
HAL Id: hal-03266812
https://hal.science/hal-03266812v1

Submitted on 22 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous Optimization Methods for Efficient
Training of Deep Neural Networks with Guarantees
Vyacheslav Kungurtsev, Malcolm Egan, Bapi Chatterjee, Dan Alistarh

To cite this version:
Vyacheslav Kungurtsev, Malcolm Egan, Bapi Chatterjee, Dan Alistarh. Asynchronous Optimiza-
tion Methods for Efficient Training of Deep Neural Networks with Guarantees. AAAI 2021 - 35th
Conference on Artificial Intelligence, Feb 2021, Virtual, United States. pp.1-8. �hal-03266812�

https://hal.science/hal-03266812v1
https://hal.archives-ouvertes.fr


Asynchronous Optimization Methods for Efficient Training of Deep Neural
Networks with Guarantees

Vyacheslav Kungurtsev,1 Malcolm Egan, 2 Bapi Chatterjee 3 Dan Alistarh 3

1 Department of Computer Science, Faculty of Electrical Engineering Czech Technical University in Prague
2 University of Lyon, INSA Lyon, INRIA

3 IST Austria
vyacheslav.kungurtsev@fel.cvut.cz, malcom.egan@inria.fr, bapi.chatterjee@ist.ac.at, dan.alistarh@ist.ac.at

Abstract

Asynchronous distributed algorithms are a popular way to re-
duce synchronization costs in large-scale optimization, and
in particular for neural network training. However, for non-
smooth and nonconvex objectives, few convergence guaran-
tees exist beyond cases where closed-form proximal operator
solutions are available. As training most popular deep neural
networks corresponds to optimizing nonsmooth and noncon-
vex objectives, there is a pressing need for such convergence
guarantees. In this paper, we analyze for the first time the
convergence of stochastic asynchronous optimization for this
general class of objectives. In particular, we focus on stochas-
tic subgradient methods allowing for block variable parti-
tioning, where the shared model is asynchronously updated
by concurrent processes. To this end, we use a probabilis-
tic model which captures key features of real asynchronous
scheduling between concurrent processes. Under this model,
we establish convergence with probability one to an invari-
ant set for stochastic subgradient methods with momentum.
From a practical perspective, one issue with the family of
algorithms that we consider is that they are not efficiently
supported by machine learning frameworks, which mostly fo-
cus on distributed data-parallel strategies. To address this, we
propose a new implementation strategy for shared-memory
based training of deep neural networks for a partitioned but
shared model in single- and multi-GPU settings. Based on
this implementation, we achieve on average about 1.2x speed-
up in comparison to state-of-the-art training methods for pop-
ular image classification tasks, without compromising accu-
racy.

Introduction
Training deep neural networks (DNNs) is a difficult problem
in several respects (Goodfellow et al. 2016). First, due to
multiple layers of nonlinear activation functions, the result-
ing optimization problems are nonconvex. Second, ReLU
activation functions and max-pooling in convolutional net-
works induce nonsmoothness, i.e., the objective is not dif-
ferentiable everywhere. Finally, in applications it is often
unreasonable to store entire data sets in memory in order
to compute the objective or subgradients. As such, it is nec-
essary to exploit stochastic methods.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Machine learning applications, including training deep
neural networks, have also motivated optimization algo-
rithms that use high performance parallel computing paral-
lel. In this paper, we focus on the shared-memory paradigm,
although our results can be efficiently extended to realistic
distributed settings. Recent interest in this topic was sparked
by (Recht et al. 2011), although precursors exist. Later work
in (Lian et al. 2015) refined this analysis and generalised
to nonconvex smooth problems, under restricted schedul-
ing models. Subsequently, (Cannelli et al. 2019) introduced
a more general and realistic probabilistic model of asyn-
chronous computation on shared memory architectures.

Asynchronous proximal gradient methods have been stud-
ied in (Zhu, Niu, and Li 2018) for problems of the form
f(x) + g(x), where f(x) is smooth and nonconvex, and
g(x) is nonsmooth but with an easily computable closed
form proximal evaluation. This class of problems is only rel-
evant for training DNNs wherein every activation function is
smooth. However, current popular DNN models make exten-
sive use of ReLU activation functions nor max-pooling, and
thus this literature on convergence, speedup, etc. on asyn-
chronous parallel stochastic (sub)gradient descent does not
apply, when considered from the standpoint of mathematical
rigor. This leaves a clear gap between practical implementa-
tion and convergence guarantees.

This gap is understandable, given that the general problem
of nonsmooth and nonconvex stochastic optimisation is no-
toriously difficult (Bagirov, Karmitsa, and Mäkelä 2014). A
standard framework to establish convergence of such algo-
rithms in the centralized sequential setting is stochastic ap-
proximation, with early work in (Ermol’ev and Norkin 1998;
Ruszczyński 1987) and comprehensive surveys in (Kushner
and Yin 2003) and (Borkar 2009). In (Davis et al. 2018; Ma-
jewski, Miasojedow, and Moulines 2018), stochastic approx-
imation for (sequential) nonsmooth and nonconvex prob-
lems has been recently developed, motivated by DNNs.

In this paper, we take a first step towards bridging the
gap and establish the convergence of stochastic subgradi-
ent descent for nonsmooth and nonconvex problems in a re-
alistic asynchronous computation framework. In particular,
we show that generic asynchronous stochastic subgradient
methods converge with probability one for a general class of
nonsmooth and nonconvex objectives. Aside from the lim-
ited presentation in (Kushner and Yin 2003, Chapter 12), this

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

8209



Algorithm Val top-1
Accuracy

Time
(Sec)

Val top-1
Accuracy

Time
(Sec)

CIFAR10 CIFAR100

HW! 92.91±0.2 2149 68.95±0.1 2086
ASSM 92.97±0.2 2147 69.00±0.1 2088
PASSM 91.63±0.2 1192 68.32±0.2 1189
PASSM+ 92.92±0.2 1610 69.28±0.3 1617
SGD 92.98 2512 68.9 2374
SGD (BS:1024) 92.23 1946 68.51 1962

Table 1: Resnet20 training for 300 epochs on a Nvidia
GeForce RTX 2080 Ti, with a batch size of 128. For large-
batch training, we follow (Goyal et al. 2017). Asynchronous
training uses 4 concurrent processes. Standard hyperparam-
eter values (He et al. 2016) were applied.

is the first result for this class of algorithms, combining the
state of the art in stochastic approximation with that in asyn-
chronous computation. In addition, inspired by the success
of momentum methods (Zhang, Mitliagkas, and Ré 2017),
we also establish for the first time convergence of stochastic
subgradient descent with momentum in the context of asyn-
chronous computation.

We complement the convergence analysis with a new
efficient implementation strategy. Specifically, our main
convergence result applies to an Asynchronous Stochastic
Subgradient Method (ASSM), where each process updates
all of the model parameters, and each partition is protected
from concurrent updates by a lock. A variation is to as-
sign non-overlapping partitions of the model to processes,
which we call Partitioned ASSM (PASSM). This prevents
overwrites, and allows us to update the model in a lock-
free manner. In practice, ASSM updates the entire model,
thus has an equivalent computation cost to the sequential
minibatch stochastic gradient descent (SGD). By contrast,
PASSM needs to compute block-partitioned stochastic sub-
gradients. To implement this efficiently, we perform “re-
stricted” backpropagation (see details in Section ), which
can provide savings proportional to the size of subgradients.

As shown in Table 1, PASSM is faster than both Large-
Batch SGD and Hogwild! (HW!), but, in practice, it does not
always recover validation (generalization) accuracy. To ad-
dress this, we propose alternating sequences of PASSM and
ASSM steps, denoted by PASSM+. From a technical per-
spective, the novelty of PASSM+ is to exploit concurrency
to save on the cost of computation and synchronization with-
out compromising convergence and generalization perfor-
mance. A sample of the performance results for our Pytorch-
based implementation is given in Table 1. PASSM+ matches
the baseline in terms of generalization and yet provides on
average ∼1.35x speed-up for identical sample processing.
At the same time, it achieves ∼1.2x speed-up against a
large-batch training method, with better generalization. The
method is applicable to both shared-memory (where multi-
ple processes can be spawned inside the same GPU up to its
computational saturation) as well as in the standard multi-
GPU settings.

Problem Formulation
Consider the minimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is locally Lipschitz continuous, but po-
tentially nonconvex and nonsmooth. Further, we are in a set-
ting where it is computationally infeasible to evaluate f(x)
or an element of the Clarke subdifferential ∂f(x). In ma-
chine learning, f(x) corresponds to a loss function evaluated
on an n-dimensional model x ∈ Rn, dependant on M input
samples, each of dimension u, which can be represented as
an input matrix A ∈ RM×u, with target values y ∈ RM ,
one for each sample. That is, f(x) = f(x; (A, y)), where
x is a parameter to optimize with respect to a loss function
` : R×R→ R. Neural network training is then achieved by
minimizing the empirical risk, where f admits the decom-
position

f(x) =
1

M

M∑
i=1

`(m(x;Ai); yi)

wherem generates predictions from model x and sampleAi.
We are concerned with algorithms solving (1) in a dis-

tributed fashion over shared-memory; i.e., using multiple
concurrent processes. Typically, a process uses a CPU core
for computation over the CPU itself using an accelerator
such as a GPU. In the following, we will use the terms
core and process interchangeably. We consider a standard
asynchronous shared-memory setting (Recht et al. 2011),
in which processes share a vector (tensor) representing the
model x. In each iteration, each process reads the (possibly
inconsistent) model, computes a (possibly partial) gradient
with respect to it, and updates the model accordingly. This
can lead to inconsistencies when a process reads the model,
as other processes may be updating parts of it concurrently.

Specifically, we focus on the general inconsistent read
scenario: before computation begins, each core c ∈
{1, . . . , c} is allocated a block of variables Ic ⊂
{1, 2, . . . , n}, which it is responsible for updating. At each
iteration, a core modifies a block of variables ik, chosen ran-
domly among Ic. Immediately after core c completes its it-
eration, it updates the model parameters over shared mem-
ory. The shared memory allows concurrent-read-concurrent-
write access. Shared-memory systems offer atomic read
and fetch-and-add (faa) primitives, using which
processes can update model components individually.

A lock on updating the shared memory is only placed
when a core writes to it, and hence the process of reading
may result in computations based on model views that do
not exist in memory. For instance: block 1 is read by core
1, then core 3 updates block 2 while core 1 reads block 2,
and so core 1 computes an update with the values in blocks
1 and 2 that are inconsistent with the local view of core 3.

We index iterations based on when a core writes a new set
of variable values into memory. Let dki = {dki,1, ..., dki,n}
be the vector of delays for each component of the vari-
able used by core c associated with block i to evaluate
a subgradient estimate, thus the j-th component of x̃ki =

(x
k−dki,1
i,1 , . . . , x

k−dki,n
i,n ) that is used in the computation of the

8210



update at k may be associated with a different delay than the
j′-th component.

In this paper, we study stochastic approximation meth-
ods, of which SGD is a special case. Since f in (1) is in
general nonsmooth and nonconvex, we exploit generalized
subgradient methods. Denote by ξki the mini-batch (i.e., a
subset of the data {(Ai, yi)}Mi=1) used to compute an ele-
ment of the subgradient gi(x̃ki ; ξki ). Consistent with stan-
dard empirical risk minimization methods (Bottou, Curtis,
and Nocedal 2018), the mini-batch ξki is chosen uniformly
at random from (A, y), independently at each iteration.

Consider the general stochastic subgradient algorithm un-
der asynchronous updating and momentum in Algorithm 1,
presented from the perspective of an individual block of
variables i. Stochastic subgradient methods with momentum
have been widely utilized due to their improved performance
(Zhang, Mitliagkas, and Ré 2017). As such, during the k-th
iteratation, updates incorporate subgradient estimates from
previous iterations. The parameter 0 < m < 1 is then the
momentum constant, γk,i the step-size and gi(x̃k,i; ξk,i) is
an estimate of the Clarke subgradient at the point xk,i. The
variable uki is the weighted sum of subgradient estimates
needed to introduce momentum.

We make the following standard assumption:

Assumption 0.1. The stochastic subgradient estimates
g(x, ξ) satisfy

(i) Eξ [g(x; ξ)] ∈ ∂f(x) + β(x);

(ii) Eξ
[
dist(g(x; ξ), ∂f(x))2

]
≤ σ2;

The term β(x) in (i) of Assumption 0.1 is required to al-
low the possibility that a different element of the subgradi-
ent at x is estimated upon repeated visits to x. Given that
i) the set of DNN empirical loss functions is continuously
differentiable on a set of dense measure, and ii) since up-
dates are noisy, the probability that the exact same x will be
used for evaluation is zero, in practice β(x) will always be
zero. However, we make this mathematically rigorous in the
convergence theory in (Kungurtsev et al. 2019).

Algorithm 1 Asynchronous Stochastic Subgradient Method

1: Input: x0, block i
2: while Not converged do
3: Sample ξki from the data (A, y).

4: Read xki = x̃ki = (x
k−dki,1
i,1 , . . . , x

k−dki,n
i,n ) from the

shared memory.
5: Compute the subgradient estimate gi(x̃ki ; ξki ).
6: Update the momentum vector uk+1

i ← m · uki +
gi(x̃

k
i ; ξki ) in and write to the local cache.

7: Write, with a lock, to the shared memory xk+1
i ←

xki − (1−m)γki u
k+1
i .

8: k ← k + 1.
9: end while

Continuous-Time Reformulation
We can re-write Algorithm 1 as:

xk+1
i = xki + (1−m)γki

k∑
j=1

mk−jY ji , (2)

where Y ji is based on an estimate of the partial subgradient
with respect to block variables indexed by i at local iteration
j. Each term Y ki corresponds to g(x̃ki ; ξki ), denoted as

Y ki = gi((x
k−dki,1
i,1 , . . . , x

k−dki,n
i,n )) + βki + δMk

i ,

where gi(x) denotes block i of a selection of an element of
the subgradient of f(x), βki is defined in Assumption 0.1,
and δMk

i is a martingale difference sequence.
In order to translate the discrete-time updates into real-

time updates, we now require an interpolation. This is a
standard approach (Kushner and Yin 2003), which provides
a means of establishing that the sequence of iterates con-
verges to the flow of a differential inclusion with an equilib-
rium point at a stationary solution. To this end, define δτki to
be the real elapsed time between iterations k and k + 1 for
block i and T ki =

∑k−1
j=0 δτ

j
i . As such, the real time delay

corresponding to dki,j is
∑k−1
l=k−dki,j

δτ li .

The convergence of the process {xk} is a property of its
tail behavior. Thus for σ ≥ 0, let pi(σ) = min{j : T ji ≥ σ};
i.e., the first iteration at or after σ. The inter-update times for
block i starting at the the first update at or after σ is δτk,σi
and the corresponding step sizes are then denoted by γk,σi .

The required notion of continuous time is then defined by

τk,σi =
k−1∑
j=0

γj,σi δτ j,σi . (3)

The shifted interpolation of {xki } is then given by

x̂σi (t) =xk,σi , t ∈ [τk,σi , τk+1,σ
i ), where (4)

xk+1,σ
i =xk,σi + (1−m)γk,σi

k+pi(σ)∑
j=1

mk−j+pi(σ)Y ji (5)

with x0,σi = x
pi(σ)
i .

We now detail the assumptions on the real elapsed
times, communication delays, and subgradient estimator
bias. These ensure that the real-time delays do not grow
without bound, either on average, or with substantial proba-
bility. A basic for which these assumptions hold is the stan-
dard assumption that the delays are bounded, i.e., that there
exists a δ such that dki,j ≤ δ for all i, j and k (and so each
dk,ij ∈ D , {0, ..., δ}n).

Assumption 0.2. {δτk,σi ; k, i} is uniformly integrable.

Assumption 0.3. There exists a function uσk+1,i, uniformly
integrable random variables {∆σ,+

k+1,i} and a random se-
quence {ψσk+1,i} such that

8211



E+
k,i[δτ

k+1,σ
i ] = uσk+1,i(x̂

σ
i (τσk+1,i −∆σ,+

k+1,i), ψ
σ
k+1,i)

and there is a ū such that for any compact set A,

lim
m,k,σ

1

m

k+m−1∑
j=k

Ek,i[uσj,i(x, ψσk+1,i)−ūi(x)]I{ψσk+1,i∈A} = 0

The expectation E+
k,i[·] is defined with respect to the σ-

algebra F+
k,i, while Ek,i is defined with respect to Fk,i,

which are detailed in the supplement. The random variables
∆σ,+
k+1,i correspond (appropriately scaled) to the delays dki,j .

Assumption 0.4.

lim
m,k,σ

1

m

k+m−1∑
j=k

Ek,i[βσj,i] = 0 in mean. (6)

Assumption 0.5. The sequence of iterates {xki } is tight.

Under the other assumptions in this section, recall that As-
sumption 0.4 trivially holds if the estimate of the subgradient
is unbiased. Assumption 0.5 is necessary since we have con-
sidered an unconstrained problem, and can be guaranteed by
imposing assumptions A6.1.1’ and A6.7.1 in Kushner and
Yin (2003), or boundedness of the iterates.

Main Convergence Result
We now present our main convergence result. The proof is
available in Section 3 of (Kungurtsev et al. 2019).

Theorem 0.1. Suppose Assumptions 0.1, 0.2, 0.3, 0.4 and
the step size conditions detailed in the supplement hold.

Then, the following system of differential inclusions,

τi(t) =

∫ t

0

ūi(x̂(τi(s)))ds,

ẋi(t) ∈∂if(x̂(τi(t))),

˙̂xi(t)ūi(x̂) ∈∂if(x̂(t))

(7)

holds for any u satisfying 0.3. On large intervals [0, T ],
x̂σ(·) spends nearly all of its time, with the fraction going
to one as T → ∞ and σ → ∞, in a small neighborhood of
a bounded invariant set of

˙̂xi(t) ∈ ∂if(x(t)). (8)

Theorem 0.1 provides conditions under which the time-
shifted interpolated sequence of iterates converges weakly
to an invariant set of a differential inclusion. This result can
be strengthened to convergence with probability one to a
block-wise stationary point via modification of the methods
in (Dupuis and Kushner 1989). Details of the proof are avail-
able in Section 3.3 of (Kungurtsev et al. 2019) along with a
discussion of properties of the limit point in Section 3.4.
Discussion. First, bounded invariant sets of the differential
inclusion correspond to points x such that 0 ∈ ∂if(x). Thus,

since x̂σ is the interpolation of the set of iterates, the The-
orem states that the iterates xki end up converging to these
types of stationary points with probability one.

Now consider three variations of stochastic subgradient
methods discussed in the introduction: 1) standard sequen-
tial SGD with momentum, 2) PASSM, where each core up-
dates only a block subset i of x and is lock-free, and 3)
ASSM, which defines the standard parallel asynchronous
implementation in which every core updates the entire vec-
tor x, taking a lock to ensure consistency.

SGD asymptotically converges to stationary points for
nonconvex nonsmooth objectives, corresponds to the case of
no delays, and i = [n]; thus, this Theorem matches the state
of the art (although it also extends the theory for the sequen-
tial centralized case to the algorithm with momentum).

By simply taking the block i to be the entire vector, ASSM
can be taken to a special case of PASSM, and thus Theo-
rem 0.1 proves asymptotic convergence for both schemes.
The Theorem points to their comparative advantages and
disadvantages: 1) in order for indeed Theorem 0.1 to ap-
ply to ASSM, write locks are necessary, thus limiting the
potential time-to-epoch speedup, however, 2) whereas if i
is the entire vector the limit point of ASSM is a stationary
point, i.e., a point wherein zero is in the Clarke subdiffer-
ential of the limit, in the case of PASSM, the limit point is
only coordinate-wise stationary, zero is only in the i compo-
nent subdifferential of f . In the smooth case, these are iden-
tical, however, this is not necessarily the case in the non-
smooth case. Thus PASSM, relative to ASSM can exhibit
better speedup allowing better use of the hardware, however,
may converge to a weaker notion of stationarity and thus in
practice a higher value of the objective.

Implementation and Numerical Results
We describe the implementation and experimental results
of the three specialized variants of the shared-memory-
based distributed Algorithm 1, called ASSM, PASSM,
and PASSM+. We also compare against the classic fully-
asynchronous HogWild! (HW!) (Recht et al. 2011) algo-
rithm. This algorithm can be seen as a variant of ASSM
where the entire parameter vector is updated, but without
read locks. As a result, each component of the read parame-
ter vector could have a different delay due to potential read-
write overlaps, and potentially inducing additional error.
Block Partitioned Subgradients. In backpropagation-
based CNN training, the weight and bias vectors of the lay-
ers constitute the leaves of the computational graph, gener-
ated during the forward pass. During the backward pass, we
can compute subgradients of the loss with respect to blocks
(groups) of these parameters independently. However, com-
puting the subgradient with respect to the farthest layer from
the output (the input layer) incurs the cost of a full backprop-
agation. Thus, it is important to carefully partition the layers
to concurrent processes.

In particular, consider a shared-memory system with c
concurrent processes and a model with w parameters whose
backpropagation cost is of F FLOPs. In this setting, we
distribute roughly w/c parameters as in a partition to each

8212



of the processes. Traversing from the partition that in-
cludes the input layer to the one that includes the output
layer, the computational savings by the processes would
be 0, Fc ,

2F
c , . . . ,

(c−1)F
c FLOPs per backpropagation. Sum-

ming it up, we have total potential savings of F (c−1)
2 flops in

c concurrent backpropagation steps by c processes. Thus, by
partitioning among, say, 4 concurrent processes, on average
PASSM saves roughly 3F

8 FLOPs per backpropagation.
At a high level, our subgradient partitioning may seem

similar to model partitioning. This is not the case: model
partitioning relies on pipeline parallelism (Harlap et al.
2018), whereas we perform forward/backward passes inde-
pendently and concurrently.
The Hybrid PASSM+ Method. The main advantage of
PASSM is lower compute cost, as seen in Table 1. Yet, the
analysis itself suggests that the quality of the stationary point
to which it converges is lower relative to the other algo-
rithms, which is evident from the same experimental results.

To mitigate this shortcoming, our idea is to spend some
of the FLOPs we saved by partitioned subgradient compu-
tation on periodic full-gradient updates. That is, during the
course of training by PASSM, perform some ASSM epochs
to update the model with full subgradient computation. Es-
sentially, this method comprises iterations by both PASSM
and ASSM. We call the resulting hybrid method PASSM+.

At the technical level, we implemented this via a non-
blocking switching controller (see (Kungurtsev et al. 2019))
which achieves efficient barrier-free alternation between
concurrent ASSM and PASSM iterations. We now describe
the process of hyperparameter tuning for this method.
Hyperparameter (HP) Tuning. While ASSM and HW! can
use the baseline HP values, in PASSM+, along with the
usual HPs such as momentum, weight-decay and learning
rate (LR), we also need to tune the number of ASSM epochs,
i.e. frequency of the alternation, sufficient to match the base-
line accuracy. While we keep the momentum and weight de-
cay identical to the baseline method, we tune the LR and the
frequency and length of ASSM iterations in PASSM+.

One natural observation is that performing warm-up, that
is, full subgradient updates in the initial phase of training,
helps final accuracy. Further exploration showed that, along
with warm-up, having periodic ASSM iterations spread
across roughly 50% of all iterations is sufficient to match
the baseline accuracy without running for additional time.

For learning rate (LR) tuning, we adopt a variant of the
multi-step scheduler, which dampens the LR by a constant
factor γ when a fixed portion of the sample-processing bud-
get is consumed. For PASSM+, we explored both multi-step
and cosine LR schedulers, along with a grid search (Pontes
et al. 2016) to tune the LR while switching between ASSM
and PASSM. The schemes we implement is the following:
1. Firstly, with a cosine scheduler, we perform roughly 10%

ASSM iterations initially and during this phase warm up
(Goyal et al. 2017) the LR starting from the baseline-LR
up to 1.25× (determined by a grid search) of the same.
For the remaining iterations, along with continuously an-
nealing the LR towards 0, we alternate between ASSM
and PASSM epochs (a full pass on the training samples).

2. Alternating between ASSM and PASSM iterations en-
gages the switching controller, which incurs additional
cost. Observing that, with a multi-step scheduler, we per-
form roughly 25% ASSM iterations initially. After that,
we switch to PASSM iterations. Further down the course
of optimization, we schedule roughly 10% ASSM iter-
ations around the LR dampening phases. Additionally,
we marginally dampen the LR by a factor of (1 − 1/c),
where c > 1 is the number of concurrent processes,
when switching from ASSM to PASSM. With a multi-
step scheduler, continuous alternation between ASSM
and PASSM iterations consistently lost accuracy.

For the basic PASSM partitioned method, no HP tuning
worked to recover baseline accuracy within an unchanged
sample processing budget; therefore, for PASSM we use the
baseline hyperparameters.
Experimental Setup. Our implementations of image clas-
sification tasks are based on Pytorch 1.51 and Python
multi-processing. Subgradient computation of a CNN via
backpropagation is provided by the autograd module of
Pytorch. Having generated a computation graph during
the forward pass, we can specify the leaf tensors along
which we need to generate subgradients in a call to
torch.autograd.grad(). We use this functionality in
order to implement “restricted” backpropagation in PASSM.

We implemented the methods on two settings. First, a
machine – referred as S1 in further discussion – packing a
single Nvidia GeForce RTX 2080 Ti GPU and an Intel(R)
Xeon(R) CPU E5-1650 v4 running @ 3.60 GHz with 6
physical cores amounting to 12 logical cores with hyper-
threading. However, for bigger networks and/or datasets, the
on-device memory and compute resources of a single GPU
become insufficient. For those cases we used a multi-GPU
machine – referred as S2 further – with four Nvidia GeForce
RTX 2080 Ti GPUs and two Intel(R) Xeon(R) CPU E5-2640
v4 @ 2.40GHz CPUs, totaling 40 logical CPU threads. The
asynchronous processes use individual GPUs to compute the
model and subgradients and one of the GPUs is used for
shared update and synchronization. It is important to men-
tion that CPU threads play significant role in loading data
and pre-processing the images before the forward pass. Both
the machines have 256 GB RAM.

NVIDIA GeForce RTX 2080 Ti GPUs allow concur-
rent launch of CUDA kernels by multiple processes using
NVIDIA’s multi-process service (MPS)2. Specifically, MPS
allocates the SMs to concurrent CPU-GPU connections,
based on their availability. We implement non-blocking data
transfer between GPUs via CPU main-memory, allocating
independent CPU threads for this task.
Experimental Observations and Discussion. We now
present and discuss the results for well-known CNN archi-
tectures for image classification in Figures 1, 2, and 3. Each
of the experimental runs is seeded, however, there is always
a system-dependent randomization in asynchronous updates
due to multiprocessing. Therefore, we take the average of
three runs. We discuss experimental observations below.

1https://pytorch.org/
2https://docs.nvidia.com/deploy/mps/index.html

8213



Algo Train
Loss

Test
Loss

Train
Acc.

Test
Acc.

Time
(S)

(1) ASSM 0.010 1.337 99.92 69.20 3733
(2) PASSM+ 0.009 1.401 99.96 70.13 2998
(3) HW! 0.012 1.281 99.90 69.43 3709
(4) PASSM 0.944 1.928 72.21 53.39 2223
(5) SGD 0.012 1.288 99.92 68.48 3868
(6) SGD

(BS=512)
0.006 1.393 99.99 68.76 3240

(a) Performance Summary.

0 100 200
Epochs

0

2

4

6

L
o

ss

(1)

(2)

(3)

(4)

(5)

(6)

(b) Train Loss.

0 100 200
Epochs

0

20

40

60

A
cc

@
1

(%
)

(1)

(2)

(3)

(4)

(5)

(6)

(c) Top1 Val Accuracy.

Figure 1: We train ShuffleNet (Zhang et al. 2018) with 925618 parameters arranged in 198 trainable tensors, over CIFAR100 on
the single-GPU S1. Asynchronous methods use BS=128 and train with 4 processes. The large-batch training gets LR warm-up.
PASSM+ follows the Cosine annealing LR scheme. The initial LR, weight-decay, momentum are identical across the methods.
PASSM+ provides 1.1x speed-up compared to the large-batch method and 1.3x compared to the baseline, with a superior
validation accuracy, by a non-trivial margin.

model Data Train
Loss

Test
Loss

Test
Acc.

Time
(S)

(1) DN C100 0.002 1.063 77.02 8520
(2) DN C10 0.000 0.325 94.15 8578
(3) RN C100 0.002 1.101 78.69 8053
(4) RN C10 0.000 0.288 94.97 7915
(a) Performance Summary of PASSM+.

model Data Train
Loss

Test
Loss

Test
Acc.

Time
(S)

(5) DN C100 0.002 1.178 76.42 12166
(6) DN C10 0.000 0.274 94.12 12163
(7) RN C100 0.002 1.518 76.22 11873
(8) RN C10 0.001 0.337 94.12 11833

(b) Performance Summary of SGD.

0 100 200
Epochs

0

50

A
cc

@
1

(%
)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(c) Top1 Val Accuracy.

Figure 2: In the multi-GPU setting S2, we train two larger architectures (a) DN: DenseNet121 (Huang et al. 2017) with 6956298
parameters in 362 trainable tensors, and (b) RN: ResNext50 (Xie et al. 2016) with 14788772 parameters in 161 trainable tensors,
over datasets CIFAR-10/CIFAR-100 (C10/C100). The initial LR, weight-decay, momentum are identical across methods. Here
SGD is distributed over 4 GPUs via the state-of-the-art DistributedDataParallel framework in Pytorch. PASSM+
spawns 4 concurrent processes running over individual GPUs. Here, SGD is a large-batch implementation, which computes
subgradients at BS=128 and updates the model at BS=512 on aggregation. Compared to the SOTA implementation, PASSM+
provides on average speed-up of 1.4x with improving the validation accuracy. We explain the speed-up in terms of (a) reduced
flops during backpropagation, (b) reduced communication cost for partitioned subgradients across GPUs, and (c) reduced
synchronization cost.

1. Parallel Speedup. In our knowledge, this is the first
work which comprehensively reports the performance of
shared-memory based training for CNNs. Please note that
each of the algorithm variants, including SGD, as imple-
mented on a GPU is inherently parallel by way of SIMD
execution at the level of vector and tensor arithmetic. In
this setting, increasing the minibatch size (BS) definitely
helps SGD by way of reducing the traffic between CPU
and GPU and better parallelization of bigger tensors. At
the same time, this induces poorer generalization behav-
ior (Goyal et al. 2017).
If we examine the performance of HW! and ASSM, as
we increase the number of processes, there is no speedup,
though generalization does not change much because the
BS is unchanged. This suggests that for asynchronous
methods with full subgradient update there is no advan-
tage by increasing the concurrency once the saturation of
resources achieved. On the contrary, it may prove detri-
mental as there is a cost of synchronization involved.

2. Advantage PASSM+. In this context, PASSM shows

Algo #P BS Sch. Train
Loss

Train
Acc.

Test
Loss

Test
Acc.

Time
(Sec)

SGD 1 128 MS 0.016 99.72 0.239 92.98 2512
SGD 1 1024 MS 0.010 99.89 0.272 92.23 1946
HW! 4 128 Cos 0.011 99.90 0.276 92.91 2145
HW! 8 128 Cos 0.011 99.85 0.266 92.93 2153
ASSM 4 128 Cos 0.010 99.87 0.255 92.97 2147
ASSM 8 128 Cos 0.011 99.86 0.271 92.85 2158
PASSM 4 128 Cos 0.065 98.07 0.288 91.63 1192
PASSM 8 128 Cos 0.183 94.68 0.314 89.93 985
PASSM+ 4 128 Cos 0.017 99.70 0.260 92.92 1610
PASSM+ 6 128 Cos 0.020 99.60 0.264 92.78 1569
PASSM+ 8 128 Cos 0.020 99.70 0.267 92.78 1549
PASSM+ 4 128 MS 0.024 99.53 0.256 92.52 1598

Table 2: Resnet20 with 272474 parameters in 65 trainable
tensors training over CIFAR-10 for 300 epochs on the setting
S1. Momentum and weight-decay are identical across the
methods. Schedulers – MS: Multi-step, Cos: Cosine.

8214



Model/Data Algo BS Train
Loss

Test
Loss

Test
Acc.

Time
(S)

(1) res32/SVHN PASSM+ 256 0.001 0.177 96.21 1048
(2) res32/SVHN SGD 256 0.001 0.156 95.91 1260
(3) res32/SVHN SGD 1024 0.001 0.148 96.31 1388
(4) res18/IN PASSM+ 64 1.329 1.236 69.82 146381
(5) res18/IN SGD 256 1.282 1.218 69.85 159048

(a) Performance Summary.

0 25 50 75
Epochs

0

2

4

L
o

ss

(1)

(2)

(3)

(4)

(5)

(b) Train Loss.

0 25 50 75
Epochs

25

50

75

100

A
cc

@
1

(%
)

(1)

(2)

(3)

(4)

(5)

(c) Top1 Val Accuracy.

Figure 3: This set of results describes two contrasting cases (a) in the setting S1, ResNet32 with 466906 parameters in 101
tensors is trained over SVHN (Netzer et al. 2011) images of small cropped digits with 73257 training samples and 26032
test samples, and (b) in a machine with 4 Nvidia GeForce GTX 1080 Ti GPUs and other system specifications as those of
the setting S2, ResNet18 with 11181642 parameters in 62 tensors is trained over the Imagenet (IN) dataset (Russakovsky
et al. 2015) containing training set of 1.3 million images of 1000 classes and 50000 test samples. Both tasks are trained for
90 epochs. SGD follows a multi-step LR scheme and with initial LR warm-up for 5 epochs, whereas PASSM+ follows the
Cosine LR rule. We observe that in case (a) PASSM+ provides up to 1.32x speed-up compared to the baseline. However, for
the imagenet training task, the speed-up is around 1.08x. The reduced speed-up in case (b) can be explained in terms of high
resource requirement resulting in increased contention and thereby a bottleneck over the shared GPU.

good speedup as we increase the number of processes
because of the reduced FLOPs, at the cost of worse accu-
racy. Observing the performance of PASSM+, as concur-
rency grows, it shows scalability, and at the same time its
optimization results remain equally competitive. It estab-
lishes that the approach of interleaving the full and par-
titioned SGD iterations is effective. Finally, with multi-
step scheduling and reduced use of changing states of
locking and lock-free updates, there is some speedup, but
occasionally the generalization drops.

Related Work
HogWild! (HW!) (Recht et al. 2011) has become the clas-
sic reference for shared-memory based asynchronous SGD.
However, despite significant interest in asynchronous meth-
ods, HW! or similar methods does not have theoretical
guarantees in the general stochastic nonsmooth noncon-
vex setting considered here. The convergence of HW! un-
der assumptions of Lipschitz smoothness and nonconvexity
was derived in e.g. (Nadiradze et al. 2020). We note that
HW! is well-known to scale on convex optimization tasks,
e.g. (Recht et al. 2011), however, its performance for large
scale CNN training is not very thoroughly studied.

The basic structure of HW! was extended by HogWild++
(Zhang, Hsieh, and Akella 2016), which focused on multi-
CPU (multi-socket) machines with non-uniform memory
access (NUMA). HogWild++ showed limited throughput
advantage over HW! for convex regression problems, but
do not provide any convergence analysis. Similarly, Buck-
wild! (Sa et al. 2015) proposed speeding up HW! by us-
ing restricted bit-precision update of the model, and has an
adapted convergence analysis for convex Lipschitz smooth
models, or restricted nonconvex smooth objectives.

(Sun, Hannah, and Yin 2017) analyzed partitioned asyn-
chronous SGD for both convex and nonconvex smooth mod-
els, but did not report any implementation results. With re-
gards to the convergence theory for nonsmooth problems in

the synchronous setting, recently (Davis et al. 2018) pre-
sented asymptotic convergence with probability one, and
(Zhang et al. 2020) proposed a non-asymptotic complexity
analysis for computing stationary points of nonsmooth non-
convex Hadamard semi-differentiable functions, which en-
compass training CNNs and ReLU layers. (Shamir 2020) ex-
plored the hardness of finding near-approximate-stationary
points of the same class of functions.

Conclusion
We proved the first asymptotic convergence results (with
probability 1) for asynchronous parallel stochastic subgra-
dient descent methods with momentum, for general non-
convex nonsmooth objectives. This is the first such charac-
terization covering DNNs, finally matching theory to com-
mon practice, closing an important gap in the literature. We
furthermore presented an in-depth analysis of the perfor-
mance of such schemes in a shared-memory setting, cou-
pled with an efficient implementation strategy for training
deep CNNs. We showed that a variant of our method can be
efficiently implemented on GPUs, demonstrating speed-up
versus state-of-the-art methods, without losing generaliza-
tion accuracy. The experimental results provided a thorough
exploration of both the potential and limitations of speedup
for a comprehensive set of variants of shared memory asyn-
chronous multi-processing.

Future work could include a look at iteration complex-
ity from the standpoint of (Zhang et al. 2020). Numerically,
the results indicate that whereas some speedup is achievable
by a careful procedure, significant gains for training DNNs
would require an entirely novel approach.

Acknowledgments
Vyacheslav Kungurtsev was supported by the OP VVV
project CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Cen-
ter for Informatics.” Bapi Chatterjee was supported by the
European Union’s Horizon 2020 research and innovation

8215



programme under the Marie Sklodowska-Curie grant agree-
ment No. 754411 (ISTPlus). Dan Alistarh has received fund-
ing from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
programme (grant agreement No 805223 ScaleML).

References
Bagirov, A.; Karmitsa, N.; and Mäkelä, M. M. 2014. In-
troduction to Nonsmooth Optimization: theory, practice and
software. Springer.

Borkar, V. S. 2009. Stochastic approximation: a dynamical
systems viewpoint. Springer.

Bottou, L.; Curtis, F.; and Nocedal, J. 2018. Optimization
methods for large-scale machine learning. SIAM Review
60(2): 223–311.

Cannelli, L.; Facchinei, F.; Kungurtsev, V.; and Scutari, G.
2019. Asynchronous parallel algorithms for nonconvex op-
timization. Mathematical Programming 1–34.

Davis, D.; Drusvyatskiy, D.; Kakade, S.; and Lee, J. D. 2018.
Stochastic subgradient method converges on tame functions.
arXiv preprint arXiv:1804.07795 .

Dupuis, P.; and Kushner, H. J. 1989. Stochastic approxima-
tion and large deviations: Upper bounds and wp 1 conver-
gence. SIAM Journal on Control and Optimization 27(5):
1108–1135.

Ermol’ev, Y. M.; and Norkin, V. 1998. Stochastic gener-
alized gradient method for nonconvex nonsmooth stochastic
optimization. Cybernetics and Systems Analysis 34(2): 196–
215.

Goodfellow, I.; Bengio, Y.; Courville, A.; and Bengio, Y.
2016. Deep learning, volume 1. MIT press Cambridge.

Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.;
Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; and He,
K. 2017. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677 .

Harlap, A.; Narayanan, D.; Phanishayee, A.; Seshadri, V.;
Devanur, N. R.; Ganger, G. R.; and Gibbons, P. B. 2018.
PipeDream: Fast and Efficient Pipeline Parallel DNN Train-
ing. CoRR abs/1806.03377.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.

Huang, G.; Liu, Z.; van der Maaten, L.; and Weinberger,
K. Q. 2017. Densely Connected Convolutional Networks.
In CVPR, 2261–2269.

Kungurtsev, V.; Egan, M.; Chatterjee, B.; and Alistarh, D.
2019. Asynchronous Optimization Methods for Efficient
Training of Deep Neural Networks with Guarantees. arXiv
preprint arXiv:1905.11845 .

Kushner, H.; and Yin, G. G. 2003. Stochastic approxima-
tion and recursive algorithms and applications, volume 35.
Springer Science & Business Media.

Lian, X.; Huang, Y.; Li, Y.; and Liu, J. 2015. Asynchronous
parallel stochastic gradient for nonconvex optimization. In
NIPS, 2737–2745.
Majewski, S.; Miasojedow, B.; and Moulines, E. 2018.
Analysis of nonsmooth stochastic approximation: the differ-
ential inclusion approach. arXiv preprint arXiv:1805.01916
.
Nadiradze, G.; Markov, I.; Chatterjee, B.; Kungurtsev, V.;
and Alistarh, D. 2020. Elastic Consistency: A General Con-
sistency Model for Distributed Stochastic Gradient Descent.
ArXiv abs/2001.05918.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and
Ng, A. 2011. Reading Digits in Natural Images with Unsu-
pervised Feature Learning.
Pontes, F. J.; da F. de Amorim, G.; Balestrassi, P.; Paiva,
A. P.; and Ferreira, J. R. 2016. Design of experiments and
focused grid search for neural network parameter optimiza-
tion. Neurocomputing 186: 22–34.
Recht, B.; Re, C.; Wright, S.; and Niu, F. 2011. Hogwild:
A lock-free approach to parallelizing stochastic gradient de-
scent. In NIPS, 693–701.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
Berg, A.; and Fei-Fei, L. 2015. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision 115: 211–252.
Ruszczyński, A. 1987. A linearization method for nons-
mooth stochastic programming problems. Mathematics of
Operations Research 12(1): 32–49.
Sa, C. D.; Zhang, C.; Olukotun, K.; and Ré, C. 2015. Taming
the Wild: A Unified Analysis of Hogwild-Style Algorithms.
NIPS 28: 2656–2664.
Shamir, O. 2020. Can We Find Near-Approximately-
Stationary Points of Nonsmooth Nonconvex Functions?
ArXiv abs/2002.11962.
Sun, T.; Hannah, R.; and Yin, W. 2017. Asynchronous Coor-
dinate Descent under More Realistic Assumptions. In NIPS.
Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; and He, K. 2016.
Aggregated Residual Transformations for Deep Neural Net-
works. arXiv preprint arXiv:1611.05431 .
Zhang, H.; Hsieh, C.-J.; and Akella, V. 2016. HogWild++: A
New Mechanism for Decentralized Asynchronous Stochas-
tic Gradient Descent. ICDM 629–638.
Zhang, J.; Lin, H.; Sra, S.; and Jadbabaie, A. 2020. On Com-
plexity of Finding Stationary Points of Nonsmooth Noncon-
vex Functions. ArXiv abs/2002.04130.
Zhang, J.; Mitliagkas, I.; and Ré, C. 2017. YellowFin and
the Art of Momentum Tuning. CoRR abs/1706.03471.
Zhang, X.; Zhou, X.; Lin, M.; and Sun, J. 2018. ShuffleNet:
An Extremely Efficient Convolutional Neural Network for
Mobile Devices. In CVPR, 6848–6856.
Zhu, R.; Niu, D.; and Li, Z. 2018. Asynchronous Stochas-
tic Proximal Methods for Nonconvex Nonsmooth Optimiza-
tion. arXiv preprint arXiv:1802.08880 .

8216


