊤s̄− bk)− γ̄

′⊤D(X̄)− δ
′⊤D(W̄ )−

∑
i∈Bg

(
CiiȲii + ciȳi

)
∆ =

∑
i∈Bg

Cii(ȳ
2
i − Ȳii) + ⟨d(δ̄′), s̄s̄⊤⟩+

∑
k∈C

ϕ̄k(a
y⊤
k ȳ + as⊤s̄− bk)− γ̄

′⊤D(X̄)− δ
′⊤D(W̄ )

By constraints (31), and by definition of γ̄′ and δ̄′, we have:

∆ =
∑
i∈Bg

Cii(ȳ
2
i − Ȳii) + ⟨d(δ̄′), s̄s̄⊤⟩ −

∑
k∈C

ϕ̄k⟨Ak, X̄⟩ − ⟨d(γ̄′), X̄⟩ − ⟨d(δ̄′), W̄ ⟩

∆ =
∑
i∈Bg

Cii(ȳ
2
i − Ȳii) + ⟨d(δ̄′), s̄s̄⊤ − W̄ ⟩ − ⟨

∑
k∈C

ϕ̄kAk + d(γ̄′), X̄⟩

We claim that ∆ ≤ 0 since each of its 3 terms are non positive:

�

∑
i∈Bg

Cii(ȳ
2
i −Ȳii) ≤ 0. By Constraint (37), we know that matrix

 1 y⊤

y Y

 ⪰ 0, which implies that

all its 2 × 2 minors are non negative, and in particular, we have ∀i, Ȳii − ȳ2i ≥ 0. Since moreover

Cii ≥ 0, we get the result.
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� ⟨d(δ̄′), s̄s̄⊤ − W̄ ⟩ =
2m∑
i=1

δ̄′i(s̄
2
i − W̄ii) ≤ 0. By Constraint (37), we have ∀i, W̄ii − s̄2i ≥ 0. Moreover,

by feasibility of (P ), we have d(δ̄′) ⪰ 0 and we get the result.

� −⟨
∑
k∈C

ϕ̄kAk + d(γ̄′), X̄⟩ ≤ 0. By Constraint (38), we have X ⪰ 0. Moreover, by feasibility of (P ),

we have
∑
k∈C

ϕ̄kAk + d(γ̄′) ⪰ 0 and we get the result.

⋄ Let us secondly prove that v(P ) ≥ v(SDP ). We suppose here that the original problem (OPF ) is feasible,
and by Proposition 1 of Godard et al. [2019], we know that strong duality holds. Let (D) be the dual of
(SDP ), under these hypothesis, we have v(SDP ) = v(D). To prove that v(P ) ≥ v(SDP ), we equivalently
prove that v(P ) ≥ v(D) where (D) is the dual of (SDP ):

(D)



max
∑
i∈Bg

(θpipi
+ θqiqi

− θ
p
ipi − θ

q
iqi) +

∑
i∈B

(γ
i
vi − γi vi)−

∑
k∈L

δk Sk −
∑
k∈C

ϕkbk − ρ

s.t.

M =



ρ 1
2
(c+ θ − θ +

∑
k∈C

ϕka
y
k)

⊤ (
∑
k∈C

ϕka
s
k)

⊤ 0⊤
2n

1
2
(c+ θ − θ +

∑
k∈C

ϕka
y
k) C 02|Bg|,2m 02|Bg|,2n∑

k∈C

ϕka
s
k 02m,2|Bg| d(δ′) 02m,2n

02n 02n,2|Bg| 02n,2m

∑
k∈C

ϕkAk + d(γ′)


⪰ 0 (39)

θ = (θ
p
, θ

q
), θ = (θp, θq), γ′ = ((γ − γ), (γ − γ)), δ′ = (δ, δ) (40)

C =

[
C 0|Bg|,|Bg|

0|Bg|,|Bg| 0|Bg|,|Bg|

]
∈ S2|Bg| (41)

c = (c,0|Bg|), ak = (ay
k, a

s
k) (42)

(ϕ, γ, γ, δ, θ
p
, θp, θ

q
, θq, ρ) ∈ (R|C|,Rn,Rn,Rm,R|Bg|,R|Bg|,R|Bg|,R|Bg|,R)

where ϕ, γ, γ, δ, (θ
p
, θp), (θ

q
, θq), ρ are the dual variables associated to Constraints (31)-(37) respectively. We

notice here that the dual variable ρ ∈ R is associated to the constraint which sets the value of the first diagonal

term of the matrix M to 1. We denote by 0n ( 0n,n respectively ) the n-dimensional (n × n-dimensional

resp.) vector (matrix resp. ) where each coefficient equals 0.

Problems (D) and (P ) are both maximization problems. To prove that v(P ) ≥ v(D), we start with an

optimal solution to (D), from which we build a feasible solution to (P ) whose objective value is greater than

v(D).

Let (ϕ∗, γ∗, γ∗, δ∗, θ
p∗
, θp∗, θ

q∗
, θq∗, ρ∗) be an optimal solution to (D), we build the following solution

(ϕ = ϕ∗, γ = (γ∗ − γ∗), δ = δ∗) that is obviously feasible for (P ), i.e.
∑
k∈C

ϕ∗
kAk + d(γ

′∗) ⪰ 0, and d(δ
′∗) ⪰ 0,

by Constraint (39). The objective value of this solution is equal to v(OPFϕ∗,γ∗−γ∗,δ∗). To prove that

v(OPFϕ∗,γ∗−γ∗,δ∗) ≥ v(D), we prove that for any feasible solution (x, y, s, z, w) to (OPFϕ∗,γ∗−γ∗,δ∗), the

associated objective value is not smaller than the optimal value of (D). Denote by ∆ the difference between
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the objective values, we prove below that ∆ ≥ 0.

∆ =
∑
i∈Bg

(
Ciiy

2
i + ciyi

)
+ ⟨d(δ

′∗), ss⊤⟩+ ⟨
∑
k∈C

ϕ∗
kAk + d(γ

′∗), xx⊤⟩+
∑
k∈C

ϕ∗
k(a

y⊤
k y + as⊤k s− bk)− γ

′∗⊤z − δ
′∗⊤w

−
∑
i∈Bg

(θp∗i p
i
+ θq∗i q

i
− θ

p∗
i pi − θ

q∗
i qi)−

∑
i∈B

(γ∗
i
vi − γ∗

i vi) +
∑
k∈L

δ∗k Sk +
∑
k∈C

ϕ∗
kbk + ρ∗

∆ = ⟨C, yy⊤⟩+ ⟨d(δ
′∗), ss⊤⟩+ ⟨

∑
k∈C

ϕ∗
kAk + d(γ

′∗), xx⊤⟩ −
∑
i∈Bg

(θp∗i p
i
+ θq∗i q

i
− θ

p∗
i pi − θ

q∗
i qi) +

∑
k∈C

ϕ∗
k(a

y⊤
k y + as⊤k s)

+
∑
i∈Bg

ciyi −
∑
i∈B

(γ∗
i
vi − γ∗

i vi) +
∑
k∈L

δ∗k Sk −
∑
i∈B

(γ∗
i − γ∗

i
)(zei + zfi )−

∑
k∈L

δ∗k(w
sr

k + wsc

k ) + ρ∗

By Constraints (9) and (10) and since all coefficients θ
p∗
i , θp∗i , θ

q∗
i , θq∗i are non-negative, we get:

∆ = ⟨C, yy⊤⟩+ ⟨d(δ
′∗), ss⊤⟩+ ⟨

∑
k∈C

ϕ∗
kAk + d(γ

′∗), xx⊤⟩ −
∑
i∈Bg

(θp∗i pi + θq∗i qi − θ
p∗
i pi − θ

q∗
i qi) +

∑
k∈C

ϕ∗
k(a

y⊤
k y + as⊤k s)

+
∑
i∈Bg

ciyi +
∑
i∈B

(
γ∗
i (vi − zei − zfi ) + γ∗

i
(zei + zfi − vi)

)
+

∑
k∈L

(
δ∗k(Sk − wsr

k − wsc

k ) + ρ∗

By Constraints (20) and (21) and and since all coefficients γ∗
i , γ

∗
i
, δ∗k are non-negative, we get:

∆ ≥ ⟨C, yy⊤⟩+ ⟨d(δ
′∗), ss⊤⟩+ ⟨

∑
k∈C

ϕ∗
kAk + d(γ

′∗), xx⊤⟩+ (θ − θ)⊤y +
∑
k∈C

ϕ∗
ka

y⊤
k y + c⊤y +

∑
k∈C

ϕ∗
ka

s⊤
k s+ ρ∗

∆ ≥ ⟨C, yy⊤⟩+ ⟨d(δ
′∗), ss⊤⟩+ ⟨

∑
k∈C

ϕ∗
kAk + d(γ

′∗), xx⊤⟩+ (θ − θ +
∑
k∈C

ϕ∗
ka

y
k + c)⊤y +

∑
k∈C

ϕ∗
ka

s⊤
k s+ ρ∗

∆ ≥


1

y

s

x



⊤

M


1

y

s

x


Finally, by Constraint (39)

∆ ≥ 0

□

In Corollary 3, we give a characterization of an optimal solution of (P ).

Corollary. If (OPF ) is feasible, an optimal solution (ϕ∗, γ∗ = (γ∗ − γ∗), δ∗) of (P ) can be computed

by solving (SDP ). In particular, ϕ∗ is the vector of optimal dual variables associated to Constraints (31),

γ∗, γ∗, the vectors of optimal dual variables associated to Constraints (32) and (33) respectively, and δ∗ the

vectors of optimal dual variables associated to Constraints (34) .

Proof. We know by Constraint (39) that (ϕ∗, γ∗ = (γ∗ − γ∗), δ∗) is feasible for (P ), and in the proof of

Theorem 3, we proved that the associated value of (P ) reaches v(SDP ). □
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The idea is now to perform a spatial branch-and-bound algorithm based on the relaxation (OPFϕ∗,γ∗,δ∗).

In our method, it is sufficient to solve (SDP ) once at the root node, then, in all other nodes, the computation

of the bound will be done by solving a QCQP. Usually, and as proposed in Chen et al. [2017]; Gopinath et al.

[2020], branch-and-bound algorithms that take advantage of the quality of the SDP bound, solve at each

node an SDP relaxation whose ranges on the variables are increasingly smaller. A fundamental difference

with our approach is that we solve a QCQP at each node, which is most often faster. To further strengthen

the value of the bound calculated at the intermediate nodes of the tree, we can add to our relaxation the

convex quadratic inequalities of the initial formulation. Finally, the quadratic convex relaxation we use in

our branch-and-bound is thus the following problem:

(OPF
∗
)



minhϕ∗,γ∗,δ∗(x, y, s, z, w)

s.t. (9)(10)(16)− (21)(26)− (30)

e2i + f2
i ≤ vi i ∈ B (43)

(srij)
2 + (scij)

2 ≤ Sij (i, j) ∈ L (44)

Note however that these Inequalities (43)–(44) will not tighten the bound at the root node, as they are already

considered in (SDP ). We sum up our global optimization algorithm Compact OPF (COPF) in Algorithm 1.

Algorithm 1 Solution algorithm COPF for exact solution of (OPF )

step 1: Solve (SDP ).

step 2: Deduce ϕ∗, γ∗′
, and δ∗.

step 3: Solve (OPF ) with a spatial B&B based on the quadratic convex relaxation (OPF
∗
) .

A practical advantage of our compact relaxation, in comparison to methods based on complete lineariza-

tion of the constraints, is that we only have to enforce 2(n+m) equalities, instead of (2(n+m))2, to prove

global optimality. Another contribution is that since any convex QCQP can be reformulated as a SOCP, it

means that our new method COPF allows to derive a SOCP relaxation that reaches the value of the semidefinite

rank relaxation.
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4. Numerical experiments

To evaluate our new method, we first compare it with the method RC-OPF which is also a method based

on a convex quadratic relaxation. As RC-OPF only supports a variant of problem OPF where the thermal line

limits are not considered, we evaluate in a first part COPF on this variant. Then, in a second part, we present

a comparison of COPF with the method SDP-BT Gopinath et al. [2020] on instances of problem (OPF ).

Experimental environment:

Our experiments were carried out on a server with 2 CPU Intel Xeon each of them having 12 cores and 2

threads of 2.5 GHz and 4 ∗ 16 GB of RAM using a Linux operating system. We used the semidefinite solver

Mosek ApS [2019] for solving the semidefinite programs. At each node of the spatial branch-and-bound, we

used the solver Mosek for solving the QCQP of method COPF, and the solver Cplex 12.9 for solving QP

of method RC-OPF. For computing feasible local solutions, we use Matpower Zimmerman & Murillo-Sánchez

[2020]; Zimmerman et al. [2011].

4.1. Results for instances without thermal line limits

In this section, we make a detailed comparison between methods COPF and RC-OPF Godard et al. [2019].

We start by outlining RC-OPF that applies to the following variant of (OPF ):

(OPF ′)



minh(y) =
∑
i∈Bg

(
Ci,iy

2
i + ciyi

)
s.t. ⟨Ak, xx

⊤⟩+ a⊤
k y = bk k ∈ C (45)

vi ≤ e2i + f2
i ≤ vi i ∈ B (46)

p
i
≤ pi ≤ pi i ∈ Bg

q
i
≤ qi ≤ qi i ∈ Bg

x = (e, f) ∈ (Rn,Rn), y = (p, q) ∈ (R|Bg|,R|Bg|)

where Constraints 45 are the compact form of the following set of constraints:

pi − pi = Gii(e
2
i + f2

i ) +
∑

j∈δ(i)

[
Gij(eiej + fifj)−Bij(eifj − ejfi)

]
i ∈ Bg

−pi = Gii(e
2
i + f2

i ) +
∑

j∈δ(i)

[
Gij(eiej + fifj)−Bij(eifj − ejfi)

]
i ∈ Bd

qi − qi = −Bii(e
2
i + f2

i ) +
∑

j∈δ(i)

[
−Bij(eiej + fifj)−Gij(eifj − ejfi)

]
i ∈ Bg

−qi = −Bii(e
2
i + f2

i ) +
∑

j∈δ(i)

[
−Bij(eiej + fifj)−Gij(eifj − ejfi)

]
i ∈ Bd

The basic idea is to introduce a matrix variable X ∈ S2n that model the products xx⊤. With these additional

variables, it is easy to linearize Constraints (45) and (46). Then, for a given semi-definite matrix M ∈ S+
2n,

we consider the parameterized convex objective function: hM (x, y,X) = h(y) + ⟨M,xx⊤ − X⟩. Obviously

function hM (x, y,X) = h(y) if equalities X = xx⊤ are satisfied. To build a family of convex relaxation of

(OPF − R), we relax the latter non-convex equalities with the McCormick envelopes (McCormick [1976]).
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Then, the idea is to compute a positive semi-definite matrix M∗ that maximizes the value of the obtained

convex relaxation. It is proven in Godard et al. [2019] thatM∗ can be deduced from the optimal dual variables

of the rank relaxation of (OPF − R). In particular, by denoting ϕ∗ and γ∗ the dual optimal variables of

Constraints (45) and (46), respectively, M∗ =
∑
k∈C

ϕ∗
kAk + d(γ

′∗). Finally, we obtain the following quadratic

convex relaxation:

(OPF
′∗)



min fM∗(x, y,X) =
∑
i∈Bg

(
Ciip

2
i + cipi

)
+ ⟨

∑
r∈C

ϕ∗
kAk + d(γ

′∗), xx⊤ −X⟩

s.t. ⟨Ak, X⟩+ a⊤k y = bk k ∈ C

vi ≤ Xii +Xi+n,i+n ≤ vi i ∈ B

Xij ≤ uixj + ℓjxi − uiℓj (i, j) ∈ B2

Xij ≤ ℓixj + ujxi − ℓiuj (i, j) ∈ B2

Xij ≥ uixj + ujxi − uiuj (i, j) ∈ B2

Xij ≥ ℓixj + ℓjxi − ℓiℓj (i, j) ∈ B2

x = (e, f) ∈ R2n, y = (p, q) ∈ R2|Bg|, X ∈ S2n

As in method COPF, we have the property that the optimal value of (OPF
′∗) reaches the optimal value of

the rank relaxation of (OPF ′). However, the two convex relaxations differ both by their sizes and structures.

Indeed, in method RC-OPF, we build a linearly constrained quadratic program with O(n2) variables and

constraints, while in method COPF, we compute a quadratically constrained quadratic program with only

O(n) variables and constraints.

In our experiences, we considered medium-sized instances of power networks having 3 to 300 buses,

without thermal line limits. We report in Table 1 the characteristics of each instance: its Name, and the

number of Buses, Generators, and Lines of the considered power network. We indicate in Column Opt the

best known solution value of each instance. Column |(y, x)| specifies the number of variables of each instance.
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Name Buses Generators Lines Opt |(y, x)|
WB2 typ 2 1 1 9.06 6
3 lmbd typ 3 3 3 5 694.54 12
WB5 typ 5 2 6 13.78 14
5 pjm typ 5 5 5 14 997.04 20
6ww typ 6 3 11 3 126.31 18
14 ieee typ 14 5 20 2 178.08 38
24 ieee rts typ 24 33 38 63 352.21 114
30 as typ 30 6 41 801.55 72
30 ieee typ 30 6 41 6 592.95 72
39 epri typ 39 10 46 133 801.71 98
57 ieee typ 57 7 80 37 589.34 128
73 ieee rts typ 73 99 120 189 764.08 344
89 pegase typ 89 12 210 106 697.06 202
118 ieee typ 118 54 186 96 881.51 344
162 ieee dtc typ 162 12 284 84 785.01 348
179 goc typ 179 29 263 750 173.90 416
200 activ typ 200 38 245 27 557.57 476
240 pserc typ 240 143 448 3 223 503.88 766
300 ieee typ 300 69 411 546 890.15 738

3 lmbd api 3 3 3 10 077.59 12
5 pjm api 5 5 5 73 253.27 20
14 ieee api 14 5 20 5 688.57 38
24 ieee rts api 24 33 38 104 439.96 114
30 as api 30 6 41 2 770.30 72
30 ieee api 30 6 41 15 007.92 72
39 epri api 39 10 46 237 200.66 98
57 ieee api 57 7 80 49 290.36 128
73 ieee rts api 73 99 120 366 984.79 344
118 ieee api 118 54 186 167 810.79 344
162 ieee dtc api 162 12 284 109 391.13 348
179 goc api 179 29 263 1 670 159.94 416
200 activ api 200 38 245 26 129.06 476
300 ieee api 300 69 411 678 486.38 738

Table 1: Characteristics of the considered instances of PG-lib library.

To compare the performances of methods COPF, RC-OPF, and the solver Baron 19.3.24, we use a perfor-

mance profile (see Dolan & Moré [1986]) of the CPU times. A performance profile plots one curve for each

solver considered. Each point of a curve gives, for a given factor τ , the proportion of instances whose CPU

time was at most τ times greater than the fastest solver. In particular, for τ = 1, we have the proportion

of instances on which the solver was the fastest. More precisely, for each instance i and each solver s, we

denote by tis the time for solving instance i by solver s, and we define the performance ratio as ris =
tis

min
s

tis
.

Let N be the total number of instances considered, an overall assessment of the performance P ∈ [0, 1] of

solver s for a given τ is given by P (ris ≤ τ) = 1
N ∗ number of instance such that ris ≤ τ . In Figure 1, we

present the performance profile of the CPU times for methods COPF, RC-OPF, and the solver Baron 19.3.24

of the instances described in Table 1. We observe that COPF and RC-OPF significantly outperform the solver

Baron. In fact Baron solves to optimality only 6 instances out of the 33 considered, the largest of which

is pglib opf case14 ieee. The two other approaches are more efficient, since they solve within 1 hours of

CPU time, 18 instances for RC-OPF and 23 for COPF. Moreover, this profile shows that COPF is faster than
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RC-OPF for these instances.

Figure 1: Performance profile of the CPU time for networks with 2 to 300 buses (time limit 1 hour - optimality threshold
ϵ = 10−5 ).

Finally, we present in Table 2, a detailed comparison between methods COPF and RC-OPF,where each

line corresponds to one instance. Column Gap-SDP : =

∣∣∣∣Opt− SDP

Opt

∣∣∣∣ ∗ 100, is the initial gap at the root

node of the branch-and-bound, where SDP is the optimal value of the rank relaxation of (OPF − R), and

Opt its best known solution value. Columns #vars report the number of auxiliary variables in COPF or in

RC-OPF. This is also the number of non-convex equalities to force during the spatial branch-and-bound of

each method. Columns Tm report the gap obtained after running the branch-and-bound during T minutes.

Note that T = 60 minutes corresponds the time limit. If the instance is solved in less than T minutes, we

report between brackets the total CPU time in seconds to solve the instance. If the value is in bold, it means

that it is faster, or that it ends with a better gap after 60 minutes of CPU time. Finally, Column Nodes is

the number of nodes visited by the branch-and-bound.

A first observation concerns the quality of the initial gap for 15 instances out of the 33 considered that

confirms the strength of the rank relaxation. For these instances, the results of the two approaches are

similar, even if COPF is a bit faster with a CPU time that is reduced by a factor 1.34 on average. On the other

hand, these experiments clearly show that the exact resolution of the instances where the gap is non-zero

remains very difficult. In fact, during its branch-and-bound, RC-OPF does not decrease the lower bound,

despite a large number of explored nodes. This is not the case for COPF, which, with a much smaller number

of nodes, slightly increases the lower bound over the course of the branch-and-bound, even for the largest

instances. This is because the number of auxiliary variables and relaxed equalities zi = x2
i is strongly reduced

in COPF (by a factor 4 on average). Let us finally mention that the reformulation time is (always less than 1

minute) significantly shorter than the global resolution time.
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Instance COPF RC-OPF

Name Gap SDP #vars 15m 30m 60m Nodes #vars 15m 15m 15m Nodes

WB2 typ 1.947 4 (7s) 27 8 1.947 1.947 1.947 92939
3 lmbd typ 0.000 6 (4s) 1 18 (5s) 1
WB5 typ 28.094 10 11.8 (1197s) 9133 34 28.094 28.094 28.094 138399
5 pjm typ 0.000 10 (4s) 1 34 (6s) 1
6ww typ 0.000 12 (3s) 1 56 (5s) 1
14 ieee typ 0.000 28 (3s) 1 108 (5s) 1
24 ieee rts typ 0.012 48 (7s) 39 184 (63s) 25
30 as typ 0.000 60 (6s) 1 224 (10s) 7
30 ieee typ 0.000 60 (4s) 1 224 (4s) 1
39 epri typ 0.000 78 (3s) 1 262 (6s) 1
57 ieee typ 0.003 114 0.003 0.003 0.003 9191 426 0.003 0.003 0.003 691
73 ieee rts typ 0.012 146 (489s) 603 578 0.012 0.012 0.012 897
89 pegase typ 0.000 178 (5s) 1 1002 (6s) 1
118 ieee typ 0.005 236 0.005 0.005 0.005 1823 952 0.005 0.005 0.005 1105
162 ieee dtc typ 1.889 324 1.888 1.888 1.888 1091 1444 1.889 1.889 1.889 909
179 goc typ 0.036 358 0.035 0.035 0.035 857 1246 0.036 0.036 0.036 445
200 activ typ 0.000 400 (18s) 1 1380 (23s) 1
240 pserc typ 0.270 480 0.269 0.269 0.269 385 1872 0.270 0.270 0.270 1363
300 ieee typ 0.329 600 0.283 0.283 0.283 191 2236 0.329 0.329 0.329 357
3 lmbd api 0.000 6 (3s) 1 18 (5s) 1
5 pjm api 0.000 10 (3s) 1 34 (6s) 1
14 ieee api 0.000 28 (3s) 1 108 (5s) 1
24 ieee rts api 0.050 48 (4s) 9 184 0.050 0.050 0.050 58237
30 as api 0.026 60 0.025 0.025 0.024 26513 224 0.026 0.026 0.026 37482
30 ieee api 0.000 60 (3s) 1 224 (5s) 1
39 epri api 0.000 78 (3s) 1 262 (7s) 1
57 ieee api 0.003 114 0.003 0.003 0.003 8919 426 0.003 0.003 0.003 709
73 ieee rts api 0.032 146 0.011 (1688s) 1997 578 0.032 0.032 0.032 635
118 ieee api 0.000 236 (8s) 1 952 (9s) 1
162 ieee dtc api 0.067 324 0.064 0.064 0.064 1105 1444 0.067 0.067 0.067 563
179 goc api 2.024 358 2.020 2.020 2.020 785 1246 2.024 2.024 2.024 625
200 activ api 0.000 400 (22s) 1 1380 (25s) 1
300 ieee api 0.001 600 (52s) 1 2236 (69s) 1

Table 2: Initial gap, Sizes, CPU times, Final gaps, and Nodes for methods COPF and RC-OPF (time limit 1 hour - optimality
threshold ϵ = 10−5 )

4.2. Results for instances including thermal line limits

We now evaluate the performances of COPF on instances of (OPF ) and compare it with the method

SDP-BT Gopinath et al. [2020]. This approach solves (OPF ) to global optimality with an iterative algorithm.

At each iteration, problem (SDP ) strengthened by RLT inequalities is first solved using the solver Mosek.

Then, to reduce the ranges of the variables, they solve up to T = 576 SDP Bound Tightening problems in

parallel. The loop ends either when all variables are fixed, or when the number of iteration reaches a threshold

that is set to 100, or when the current gap is smaller than ϵ = 10−2. It is important to note that for method

COPF, each node is evaluated in a sequential mode. Thus, a rigorous comparison of the two methods would

require running the algorithm of Gopinath et al. [2020] algorithm with T = 1.

We present in Table 3 the results for instances of (OPF ) having 3 to 200 buses. The results of method

SDP-BT are taken from Gopinath et al. [2020]. Each line corresponds to one instance. Column Time (s)

is the total CPU time in seconds for solving the instance. If it is not solved within the time limit of 1800
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seconds, we report between brackets the final gap =

∣∣∣∣Opt− LB

Opt

∣∣∣∣∗100 where LB is the lower bound obtained

after 1800 seconds of CPU time, and Opt its best known solution value. Columns Iterations and Nodes

report the number of iterations in the loop of SDP-BT, and of nodes in the b&b of COPF, respectively. Finally,

Column Ratio is the ratio between the time of COPF and that of SDP-BT, it is in bold if it is smaller than

576. For this experiences, we use the same optimality threshold ϵ = 10−2 than in Gopinath et al. [2020].

A first observation is that SDP-BT is able to reduce the gap of all the considered instances to less than 1%

within the time limit, while method COPF reduces it for 21 instances out of 26 to the optimality threshold.

More precisely, for these 21 instances, SDP-BT takes on average 2 seconds and COPF 44 seconds to reach a

gap smaller than ϵ, this means that SDP-BT is on average 22 time faster than COPF. Recall that the results

of SDP-BT reported in Table 3, corresponds to a parallel implementation, carried out on 576 threads. In

that context, it is hard to make a fair comparison of the two methods. Two remarks are in order. First,

since COPF is only 22 slower than SDP-BT, it can be considered competitive with SDP-BT. Second, including

Bound-Tightening techniques to COPF should probably helps it to converge faster to an optimal solution.

SDP-BT Gopinath et al. [2020] COPF

Name Time (s) Iterations Time (s) Nodes Ratio

3 lmbd typ 0.03 0 5 0 167
5 pjm typ 0.05 0 316 6475 6320
14 ieee typ 0.19 0 5 0 26
24 ieee rts typ 0.31 0 7 0 23
30 as typ 0.37 0 6 0 16
30 ieee typ 0.27 0 6 0 22
39 epri typ 0.52 0 7 0 13
57 ieee typ 1.07 0 9 0 8
73 ieee rts typ 1.55 0 27 0 17
89 pegase typ 9.39 0 57 0 6
118 ieee typ 7.07 0 66 0 9
162 ieee dtc typ 773.94 1 (1.78%) 35
179 goc typ 3.57 0 102 0 29

3 lmbd api 0.04 0 109 2227 2725
5 pjm api 0.07 0 6 0 86
14 ieee api 0.17 0 6 0 35
24 ieee rts api 17.38 1 (3.08%) 3929
30 as api 0.28 0 9 1 32
30 ieee api 0.44 0 6 0 14
39 epri api 0.35 0 9 0 26
57 ieee api 0.99 0 11 0 11
73 ieee rts api 67.71 1 (5.66%) 212
118 ieee api 408.67 11 (7.83%) 23
162 ieee dtc api 1111.21 1 (1.52%) 0
179 goc api 6.23 0 112 0 18

Table 3: Comparison of the CPU times of methods COPF and SDP-BT (time limit 1800s - optimality threshold ϵ = 10−2)
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5. Conclusion

We consider the OPF problem that determines the power production at each bus of an electric network

minimizing a production cost. In this paper, we introduce a global optimisation algorithm that is based on

a new quadratically constrained quadratic relaxation. This relaxation is compact in the sense that it has

only O(n + m) auxiliary variables and constraints, where n is the number of buses of the network, and m

the number of transmission lines. We moreover prove that our quadratic relaxation has the same optimal

value as the rank relaxation. Finally, to solve (OPF ) to global optimality, we perform a spatial branch-

and-bound algorithm based on our new quadratic convex relaxation. Another advantage of our approach is

that to prove global optimality, we have a reduced number of non-convex equalities to force into spatial the

branch-and-bound. We report computational results on instances of the literature. These results show that

this new approach is more efficient than the method RC-OPF, and competitive with state-of-the-art methods.

A future work consists in using Bound Tightening Techniques to further improve the behaviour of COPF on

the most difficult instances.
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