
HAL Id: hal-03266838
https://hal.science/hal-03266838v1

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Abstract Geometrical Computation 11: Slanted Firing
Squad Synchronisation on Signal Machines

Jérôme Durand-Lose, Aurélien Emmanuel

To cite this version:
Jérôme Durand-Lose, Aurélien Emmanuel. Abstract Geometrical Computation 11: Slanted Firing
Squad Synchronisation on Signal Machines. Theoretical Computer Science, 2021, 894, pp.103–120.
�10.1016/j.tcs.2021.06.009�. �hal-03266838�

https://hal.science/hal-03266838v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Abstract Geometrical Computation 11: Slanted Firing Squad Synchronisation

on Signal Machines

Jérôme Durand-Losea,�, Aurélien Emmanuela

aUniversité d’Orléans, INSA Centre Val de Loire, LIFO EA 4022, FR-45067 Orléans, France

Abstract

Firing Squad Synchronisation on Cellular Automata is the dynamical synchronisation of finitely many cells without
any prior knowledge of their range. This can be conceived as a signal with an infinite speed. Most of the proposed
constructions naturally translate to the continuous setting of signal machines and generate fractal figures with an
accumulation on a horizontal line, i.e. synchronously, in the space-time diagram. Signal machines are studied in a
series of articles named Abstract Geometrical Computation.

In the present article, we design a signal machine that is able to synchronise/accumulate on any non- infinite
slope. The slope is encoded in the initial configuration. This is done by constructing an infinite tree such that each
node computes the way the tree expands.

The interest of Abstract Geometrical computation is to do away with the constraint of discrete space, while
tackling new difficulties from continuous space. The interest of this paper in particular is to provide basic tools for
further study of computable accumulation lines in the signal machine model.

Keywords: Abstract Geometrical Computation ; Cellular Automata ; Divide and Conquer ; Firing Squad
Synchronisation ; Fractal ; Signal Machines.

1. Introduction

The Firing Squad Synchronisation Problem (FSSP) is as follows: a general wants a whole line of riflemen to fire
synchronously. However, communication is only between very close individuals and the number of riflemen is
unknown. There is no global time, but everyone receives ticks simultaneously and repeatedly. Moreover, it is
supposed that the number of states of each rifleman is finite. Finite state, discrete space and time, synchrony and
uniformity correspond to the Cellular Automata (CA) model. In this context, the goal is, starting from a single
activated cell, to reach a configuration in which all cells of a given region are in a special firing state simultaneously
and for the first time.

This problem have been studied from the 1960’s [9, 17, 20], with a wide range of construction [3, 15, 16] and is
still active nowadays [10, 11, 12, 13, 19, 21]. In [15], a six-state minimal time solution is given. Solutions to this
problem also often serve as a tool to solve other problems. In [3] a variation with two generals is used to solve a
related complexity problem. In [18], the election leader problem, which can be seen as a reversed FSSP is solved
efficiently for any finite dimension. In [14], FSSP is used on demand to synchronise computation steps.

The most common solutions involve signals sent at different speeds bouncing onto the edges of the line and sprouting
new signals whenever crossing each other in such a way that signals eventually and simultaneously evenly fill the line
which triggers the firing. A tree structure often appears in the construction. These trees are rooted in the general and
the leaves reach the firing riflemen. Very commonly, the solutions are presented

�Corresponding author
Email addresses: jerome.durand-lose@univ-orleans.fr (Jérôme Durand-Lose), aurelien.emmanuel@univ-orleans.fr

(Aurélien Emmanuel)
URL: http://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose (Jérôme Durand-Lose)

Preprint submitted to Elsevier June 23, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0304397521003558
Manuscript_cafa92fe0fc4333686ddf803cc72827c

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304397521003558
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0304397521003558

in a continuous setting, then adapted to the discrete space and time of CA; reaching the granularity of space
(i.e. cells) indicates when to fire.

It appears natural to consider this problem in the continuous setting of Abstract geometrical computation:
the study of computing in an euclidean space with geometrical tools. It is done using signal machines, which
compute by drawing coloured lines which interact in specific ways upon collision. It lead to a series of
articles, for example, isolated accumulations on single point are characterised in [7].

Signal machines are an abstraction of 1D CA: signals carrying a given label travel at a given speed
through a continuous space; any collision between two or more signals results in the vanishing of incoming
signals, and the emergence of new ones, according to their labels and to some predefined rules. Figure 1a
provides some space-time diagram of an example signal machine (time elapses upward). Signal machines are
defined by meta-signals that define signals, and collision rules, that define their interactions; for example,
the space-time diagram in Fig. 1b was obtained with a machine with meta-signals zig , zag, le and ri, as well
as the collision rules {zig ,ri} → { zag,ri} and { zag,le} → {zig ,le}.

Compared to CA, there is no underlying grid and only signal dynamics is addressed. The continuous
time and space allow phenomena alien to CA: accumulation as illustrated in Fig. 1b: there are infinitely
many collisions leading to the top of the triangle. It is already known that forecasting of any accumulation
on rational signal machines is highly unpredictable [5] and the possible localisation of isolated accumulation
of such machines have been characterised [8].

ti
m

e

space

(a) space-time diagram

zig
ri

le

zag

zig

ri

le

(b) isolated accumulation (c) segment accumulation

Figure 1: Space-time diagrams and basic accumulations.

Most of the schemes used for FSSP in CA can be defined directly as signals machines (but going from
there to a CA is no triviality [1]). In CA, the construction stops when the granularity of space is reached.
In the continuous setting of signal machines, there is no such a thing so that the divide and conquer process
never stops and generates a fractal. The result, a horizontal firing line in a space-time diagram, consists of
an accumulation line as in Fig. 1c (each colour corresponds to one meta-signal, speed magnitudes are 0, 1
or 3, such that red and blue signals form an infinite binary tree). That is a line of points nearby which an
infinity of signal collisions happen (the continuous equivalent of filling a discrete line with signals). Such a
construction with a finite yet unbounded binary tree has been used in [4] to provide unbounded branching
to solve PSPACE-complete problems with polynomial depth.

The accumulation line in the space-time diagram needs not be horizontal although there are not much
research on the matter since, in the more usual discrete settings, synchronisation is the goal and slope is less
meaningful. Achieving a given slope would correspond to riflemen firing in succession at a predefined rate.
Much like the regular FSS problem is about synchrony, our Slanted FSS problem is about coordination. Its
solution could be used to as a tool for problems requiring tasks to be done in a quick succession—too quick
for the end of a task to trigger the beginning of the next one; for example sending self driving cars through
an intersection with shorter security distances than possible using uncoordinated human drivers.

In the present paper, we prove that not only it is possible to generate any segment of any non-infinite
slope as an accumulation set but moreover that they can all be generated by the same signal machine.
Without loss of generality, we aim at segment with extremities at abscissa −1 and +1. The target segment

2

is encoded in the initial configuration: the ordinates (the times) of the extremities are encoded as distance
between signals.

The idea is to draw an infinite unary-binary tree in a finite amount of space, halving the size of edges
after each node with two children. The structure of the tree dictates the shape of the accumulation set. As
in [4], the tree structure conveys some information used to extend the tree: with sign test, addition and
subtraction (on real numbers) primitives, each node computes whether to delay or split and updates and
broadcasts the information. These primitives are also part of the linear version of the Blum, Shub and Smale
model of computation [2] witch is related to Signal Machines [6].

Unary-binary tree is one of the many possible constructions that can fulfil our goal, we chose it for its
simplicity, with complete disregard for time minimality or optimisation of the number of meta-signals or
collision rules - corresponding notions to states and rule of a cellular automaton.

The algorithm is first implemented on an augmented signal machine to allow the signals in the tree to
carry an unlimited quantity of information. This allows to concentrate on the algorithm without dealing
with technical details. Then these augmented signals are encoded as a ray of signals on an ordinary signal
machine and needed arithmetic operations are implanted. This is much more involving because it has to
deal with updating the information now encoded with only finitely many possible signals.

The paper is organised as follows. The relevant definitions are provided in Sect. 2. The algorithm is
explained in Sect. 3 and implemented on augmented signal machines in Sect. 4. This is then implemented
on ordinary signal machine in Sect. 5. Section 6 concludes the paper.

2. Definitions

2.1. Signal machines
A signal machine regroups the definitions of its meta-signals and their dynamics: constant speed outside

of collisions and rewriting rules at collisions.
A signal machine is a triplet (M,S,R) such that:

– M is a finite set, whose elements are called meta-signals;
– S : M → R is the speed function (each meta-signal has a constant speed);
– R is a finite set of collision rules; a collision rule ρ can be written ρ− → ρ+, and consists in an input set
ρ− and an output set ρ+ of meta-signals of distinct speeds, with ρ− containing at least two meta-signals.
R is deterministic: ρ 6= ρ′ implies that ρ− 6= ρ′−.
In the example in Fig. 1b, there are four meta-signals: zag, ri, le, and zig of speeds −1, −1/2, 1/2, and

1 respectively. The collision rules are {zig ,ri} → { zag,ri} and {le, zag} → {le,zig }.
A configuration, c, is a mapping from the points of the real line to either a meta-signal, a rule or the

value � (indicating that there is nothing there). There are finitely many non-� locations in any initial
configuration. There are 3 signals in the initial configuration in Fig. 1b, from left to right: le, zig , and ri.

A space-time diagram is the collection of configurations as time elapses. It forms a two dimensional
picture (time is elapsing upwards in the figures). It is a function from R× R+ 7→M ∪R ∪ {�}.

A signal of a space-time diagram is a maximal segment or half-line mapped by the space-time diagram
to a meta-signal µ and of inverse slope S(µ) (signals cannot be horizontal). Meta-signals can be thought of
as type, and signals as instances of them. The meta-signal of a signal is also called its type for the sake of
concision.

A space-time diagram follows the rules:
– any point of the space-time diagram that maps to a meta-signal µ belongs to a signal which verifies:

– its starting location is either a rule ρ with µ ∈ ρ+ or a point of the initial configuration mapping to
µ and

– its end, if any, is a rule ρ with µ ∈ ρ−;
– any point of the space-time diagram with a collision of rule ρ is at:

– the starting end of one signal of type µ for every µ in ρ+ and
– the ending end of one signal of type µ for every µ in ρ− (if not in the starting configuration);

3

– there is no infinite time-backward continuous path/sequence of signals each of whose start is the end of
the next.
This ensures that signals propagate with uniform speed, collision rules are properly applied and no signal

nor collision appears out of the blue. In particular we do not want anything appearing from accumulation
points as defined below.

2.2. Accumulation points
In the example in Fig. 1b, there is a special point on top such that there are infinitely many signals and

collisions leading to it. The signal machine does not provide any definition for what happens there so that
the space-time diagram cannot be defined for all times and locations. We extend the definition as follows: a
space-time diagram is a partial function from R×R+ toM ∪R∪{�,Z} where Z is a new symbol introduced
to designate accumulation points (and only such points). Outside of accumulation points, the constrains are
as before but signals may also end in accumulations. Any accumulation point must be the forward limit of
an infinite sequence of collision points.

The example in Fig. 1b is the simplest example of accumulation. There is only one point valued Z; the
rest of the space-time diagram is �. In the example of Fig. 1c, a connected accumulation set (a line segment)
is generated.

2.3. Augmented signal machines
Augmented Signal Machines (ASM) are natural extensions of signal machine where signals are allowed

to carry analog information.
An augmented signal machine is a triplet (M,S,R) such that:

– M is a finite set of meta-signals;
– S : M → R is the speed function;
– each µ inM has an associated set, called domain and notedDµ: signals may carry information depending

on their type;
– the set of augmented meta-signals is M ′ = {(µ, x)|µ ∈ M,x ∈ Dµ}. The speed of an augmented

meta-signal is simply the speed of its corresponding meta-signal;
– R is a set of collision rules; a collision rule ρ can be written ρ− → ρ+, and consists in an input set
ρ− and an output set ρ+ of augmented meta-signals of distinct speeds, with ρ− containing at least two
augmented meta-signals. R is deterministic.
Configurations, diagrams, augmented signals and accumulation points are defined the same way as for

regular signal machines, replacing meta-signals by augmented meta-signals.
A signal machine is a special case of augmented signal machine where every Dµ is a singleton (or a finite

set). In this paper, domains are either singletons or subsets of R2. We thus note augmented meta-signals µ
when Dµ is a singleton, and otherwise we note µrl instead of (µ, (l, r)).

Since there are potentially infinitely many rules for an augmented signal machines, we define several of
them at a time through parameterized patterns: X C−→ Y where X is a left member of a rule containing free
variables, C is a condition on them and Y is a right member which might also depend on them. Concrete
examples of rule pattern are given in Sect. 4.

2.4. Slanted Firing Squad Synchronization Problem
The goal of the Firing Squad Synchronization Problem (FSSP) on signal machines is to design a ma-

chine and an initial configuration which create an horizontal line as the set of accumulation points of the
corresponding space-time diagram.

Formally, a solution of the FSSP is a signal machine together with an initial configuration composed of
two border signals, a sequence of signals—called the general—along with the prescribed distance between
them near the left border. If the width of the general is small enough relative to distance between border
signals, there exists a time tl such that, in the resulting space-time diagram, the set of accumulation point
is the horizontal segment of equation t = tl—within the boundaries.

4

The goal of the Slanted Firing Squad Synchronization Problem (SFSSP) for signal machines is to design
a machine and an initial configuration which creates a slanted line as the set of accumulation points of the
corresponding space-time diagram. In other words, looking at the firing line over time, we want the firing to
happen in succession, as an apparent dot moving at a constant, specified speed. Since space-time diagram
is a central piece of signal machines, we prefer the image of and the vocabulary related to a slanted line in
a space-time diagram over those of a virtual moving dot.

Formally, a solution of the Slanted FSSP of slope α is again a signal machine and an initial configuration,
such that
– the initial configuration is composed of 2 static bounding signals (to delimit the firing line), one on the
left border of the general, one far beyond the right border;

– for all big enough ratio of width between the line and the general, there exists a time tl such that, in
the resulting space-time diagram, the set of accumulation points is the slanted line segment of equation
t = tl + α× x within the boundaries.
Conversely, instead of aiming at a big enough line, we can shrink the general. This is our approach in

the rest of the paper and we fix the boundaries at −1 and 1.
Additionally and informally, a universal solution to the SFSSP is a single signal machine and a way to

encode any given slope α into a general so as to solve the corresponding SFSSP.
In this paper, instead of aiming at a slope α, we aim at a segment [(−1, l), (1, r)] with l, r ≥ 1. This allows

to solve for any slope, and gives perspective about drawing arbitrary segment or curve in the space-time
diagram, while foregoing time-optimality.

3. Algorithm and ASM implementation

3.1. General scheme and algorithm
The target segment and the parameters are depicted in Fig. 2a : parameters l and r are the ordinates of

the extremities of the target segment. To be valid, the parameters have to be both at least 1.
The algorithm relies on a very simple divide and conquer strategy: to draw —accumulate on—the

segment [(−1, l), (1, r)], it suffices be able, depending on the situation, to either:
– draw the segment [(−1, l − 1), (1, r − 1)] translated one unite of distance up, or
– draw the segments [(−1, l− 1/2), (0, (l+ r)/2− 1/2)] and [(0, (l+ r)/2− 1/2), (1, r− 1/2)] translated to
have their roots at (−1/2, 1/2) and (1/2, 1/2) respectively. It is scaled by 1/2 yielding the formula in
Algo. 1.
Figure 2b illustrates this infinite recursion, with vertical segments drawn as dotted and black, and diag-

onal segments of slope + − 1 being drawn as red or blue, depending whether they go to the left or right
(ascending) respectively. This colour code applies to section 4 as well. In the one entwined in Fig. 1c (looking
only at red and blue signals), each node always have two descendants. The unary steps are used to provide
delays and thus slope. Each (sub-)tree is bounded by two motionless signals as in figures 2c and 2d. When
an update is carried out, the collision happens exactly at the middle of the bounds which are considered 2
units of space apart.

(l,r)
11

l

r

Z
tar

get

(a) parameters (b) tree

11

1

(c) delay

11

1/2

(d) split

Figure 2: Parameters, unary-binary tree, and elementary steps.

5

The following primitives are used to direct the dynamics in the algorithm:

delay (l, r) : the current node is of degree 1. Its single child is 1 unit up and the algorithm is prompted
with parameters (l, r). In Fig. 2b a delay corresponds to a dotted connections and

split ((l, r),(l′, r′)) : the current node is of degree 2. The left child is at (−1/2, 1/2) relatively to the
current node, the right child at (1/2, 1/2). In Fig. 2b, the links between the node and its children are
red and blue. At each child, the algorithm is prompted with the scale reduce by a factor 2 and with the
parameters (l, r) for the left one, and (l′, r′) for the right one.

Figure 2c outlines how a delay can be implemented by an augmented signal machine, with two auxiliary
signals bouncing off the boundary at the correct speeds (3/2 for green and −3 for purple) to wait the correct
amount of time. Figure 2d outlines how a split can be implemented, with auxiliary green signals of speed 3,
and purple −3. Altogether, it yields the algorithm 1 where the tree is initialised with the “top level” l and
r for the targeted final accumulation segment. The strategy is to delay whenever possible, i.e. when both
extremities are at least 2 units above.

if 2 <= l and 2 <= r : # time += 1
delay (l - 1 , r - 1) # remove 1

else : # time += 1/2
split ((l + l - 1 , r + l - 1) , # add l then remove 1

(l + r - 1 , r + r - 1)) # add r then remove 1

Algorithm 1: Code for augmented collision rules.

Figure 3 illustrates the update formula after a split: the new target heights are shorter by 1/2, and are
multiplied by 2 to account for the new scale.

11

l

r

1/2 1/21/21/2

1/2

(l + l− 1)/2

(l + r − 1)/2

(r + r − 1)/2

Z
tar

get

Figure 3: Split update formula illustrated.

Nodes are called split or delay depending on the used primitive. There is no end to the recursion: the
constructed unary-binary tree is infinite to produce the whole accumulations segment.

3.2. Correctness
The split nodes play a key role in the demonstration of the correctness of the algorithm. The depth

of a collision is the number of its ancestors of degree 2 (i.e. split nodes). From now on, let d denotes the
depth of a given collision and α denotes the slope of the targeted segment, that is (r0 − l0)/2 where (r0, l0)
denotes the parameter at the root of the tree.

Lemma 1 (Invariants). Algorithm 1 satisfies the following invariants:
1. 1 ≤ l and 1 ≤ r (the parameters remain valid);
2. (r − l)/2 = α (slope is preserved);

6

3. the boundary points of the current targeted segment are on the initially targeted segment: assume the
initial parameters are l0 and r0, and consider a collision happening at (x, t), with parameters l, r. The
points (x, t) + 2−d(−1, l) and (x, t) + 2−d(+1, r) are on the initial targeted segment. That is the segment
with extremities (−1, l0) and (1, r0)

Proof. The first two invariants are straightforward to prove from Algo. 1. Let us consider a node at (x, t)
with parameters l, r (both at least 1). Let us prove the last invariant by induction. It is true for the root
node.

After a delay node: (x − 2−d, (t + 2−d) + 2−d(l − 1)) = (x − 2−d, t + 2−dl) and similarly for r: the
targeted segment extremities are unchanged.

After a split node: (x − 2−(d+1) − 2−(d+1), (t + 2−(d+1)) + 2−(d+1).2.(l − 1/2)) = (x − 2−d, t + 2−dl):
the left extremity of the left new branch matches the left extremity of the formerly targeted segment. Since
(x− 2−(d+1) + 2−(d+1), (t+ 2−(d+1)) + 2−(d+1).2.((l+ r)/2− 1/2) = (x, t+ 2−d(l+ r)/2), the right extremity
of the left new branch matches the middle of the formerly targeted segment. Proof is the same for the right
branch.

Lemma 2. A split collision at (x, t) happens before the point on the targeted segment at the same spatial
location, but not sooner than 2−d(2 + |α|) before. In other words:

t+ 2−d(l + r)/2− 2−d(2 + |α|) ≤ t ≤ t+ 2−d(l + r)/2 .

Proof. The second inequality is obvious. For the first one, we can observe that: (l+ r)/2 = min{l, r}+ |α|.
Indeed, we have:

2 min{l, r}+ |r − l| = 2 min{l, r}+ max{l, r} −min{l, r}
= min{l, r}+ max{l, r} = l + r .

We can then write:
t = t+ 2−d(l + r)/2− 2−d(min{l, r}+ |α|) .

Finally, since it is a split node, min{l, r} ≤ 2, yielding the desired inequality.

Let us note that any infinite branch of the tree contains infinitely many split . There are always infinitely
many branching on both sides.

Theorem 3 (Correctness of the algorithm). Given inputs l0 and r0 no lesser than 1, the algorithm draws
a tree whose closure is the segment [(−1, l0), (1, r0)].

Proof. Let x be in [−1, 1]. Our goal is to prove that there is an accumulation at (x, (l0 + r0)/2 + αx).
We remark that the set of abscissae of split nodes is exactly the set of dyadic rationals comprised

strictly between −1 and 1, which is dense in [−1, 1]. Indeed, these are the number written Σd1ai2
−i with the

ais in {+1,−1}.
Thus, there is a sequence of nodes (xd, td)d∈N such that:

1. (xd, td) is a split collision point of depth d.
2. (xd) converges, with limit x. We can even take |xd − x| < 2−d, and we do, for convenience.

|td − ((l0 + r0)/2 + αx)| ≤ |td − ((l0 + r0)/2 + αxd)|
+ |((l0 + r0)/2 + αxd)− ((l0 + r0)/2 + αx)|

≤ |td − ((l0 + r0)/2 + αxd)|+ |α(xd − x)|
≤ |td − ((l0 + r0)/2 + αxd)|+ |α| × 2−d

then, because of lemmas 2 and 1,
−2−d(2 + |α|) ≤ td − ((l0 + r0)/2 + αxd) ≤ 0

which implies
|td − ((l0 + r0)/2 + αxd)| ≤ 2−d(2 + |α|) .

Putting things together, we have:
|td − (l0 + r0)/2 + αx| ≤ 2−d(2 + |α|+ |α|)x −−−−−→

d→+∞
0 .

7

Proving that (td) converges, with limit (l0+r0)/2+αx. That proves (x, (l0+r0)/2+αx) is an accumulation
point.

Points above the targeted segment are not accumulation points as no node is above it, as shows Lem. 2
(delay nodes have to have a split heir above them, eventually). For a point below the accumulated
segment, say by a amount ∆t, then, according to Lem. 2, there’s a depth d big enough beyond which nodes
are no lower than ∆t/2 below the accumulation segment.

All in all, the accumulation set is exactly the targeted segment.

4. ASM implementation

Each augmented meta-signal that will translate into a ray of regular signals has its name written slanted,
whereas ‘regular’ ones that translate directly into the SM version in next section, like border, are upright.

The initial configuration starts with borders at −1 and +1 as shown in Fig. 2a. As mentioned, each
sub-tree is bounded by a pair of border signals. Each time, we have to consider three cases depending on
how the node was generated (unary, left or right binary).

Figure 4 shows how a delay is implemented. It is initiated by a collision between a main (red, dotted
black, or blue) which carries the values of l and r and an auxiliary signal (green or purple). At this collision,
when both l and r are greater than 2, one augmented signal goes forth (green bouncesl, sl stands for slow)
and back (purple bounce) to the border on the right. The amount of time waited is directly proportional to
the width of the bounds, and with proper speeds the delay can be made half the width as desired. These
speeds are given in the list of meta-signals in Fig. 6.

11

1

bo
rd

er

bo
rd

er

bounc
e split r

l

bou
nce

sl

bounce

de
la

yr
−
1

l−
1

(a) delay from left split
11

1

bo
rd

er

bo
rd

er

bounce

de
la

yr l bou
nce

sl

bounce

de
la

yr
−
1

l−
1

(b) delay from delay
11

1

bo
rd

er

bo
rd

er

bounce
sp
lit
r
l

bou
nce

sl

bounce

de
la

yr
−
1

l−
1

(c) delay from right split

Figure 4: Nodes when 2 ≤ l and 2 ≤ r.

Auxiliary signals (bounce and the likes) bouncing off the borders is described by the collision rules in
Fig. 7a. The last two rules deal with the case where two such signals bounce at the same point of the border
from both sides.

The three rule patterns of Fig. 7b correspond to central collision in the three cases in Fig. 4. The left
part of the rules corresponds to collisions happening at nodes (with respect to the simulated algorithm)
prompted by a previous node accordingly -whether prompted by a delay , or either side of a split . The
right parts of these rule patterns are the same: it is the signals necessary to perform a delay, i.e. to wait a
unit of time.

Figure 5 shows how a split is carried out: once again with green and purple signals bouncing off the
walls, this time intercepting split signals half a unit of time later and in the middle of the new boundaries.
The border created by a split ensures both sides of the computation start in the middle of their own
borders and are kept separated. It also effectively scales these subsequent computations down by a factor
of two. The three rule patterns of Fig. 7c correspond to central collision in the three cases in Fig. 5.

5. SM implementation

It is first presented how bouncing signals are handled and how augmented signals are encoded as macro-
signals: coherent packs of parallel signals (also seen as rays) that can store the analogue information. The
update and routing is then presented in three stages. The first stage tests whether the (next) step is delay

8

11

1/2

bo
rd

er

bo
rd

er

split r
+
l−

1

l+
l−

1 sp
lit

r
+
r
−
1

l+
r
−
1

bounc
e split r

l

bo
rd

er
bounce

boun
ce bounce

boun
ce

(a) split from left split

11

1/2

bo
rd

er

bo
rd

er

split r
+
l−

1

l+
l−

1 sp
lit

r
+
r
−
1

l+
r
−
1

bounce

de
la

yr l
bo

rd
er

bounce

boun
ce bounce

boun
ce

(b) split from delay

11

1/2

bo
rd

er

bo
rd

er

split r
+
l−

1

l+
l−

1 sp
lit

r
+
r
−
1

l+
r
−
1

bounce
sp
lit
r
l

bo
rd

er

bounce

boun
ce bounce

boun
ce

(c) split from right split

Figure 5: Nodes when l < 2 or r < 2.

sbounce =3
sslowbounce =3/2

Meta-signal Speed
border 0

bouncesl sslowbounce
bounce −sbounce
bounce sbounce

Augmented Meta-signal Speed
l, r ∈ [1,+∞) delayrl 0

l, r ∈ [1,+∞) splitrl 1

l, r ∈ [1,+∞) splitrl -1

Figure 6: Regular and augmented meta-signals.

{ bouncesl , border }→ { bounce , border }
{ bounce , border }→ { bounce , border }
{ border, bounce }→ { border,bounce }

{ bouncesl , border, bounce }→ { bounce , border,bounce }
{ bounce , border, bounce }→ { bounce , border,bounce }

(a) bouncing

{ delayrl , bounce }
2≤l∧2≤r−−−−−−→ { delayr−1

l−1 , bouncesl }

{ bounce , splitrl }
2≤l∧2≤r−−−−−−→ { delayr−1

l−1 , bouncesl }

{ splitrl , bounce }
2≤l∧2≤r−−−−−−→ { delayr−1

l−1 , bouncesl }

(b) delay

{ delayrl , bounce }
¬(2≤l∧2≤r)−−−−−−−−−→ { bounce, splitr+l−1

l+l−1 , border, splitr+r−1
l+r−1 , bounce }

{ bounce , splitrl }
¬(2≤l∧2≤r)−−−−−−−−−→ { bounce, splitr+l−1

l+l−1 , border, splitr+r−1
l+r−1 , bounce }

{ splitrl , bounce }
¬(2≤l∧2≤r)−−−−−−−−−→ { bounce, splitr+l−1

l+l−1 , border, splitr+r−1
l+r−1 , bounce }

(c) split

Figure 7: Collision rules.

or split . The second stage is the routing in a macro-collision (coherent pack of collisions issued from a
collision with one or more macro-signals, implement an augmented collision). The third stage is the updating
of the parameters.

Please note that the updating of parameters is started at the end of the routing macro-collision and that
the test for next step is done right after. This ensures that the values are updated and the routing scheme
is known before the next step starts.

For the sake of readability, signals that are redundant or irrelevant to the construction are often removed
from schematic pictures. Figures without annotation (signal names) are generated through a Java SM
simulator and are complete and thorough.

The colour scheme of these pictures is as follows:
– border signals are black;
– tree signals are blue—tree signals are those at the exact same position as the augmented signal in the
augmented signal machine solution of Sect. 4;

– tree macro-signals are filled with yellow;
– bouncing signals are green, slow bouncing signals are green (and appear almost black in the generated
pictures);

– signals helping with the geometry of macro-collisions are orange;
– purple, green and light green are used for computation within a macro-signal (in preparation for collision),
with purple more often associated to testing and green to changing value;

– other colours are used for more particular signals and explained in due time;
– signals foreshadowing or helping to build a split are dashed; and
– signals foreshadowing or helping to build a delay are dotted.

Although special care has been taken so that pictures remain readable in black and white.

9

5.1. ASM simulation structure
As in Sect. 4, the tree structure is built with the help of fast signals bouncing on borders. The initial

configuration thus has two border signals, defining the unit of space.
The way the ASM is simulated by a SM is depicted in Fig. 8. The filled area corresponds to macro-signals

and macro-collisions of the tree. This area is also used to carry out updating. The rest are regular signals
used for constructing the delay and split steps as previously, but some are doubled to take the width of
the macro-signals into account.

Figure 8: Ray scheme example: after a delay , a split then a delay on the left and a split on the right.

As can be seen in Fig. 8, some meta-signals of the augmented signal machine implementation have to
be doubled in order to deal with the width of the macro-signals. This is the case for bouncesl, bounce
and bounce . For example, bounce is replaced by a pair (bouncetop ,bouncebot) where bouncetop should be
“above” bouncebot .

These fast signals as well as borders as well as relevant collision rules are defined in Fig. 9. These
definitions are quite straightforward from the ASM definition and are not exemplified. Their actions can be
seen in figures 8 and 28.

Meta-signal Speed
border 0

bouncebot
sl , bouncetop

sl sslowbounce

bouncebot , bouncetop sbounce

bouncebot , bouncetop −sbounce

∀i ∈ {bot, top} { bounceisl , border }→ { bouncei , border }
∀i ∈ {bot, top} { bouncei , border }→ { bouncei , border }
∀i ∈ {bot, top} { bouncei , border }→ { bouncei , border }

∀i, j ∈ {bot, top} { bounceisl , border, bouncej }→ { bouncei , border, bouncej }
∀i, j ∈ {bot, top} { bouncei , border, bouncej }→ { bouncei , border, bouncej }

Figure 9: Definitions for bouncing signals.

The height of the bouncing part, hb, and the width of the tree macro-signals, wt, verify: hb = wt on both
output of split and hb = 4/3wt after delay . To keep coherence, the following updates are made through
steps:
– through a split from a split , hb′ = 1/2hb and wt′ = 1/2wt,
– through a split from a delay , hb′ = 1/2hb and wt′ = 3/8wt,
– through a delay from a split , hb = 4/3wt, and
– through a delay from a delay , unchanged.

These remain coherent as long as the initial values are. Although the computations are not detailed
here, these relations are satisfied by all the following constructions and can be checked from the speeds of
the signals involved.

5.2. Encoding of macro-signals
The augmented signals percolating through the tree, delayrl , splitrl and splitrl , carry analogue information.

Thus they have to be encoded as by macro-signals with multiple (regular) signals. The way they are encoded
after an updating is depicted in Fig. 10. The sequence of parallel signals is to be understood as follows.

10

The tree (and variants) signals are at the exact locations of the augmented signals in the infinite tree.
Then come signal one (brown) and signal two (orange) which provide the local scale. Values are encoded
by the distance of the signal to tree (so 0 is at tree). Signal bound marks the other end of the macro-signal.
These four signals are structural and not affected by the updating of the parameters.

0 1 2 lr

tr
ee te

st

on
e

tw
o lr

bo
un

d
(a) delay

012l r

tree
test

one
twol r

bound

(b) left split

0 1 2 lr

tre
e test

on
e tw

o lr
bo

un
d

(c) right split

Figure 10: Encoding of augmented signals at leaving a macro-collision.

The parameters l and r are encoded by l and r blue signals between one (included) and bound (excluded).
Thanks to Lem. 2, all the values of the parameters are bounded by 2 +α from the start so that the scale can
be set to ensure that l and r always remain between one and bound. If the value l (or r or both) is equal to 1
or 2, then a special signal is used that amount for the superposition. These special cases are straightforward
and are not addressed anymore.

An extra signal with a different speed, test, initiates the test for the next step inside the macro-signal
as presented later on. Other signals might be present inside the macro-signals to carry out the parameter
updating. The scale is small enough to ensure that all involved signals remain between tree and bound during
parameter updates and that any computation finishes before the next macro-collision starts. Throughout
the updating, signals and positions changed, but the encoding remains similar.

Each macro-signal has the same speed as the augmented signal it encodes: 0 for delayrl as in Fig. 10a,
1 for splitrl as in Fig. 10c and -1 for splitrl as in Fig. 10b. The sequence of signals is displayed left to right
except for splitrl as in Fig. 10b.

In the rest of this paper, meta-signals exclusively used to form macro-signal delayrl , splitrl and splitrl
respectively carry no arrow, a right dotted arrow and a left dotted arrow, irrespective of their speeds and
directions. For example one, one and one each encodes the position of scale 1, but in different macro-signals.
Involved meta-signals (except test signals listed in the next section) are listed in Figure 11.

Meta-signal Speed
tree, bound, one, two, l, r 1
tree, bound, one, two, l, r 0
tree, bound, one, two, l, r −1

Figure 11: Meta-signals for encoding the augmented meta-signal information.

5.3. Test
The first stage is to test whether the next step is delay or split , i.e. whether l and r are both greater

than or equal to 2. In order to do so with the encoding, starting from tree, the test is true if two is met before
any l or r. So, as shown in Fig. 12, a purple test signal starts from tree and turns to some signal recording
whether the next node ought to be delay (testdl, dotted) or split (testsp, dashed). The information is
then stored on the last signal bound, which becomes bounddl (dotted) or boundsp (dashed) accordingly. All
signals in the macro-signals are then parallel and nothing happens until the next macro-collision.

Figures 12a and 12b provide an example where the test lead to delay while Fig. 12c provides one leading
to split .

The meta-signals and collision rules at play are listed in Figure 13.

5.4. Rerouting

The second stage is the macro-collision started by either bouncebot or bouncebot colliding with the macro-
signal. It amounts for the next tick of the clock: the time to start generating the next node of the tree.

11

tr
ee on
e

tw
o lr

bo
un

d

bound
dl

test
testdl

(a) from delay

tree
one

two
l r

bound

bound
dl

test

testdl

(b) split from left split

tre
e

on
e

tw
ol r

bo
un

d

bo
un

d sp

test

testsp

(c) delay from right split

Figure 12: Testing for the next step.

stest = 2

Meta-signal Speed
test, testdl , testsp stest
test, testdl, testsp stest
test, testdl , testsp −stest

Meta-signal Speed
boundsp , bounddl 1
boundsp, bounddl 0
boundsp , bounddl −1

{ test, two }→ { two, testdl }
{ testdl, bound }→ { bounddl }

{ test, l }→ { two, testsp }
{ test, r }→ { two, testsp }

{ testsp, bound }→ { boundsp }
Collision rules with arrows are the same as without arrows.

Figure 13: Definitions for the test.

Duration of steps are handled by bouncing signals so that only the macro-collision is addressed. The cases of
delay and split are considered one after the other. In each case, the previous node has to be considered.

Rerouting is done using common signal machine tools. In particular, a reflection is when each signal
of a macro-signal bounce off a common signal at a common speed. A refraction is when each signal of a
macro-signal takes a new common speed upon crossing a common signal. In both cases, parallelism ensures
that the proportion between distances between signals remains unchanged.

Since signals one, two, l and r are only rerouted and each in the same fashion, in the schematic pictures,
for the sake of clarity, only signal one is shown.

5.4.1. delay rerouting
At a delay step, the macro-signal is only straightened if it is not already vertical, and bouncing signals

are sent.

delay rerouting from a delay . Since the macro-signal is already vertical, bouncing signals have to be sent
back and the updating initiated. This is done as in Fig. 14: upon crossing bounddl, the bottom bouncing
signal bouncebot takes note that the next intersection is a delay , becoming bouncedl. It then simply bounces
off tree, becoming the slower bouncebot

sl . While bouncing, it also turns tree into treedl, indicating the top
bouncing signal to just bounce back. When leaving, the signal bouncetop sprouts a signal updt∗dl which will
start the updating (parameter update then test) within the macro-signals on meeting tree.

Signals like one are unaffected and just pass through the macro-collision.

delay rerouting from a right branch of a split . If the macro-signal comes from the left, it goes first through
a refraction on walldl and then a refraction on bouncedl, as in Fig. 15 to ensure the correct scaling of
the macro-signal (the two refraction are more visible on Fig. 24b). The intermediate speed is such that
the width of the macro-signal is halved.

Again, information about the next step is carried on the bound side of the macro-signal, by bounddl.
The output of the starting collision (between bouncebot and tree) contains three signals: A vertical signal
treedl that refracts signal in the band once. A signal boundsdl that is the diffraction of the bound signal,
and still carries the delay information; that way, bouncetop can become bouncedl and handles the second
refraction . A signal bounces that, upon intersecting with bouncetop, can start bouncebot

sl at the correct
place.

12

tr
ee

tr
ee

dl
tr

ee

on
e

bo
un

d d
l

bo
un

d

bounce bot

bouncedl

bou
nce

bo
t

sl

bounce top

bou
nce

top
sl

updt∗dl

Figure 14: delay after a delay .

w
al

l d
l

bouncedl

bo
un

ce
s

bo
un

d s
dl

on
e s

on
e

bo
un

d

tr
ee

bou
nce

bo
t

slbou
nce

top
sl

updt∗dl

tre
e

on
e

bo
un

d dl bounce bot

bounce top

Figure 15: delay after a right split .

delay rerouting from a left branch of a split . The macro-signal comes from the right, it first undergoes a
reflection on walldl, then a refraction on bouncedl, as shown in Fig. 16 (it is more visible on Fig. 24c).
Once again, the intermediate speed is such that the width of the macro-signal is halved. So after the first
reflection everything behaves the same way than after the first refraction when coming from the left.

The reason for using a reflection is the following: information on the next step is carried on the bound
side of the macro-signal (bounddl) and has to be below (before) tree; this is why a leftward macro-signal is a
mirror image of a rightward macro-signal, rather than a mere slanting of a vertical macro-signal—in other
words the bound is on the left.

Without a bouncetop to handle the refraction , we need another signal, dsep2 (orange) coming from
somewhere else. A dsep1 (orange as well) signal is thus launched at the bottom intersection with a default
fast speed of −3. It intersects the bouncetop signal and sprout dsep2 . The dsep2 signal in turn has a finely
tuned speed so as to intersect with bounces at the right time and place. There, a bouncetop is sprouted as
if it came from the right and handles the refraction .

The new meta-signals and collision rules involved are listed in Figure 17.

13

w
al

l d
l

bouncedl

bo
un

ce
s

bo
un

d s
dl

on
e s

on
e

bo
un

d

tr
ee

bou
nce

bo
t

sl
bou

nce
top
sl

updt∗dl

tree
one

bound
dl

bounc
eb

ot

bounc
eto

p

dsep1

dsep2

Figure 16: delay after a left split .

sshrink =3/7
sfastshrink =3/5

Meta-signal Speed
treedl, walldl 0

dsep1 −sbounce
dsep2 2sbounce

Meta-signal Speed
bouncedl , updt∗dl −sbounce

bounces sfastshrink
boundsdl , ones , twos , rs , ls sshrink

{ bounddl, bouncebot }→ { bouncedl , bound }

{ bouncedl , tree }→ { treedl, bouncebot
sl }

{ treedl, bouncetop }→ { tree, bouncetop
sl }

{ bounddl , bouncebot }→ { walldl, boundsdl , bounces }

{ bounces , bouncetop }→ { bouncetop , bouncebot
sl }

{ tree, walldl, bouncedl }→ { tree, bouncetop
sl }

{ bouncebot , bounddl }→ { dsep1 , walldl, boundsdl , bounces }
{ bouncetop , dsep1 }→ { dsep2 }

{ bounces , dsep2 }→ { bouncetop , bouncebot
sl }

{ walldl, tree, bouncedl }→ { tree, bouncetop
sl }

{ bouncetop
sl , bound }→ { updt∗dl, bound, bouncetop

sl }
∀µ ∈ {one, two, r, l} { µ , walldl }→ { walldl, µs }
∀µ ∈ {one, two, r, l} { µ, walldl }→ { walldl, µs }

{ boundsdl , bouncetop }→ { bouncedl , bound }
∀µ ∈ {one, two, r, l} { µs , bouncedl }→ { bouncedl , µ }

Figure 17: Definitions for rerouting at a delay node.

5.4.2. Split Rerouting
At a split step we need to fork the macro-signal, and go half a unit of space both ways during half a unit

of time (again using bouncing signals). Forking is done by sending a copy of each side (with corresponding
orders of signals inside the new macro-signals) and adding a motionless border signal, so as to set border
and scale for the new branches.

split rerouting from a split . Routing from each branch is done symmetrically (as can be seen in Figs. 27b
and 27c) so only one case is presented. Forking the macro-signal from the right branch of a split is done
by raising a vertical signal wallsp on which the macro-signal gets duplicated as can be seen in Fig. 18. The
duplication can be viewed as a simultaneously operating a reflection and a refraction on the macro-

14

signal. Both branches are then routed and their widths are halved in the process.

tre
e

on
e

bo
un

d sp bounce bot

w
al

l sp
bo

un
ce sbounce

sb

bo
un

d sbound
sb

on
e s

one
sb

bounce top

bounce top

bounce bot

bounc
eto

p

bounc
eb

ot

on
eone

bo
un

d

bound

tre
etree

updt *
spupdt

*
sp

bo
rd

er

Figure 18: split after a right split (routing).

The meta-signals and collision rules at play are listed in Fig. 19.

sback
shrink =1/3

sbounce
shrink =1

sbounceBack
shrink =3/5

Meta-signal Speed
wallsp 0

bounces sbounce
shrink

bounces −sbounce
shrink

bouncesb sbounceBack
shrink

bouncesb −sbounceBack
shrink

Meta-signal Speed
bounds sshrink

ones , twos , rs , ls , bounds −sshrink

onesb ,twosb , rsb , lsb , boundsb sback
shrink

onesb , twosb , rsb , lsb ,boundsb −s
back
shrink

updt*sp −stest
updt*sp stest

{ bouncebot , boundsp }→ { bouncesb , boundsb , wallsp, bounds , bounces }

{ bouncebot , boundsp }→ { bouncesb , boundsb , wallsp, bounds , bounces }

{ tree, wallsp, bouncetop }→ { bouncetop , updtlosp , updthi
sp , tree, border, tree, bouncetop }

{ bounds , bouncetop }→ { bouncetop , bound }
{ tree, boundsb }→ { bound, tree }

∀µ ∈ {one, two, r, l} { wallsp, µ }→ { µsb , wallsp, µs }
∀µ ∈ {one, two, r, l} { µs , bouncetop }→ { bouncetop , µ }
∀µ ∈ {one, two, r, l} { tree, µsb }→ { µ, tree }

{ tree, bouncesb }→ { bouncebot , tree }
{ bouncetop , bound }→ { updt*sp , bouncetop , bound }

{ bounds , bouncetop }→ { bouncetop , bound }
{ tree, boundsb }→ { bound, tree }

∀µ ∈ {one, two, r, l} { wallsp, µ }→ { µs , wallsp, µsb }
∀µ ∈ {one, two, r, l} { µs , bouncetop }→ { bouncetop , µ }
∀µ ∈ {one, two, r, l} { tree, µsb }→ { µ , tree }

{ tree, bouncesb }→ { bouncebot , tree }
{ bouncetop , bound }→ { updt*sp , bouncetop , bound }

Figure 19: Definitions for routing at a split from right or left.

split rerouting from a delay . If the previous step is a delay , the construction, shown in Fig. 20, is more
involving. Again this is due to the difference of orientation between the signals in a leftward band and a

15

straight one. The right part of the collision output is obtained by a simple refraction on signal bounce1sp.
The left part is obtained through a refraction by sep1 , a reflection on bound1 and a refraction on
sep3 .

bounce bot

bouncesp

sep1

bound
1

sep2

sep3

tr
ee

bounce top

bounce 1
sp

boundsp

bo
un

d1 sp

on
e

tw
o

one1
two1

on
e

tw
o

bounce top

bounce bot

bounc
eto

p

bounc
eb

ot

on
eone tw

otwo

bo
un

dbound

tre
etree

bo
rd

er

Figure 20: Routing for split after a delay .

The new meta-signals and collision rules at play are listed in Fig. 21.

Meta-signal Speed
bound1 −1

sep1 , sep3 sbounce
sep2 −sbounce

bouncesp , bounce1sp −stest

{ boundsp, bouncebot }→ { bouncesp , bound1
sp }

{ bound1
sp, bouncetop }→ { bounce1sp , bound }

{ tree, bouncesp }→ { bouncebot ,bound1 ,tree,sep1 }
∀µ ∈ {one, two, r, l} { sep1 , µ }→ {µ1, µ, sep1 }

{ sep1 , bound1
sp }→ { sep2 , bound1

sp, bouncebot }
∀µ ∈ {one, two, r, l} { bound1 , µ1 }→ { bound1 , µ }

{ bound1 , sep2 }→ { bound, sep3 }
∀µ ∈ {one, two, r, l} {µ, bounce1sp }→ { bounce1sp , µ }
∀µ ∈ {one, two, r, l} { sep3 , µ }→ { sep3 , µ }

{ sep3 , tree, bounce1sp }→ { bouncetop , tree, border, tree, bouncetop }

Figure 21: Definitions for split routing after a delay .

5.5. Updating the parameters
The updating of parameters is done according to Algo. 1. It occurs right after a macro-collision and

depends on its nature.

5.5.1. delay parameter update
The updating is done by removing 1 from both l and r as depicted in Fig. 22. This corresponds to a shift

of l and r by the distance from tree to one. For l, this is done by constructing a parallelogram with one side
going from one to tree and the opposite side from l to its updated position. Parallel lines simply correspond
to signals with the same speed (oneback and rback, and updt2dl and minus2). Signal r is shifted similarly. After
that, the signal teststart is generated and sent to collide tree to generate test to start the test sequence as
seen previously.

The new meta-signals and collision rules used in 22 are listed in Fig. 23. The signals updt2dl and updt1dl
(as well as minus2 and minus1) are used to count down before disappearing after meeting both l and r (in
whatever order).

A full delay step, that is rerouting and parameter update, is performed as shown in Fig. 24.

16

tr
ee

on
e

tw
o

bo
un

d

r l

updt ∗dl

upd
t2dl

upd
t1dl

oneback

rback

lback

minus
2

minus
1

r l

teststart

test

Figure 22: Updating l and r after a delay .

Meta-signal Speed
updt2dl, updt1dl, minus2, minus1, updt2dl , updt1dl , minus2 , minus1 stest

oneback, lback, rback, teststart , oneback , lback , rback , teststart , updt∗dl −stest
updt2dl , updt1dl , minus2 , minus1 −stest

oneback , lback , rback , teststart , updt∗dl stest

{ tree, updt∗dl }→ { tree, updt2dl }
{ updt2dl, one }→ { oneback, one, updt2dl }

{ tree, oneback }→ { tree, minus2 }
{ tree, teststart }→ { tree, test }

∀µ ∈ {r, l} { updt2dl, µ }→ {µ back, updt1dl }
∀µ ∈ {r, l} { updt1dl, µ }→ {µ back }
∀µ ∈ {r, l} { minus2, µ back }→ {µ, minus1 }
∀µ ∈ {r, l} { minus1, µ back }→ {µ, teststart }

Collision rules with arrows are the same as without arrows.

Figure 23: Definitions for updating parameters after a delay .

(a) delay from delay (b) delay from right split (c) delay from left split

Figure 24: delay implementations.

5.5.2. split parameter update
The updating on the right (resp. left) branch of a split is illustrated by Fig. 25 and done as follows: r

(resp. l) is added to both l and r; then 1 is removed from both l and r. What happens on the right and

17

on the left branch is symmetrical with the roles of l and r swapped; so that only what happens on a right
branch is presented.

Adding r to both l and r is done by moving l and r by the distance from tree to r (again using a
parallelogram). The computing signals bounce back to tree after measuring that distance and before adding
it so that the construction does not depend on the order of l and r. The new meta-signals and collision rules
at play are listed in Fig. 26.

The computation is finished by removing 1 and starting the test stage. This is done exactly as in the
parameter update occurring after a delay step. The (dotted arrow) meta-signals and collision rules are
already defined in Fig. 23.

updt *
sp

tre
e

bo
un

d

updt
lo
sp

upd
th

i
sp

updt bcksp

updt bcksp

updt
st
sp

updt
st
sp

upd
trs

t
sp

r

updt
st_1
sp

updt
st_1
sp

upd
tls

t
sp

l

lr

updt∗dl

updt
2
dl

Figure 25: Updating l and r after a split .

sup
split = 5/3

Meta-signal Speed
updtlosp , updtstsp , updtst_1

sp , updtbck
sp , updt∗dl stest

updtlosp , updtstsp , updtst_1
sp , updtbck

sp , updt∗dl −stest
updthi

sp , updtlstsp , updtrstsp −sup
split

updthi
sp , updtlstsp , updtrstsp sup

split

† { updt*sp , tree }→ { tree, updthi
sp , updtlosp }

∀i ∈ {lo, hi} { updtisp , r }→ { updtbck
sp , r }

∀i ∈ {lo, hi} { updtisp , l }→ { updtbck
sp , l }

† { tree, updtbck
sp }→ { tree, updtstsp }

† ∀i ∈ {r, l} { updtstsp , i }→ { updtst_1
sp , updtistsp }

† ∀i ∈ {r, l} { updtst_1
sp , i }→ { updtistsp }

† ∀i ∈ {r, l} { updtst_1
sp , updtistsp }→ { i, updt∗dl }

† Each line starting with this symbol defines two rules, one with all right over arrows, one with all left.

Figure 26: Definitions for updating parameters after a split .

A full split step, that is routing and parameter update is shown in Fig. 27, with Fig. 27c zooming on
the routing part.

5.6. Initial Configuration
The initial configuration consists in a rightward tree macro-signal, built as per subsection 5.2, as well

as two bouncing signals (non slow and going right as well), separated by three times the width of the
macro-signal. A bouncetop signal is still inside the macro-signal, so as to prompt updating and testing. The
parameters inside the macro-signal at time 0 are chosen so as to become the targeted l and r after update.

18

(a) split from delay

(b) split from left split

(c) split from right split

Figure 27: split implementations.

6. Conclusion

We provide a recursive geometrical algorithm to draw an infinite tree accumulating on a parameterised
slope together with its proof and its implementation as a signal machine. An extended run on a signal
machine can be seen in Fig. 28, with l = 150/113 and r = 200/101.

By comparison with cellular automata, the active signals (the general) start on an arbitrarily small area.
It corresponds to the single active cell at the start in cellular automata.

It takes several signals to code any slope with finitely many meta-signals. It is possible to shrink the
general to a single point and do similar construction to ours (for example by building bands of signals such
as our). There would, however, be only one attainable slope per general (assuming its position is fixed), and
finitely many per signal machine (since point generals are one of finitely many meta-signals).

An important model that appears in the current construction is the augmented signal machine. It allows
to construct and prove at some level, leaving only “technicalities” to simulate with a usual signal machine
(using macro-signals and macro-collisions). These technicalities can be involving by themselves.

Our construction exhibits rational robustness: if the signal speed and initial positions are rational, so
will be the targeted slope. Further more the tree drawn is fractal (can be recursively defined) if and only
if l and r are rational numbers. Indeed, if say, l is irrational, then the path from the general to (−1, l) is
made of a non-periodic sequence of delay and split . If l and r are rational, then one can show the set of
reachable parameters is finite by observing the invariant: there is some positive integer m (the least common
multiple of the denominators of initial l and r) such that both m.l and m.r always belongs to N, as well as
the fact that l and r are bounded.

This construction is a first step toward a study of possible accumulation sets of signal machines. The
next step is to look for curves, i.e. non piece-wise rectilinear. We can already adapt the initial configuration
(without modifying the machine!) to accumulate on a continuous piece-wise linear function, as shown in
Fig. 29.

19

Figure 28: The whole signal machine in action involving more than 74.000 collisions.

References

[1] Besson, T., 2018. Automatic discretization of signal machines into cellular automata. Thèse de doctorat. Université
d’Orléans. URL: https://tel.archives-ouvertes.fr/tel-01975875.

[2] Blum, L., Shub, M., Smale, S., 1989. On a theory of computation and complexity over the real numbers: NP-completeness,
recursive functions and universal machines. Bulletin of the American Mathematical Society 21, 1–46.

[3] Čulik II, K., 1989. Variations of the firing squad problem and applications. Information Processing Letters 30, 153–157.
doi:10.1016/0020-0190(89)90134-8.

[4] Duchier, D., Durand-Lose, J., Senot, M., 2012. Computing in the fractal cloud: modular generic solvers for SAT and
Q-SAT variants, in: Agrawal, M., Cooper, B.S., Li, A. (Eds.), Theory and Applications of Models of Computations
(TAMC ’12), Springer. pp. 435–447. URL: http://arxiv.org/abs/1105.3454, doi:10.1007/978-3-642-29952-0_42.

[5] Durand-Lose, J., 2006. Forcasting black holes in abstract geometrical computation is highly unpredictable, in: Cai, J.Y.,
Cooper, B.S., Li, A. (Eds.), Theory and Applications of Models of Computations (TAMC ’06), Springer. pp. 644–653.
doi:10.1007/11750321_61.

[6] Durand-Lose, J., 2007. Abstract geometrical computation and the linear Blum, Shub and Smale model, in: Cooper, B.S.,
Löwe, B., Sorbi, A. (Eds.), Computation and Logic in the Real World, 3rd Conf. Computability in Europe (CiE 2007),
Springer. pp. 238–247. doi:10.1007/978-3-540-73001-9_25.

[7] Durand-Lose, J., 2011a. Abstract geometrical computation 5: embedding computable analysis. Natural Computing 10,
1261–1273. doi:10.1007/s11047-010-9229-6. special issue on Unconv. Comp. ’09.

[8] Durand-Lose, J., 2011b. Geometrical accumulations and computably enumerable real numbers (extended abstract), in:
Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (Eds.), Int. Conf. Unconventional Computation 2011 (UC ’11), Springer.
pp. 101–112. doi:10.1007/978-3-642-21341-0_15.

20

Figure 29: Two different slopes.

[9] Goto, E., 1962. A minimum time solution of the firing squad synchronization problem, in: Courses Notes for Applied
Mathematics, Harvard University.

[10] Maignan, L., Yunès, J., 2012. A spatio-temporal algorithmic point of view on firing squad synchronisation problem, in:
Sirakoulis, G.C., Bandini, S. (Eds.), 10th Int. Conf. on Cellular Automata for Research and Industry (ACRI), Santorini
Island, Greece, Springer. pp. 101–110. doi:10.1007/978-3-642-33350-7_11.

[11] Maignan, L., Yunès, J., 2016a. A field based solution of mazoyer’s FSSP schema, in: Yacoubi, S.E., Was, J., Bandini,
S. (Eds.), 12th Int. Conf. on Cellular Automata for Research and Industry (ACRI), Morocco, Springer. pp. 134–143.
doi:10.1007/978-3-319-44365-2_13.

[12] Maignan, L., Yunès, J., 2016b. Finitization of infinite field-based multi-general FSSP solution. J. Cellular Automata 12,
121–139.

[13] Maignan, L., Yunès, J., 2018. Generalized FSSP on two triangular tilings, in: Sixth International Symposium on Computing
and Networking, CANDAR Workshops, Takayama, Japan, IEEE Computer Society. pp. 27–31. doi:10.1109/CANDARW.
2018.00013.

[14] Martin, B., 1994. A universal cellular automaton in quasi-linear time and its S-n-m form. Theoretical Computer Science
123, 199–237.

[15] Mazoyer, J., 1987. A 6-states minimal-time solution to the Firing squad synchronisation problem. Theoretical Computer
Science 50, 183–237.

[16] Mazoyer, J., 1996. On optimal solutions to the Firing squad synchronization problem. Theoretical Computer Science 168,
367–404. doi:10.1016/S0304-3975(96)00084-9.

[17] Moore, E.F., 1964. Sequential machines, Selected papers. Addison-Wesley.
[18] Nichitiu, C., Mazoyer, J., Rémila, E., 2001. Algorithms for leader election by cellular automata. Journal of Algorithms

41, 302 – 329. URL: http://www.sciencedirect.com/science/article/pii/S0196677401911757, doi:https://doi.org/
10.1006/jagm.2001.1175.

[19] Umeo, H., 2017. Cellular automata, firing squad synchronization problem in, in: Meyers, R.A. (Ed.), Encyclopedia of
Complexity and Systems Science. Springer Berlin Heidelberg, pp. 1–60. doi:10.1007/978-3-642-27737-5_211-4.

[20] Waksman, A., 1966. An optimum solution to the firing squad synchronization problem. Information and Control 9, 66–78.
[21] Yunès, J.B., 2007. Simple new algorithms which solve the firing squad synchronization problem: a 7-states 4n-steps

solution, in: Durand-Lose, J., Margenstern, M. (Eds.), Machine, Computations and Universality (MCU 2007), Springer.
pp. 316–324.

21

