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Abstract—The design and implementation of Convolutional
Neural Networks (CNNs) for deep learning (DL) is currently
receiving a lot of attention from both industrials and academics.
However, the computational workload involved with CNNs is
often out of reach for low power embedded devices and is still
very costly when running on datacenters. By relaxing the need for
fully precise operations, approximate computing substantially im-
proves performance and energy efficiency. Deep learning is very
relevant in this context, since playing with the accuracy to reach
adequate computations will significantly enhance performance,
while keeping quality of results in a user-constrained range.
AdequateDL is a project aiming to explore how approximations
can improve performance and energy efficiency of hardware
accelerators in DL applications. This paper presents the main
concepts and techniques related to approximation of CNNs and
preliminary results obtained in the AdequateDL framework.

Index Terms—Deep Learning, CNN, Approximate Computing

I. INTRODUCTION

Deep Learning [1] models, and in particular CNNs, are currently
one of the most intensively and widely used predictive approaches
in the field of machine learning. CNNs have shown to give very
good results for many complex tasks such as object recognition
in images/videos, drug discovery, natural language processing, au-
tonomous driving, and playing complex games [2]–[5].

In spite of these benefits, the computational workload involved in
CNNs is often out of reach for low-power embedded devices, and/or
is still very costly when running on datacenter-style Component-
Off-The-Shell (COTS) hardware platforms. To give an example,
the amazing performance of AlphaGo [5] required 4 to 6 weeks
of training executed on 2000 CPUs and 250 GPUs for a total of
about 600kW of power consumption (while the human brain of a go
player requires about 20W). Thus, a lot of research effort from both
industrials and academics has gone into defining/designing custom
hardware platforms supporting this type of algorithms, with the goal
of improving performance and/or energy efficiency [6]–[8].

In recent years, Approximate Computing (AxC) has become a
major field of research to improve both speed and energy consump-
tion in embedded and high-performance systems [9]. By relaxing
the need for fully precise or completely deterministic operations,
AxC substantially improves energy efficiency.

CNNs show inherent resilience to insignificant errors due to their
iterative nature and learning process. Therefore, an intrinsic toler-
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ance to inexact computation is evidenced, and using the approxi-
mate computing paradigm to improve power and delay characteris-
tics is relevant [10]. Indeed, CNNs mesh well with AxC techniques,
especially with fixed-point arithmetic or low-precision floating-
point implementations (it was also demonstrated that even binary
or ternary weights could be used), which moreover exposes large
fine-grain parallelism. They are therefore ideally suited for hard-
ware acceleration using FPGA and/or ASIC implementations, as
acknowledged by the large body of work on this topic. Although ac-
celerators have demonstrated significant performance/energy gains
compared to GPU/CPU implementation, they are still not sufficient
to address future performance requirements [11].

The goal of this paper is to explore how approximation tech-
niques can improve the performance of hardware accelerators for
CNN inference in DL applications. In particular, weight-sharing
techniques will be presented and discussed through preliminary
experimental results. The paper is structured as follows. Section II
provides the basics about approximate computing techniques for
CNN inference. Section III presents the open source framework
we use for CNN design, while Section IV details the preliminary
results. Section VI concludes the paper.

II. AXC TECHNIQUES FOR CNN INFERENCE
ACCELERATION

Specific industrial constraints are related to the optimization
of CNN execution time and energy consumption. One relevant
technique complementary to algorithmic optimization is to play
with the precision (i.e., bit-width) and number representation of
the data. For example, neural networks are often trained using 32-
bit floating-point arithmetic. However, for the inference phase, the
precision of these parameters can be greatly reduced, enabling huge
performance gains on reduced precision hardware architectures,
such as those provided by FPGAs, recent NVidia GPUs, or custom
computing architectures such as CEA PNeuro [12]. The issue is that
for large networks, this precision reduction is far from trivial. There
exist several methods that are already implemented in existing
frameworks and libraries that help with this.

We consider some examples. This first one is the use 8-bit
inference as integrated into the Nvidia TensorRT library [13]. The
TensorRT builder must perform a process called calibration to
determine how best to represent the weights and activations as 8-bit
integers. During this step, a heuristic will determine a suitable 8-bit
scaling factor for each layer so as to cover as best as possible the
range of required values. A second example is to use TensorFlow
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Fig. 1. WS technique applied to a 5× 5 convolutional kernel.

to retrain an already designed network to work with 8-bit inference.
While working on the network parameters, it also quantizes layer
input/outputs. It does so by analyzing the extremal (min,max)
values that can pass through the network in order to choose suitable
scale and range parameters for the quantization format.

The third option is Ristretto [14], a five step quantization tool:
(1) analysis of weight dynamic range for fixed-point representation;
(2) a calibration step in the forward path to analyze and determine
statistical parameters of the layer activations; (3) binary search to
find the number of bits for convolutional & fully connected weights,
and layer outputs; (4) iteratively quantize each layer as a function of
classification accuracy; (5) retrain the resulting fixed-point network.
However, only a subpart of the network (inputs and weights) is
quantized, whereas the rest remains in floating-point. This still
leaves room for significant reductions in implementation cost.

A recent review of the main techniques to reduce precision is
provided in [15], [16]. It concludes that, although much work has
been done, CNNs remain an important area of research with many
promising applications and opportunities for innovation at various
levels of the hardware design process.

Another efficient technique to approximate CNN inference is the
Weight-Sharing (WS) approach. Broadly, it identifies clusters of
weights and aims at replacing all weights within a cluster by its
centroid. To better understand this, consider Fig. 1, where starting
from a 5 × 5 convolutional kernel matrix, clustering is applied.
Clusters are usually identified with the K-means algorithm [17].

III. THE N2D2 DEEP LEARNING PLATFORM

Current research on Deep Neural Networks extensively uses
different DL frameworks that implement various types of neural
network layers and different learning algorithms. They also im-
plement visualisation tools to ease neural network building and
database handling. Among these frameworks, one can cite Py-
Torch [18] and Tensorflow [19]. Some other frameworks, such as
Keras, are just interfaces to these frameworks. The goal of these
aforementioned tools is to develop neural networks and machine
learning algorithms to solve challenges, for example, related to
machine vision. Unfortunately, once the network has been designed
and trained, there is a gap towards its optimized deployment in an
embedded and hardware constrained system. The recent develop-
ment of libraries built to ease the deployment and optimization
of deep neural networks, such as TensorRT [13], TFLite [19] or

Fig. 2. System design and optimization process using N2D2.

OpenVINO [20], reflects the rising trend of hardware integration
requirements. The main weakness of these libraries is the limitation
to certain target platforms and the possible optimizations that can
be applied, which are greatly linked to proprietary solutions.

The N2D2 deep learning framework from CEA [21] reduces this
gap by providing an innovative optimization method to the system
designer. Leveraging on the CEA expertise related to embedded and
high-performance computing, N2D2 is hardware agnostic while
being able to directly target most common computing architectures
and parallel run-time software.

Fig. 2 shows a high-level view of the system design process en-
abled by N2D2. The N2D2 framework integrates a generic database
handling and data processing dataflow. Fig. 3 describes a typical
example possible during the pre-processing step. Transformations
can be applied to data, pixel-wise labels, and geometrical labels on
a wide range of data types (images, sounds, etc.).

The N2D2 learning core is close to the standard DL frameworks
with the support of typical layers, operators and learning rules.
The N2D2 learning core execution on x86 and ARM processors
is accelerated thanks to C++/OpenMP kernels, while execution on
NVidia GPUs is supported thanks to cuDNN and custom CUDA
Kernels. Moreover, the N2D2 core also supports spike simulations
modelling. The input model representation can be given through
an INI description file or in the Open Neural Network Exchange
(ONNX) format [22]. The ONNX format enhances DL framework
interoperability by unifying the representation model. One of the
typical use cases of ONNX in N2D2 is to load a pre-trained neural
network from another DL framework.

Among the key features of the N2D2 framework, the integrated
quantization module remains one promising technique to optimize
a DL model for a wide range of hardware accelerators. This
module aims to produce a quantized network version from an al-
ready trained floating-point network. The post-training quantization
method used relies on a dataset of representative data points to
calculate an approximation of the range of the outputs for each
network layer. The first step rescales weights to the [−1, 1] range.
In the same way, activations are rescaled inside the [−1, 1] range for
signed output and [0, 1] for unsigned output. To achieve this goal,
the N2D2 quantizer module finds the maximum absolute value of
the outputs of the activation for each layer on the whole dataset.
Optionally, the N2D2 quantizer can also find the maximum absolute
value per output channel. Unfortunately, using the maximum abso-
lute value as scaling factor in the quantized activations often results
in a loss of application performance. The N2D2 quantizer addresses
this issue by calculating the most appropriate threshold that mini-



Fig. 3. Preprocessing dataflow with N2D2.

mizes the difference between the origin distribution and the clipped
quantized distribution. It does this through an error estimator based
on mean square error (MSE) or Kullback-Leibler divergence (KL-
divergence). Weights and activations can be represented using 8-
bits integers (INT8) without incurring significant loss in accuracy
thanks to this method. Once the neural network performances meet
the system designer requirements, the code generator of N2D2 can
be used to generate optimized code targeting most common COTS
using their respective run-time software.

IV. EXPLORING WEIGHT-SHARING FOR CNN
We can express WS as an N variable optimization problem, with

N the number of layers of the CNN [23]. Each ki represents the
number of shared values of a given layer taken from a set of values
krange, and let ktuple = {ki, i = 1, . . . , N}. The full exploration
space has size O(|krange|N ). Each solution has to be evaluated in
terms of Accuracy Loss (AL) and Compression Ratio (CR). The
objective is to maximize CR for a given AL constraint.

For example, given a small CNN like LeNet [24], composed of
5 layers, with a krange = [1, 256] allows index values to be encoded
using up to 8 bits. The sequential exhaustive exploration of all
ktuple combinations will take 2565 ≈ 1.1 × 1012 seconds (more
than 3000 decades) assuming the clustering (i.e., the selection of
shared weights) and the scoring (i.e., CNN AL evaluation) takes
1 second. The evaluation complexity becomes exponentially worse
for modern CNNs, which include significantly more layers (e.g.,
ResNet-152 [25] includes 152 layers). Thus, we need a better
method to find the optimal ktuple.

In this work, we split the optimization problem into two or-
thogonal sub-problems solved in sequence. The first one, layer
optimization, is to select Pareto efficient ki local to each layer of
the network and the second one, network optimization, is to find
Pareto efficient combinations ktuple of these selected ki.

A. Layer optimization
To find the layer Pareto efficient ki, we perform a layer ap-

proximation sensitivity analysis by changing the number of shared
values and studying the resulting AL and CR. AL is obtained by
scoring the CNN using the test set, while CR is obtained as the
ratio between the number of shared values over the number of
initial values. An example is Fig. 4, obtained by varying ki inside
krange = [1, 256] in the third layer of LeNet. The weight sharing AL
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Fig. 4. Studying layer sensitivity to compression by varying the number of
shared values.

highly depends on the number of clusters. In order to evaluate the
CR of the layer, we rely on the number of bits needed to encode
the values bindex = dlog2(ki)e. We then select Pareto efficient ki
by taking into account the AL and the bindex. We thus obtain a
restrained set of Pareto efficient approximated layer versions φi
with |φi| ≤ dlog2(max(krange)e (|φi| ≤ 8 in our example). The
runtime complexity of this first sub-problem is O(N |krange|).

B. Network optimization

The second sub-problem is to combine the ki together in a ktuple
to obtain an optimal approximated CNN. The issue is the still large
number of possible combinations: O(

∏N
i=1 |φi|). To drastically re-

duce the required number of CNN evaluations, we use a prediction
model giving an analytical approximation of the resulting AL for
the CNN compressed with a specific ktuple, noted ALktuple . It is
defined as: ALktuple =

∑N
i=1 αi · ALki

, with ALki
the measured

AL during the local optimization for the layer i compressed using
ki shared values, and αi trained coefficients. This prediction model
is trained using standard multivariate linear regression.

V. PRELIMINARY RESULTS

We started by validating our method on LeNet trained with the
MNIST data set. We did this because the reduced number of layers
allows for the exhaustive search of all the layer combinations to
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validate the precision of the prediction model. We used as input a
self-trained regular 0.9% top-1 error rate LeNet, and the affordable
accuracy loss used is 1%.

By solving the first sub-problem, we obtained the following layer
candidates (only the selected ki are displayed):

• layer1 [2, 4, 6, 9, 23, 37]
• layer2 [3, 7, 14, 26, 47, 78, 130]
• layer3 [4, 8, 14, 22, 62, 90, 198]
• layer4 [2, 3, 8, 10, 28, 50, 83]
• layer5 [2, 3, 8, 13, 28, 52, 66]

The combination of the different ki into ktuple introduces 14, 406
possible candidate solutions. To validate our method we have
performed the scoring of each of them, taking 1 hour on an NVIDIA
V100. From the results, it appears that almost 78% of the candidate
solution lead to ALktuple lower than 1%. Among these, 27 are Pareto
optimal, and thus, the most interesting for our optimization prob-
lem. To validate that theALktuple can be inferred using the prediction
model, we fitted it using regression on 80% of the valid candidates
for training and the other 20% for testing. We obtained the follow-
ing set of αi trained coefficients: [1.26, 0.78, 0.95, 0.80, 0.92]. Fig. 5
shows that the Pareto frontier obtained using the prediction model
is close to the actual one obtained using the CNN evaluation.

VI. CONCLUSION & FUTURE WORK

Our efficient exploration method reduced the number of CNN
scoring operations required to optimize WS for a CNN to a few
hundred from an initial 1012. With promising results on small
CNNs, we look forward to applying it to larger, state-of-the-art
models, such as ResNet and MobileNet, targetting larger datasets
such as CIFAR-10/100 and ImageNet.
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