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Abstract

In this paper, we consider the Optimal Power Flow (OPF) problem which consists in determining the power

production at each bus of an electric network by minimizing the production cost. Our contribution is an

exact solution algorithm for the OPF problem. It consists in a spatial branch-and-bound algorithm based

on a compact quadratically-constrained convex relaxation. It is computed by solving the semidefinite rank

relaxation of OPF once at the root node of the algorithm. An important result is that the optimal value of our

compact relaxation is equal to the rank relaxation value. Then, at every sub-nodes of our branch-and-bound,

the lower bound is obtained by solving a quadratic convex problem instead of an SDP. Another contribution

is that we add only O(n+m) variables that model the squares of the initial variables, where n is the number

of buses in the power system, and m the number of transmission lines to construct our relaxation. Then, since

the relations between the initial and auxiliary variables are non-convex, we relax them to get a quadratic

convex relaxation. Finally, in our branch-and-bound algorithm, we only have to force a reduced number of

equalities to prove global optimality. This quadratic convex relaxation approach is here tailored to the OPF

problem, but it can address any application whose formulation is a quadratic optimization problem subject

to quadratic equalities and ring constraints. Our first experiments on instances of the OPF problem show

that our new algorithm Compact OPF (COPF) is more efficient than the standard solvers and other quadratic

convex relaxation based methods we compare it with.

Key words: Global optimization, Optimal Power Flow, Quadratic Convex Relaxation, Semidefinite

programming, Quadratically constrained Quadratic Programming
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1. Presentation of the Optimal Power Flow problem

The class of power system optimization problems known as Optimal Power Flow (OPF) is a family of

applications of constrained nonlinear optimization that aims to determine the power production at different

buses of an electric network by an minimizing objective function. Each of these optimization problems

involves power flow equations that are generally described by Ohm’s and Kirchhoff’s laws. As reflected in

recent surveys (Skolfield & Escobedo [2022]; Frank & Rebennack [2016]), the links between the fields of power

system engineering and operations research have strengthened in recent years, and OPF is now a problem

widely studied by both communities. Several OPF variants are common in both industry and research.

In particular, it can include additional constraints, such as those due to Prohibited Operating Zones (POZ)

inducing discontinuity in the formulations (see Pinheiro et al. [2022]). Another variant includes power system

contingency constraints that take into account an event disabling one or more generators or power system

transmission lines. Most approaches that deal with this case are heuristic, such as Brown & Moreno-Centeno

[2023]. Another closely related problem is the Unit Commitment (UC) which determines the activation of

production units so that total operating costs are minimized. It is modeled as a large-scale, multi-period,

non-linear optimization problem. This problem in its deterministic form can be handled by branch-and-cut

approaches (Zheng et al. [2016]), or in an uncertain setting by chance constraints programming (Guo et al.

[2021]). Finally, with the introduction of renewable energy sources, other extensions address the network

reconfiguration problem (see for instance Cavalheiro et al. [2018]). In practice, almost all OPF problems are

solved using a linear approximation of the power flow, which can be significantly inaccurate. The search for

reliable OPF solution methods therefore remains extremely relevant to the power systems community.

In this paper, we consider the OPF problem that minimizes a production cost. The electrical transmission

network is modeled by a mutli-graph G = (B,L), where each network point belongs to the set B of nodes (i.e

the set of buses), and their connections (i.e. the set of transmission lines) are modeled by the set of arcs L.

Every line is represented by two anti-parallel arcs, and L is partitioned in two sets L0, L1, with |L0| = |L1|.

We denote by n = |B| the number of buses, and m = |L| the number of lines. We assume that there is an

electric demand at each node also called load. We distinguish two classes of nodes: B = Bg ∪ Bd, where Bg
is the set of nodes that generates and flows the power (the generator nodes), and Bd is the set of nodes that
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only flows the power (the consuming nodes). The aim of the OPF problem is to satisfy demand of all buses

while minimizing the total production costs of the generators such that the solution obeys Ohm’s law and

Kirchhoff’s law, and follows the physical limits of the electrical transmission network.

This problem is naturally formulated with complex variables. Let Y ∈ Cn×n be the admittance matrix,

which has component Yij = Gij + jBij for each line (i, j) of the network, and Gii = gii −
∑
i ̸=j

Gij , Bii =

bii −
∑
i ̸=j

Bij , where gii (resp. bii) is the shunt conductance (resp. susceptance) at bus i, and j2 = −1. Let

pi, qi be the real and reactive power output of the generator node i, and pi,qi the given real and reactive

power output of the load node i. For each line (i, j) ∈ L, we consider the complex power in the rectangular

form: Sij = srij + jscij , and for each bus i ∈ B, the complex voltage in the rectangular form: Vi = ei + jfi

where |Vi|2 = e2i +f2
i is the voltage magnitude, and we denote by δ(i) the set of adjacent nodes of bus i. With

the above notation, the OPF problem can be expressed by the well known rectangular formulation of Torres

& Quintana [1998]:

(OPF )



minh(p) =
∑
i∈Bg

(
Ciip

2
i + cipi

)
s.t.

pi − pi = gii(e
2
i + f2

i ) +
∑

j∈δ(i)

srij i ∈ Bg (1)

−pi = gii(e
2
i + f2

i ) +
∑

j∈δ(i)

srij i ∈ Bd (2)

qi − qi = −bii(e
2
i + f2

i ) +
∑

j∈δ(i)

scij i ∈ Bg (3)

−qi = −bii(e
2
i + f2

i ) +
∑

j∈δ(i)

scij i ∈ Bd (4)

srij = −Gij(e
2
i + f2

i ) +Gij(eiej + fifj)−Bij(eifj − ejfi) (i, j) ∈ L (5)

scij = Bij(e
2
i + f2

i )−Bij(eiej + fifj)−Gij(eifj − ejfi) (i, j) ∈ L (6)

vi ≤ e2i + f2
i ≤ vi i ∈ B (7)

(srij)
2 + (scij)

2 ≤ Sij (i, j) ∈ L (8)

p
i
≤ pi ≤ pi i ∈ Bg (9)

q
i
≤ qi ≤ qi i ∈ Bg (10)

(p, q) ∈ (R|Bg|,R|Bg|), (e, f) ∈ (Rn,Rn), (sr, sc) ∈ (Rm,Rm) (11)

where C ∈ S+
|Bg| is a diagonal and semidefinite matrix, c ∈ R|Bg| is the vector of linear costs of the power

injection at each generator node, (v,v) ∈ (Rn,Rn) are the bounds on the voltage magnitude, Sij the thermal

limit of line (i, j), and (p,p,q,q) ∈ (R|Bg|,R|Bg|,R|Bg|,R|Bg|). This formulation has 2(n+ |Bg|+m) variables,

2n quadratic equalities that enforces the active and reactive power balances at each node (Constraints (1)-

(4)), 2m quadratic equalities that define the power at each line (Constraints (5)-(6)), 2n quadratic inequalities
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that models the voltage magnitude (Constraints (7)), m quadratic inequalities that ensure the thermal line

limits (Constraints (8)), and 4|Bg| box constraints (Constraints (9)-(10)).

The first results of the literature for solving the OPF problem were focused on optimal local solutions,

mostly by adapting interior point methods, see, e.g., Wu et al. [1993]; Torres & Quintana [1998]; Jabr et al.

[2002]; Wang et al. [2007]; Bostan & Li [2003]. In the context of global optimization, one requires furthermore

to determine lower bounds on the OPF problem, and second-order cone programming (SOCP) or semidefinite

programming (SDP) relaxations were first used to calculate them (see Bai & Wei [2009]; Bai et al. [2008]; Jabr

[2006]; Lavaei & Low [2012]; Zohrizadeh et al. [2020a,b]). The most used SDP relaxation, also named the

rank relaxation, leads to very tight lower bounds on the OPF problem. In particular, it was proven in Gan

et al. [2015] that this relaxation is exact for a restricted class of problems and under some assumptions. In

the case where it is not exact, the rank relaxation can be used within a branch-and-cut algorithm to prove

global optimality, as it is done with a complex formulation of the OPF in Chen et al. [2017]. Several other

methods use semidefinite programming to reach global optimality. The approach called SDP-BT Gopinath

et al. [2020] tightened the rank relaxation with RLT inequalities, and then iterates with Optimality Based

Bound Tightening (OBBT) techniques until reaching either an optimality threshold or a maximum number of

iteration. Another approach is to strength the rank relaxation following the ideas of the hierarchy of Lasserre

[2001] that can be applied to any polynomial optimisation problem . This approach was specialized in the

context of the OPF problem in Josz et al. [2015], and showed its efficiency to solve small-size problems. It was

also used in Molzahn & Hiskens [2015] to strengthen the lower bounds for larger problems. Unfortunately, in

practice, using interior point methods for solving large SDP relaxations, with increasing sizes at each rank

of the hierarchy, is intractable for large networks. Several specialized algorithms that exploit the sparsity of

power networks were thus proposed to solve the rank relaxation (see Jabr [2006, 2012]; Madani et al. [2015];

Molzahn & Hiskens [2015]; Molzahn et al. [2013]).

More recently, several cheaper computable convex relaxations were introduced for the OPF problem. For

instance, linear and quadratic envelopes for trigonometric functions in the polar formulation of the OPF

problem are constructed in Coffrin et al. [2016]; Coffrin et al. [2017]; Coffrin & Hentenryck [2014], and strong

SOCP relaxations were introduced in Kocuk et al. [2016, 2018]. These bounds, that can be computed in

polynomial time, may then be used within a spatial branch-and-bound framework to solve the OPF problem

to global optimality. Another interesting work presented in Lu et al. [2018] introduces a tight piecewise

convex relaxation of the (OPF ) problem which is then embedded into an adaptive multivariate partitioning

algorithm for globally solving it.

Exact algorithms have also been proposed for a variant of problem (OPF ) where the thermal line limits

(Constraints (8)) are not considered. In this case, variables srij and scij can be replaced in Constraints (1)-(4)

by their expression given by Constraints (5)-(6), which reduce the total number of variables and constraints of

the formulation. In Phan [2012], a sub-gradient algorithm is proposed to solve the Lagrangian dual of (OPF ),

which is used as a bound in a global solution approach. In Foster [2013], the spatial branch-and-bound is
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based on a piecewise linear approximation. Another exact solution approach called RC-OPF was proposed

in Godard et al. [2019], that is a specialization of the Mixed-Integer Quadratic Convex Reformulation (MIQCR)

approach proposed in Elloumi & Lambert [2019] that applies to general quadratic problems. It consists in

a branch-and-bound algorithm based on a quadratic convex relaxation of the OPF problem. This convex

relaxation, whose value reaches that of the rank relaxation, is computed in a pre-processing step by solving

the rank relaxation. Then, at each node of the branch-and-bound tree, the bound is obtained by solving a

convex problem with a quadratic convex objective function and linear constraints. The size of the relaxation

is a quadratic function of the number of initial variables, since it relies on the introduction of one additional

variable for each possible product of the original variables. Unfortunately, the spatial branch-and-bound

relies on the relaxation of a large number of non-convex equalities and, as illustrated in Section 5, in practice

it can be very time consuming even for medium sized-instances.

In this work, we propose a two-stage algorithm for globally solving (OPF ) following the same steps as

the method RC-OPF of Godard et al. [2019], or the more general MIQCR approaches (see Billionnet et al. [2012,

2016]; Elloumi & Lambert [2019]). The first step consists in computing a quadratic convex relaxation that

reaches the value of the rank relaxation, and the second one in performing a spatial branch-and-bound based

on the latter relaxation. The difference with the approaches of the literature is that we introduce a quadratic

convex relaxation of linear size with respect to the size of the considered problem while previous approaches

had a quadratic size. For this purpose, we define a family of quadratic relaxations with quadratic constraints

instead of the linear constraints used in RC-OPF. The idea is to rewrite the problem (OPF ) into a parametric

family of equivalent problems, where the objective function and the initial constraints are convex. To do so,

we use quadratic terms that vanish on the feasible domain weighted by parameters together with auxiliary

variables that model the squares of the initial variables.The family of convex relaxations is then obtained

by replacing the relations between auxiliary and initial variables by a convex quadratic envelope introduced

in Lu et al. [2018]. Then, we propose to compute the best parameters that maximize the value of the

associated bound. We first prove that these parameters can be computed from the optimal dual solutions

of the semidefinite rank relaxation, and we then show that the optimal value of the resulting relaxation

reaches the value of the rank relaxation. Finally, we perform a spatial branch-and-bound based on our

compact relaxation whose optimal value is a lower bound valid not only at the root node, but also in all

sub-nodes of the tree. Our main contribution is thus an exact solution algorithm for problem (OPF ), called

Compact Quadratic Convex Reformulation (COPF), that relies on a quadratic convex relaxation whose

size is a linear function of the number of initial variables. An additional contribution is that COPF addresses

the thermal line limits (Constraints (8)) which was not possible with the RC-OPF method since the size of

resulting quadratic relaxation makes the method numerically impractical.

From a more general point of view, a key advantage of method COPF over traditional convexifications

(linearizations or convex quadratic relaxations) is that in our spatial branch-and-bound we need to force a

significantly smaller number of non-convex equalities to prove global optimality. This is because we add a
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smaller number of auxiliary variables that model the squares of the initial variables. As a consequence our

branch-and-bound can be faster than those based on complete linearization. Finally, observe that even if

our new method is in this paper specialized for solving the OPF problem, the results proved for the first

phase of the algorithm do not rely on this application, and they are therefore valid for a more generic class

of problems that are quadratic optimization problems subject to quadratic equalities and ring constraints.

The paper is organized as follows. We start by describing the first phase of algorithm COPF in Sections 2

and 3. First, we introduce a new family of compact quadratic convex relaxations to (OPF ). Further, in

Section 3, we show how to calculate the tightest quadratic convex relaxation within this family. Then, in

Section 4, we describe the main features of our spatial branch-and-bound which constitutes the second phase

of the algorithm. Finally, in Section 5, after by a brief recall of method RC-OPF and of the variant it applies,

we present a computational comparison of the two approaches. Then, we evaluate COPF on instances of

problem (OPF ) and we compare it with the method SDP-BT of Gopinath et al. [2020]. Section 6 draws a

conclusion.

2. Building a compact family of quadratic convex relaxations

In this section, we introduce a new family of quadratic convex relaxations to (OPF ). We start by rewriting

the constraints as a convex set by introducing auxiliary variables and non-convex constraints. Since our aim

is to build a relaxation that leads to a tight lower bound, we then rewrite the objective function as a

parameterized function. For this, the basic idea is to add to the original objective function h(y), quadratic

terms that vanish on the new convex set and that are weighted by vector parameters. We will further carefully

choose the values of these parameters such that i) our relaxation is convex, and ii) the optimal value of the

relaxation is as large as possible.

2.1. Convexification of the constraints

To build a compact family of quadratic convex relaxations, we start by observing that the structure of

the formulation (OPF ) is specific. First, only variables p are involved into the objective function. Moreover,

the matrix C is diagonal and positive semidefinite, hence the objective function is convex and separable.

It follows that the non convexities only come from the quadratic constraints (1)-(7). Moreover, in the

constraints, variables e and f are only involved into quadratic forms, variables p and q only in linear forms,

and variables sr and sc appear both in linear and quadratic forms.

Starting from the latter observations, our idea is to build an equivalent problem to (OPF ), where the

original constraints are convexified thanks to 2(n + m) auxiliary variables z = (ze, zf ) ∈ R2n, and w =
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(wsr , wsc) ∈ R2m that model the squares of the initial variables e, f , sr, and sc, respectively:

zei = e2i i ∈ B (12)

zfi = f2
i i ∈ B (13)

wsr

ij = (srij)
2 (i, j) ∈ L (14)

wsc

ij = (scij)
2 (i, j) ∈ L (15)

Using these new variables it is easy to rewrite Constraints (1)-(4), (7) and (8) into a linear form, and we get:

pi − pi = gii(z
e
i + zfi ) +

∑
j∈δ(i)

srij i ∈ Bg (16)

−pi = gii(z
e
i + zfi ) +

∑
j∈δ(i)

srij i ∈ Bd (17)

qi − qi = −bii(z
e
i + zfi ) +

∑
j∈δ(i)

scij i ∈ Bg (18)

−qi = −bii(z
e
i + zfi ) +

∑
j∈δ(i)

scij i ∈ Bd (19)

vi ≤ zei + zfi ≤ vi i ∈ B (20)

wsr

ij + wsc

ij ≤ Sij (i, j) ∈ L (21)

Note that even if the original constraints (8) are already convex, and since we have introduced auxiliary

variables w, it is easy linearize them obtaining Constraints (21). These new constraints are obviously re-

dundant with constraints (8), but we will see in the next section that they are necessary to ensure that the

optimal value of our relaxation reaches the value of the rank relaxation.

We now focus on the convexification of the quadratic equality constraints (5)-(6). For this, our first step

is to transform each equality into two inequalities. We thus introduce for all (i, j) ∈ L, Constraints (22)-(25)

that obviously describe the same feasible set as Constraints (5)-(6):

srij +Gij(e
2
i + f2

i )−Gij(eiej + fifj) +Bij(eifj − ejfi) ≤ 0 (i, j) ∈ L (22)

−srij −Gij(e
2
i + f2

i ) +Gij(eiej + fifj)−Bij(eifj − ejfi) ≤ 0 (i, j) ∈ L (23)

scij −Bij(e
2
i + f2

i ) +Bij(eiej + fifj) +Gij(eifj − ejfi) ≤ 0 (i, j) ∈ L (24)

−scij +Bij(e
2
i + f2

i )−Bij(eiej + fifj)−Gij(eifj − ejfi) ≤ 0 (i, j) ∈ L (25)

Then, recall that Inequalities (22)-(25) are only quadratic on variables e and f . To make them convex, we

apply the smallest eigenvalue method introduced in Hammer & Rubin [1970]. Denote by Ar
ij (resp. Ac

ij) the

sub-matrix of the Hessian of the (i, j)th Constraints (5) (resp. (6)) that corresponds to the quadratic terms

involving variables e and f only. Let λ(Ar
ij) be the smallest eigenvalue of matrix Ar

ij , and d(λ(Ar
ij)) be the

diagonal matrix where each diagonal term equals λ(Ar
ij). The basic idea for rewriting Inequalities (22)-(25)

as convex functions is to add to them weighted quadratic terms that vanish when Constraints (12)-(13) are

satisfied. By choosing suitable parameters, we can make the Hessian matrix positive semidefinite, while

preserving the value of the constraint on the feasible domain.
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More precisely, we add to each inequality the quadratic term −λ(Ar
ij)

∑
k∈B

(e2k + f2
k − zek − zfk ) (resp.

−λ(−Ar
ij)

∑
k∈B

(e2k + f2
k − zek− zfk )), and the Hessian matrix of the constraint becomes

[
Ar

ij −d(λ(Ar
ij))

]
(resp.[

−Ar
ij −d(λ(−Ar

ij))
]
). Since Ar

ij is a symmetric matrix with real eigenvalues, adding −λ(Ar
ij) on each of its

diagonal term shifts the value of its smallest eigenvalue by the same quantity, and thus turns it non-negative.

As a consequence, the new Hessian is a positive semidefinite matrix and the resulting constraint is convex.

Moreover, the value of the convexified function remains the same as soon as for all k ∈ B, e2k+f2
k−zek−z

f
k = 0,

or equivalently when Equalities (12)-(13) are satisfied. Applying the same process to Constraints (24)-(25),

we obtain the set S of convex constraints:

S =



srij +Gij(e
2
i + f2

i )−Gij(eiej + fifj) +Bij(eifj − ejfi)− λ(Ar
ij)

∑
k∈B

(
e2k + f2

k − zek − zfk

)
≤ 0 (i, j) ∈ L

−srij −Gij(e
2
i + f2

i ) +Gij(eiej + fifj)−Bij(eifj − ejfi)− λ(−Ar
ij)

∑
k∈B

(
e2k + f2

k − zek − zfk

)
≤ 0 (i, j) ∈ L

scij −Bij(e
2
i + f2

i ) +Bij(eiej + fifj) +Gij(eifj − ejfi)− λ(Ac
ij)

∑
k∈B

(
e2k + f2

k − zek − zfk

)
≤ 0 (i, j) ∈ L

−scij +Bij(e
2
i + f2

i )−Bij(eiej + fifj)−Gij(eifj − ejfi)− λ(−Ac
ij)

∑
k∈B

(
e2k + f2

k − zek − zfk

)
≤ 0 (i, j) ∈ L

By replacing Constraints (1)-(8) by Constraints (12)-(21), together with set S in (OPF ), we then obtain

an equivalent problem to (OPF ) where the initial constraints are rewritten as convex functions.

2.2. A new parameterized objective function

In the following, we first rewrite the convex objective function h(y) as a parameterized function that has

the same value as h(y) on the feasible domain of our convex relaxation. To do this, we simply add weighted

quadratic functions that vanish on the feasible domain. Our basic idea, is then to compute parameters that

give the larger possible objective function value, in order to get a tight relaxation, and in particular we aim

at reaching the value of the rank relaxation of (OPF ).

We now focus on the rewriting of the objective function into a parameterized convex function. For

simplicity, we use in the rest of the paper the notation x = (e, f) ∈ R2n, s = (sr, sc) ∈ R2m, and y = (p, q) ∈

R2|Bg|, to get the following compact notation of the initial equality constraints (1)-(6):

⟨Ak, xx
⊤⟩+ ay⊤k y + as⊤k s = bk k ∈ C

where C = (Bg,Bg,Bd,Bd,L,L), with |C| = 2(n+m), and ∀ k ∈ C, Ak ∈ S2n is the Hessian matrix of constraint

k (i.e. matrices Arg
k , Ard

k , Acg
k , Acd

k , Ar
k, and Ac

k for Constraints (1)-(6) respectively), (ayk, a
s
k) ∈ (R2|Bg|,R2m)

are the vectors of linear coefficients of constraint k, and b ∈ R2(n+m), where coefficient bk is the the right-hand

side of constraint k.
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We now introduce three vector parameters (ϕ, γ, δ) ∈ (R2(n+m),Rn,Rm), and we build the following

parameterized objective function:

hϕ,γ,δ(x, y, s, z, w) =h(y) +
∑
k∈C

(
ϕk(⟨Ak, xx

⊤⟩+ ay⊤k y + as⊤k s− bk)
)
+
∑
i∈B

γi

(
x2
i + x2

i+n − zi − zi+n

)
+

∑
(i,j)∈L

δij

(
(sij)

2 + (si+m,j+m)2 − wij − wi+m,j+m

)
where h(y) is the initial objective function, and we recall that for all i ∈ B, xi = ei, xi+n = fi, zi = zei ,

zi+n = zfi , and for all (i, j) ∈ L, sij = srij , si+m,j+m = scij , wij = wsr

ij , and wi+m,j+m = wsc

ij .

Observe that there exist parameters (ϕ, γ, δ) such that hϕ,γ,δ is a convex function. Indeed, as mentioned

above, function h(y) is convex and separable. Now, the two additional terms are linear in y, z and w,

separable in s, and quadratic in x. By taking ∀ k ∈ C, ϕ̄k = 0, and ∀i ∈ B, γ̄i ≥ 0, and ∀(i, j) ∈ L, δ̄ij ≥ 0,

the associated function hϕ̄,γ̄,δ̄(x, y, s, z, w) is obviously convex.

By denoting ∀k ∈ C, λk = λmin(Ak) and λ′
k = λmin(−Ak), we are now able to build (OPFϕ,γ,δ), a

compact parameterized family of equivalent formulations to (OPF ):

(OPFϕ,γ,δ)



minhϕ,γ,δ(x, y, s, z, w)

s.t.

(9)(10)(12)− (21)

⟨Ak, xx
⊤⟩+ ay⊤k y + as⊤k s− λk

2n∑
i=1

(x2
i − zi) ≤ bk k ∈ C (26)

⟨−Ak, xx
⊤⟩ − ay⊤k y − as⊤k s− λ′

k

2n∑
i=1

(x2
i − zi) ≤ −bk k ∈ C (27)

x = (e, f) ∈ R2n, s = (sr, sc) ∈ R2m, y = (p, q) ∈ R2|Bg| (28)

z = (ze, zf ) ∈ R2n, w = (wsr , wsc) ∈ R2m (29)

where Constraints (26)-(27) are Constraints of set S written with the compact notation. It is easy to see

that problem (OPFϕ,γ,δ) is equivalent to problem (OPF ), in the sense that any optimal solution from one is

an optimal solution from the other. Indeed, hϕ,γ,δ(x, y, s, z, w) = h(y) when Constraints (16)-(19), (26), (27)

and (12)-(15) are satisfied.

Since we can choose parameters (ϕ̄, γ̄, δ̄) such that the objective function hϕ̄,γ̄,δ̄ is a convex function, the

only constraints that remain non-convex are Constraints (12)-(15), i.e. z = x2 and w = s2. Thus, for given

parameters (ϕ̄, γ̄, δ̄) that make function hϕ̄,γ̄,δ̄ convex, we can derive a family of compact quadratic convex

relaxation of (OPFϕ,γ,δ) by relaxing the latter equalities into a convex set. For this, we need upper and

lower bounds on each variable xi and sij . For variables xi, some trivial initial bounds can easily be deduced

from Constraints (7), i. e. −
√
vi ≤ xi ≤

√
vi, and −

√
vi ≤ xi+n ≤

√
vi. We denote by (ℓ, u) ∈ (R2n,R2n)

these bounds (i.e. ℓ = (−
√
v,−
√
v) and u = (

√
v,
√
v)). To deduce bound for variables sij , we use

9



Constraints (8), i. e. −
√
Sij ≤ sij ≤

√
Sij , and we denote by (ℓ′, u′) ∈ (R2m,R2m) these bounds (i.e.

ℓ′ = (−
√
S,−
√
S) and u′ = (

√
S,
√
S)). Then, instead of using the complete linearization obtained by the

McCormicks envelopes (McCormick [1976]) to relax the non-convex equalities (12)-(15), we use its convex

hull representation already used in Lu et al. [2018]. More precisely, we first rewrite them into two equivalent

inequalities, and keep in our formulation the convex ones, i.e. z ≥ x2 and w ≥ s2. We thus use the following

a convex quadratic envelope:

D = (x, s, z, w)



zi ≤ (ui + ℓi)xi − uiℓi

zi ≥ x2
i

wij ≤ (u′
ij + ℓ′ij)sij − u′

ijℓ
′
ij

wij ≥ s2i

Finally, we get (OPFϕ,γ,δ), a compact family of quadratic convex relaxations to (OPF ):

(OPFϕ,γ,δ)


minhϕ,γ,δ(x, y, s, z, w)

s.t. (9)(10)(16)− (21)(26)− (29)

(x, s, z, w) ∈ D (30)

For any parameters ϕ, γ, and δ such that hϕ,γ,δ is a convex function, problem (OPFϕ,γ,δ) is a convex

QCQP and can thus be solved in polynomial time. Our aim is to embed it within a spatial branch-and-

bound algorithm. Performing such an algorithm highly depends on the quality of the bound at the root

node. Moreover, we know that for many instances of the OPF, the rank relaxation provides a tight lower

bound. This is why in the rest of the paper, we focus on the computation of a quadratic convex relaxation

whose value equals to the optimal value of the rank relaxation.

3. Computing a strong quadratic convex relaxation

We are now interested in the best parameters (ϕ∗, γ∗, δ∗) that maximize the optimal value of (OPFϕ,γ,δ)

while making the parameterized function hϕ,γ,δ convex. We prove that these best parameters can be deduced

from the dual optimal solution of the rank relaxation of (OPF ). For simplicity, we denote by γ′ = (γ, γ) ∈

R2n, and δ′ = (δ, δ) ∈ R2m. With this notation, we can rewrite function hϕ,γ,δ as follows:

hϕ,γ,δ′(x, y, s, z, w) =
∑
i∈Bg

(
Ciiy

2
i + ciyi

)
+ ⟨

∑
k∈C

ϕkAk + d(γ′), xx⊤⟩+ ⟨d(δ′), ss⊤⟩+
∑
k∈C

ϕk(a
y⊤
k y + as⊤

k s− bk)− γ
′⊤z − δ

′⊤w

where d(v) is the diagonal matrix of whose ith-diagonal coefficient equals vi. We formally pose the problem

we aim to solve as follows:

(P )



max
ϕ,γ,δ

v(OPFϕ,γ,δ)∑
k∈C

ϕkAk + d(γ′) ⪰ 0

d(δ′) ⪰ 0

γ′ = (γ, γ), δ′ = (δ, δ)

10



where v(OPFϕ,γ,δ) is the optimal value of problem (OPFϕ,γ,δ).

We state in Theorem 1 that the optimal value of (P ) equals the optimal value of the following the so-called

rank relaxation of (OPF ):

(SDP )



minh(Y, y) =
∑
i∈Bg

(
CiiYii + ciyi

)
s.t.

⟨Ak, X⟩+ ay⊤
k y + as⊤

k s = bk ∀k ∈ C (31)

Xii +Xi+n,i+n ≤ vi i ∈ B (32)

−Xii −Xi+n,i+n ≤ −vi i ∈ B (33)

Wk+1,k+1 +Wk+m+1,k+m+1 ≤ Sk k = (i, j) ∈ L (34)

p
i
≤ pi ≤ pi i ∈ Bg (35)

q
i
≤ qi ≤ qi i ∈ Bg (36) 1 y⊤ s⊤

y Y ⋆
s ⋆ W

 ⪰ 0 (37)

X ⪰ 0 (38)

y = (p, q) ∈ R2|Bg|, s ∈ R2m, (Y,X,W ) ∈ (S2|Bg|,S2n,S2m)

where Constraints (31) are the compact form of Constraints (1)-(6).



pi − pi = gii(Xii +Xi+n,i+n) +
∑

k=(i,j):j∈δ(i)

sk i ∈ Bg

−pi = gii(Xii +Xi+n,i+n) +
∑

k=(i,j):j∈δ(i)

sk i ∈ Bd

qi − qi = −bii(Xii +Xi+n,i+n) +
∑

k=(i,j):j∈δ(i)

sk+m i ∈ Bg

−qi = −bii(Xii +Xi+n,i+n) +
∑

k=(i,j):j∈δ(i)

sk+m i ∈ Bd

sk = −Gij(Xii +Xi+n,i+n) +Gij(Xij +Xi+n,j+n)−Bij(Xi,j+n −Xj,i+n) k = (i, j) ∈ L
sk+m = Bij(Xii +Xi+n,i+n)−Bij(Xij +Xi+n,j+n)−Gij(Xi,j+n −Xj,i+n) k = (i, j) ∈ L

Theorem 1 The optimal value of (P ) equals the optimal value of (SDP ).

Proof.

⋄ To prove that v(P ) ≤ v(SDP ), we show that for any feasible solution (ϕ̄, γ̄, δ̄) to (P ), we have v(OPF ϕ̄,γ̄,δ̄) ≤

v(SDP ), which in turn implies that v(P ) ≤ v(SDP ) since the right hand side is constant. Let (ȳ, s̄, Ȳ , X̄, W̄ )

be a feasible solution of (SDP ), and build the solution (x = 0, y = ȳ, s = s̄, z = D(X̄), w = D(W̄ )), where

D(M) is the vector composed of the diagonal terms of matrix M . We prove that: i) (x, y, s, z, w) is feasible

for (OPF ϕ̄,γ̄,δ̄), and ii) its objective value is smaller or equal than v(SDP ). Since both (OPF ϕ̄,γ̄,δ̄) and

(SDP ) are minimization problems, v(OPF ϕ̄,γ̄δ̄) ≤ v(SDP ) follows.

i) We show that (0, ȳ, s̄,D(X̄),D(W̄ )) is feasible for (OPF ϕ̄,γ̄,δ̄). Obviously, Constraints (9)-(10), and (16)-

(21) are satisfied. We now prove that Constraints (26), (27), and (30) are satisfied.

11



(a) Constraints (26). We start by observing that, since x = 0, Constraints (26) can be rewritten as

bk − ay⊤k ȳ − as⊤s̄− λk

2n∑
i=1

X̄ii ≥ 0, and by Constraints (31), we have:

bk − ay⊤k ȳ − as⊤s̄− λk

2n∑
i=1

X̄ii = ⟨Ak, X̄⟩ − λk

2n∑
i=1

X̄ii = ⟨Ak − diag(λk), X̄⟩ ≥ 0

by Constraint (38) and since Ak − diag(λk) ⪰ 0

(b) Constraints (27). Similarly, since x = 0, Constraints (27) can be rewritten as −bk + ay⊤k ȳ+ as⊤s̄−

λ′
k

2n∑
i=1

X̄ii, and with Constraints (31) we have:

−bk + ay⊤k ȳ + as⊤s̄− λ′
k

2n∑
i=1

X̄ii = ⟨−Ak, X̄⟩ − λ′
k

2n∑
i=1

X̄ii = ⟨−Ak − diag(λ′
k), X̄⟩ ≥ 0

by Constraints (38) and since −Ak − diag(λ′
k) ⪰ 0

(c) Constraints (30). Since x = 0, the set D becomes:{
X̄ii ≤ vi

X̄ii ≥ 0

Since X ⪰ 0, we have X̄ii ≥ 0. The first inequality comes from X̄i+n,i+n ≥ 0 and Constraints (32).

ii) Let us now compare the objective values of the two problems to show that v(OPF ϕ̄,γ̄,δ̄) ≤ v(SDP ).

Since x = 0, the objective function of (OPF ϕ̄,γ̄,δ̄) can be rewritten as:

hϕ̄,γ̄,δ̄(0, ȳ, s̄,D(X̄),D(W̄ )) =
∑
i∈Bg

(
Ciiȳ

2
i + ciȳi

)
+ ⟨d(δ̄′), s̄s̄⊤⟩+

∑
k∈C

ϕ̄k(a
y⊤
k ȳ + as⊤s̄− bk)− γ̄

′⊤D(X̄)− δ
′⊤D(W̄ )

We prove below that ∆ = hϕ̄,γ̄,δ̄(0, ȳ, s̄,D(X̄),D(W̄ ))− h(Ȳ , ȳ) ≤ 0

∆ =
∑
i∈Bg

(
Ciiȳ

2
i + ciȳi

)
+ ⟨d(δ̄′), s̄s̄⊤⟩+

∑
k∈C

ϕ̄k(a
y⊤
k ȳ + as⊤s̄− bk)− γ̄

′⊤D(X̄)− δ
′⊤D(W̄ )−

∑
i∈Bg

(
CiiȲii + ciȳi

)
∆ =

∑
i∈Bg

Cii(ȳ
2
i − Ȳii) + ⟨d(δ̄′), s̄s̄⊤⟩+

∑
k∈C

ϕ̄k(a
y⊤
k ȳ + as⊤s̄− bk)− γ̄

′⊤D(X̄)− δ
′⊤D(W̄ )

By constraints (31), and by definition of γ̄′ and δ̄′, we have:

∆ =
∑
i∈Bg

Cii(ȳ
2
i − Ȳii) + ⟨d(δ̄′), s̄s̄⊤⟩ −

∑
k∈C

ϕ̄k⟨Ak, X̄⟩ − ⟨d(γ̄′), X̄⟩ − ⟨d(δ̄′), W̄ ⟩

∆ =
∑
i∈Bg

Cii(ȳ
2
i − Ȳii) + ⟨d(δ̄′), s̄s̄⊤ − W̄ ⟩ − ⟨

∑
k∈C

ϕ̄kAk + d(γ̄′), X̄⟩

We claim that ∆ ≤ 0 since each of its 3 terms are non positive:

12



�

∑
i∈Bg

Cii(ȳ
2
i −Ȳii) ≤ 0. By Constraint (37), we know that matrix

 1 y⊤

y Y

 ⪰ 0, which implies that

all its 2 × 2 minors are non negative, and in particular, we have ∀i, Ȳii − ȳ2i ≥ 0. Since moreover

Cii ≥ 0, we get the result.

� ⟨d(δ̄′), s̄s̄⊤ − W̄ ⟩ =
2m∑
i=1

δ̄′i(s̄
2
i − W̄ii) ≤ 0. By Constraint (37), we have ∀i, W̄ii − s̄2i ≥ 0. Moreover,

by feasibility of (P ), we have d(δ̄′) ⪰ 0 and we get the result.

� −⟨
∑
k∈C

ϕ̄kAk + d(γ̄′), X̄⟩ ≤ 0. By Constraint (38), we have X ⪰ 0. Moreover, by feasibility of (P ),

we have
∑
k∈C

ϕ̄kAk + d(γ̄′) ⪰ 0 and we get the result.

⋄ Let us secondly prove that v(P ) ≥ v(SDP ). We suppose here that the original problem (OPF ) is feasible,
and by Proposition 1 of Godard et al. [2019], we know that strong duality holds. Let (D) be the dual of
(SDP ), under these hypothesis, we have v(SDP ) = v(D). To prove that v(P ) ≥ v(SDP ), we equivalently
prove that v(P ) ≥ v(D) where (D) is the dual of (SDP ):

(D)



max
∑
i∈Bg

(θpipi
+ θqiqi

− θ
p
ipi − θ

q
iqi) +

∑
i∈B

(γ
i
vi − γi vi)−

∑
k∈L

δk Sk −
∑
k∈C

ϕkbk − ρ

s.t.

M =



ρ 1
2
(c+ θ − θ +

∑
k∈C

ϕka
y
k)

⊤ (
∑
k∈C

ϕka
s
k)

⊤ 0⊤
2n

1
2
(c+ θ − θ +

∑
k∈C

ϕka
y
k) C 02|Bg|,2m 02|Bg|,2n∑

k∈C

ϕka
s
k 02m,2|Bg| d(δ′) 02m,2n

02n 02n,2|Bg| 02n,2m

∑
k∈C

ϕkAk + d(γ′)


⪰ 0 (39)

θ = (θ
p
, θ

q
), θ = (θp, θq), γ′ = ((γ − γ), (γ − γ)), δ′ = (δ, δ) (40)

C =

[
C 0|Bg|,|Bg|

0|Bg|,|Bg| 0|Bg|,|Bg|

]
∈ S2|Bg| (41)

c = (c,0|Bg|), ak = (ay
k, a

s
k) (42)

(ϕ, γ, γ, δ, θ
p
, θp, θ

q
, θq, ρ) ∈ (R|C|,Rn,Rn,Rm,R|Bg|,R|Bg|,R|Bg|,R|Bg|,R)

where ϕ, γ, γ, δ, (θ
p
, θp), (θ

q
, θq), ρ are the dual variables associated to Constraints (31)-(37) respectively. We

notice here that the dual variable ρ ∈ R is associated to the constraint which sets the value of the first diagonal

term of the matrix M to 1. We denote by 0n ( 0n,n respectively ) the n-dimensional (n × n-dimensional

resp.) vector (matrix resp. ) where each coefficient equals 0.

Problems (D) and (P ) are both maximization problems. To prove that v(P ) ≥ v(D), we start with an

optimal solution of (D), from which we build a feasible solution of (P ) whose objective value is greater than

v(D).

Let (ϕ∗, γ∗, γ∗, δ∗, θ
p∗
, θp∗, θ

q∗
, θq∗, ρ∗) be an optimal solution of (D), we build the following solution

(ϕ = ϕ∗, γ = (γ∗ − γ∗), δ = δ∗) that is obviously feasible for (P ), i.e.
∑
k∈C

ϕ∗
kAk + d(γ

′∗) ⪰ 0, and d(δ
′∗) ⪰ 0,

by Constraint (39). The objective value of this solution is equal to v(OPFϕ∗,γ∗−γ∗,δ∗). To prove that

v(OPFϕ∗,γ∗−γ∗,δ∗) ≥ v(D), we prove that for any feasible solution (x, y, s, z, w) of (OPFϕ∗,γ∗−γ∗,δ∗), the

associated objective value is not smaller than the optimal value of (D). Denote by ∆ the difference between
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the objective values, we prove below that ∆ ≥ 0.

∆ =
∑
i∈Bg

(
Ciiy

2
i + ciyi

)
+ ⟨d(δ

′∗), ss⊤⟩+ ⟨
∑
k∈C

ϕ∗
kAk + d(γ

′∗), xx⊤⟩+
∑
k∈C

ϕ∗
k(a

y⊤
k y + as⊤k s− bk)− γ

′∗⊤z − δ
′∗⊤w

−
∑
i∈Bg

(θp∗i p
i
+ θq∗i q

i
− θ

p∗
i pi − θ

q∗
i qi)−

∑
i∈B

(γ∗
i
vi − γ∗

i vi) +
∑
k∈L

δ∗k Sk +
∑
k∈C

ϕ∗
kbk + ρ∗

∆ = ⟨C, yy⊤⟩+ ⟨d(δ
′∗), ss⊤⟩+ ⟨

∑
k∈C

ϕ∗
kAk + d(γ

′∗), xx⊤⟩ −
∑
i∈Bg

(θp∗i p
i
+ θq∗i q

i
− θ

p∗
i pi − θ

q∗
i qi) +

∑
k∈C

ϕ∗
k(a

y⊤
k y + as⊤k s)

+
∑
i∈Bg

ciyi −
∑
i∈B

(γ∗
i
vi − γ∗

i vi) +
∑
k∈L

δ∗k Sk −
∑
i∈B

(γ∗
i − γ∗

i
)(zei + zfi )−

∑
k∈L

δ∗k(w
sr

k + wsc

k ) + ρ∗

By Constraints (9) and (10) and since all coefficients θ
p∗
i , θp∗i , θ

q∗
i , θq∗i are non-negative, we get:

∆ = ⟨C, yy⊤⟩+ ⟨d(δ
′∗), ss⊤⟩+ ⟨

∑
k∈C

ϕ∗
kAk + d(γ

′∗), xx⊤⟩ −
∑
i∈Bg

(θp∗i pi + θq∗i qi − θ
p∗
i pi − θ

q∗
i qi) +

∑
k∈C

ϕ∗
k(a

y⊤
k y + as⊤k s)

+
∑
i∈Bg

ciyi +
∑
i∈B

(
γ∗
i (vi − zei − zfi ) + γ∗

i
(zei + zfi − vi)

)
+

∑
k∈L

(
δ∗k(Sk − wsr

k − wsc

k ) + ρ∗

By Constraints (20) and (21) and and since all coefficients γ∗
i , γ

∗
i
, δ∗k are non-negative, we get:

∆ ≥ ⟨C, yy⊤⟩+ ⟨d(δ
′∗), ss⊤⟩+ ⟨

∑
k∈C

ϕ∗
kAk + d(γ

′∗), xx⊤⟩+ (θ − θ)⊤y +
∑
k∈C

ϕ∗
ka

y⊤
k y + c⊤y +

∑
k∈C

ϕ∗
ka

s⊤
k s+ ρ∗

∆ ≥ ⟨C, yy⊤⟩+ ⟨d(δ
′∗), ss⊤⟩+ ⟨

∑
k∈C

ϕ∗
kAk + d(γ

′∗), xx⊤⟩+ (θ − θ +
∑
k∈C

ϕ∗
ka

y
k + c)⊤y +

∑
k∈C

ϕ∗
ka

s⊤
k s+ ρ∗

∆ ≥


1

y

s

x



⊤

M


1

y

s

x


Finally, by Constraint (39)

∆ ≥ 0

□

Theorem 1 states that we can compute parameters (ϕ∗, γ∗, δ∗) such that (OPFϕ∗,γ∗,δ∗) is a convex problem

and v(OPFϕ∗,γ∗,δ∗) = v(SDP ). In Corollary 1, we give a characterization of (ϕ∗, γ∗, δ∗).

Corollary 1 If (OPF ) is feasible, an optimal solution (ϕ∗, γ∗ = (γ∗ − γ∗), δ∗) of (P ) can be computed by
solving (SDP ). In particular, ϕ∗ is the vector of optimal dual variables associated to Constraints (31), γ∗, γ∗,
the vectors of optimal dual variables associated to Constraints (32) and (33) respectively, and δ∗ the vector
of optimal dual variables associated to Constraints (34).

Proof. We know by Constraint (39) that (ϕ∗, γ∗ = (γ∗ − γ∗), δ∗) is feasible for (P ), and in the proof of

Theorem 1, we proved that the associated value of (P ) reaches v(SDP ). □
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Our idea is now to perform a spatial branch-and-bound algorithm based on the relaxation (OPFϕ∗,γ∗,δ∗)

that has the same optimal value as (SDP ). Usually, and as proposed in Chen et al. [2017], branch-and-

bound algorithms that take advantage of the quality of the rank relaxation bound, solve at each node an

SDP relaxation. In our method, it is sufficient to solve (SDP ) once at the root node, then, in all other

nodes, the computation of the bound will be done by solving a QCQP. Thus, a fundamental difference with

our approach is that we solve a QCQP at each sub-node instead of an SDP, which can be faster. To further

strengthen the value of the bound calculated at the sub-nodes of the tree, we add to our relaxation the

convex quadratic inequalities of the initial formulation (Constraints (8) and (43)). Note however that these

constraints do not tighten the bound at the root node since they are already considered in (SDP ). To sum

up, the quadratic convex relaxation we use in our branch-and-bound is thus the following problem:

(OPF
∗
)


minhϕ∗,γ∗,δ∗(x, y, s, z, w)

s.t. (8)(9)(10)(16)− (21)(26)− (30)

e2i + f2
i ≤ vi i ∈ B (43)

A practical advantage of COPF is that we only have to enforce 2n equalities during the branch-and-bound

to prove global optimality, instead of (2(n +m))2 in methods based on complete linearization. To see this,

observe that from an optimal solution (x̄, ȳ, s̄, z̄, w̄) of the relaxation (OPF
∗
) satisfying x̄2 = z̄, the solution

(x̄, ȳ, s̄, z̄, s̄2) is the optimal solution of the current branch. Indeed, Constraints (1)–(7), (9)–(10) of (OPF )

are satisfied since x̄2 = z̄, and since Constraints (8) are included in (OPF
∗
), the solution (x̄, ȳ, s̄, z̄, s̄2) is

thus feasible for (OPF ) with a value h(ȳ) = hϕ∗,γ∗,δ∗(x̄, ȳ, s̄, z̄, s̄
2).

Another contribution is that since any convex QCQP can be reformulated as a SOCP, it means that we can

derive from (OPF
∗
) a SOCP relaxation that reaches the value of the semidefinite rank relaxation. Of course,

to calculate this SOCP relaxation, one must first solve the rank relaxation. However, this SCOP relaxation

can be embedded within a spatial branch-and-bound where at each node a SOCP is solved rather than an

SDP, which can speeds up the global resolution. Finally, the relaxation (OPF
∗
) is valid for other applications

than the OPF problem, since it applies to any quadratic problem with quadratic equality constraints and

ring constraints.

4. Solving (OPF ) to global optimality with a spatial branch-and-bound

In order to solve (OPF ) to global optimality we perform a spatial branch-and-bound (see for instance Be-

lotti et al. [2013] for a complete description) based on the relaxation (OPF
∗
). We sum up our global

optimization two-stage algorithm COPF in Algorithm 1 and further describe its main features.

In the first phase of COPF, we compute (OPF
∗
) as described in Sections 2 and 3. In order to convexify

the objective function, we solve the rank relaxation and calculate the parameters (ϕ∗, γ∗′
, δ∗) (Step 1). Then,

we compute the smallest eigenvalues of the Hessian matrices of the constraints for convexifying them (Steps

15



Algorithm COPF

Phase 1: Building (OPF
∗
)

1. (ϕ∗, γ∗′
, δ∗) ← Solve(SDP )

2. λk ← ComputeSmallestEigenValue(Ak)
3. λ′

k ← ComputeSmallestEigenValue(−Ak)

4. Build (OPF
∗
)

Phase 2: Solving (OPF )
5. UB ← ComputeUpperBound()

6. nodes ← 0 // Number of nodes
7. Initialize α // Parameter between 0 and 1 for the branching rules
8. Initialize ϵ // Relative accuracy of the global solution value

9. (x∗, y∗, s∗, τ∗) ← BB(OPF
∗
, ℓ, u) // τ∗ denote the optimal solution value of (OPF )

return (x∗, y∗, s∗, τ∗)

Algorithm 1: The COPF algorithm for solving (OPF ) to ϵ-global optimality

2 and 3). We finally build (OPF
∗
) (Step 4). The second phase of the algorithm is devoted to the spatial

branch-and-bound. We start by determining a feasible solution thanks to an interior point method in order

to initialize the global upper bound (Step 5), and we set the parameters of the algorithm: α ∈ [0, 1] used for

computing the value on which we branch, and ϵ the optimality threshold of the branch-and-bound (Steps 6-8).

Finally, we run the branch-and-bound (Step 9). In the following we give some details on our implementation

of the procedure BB(OPF
∗
, ℓ, u) .

The selection variable strategy

We start by sorting the generator buses in order of decreasing degree, followed by the consuming buses in

the same order. We then branch on the variables following this order, always choosing first the real part e of

the voltage, then its imaginary part f . Let (x̄, ȳ, s̄, z̄, w̄) be the solution at the current node, two cases are

possible:

1. If x2 = z, then (x̄, ȳ, s̄, z̄, s̄2) is the optimal solution of the considered branch with a value h(ȳ).

2. Else, following the order of the sorted list of buses, we take the first i∗ such that x2
i∗ ̸= zi∗ .

The branching rules

Let (x̄, ȳ, s̄, z̄, w̄) be the solution of (OPF
∗
) at the current node, i∗ the selected variable with a current value

x̄i∗ , and α ∈ [0, 1] a given parameter. Since the voltage variables are ring constrained, we update the bounds

on variable xi∗ as follows:

� If ℓi∗ ≤ vi ≤ ui∗ , we compute the value ρ = (1− α)ui∗+ℓi∗
2 + αvi,

� Else if ℓi∗ ≤ −vi ≤ ui∗ , we compute the value ρ = (1− α)ui∗+ℓi∗
2 − αvi,

� Else, we compute the value ρ = (1− α)ui∗+ℓi∗
2 + αx̄i∗ ,

We then split the feasible domain of xi∗ in two partitions:
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i) Branch 1: ℓi∗ ≤ xi∗ ≤ ρ

ii) Branch 2: ρ ≤ xi∗ ≤ ui∗ .

The node selection strategy

For selecting the next sub-problem we use the ”best-first” selection strategy, i.e. we select the node with the

highest lower bound.

5. Numerical experiments

To evaluate method COPF, we first compare it with the method RC-OPF which is also a method based on

a convex quadratic relaxation. As RC-OPF only supports a variant of problem OPF where the thermal line

limits are not considered, we evaluate in a first part COPF on this variant. Then, in a second part, we present

a comparison of COPF with the method SDP-BT Gopinath et al. [2020] on instances of problem (OPF ).

5.1. Results for instances without thermal line limits

In this section, we make a detailed comparison between methods COPF and RC-OPF Godard et al. [2019].

We start by outlining RC-OPF that applies to the following variant of (OPF ):

(OPF ′)



minh(y) =
∑
i∈Bg

(
Ci,iy

2
i + ciyi

)
s.t. ⟨Ak, xx

⊤⟩+ a⊤
k y = bk k ∈ C (44)

vi ≤ e2i + f2
i ≤ vi i ∈ B (45)

p
i
≤ pi ≤ pi i ∈ Bg

q
i
≤ qi ≤ qi i ∈ Bg

x = (e, f) ∈ (Rn,Rn), y = (p, q) ∈ (R|Bg|,R|Bg|)

where Constraints 44 are the compact form of the following set of constraints:

pi − pi = Gii(e
2
i + f2

i ) +
∑

j∈δ(i)

[
Gij(eiej + fifj)−Bij(eifj − ejfi)

]
i ∈ Bg

−pi = Gii(e
2
i + f2

i ) +
∑

j∈δ(i)

[
Gij(eiej + fifj)−Bij(eifj − ejfi)

]
i ∈ Bd

qi − qi = −Bii(e
2
i + f2

i ) +
∑

j∈δ(i)

[
−Bij(eiej + fifj)−Gij(eifj − ejfi)

]
i ∈ Bg

−qi = −Bii(e
2
i + f2

i ) +
∑

j∈δ(i)

[
−Bij(eiej + fifj)−Gij(eifj − ejfi)

]
i ∈ Bd

The basic idea is to introduce a matrix variable X ∈ S2n that model the products xx⊤. With these additional

variables, it is easy to linearize Constraints (44) and (45). Then, for a given semi-definite matrix M ∈ S+
2n,

we consider the parameterized convex objective function: hM (x, y,X) = h(y) + ⟨M,xx⊤ − X⟩. Obviously

function hM (x, y,X) = h(y) if equalities X = xx⊤ are satisfied. To build a family of convex relaxation

of (OPF ′), we relax the latter non-convex equalities with the McCormick envelopes (McCormick [1976]).
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Then, the idea is to compute a positive semi-definite matrix M∗ that maximizes the value of the obtained

convex relaxation. It is proven in Godard et al. [2019] that M∗ can be deduced from the optimal dual

variables of the rank relaxation of (OPF ′). In particular, by denoting ϕ∗ and γ∗ the dual optimal variables

of Constraints (44) and (45), respectively, M∗ =
∑
k∈C

ϕ∗
kAk+d(γ

′∗). Finally, we obtain the following quadratic

convex relaxation:

(OPF
′∗
)



min fM∗(x, y,X) =
∑
i∈Bg

(
Ciip

2
i + cipi

)
+ ⟨

∑
r∈C

ϕ∗
kAk + d(γ

′∗), xx⊤ −X⟩

s.t. ⟨Ak, X⟩+ a⊤k y = bk k ∈ C

vi ≤ Xii +Xi+n,i+n ≤ vi i ∈ B

Xij ≤ uixj + ℓjxi − uiℓj (i, j) ∈ B2

Xij ≤ ℓixj + ujxi − ℓiuj (i, j) ∈ B2

Xij ≥ uixj + ujxi − uiuj (i, j) ∈ B2

Xij ≥ ℓixj + ℓjxi − ℓiℓj (i, j) ∈ B2

x = (e, f) ∈ R2n, y = (p, q) ∈ R2|Bg|, X ∈ S2n

As in method COPF, we have the property that the optimal value of (OPF
′∗
) reaches the optimal value of

the rank relaxation of (OPF ′). However, the two convex relaxations differ both by their sizes and structures.

Indeed, in method RC-OPF, we build a linearly constrained quadratic program with O(n2) variables and

constraints, while in method COPF, we compute a quadratically constrained quadratic program with only

O(n) variables and constraints.

Our experiments were carried out on a server with 2 CPU Intel Xeon of 2.3 GHz each of them having 24

threads, and 8 ∗ 16 GB of RAM with a Linux operating system. We used the semidefinite solver Mosek ApS

[2019] for solving the rank relaxation of (OPF ′). At each node of the spatial branch-and-bound, we used

the solver Mosek for solving (OPF
∗
) the QCQP relaxation of method COPF, and the solver Cplex 12.9

for solving (OPF
′∗
) the QP relaxation of method RC-OPF. We used different solvers to solve the convex

quadratic relaxation of the two algorithms because the types of relaxations are different (QCQP and QP)

and the solvers are the most efficient for solving each type of relaxation (mosek for QCQP and Cplex for

QP). For computing feasible local solutions, we use Matpower Zimmerman & Murillo-Sánchez [2020].

In our experiences, we considered medium-sized instances of power networks having 3 to 300 buses. These

instances come from the PG-lib library (Babaeinejadsarookolaee et al. [2021]), where the thermal line limits

are removed from the formulations. We report in Table 1 the characteristics of each instance: its Name, and

the number of Buses, Generators, and Lines of the considered power network. We indicate in Column Opt

the best known solution value of each instance. Column |(y, x)| specifies the number of variables of each

instance.
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Name Buses Generators Lines Opt |(y, x)|
WB2 typ 2 1 1 9.06 6
3 lmbd typ 3 3 3 5 694.54 12
WB5 typ 5 2 6 13.78 14
5 pjm typ 5 5 5 14 997.04 20
6ww typ 6 3 11 3 126.31 18
14 ieee typ 14 5 20 2 178.08 38
24 ieee rts typ 24 33 38 63 352.21 114
30 as typ 30 6 41 801.55 72
30 ieee typ 30 6 41 6 592.95 72
39 epri typ 39 10 46 133 801.71 98
57 ieee typ 57 7 80 37 589.34 128
73 ieee rts typ 73 99 120 189 764.08 344
89 pegase typ 89 12 210 106 697.06 202
118 ieee typ 118 54 186 96 881.51 344
162 ieee dtc typ 162 12 284 84 785.01 348
179 goc typ 179 29 263 750 173.90 416
200 activ typ 200 38 245 27 557.57 476
240 pserc typ 240 143 448 3 223 503.88 766
300 ieee typ 300 69 411 546 890.15 738

3 lmbd api 3 3 3 10 077.59 12
5 pjm api 5 5 5 73 253.27 20
14 ieee api 14 5 20 5 688.57 38
24 ieee rts api 24 33 38 104 439.96 114
30 as api 30 6 41 2 770.30 72
30 ieee api 30 6 41 15 007.92 72
39 epri api 39 10 46 237 200.66 98
57 ieee api 57 7 80 49 290.36 128
73 ieee rts api 73 99 120 366 984.79 344
118 ieee api 118 54 186 167 810.79 344
162 ieee dtc api 162 12 284 109 391.13 348
179 goc api 179 29 263 1 670 159.94 416
200 activ api 200 38 245 26 129.06 476
300 ieee api 300 69 411 678 486.38 738

Table 1: Characteristics of the considered instances of PG-lib library.

To compare the performances of methods COPF, RC-OPF, and the solver Baron 19.3.24, we use a perfor-

mance profile (see Dolan & Moré [1986]) of the CPU times. A performance profile plots one curve for each

solver considered. Each point of a curve gives, for a given factor τ , the proportion of instances whose CPU

time was at most τ times greater than the fastest solver. In particular, for τ = 1, we have the proportion

of instances on which the solver was the fastest. More precisely, for each instance i and each solver s, we

denote by tis the time for solving instance i by solver s, and we define the performance ratio as ris =
tis

min
s

tis
.

Let N be the total number of instances considered, an overall assessment of the performance P ∈ [0, 1] of

solver s for a given τ is given by P (ris ≤ τ) = 1
N ∗ number of instance such that ris ≤ τ . Note that the

performances P are computed with respect to the total number of considered instances, even those that were

not solved within the time-limit of 1 hour. Since, only 70% of the instances were solved within the time limit

the maximum value of P is here 0.7. In Figure 1, we present the performance profile of the CPU times for

methods COPF, RC-OPF, and the solver Baron 19.3.24 of the instances described in Table 1. We observe

that COPF and RC-OPF significantly outperform the solver Baron. In fact Baron solves to optimality only 6
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instances out of the 33 considered, the largest of which is pglib opf case14 ieee. The two other approaches

are more efficient, since they solve within 1 hours of CPU time, 18 instances for RC-OPF and 23 for COPF.

Moreover, this profile shows that COPF is faster than RC-OPF for these instances.

Figure 1: Performance profile of the CPU time for networks with 2 to 300 buses (time limit 1 hour - optimality threshold
ϵ = 10−5 ).

We present in Table 2, a comparison between methods COPF and RC-OPF, on instances solved at the root

node of both methods. Each line corresponds to one instance and Column Init gap: =

∣∣∣∣Opt− SDP

Opt

∣∣∣∣ ∗ 100,
is the initial gap at the root node of the branch-and-bound, where SDP is the optimal value of the rank

relaxation of (OPF ′), and Opt its best known solution value. Columns #vars report the number of auxiliary

variables in COPF or in RC-OPF. This is also the number of non-convex equalities to force during the spatial

branch-and-bound of each method. Column Nodes is the number of nodes visited by the branch-and-bound.

A first observation concerns the quality of the initial gap for these 15 instances that confirms the strength

of the rank relaxation. For these instances, as expected the difference between methods RC-OPF and COPF is

the size of the relaxations (OPF
′∗
), and since the optimality threshold is reached at the root node of the

branch-and-bound, the results of both approaches have a similar trend.

Then, we present in Table 3 the results of 17 instances for which the gap is non-zero at the root node.

We report in Columns Tm the gap obtained after running the branch-and-bound during T minutes. Note

that T = 60 minutes corresponds to the time limit. If the instance is solved in less than T minutes, we

report between brackets the total CPU time in seconds to solve the instance. If the value is in bold, it means

that it is faster, or that it ends with a better gap after 60 minutes of CPU time. These results clearly show

that the exact resolution of the instances where the gap is non-zero remains very difficult. In fact, during

its branch-and-bound, RC-OPF does not decrease the lower bound, despite a large number of explored nodes.

This is not the case for COPF, which, with a much smaller number of nodes slightly increases the lower bound,
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even for the largest instances. This is because the number of auxiliary variables and relaxed equalities zi = x2
i

is strongly reduced in COPF (by a factor 4 on average). More precisely, out of the 17 considered instances,

5 are solved uniquely by COPF (WB2 typ, WB5 typ, 73ieee rts typ, 24 rts api and 73ieee rts api ), and

2 have a significantly reduced resolution time (24 iee rts typ and 30 as typ). Overall, this represents a

significant improvement on 40% of the instances considered. Let us finally mention that the reformulation

time is (always less than 1 minute) significantly shorter than the global resolution time.

Instance COPF RC-OPF

Name Init gap #vars CPU time (s) Nodes #vars CPU time (s) Nodes
3 lmbd typ 0.000 6 4 1 18 5 1
5 pjm typ 0.000 10 4 1 34 6 1
6ww typ 0.000 12 3 1 56 5 1
14 ieee typ 0.000 28 3 1 108 5 1
30 ieee typ 0.000 60 4 1 224 4 1
39 epri typ 0.000 78 3 1 262 6 1
89 pegase typ 0.000 178 5 1 1002 6 1
200 activ typ 0.000 400 18 1 1380 23 1
3 lmbd api 0.000 6 3 1 18 5 1
5 pjm api 0.000 10 3 1 34 6 1
14 ieee api 0.000 28 3 1 108 5 1
30 ieee api 0.000 60 3 1 224 5 1
39 epri api 0.000 78 3 1 262 7 1
118 ieee api 0.000 236 8 1 952 9 1
200 activ api 0.000 400 22 1 1380 25 1
300 ieee api 0.001 600 52s 1 2236 69s 1

Table 2: Initial gap, Sizes, CPU times and Nodes for the instances solved at the root node with methods COPF and
RC-OPF(optimality threshold ϵ = 10−5 )

Instance COPF RC-OPF

Name Init gap #vars 15m 60m Nodes #vars 15m 60m Nodes
WB2 typ 1.947 4 (7s) 27 8 1.947 1.947 92939
WB5 typ 28.094 10 11.8 (1197s) 9133 34 28.094 28.094 138399
24 ieee rts typ 0.012 48 (7s) 39 184 (63s) 25
30 as typ 0.000 60 (6) 3 224 (10) 7
57 ieee typ 0.003 114 0.003 0.003 9191 426 0.003 0.003 691
73 ieee rts typ 0.012 146 (489s) 603 578 0.012 0.012 897
118 ieee typ 0.005 236 0.005 0.005 1823 952 0.005 0.005 1105
162 ieee dtc typ 1.889 324 1.888 1.888 1091 1444 1.889 1.889 909
179 goc typ 0.036 358 0.035 0.035 857 1246 0.036 0.036 445
240 pserc typ 0.270 480 0.269 0.269 385 1872 0.270 0.270 1363
300 ieee typ 0.329 600 0.283 0.283 191 2236 0.329 0.329 357
24 ieee rts api 0.050 48 (4s) 9 184 0.050 0.050 58237
30 as api 0.026 60 0.025 0.024 26513 224 0.026 0.026 37482
57 ieee api 0.003 114 0.003 0.003 8919 426 0.003 0.003 709
73 ieee rts api 0.032 146 0.011 (1688s) 1997 578 0.032 0.032 635
162 ieee dtc api 0.067 324 0.064 0.064 1105 1444 0.067 0.067 563
179 goc api 2.024 358 2.020 2.020 785 1246 2.024 2.024 625

Table 3: Initial gap, Sizes, CPU times, Final gaps, and Nodes for the instances with a non-zero initial gap with methods COPF and
RC-OPF (time limit 1 hour - optimality threshold ϵ = 10−5 )
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5.2. Results for instances including thermal line limits

We now evaluate the performances of COPF on instances of (OPF ) and compare it with the method

SDP-BT Gopinath et al. [2020]. The idea of the latter approach is to raise the global lower bound of (OPF ),

within an iterative procedure, by mixing two approaches: SDP optimization and bound tightening techniques

on x variables. More precisely, at each iteration and for each variable xi, a minimization and a maximization

optimization problem that may reduce the domain of xi are run in parallel. One of the constraints of these

problems involves the current lower bound on (OPF ). Next, an SDP relaxation whose constraints involve

the domain of the xi is solved, providing an updated lower bound. The process is iterated until either the

optimality threshold (with respect to an upper bound calculated at the beginning of the algorithm), or a

maximum number of iterations is reached. Method SDP-BT can be very efficient since it allows to parallelize

the computation of the bounds on variables xi. On the other hand, it is important to note that it remains a

non-exact method, since without a branching procedure, there is no guarantee that, for a given and sufficient

small optimality threshold, the method will converge. This is why, in their paper the authors mention as

a future work the integration of SDP-BT within an adaptive variable partitioning algorithm (see Nagarajan

et al. [2019]).

In our experiments, for algorithm COPF, we used the semidefinite solver Mosek ApS [2019] for solving

(SDP ) and (OPF ∗) and we compute feasible local solutions with the solver Matpower Zimmerman & Murillo-

Sánchez [2020]. For method SDP-BT, we run the code of the authors (available at https://github.com/

coin-or/Gravity/releases/tag/v1.1) with sub-solvers Mosek ApS [2019] and Ipopt Wächter & Biegler

[2006], with a maximum number of threads of 48, which corresponds to the capacity of the server.

We present in Table 4 the results for instances of (OPF ) having 3 to 240 buses where each line corresponds

to one instance. Column Time (s) is the total CPU time in seconds for solving the instance. If an instance

is not solved within the time limit of 1 hour, we report between brackets the final gap =

∣∣∣∣Opt− LB

Opt

∣∣∣∣ ∗ 100
where LB is the lower bound obtained after 1 hour of CPU time, and Opt its best known solution value.

Columns Iterations and Nodes report the number of iterations in the loop of SDP-BT, and of nodes in the

b&b of COPF, respectively. For this experiences, we use the optimality threshold ϵ = 10−3.

A first observation is that both algorithms are able to reduce the initial gap of all instances considered

to less than 1% within the time limit. Next, in every instances with a unique node in COPF, the initial gap

provided by the solution of (SDP ) is smaller than the optimality threshold. These instances are solved

very quickly by SDP-BT (2 seconds on average) and a little more slowly by COPF (23 seconds on average).

The difference in the CPU time comes from the Gravity solver that is very efficient for solving the rank

relaxation. All the other instances have a non-zero initial gap, and even if COPF is slightly slower than SDP-BT

on instance 24 ieee rts api (1.2 times), the limits of the two methods are similar, since they both fail to

solve the other 7 instances within the time limit of one hour. Finally, to take advantage of the efficiency

of the parallelization while ensuring convergence to the optimal solution, one idea would be to mix the two

approaches. To do this, one can run the OBBT procedure in parallel, regularly during the course of the branch-
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and-bound of algorithm COPF. To illustrate the impact of the combined use of COPF with OBBT, we tested

it at the root node for instance 24 iee ret api. The results show that the number of nodes is reduced by a

factor 5 (we go from 851 at 167 nodes) and the overall resolution time is reduced from 221 seconds to 166

seconds, which is for this instance faster than SDP-BT. The improvement relating to the integration of OBBT

will probably not be as effective for larger instances, at least in mono-threading.

SDP-BT Gopinath et al. [2020] COPF

Name Time (s) Iterations Time (s) Nodes

14 ieee typ 1 1 3 1
24 ieee rts typ 1 1 4 1
30 as typ 1 1 4 1
30 ieee typ 1 1 4 1
39 epri typ 1 1 5 1
57 ieee typ 1 1 6 1
73 ieee rts typ 1.5 1 19 1
89 pegase typ (0.028%) 1 (0.043%) 619
118 ieee typ 4.5 1 46 1
162 ieee dtc typ (0.015%) 1 (0.017%) 285
179 goc typ 4 1 59 1
200 activ typ 5 1 69 1
240 pserc typ (0.012%) 1 (0.013%) 65

14 ieee api 1 1 3 1
24 ieee rts api 176.5 1 221 851
30 ieee api 1 1 4 1
57 ieee api 1 1 7 1
73 ieee rts api (0.003%) 1 (0.054%) 1821
118 ieee api (0.029%) 1 (0.16%) 513
162 ieee dtc api (0.012%) 1 (0.014%) 319
179 goc api (0.005%) 1 (0.006%) 309
200 activ api 5.5 1 94 1

Table 4: Comparison of the CPU times of methods COPF and SDP-BT (time limit 3600s - optimality threshold ϵ = 10−3 - If the
the time limit is reached, we report (g%), where g is the gap after one hour of CPU time.)

6. Conclusion

We consider the OPF problem that determines the power production at each bus of an electric network

while minimizing a production cost. We introduce a global optimisation algorithm COPF that is based on

a new quadratically constrained quadratic relaxation. This relaxation is compact in the sense that it has

only O(n + m) auxiliary variables and constraints, where n is the number of buses of the network, and m

the number of transmission lines. We moreover prove that our quadratic relaxation has the same optimal

value as the rank relaxation. Finally, to solve (OPF ) to global optimality, we perform a spatial branch-

and-bound algorithm based on our new quadratic convex relaxation. We report computational results on

instances of the literature. These results show that this new approach is more efficient than the method

RC-OPF, and competitive with state-of-the-art methods. A future work consists in using Optimality Based

Bound Tightening techniques to further improve the behaviour of COPF on the most difficult instances.
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