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Timed Petri Nets with Reset for Pipelined
Synchronous Circuit Design ?

Rémi Parrot1, Mikaël Briday1 and Olivier H. Roux1

École Centrale de Nantes, LS2N UMR CNRS 6004, France

Abstract. This paper introduces an extension of Timed Petri Nets for
the modeling of synchronous electronic circuits, addressing pipeline de-
sign problems. Petri Nets have been widely used for the modeling of
electronic circuits. In particular, Timed Petri Nets which capture tim-
ing properties are perfectly suited for scheduling problems. Our exten-
sion, through reset that model the pipeline stages, and through delayable
transitions that relax timing constraints, allows to widen the conception
space of pipelined systems.
After discussing maximal-step firing rule and the semantics of Timed
Petri Nets “à la Ramchandani”, we define our Timed Petri Nets with
reset and delayable (non-asap) transitions.
We then study the decidability and the complexity of the main problems
of interest. We propose an abstraction of the state space. We then es-
tablish a translation of this model into a single-clock timed automata,
which preserves the language. This translation settles the decidability on
language inclusion and universality problems.
Finally, an algorithm for the exploration of the state space is provided,
and can be driven by the optimisation of various properties of the pipeline.

1 Introduction

The field of hardware verification seems to have been started in a little-known
1957 paper by Alonzo Church, 1903–1995, in which he described the use of
logic to specify sequential circuits [11]. Today’s semiconductor designs are still
dominated by synchronous circuits. In these circuits, clock signals synchronize
the logic, providing the designer with a simple operational model.

A major step in the design of synchronous circuits concerns the automatic
generation of the pipeline. The pipeline does not functionally modify the circuit,
but allows to split a process into several steps in order to increase the operat-
ing frequency (throughput). Its implementation can be seen as an optimisation
problem whose aim is to reach a target operating frequency while minimizing
the hardware cost of the pipeline stages (registers).

As introduced in [15], a circuit can be abstracted by a weighted directed
graph, where the vertices are the operators of the circuits and the edges are the
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connections in between. Weights are added to edges representing the number of
registers, and to vertices representing the propagation delays of operators. The
authors then proposed an operation called retiming, which consists in moving
registers from one place to another (an operation on the edge-weights) without
altering the circuit’s behaviour, in order to explore various pipeline solutions.

A more suitable formalism of this approach is actually the (Timed) Marked
Graph (or Event Graph), which is a subclass of Petri Net where each place has
one incoming arc, and one outgoing arc.

Petri Nets to model circuits: Due to their concurrency nature, Petri Net have
been extensively used to analyse and optimise timing properties of both syn-
chronous and asynchronous circuits [6, 7, 17,21].

For example, it has shown particularly effective for building resource-optimal
pipeline on Latency-insensitive systems [8], in [6], and with control-flow struc-
tures in [14], which is of particular interest in the High-Level Synthesis (HLS)
approach. Furthermore, Marked Graph have also been used to pipeline asyn-
chronous systems, through slack matching in [21]. More recently, in [17] the
authors manage to pipeline mode-based asynchronous circuits, where there are
given probabilities to switch between modes, using a combination of Markov
chains and Marked Graph.

All those works share the same method of resolution: deduce the timing
constraints from the Petri Net structure, and get back to an Integer Linear
Problem. In contrast, we propose to encapsulate the time in our model, and
to explore the states of the circuit using directly the semantics of our model. In
other words, we suggest a novel modeling of the classical timing closure problem,
on synchronous dataflow circuits without loops.

Petri Nets with Time: The two main time extensions of Petri Nets are Time
Petri Nets [16] and Timed Petri Nets [20]. While a transition can be fired within
a given interval for Time Petri Nets, deterministic (or constant) “firing duration”
are assigned to transitions of Timed Petri Nets.

For Timed Petri Nets [20], each transition takes a positive time (duration)
to fire according to a three-phases firing. The tokens are consumed when the
transitions are enabled, then as soon as the delays have elapsed, the tokens cor-
responding to the firing of the transitions are produced. The model is restricted
to decision-free nets (as Timed marked graph) and zero time delay is prohibited.

Enhanced timed nets are proposed in [22] that combine “immediate” nets
which are in fact ordinary (i.e., timeless) free-choice acyclic Petri nets, and free-
choice bounded timed Petri nets.

In [19], Popova generalised Timed Petri Nets and proposed a semantic based
on the same three-phases firing, allowing null duration. Transitions are fired as
soon as possible (asap) according to the maximal-step rule, i.e. in each marking,
a maximal set of firable transitions fires at once.



Contributions and outline of the paper

We first rewrite in Section 2 the semantics of Timed Petri Nets with an atomic
maximal step firing rule i.e. without three-phases firing. We then propose in Sec-
tion 3, a Timed Petri Net extension closer to real synchronous circuits, which
embeds the effect of registers on the circuit’s timing with a particular reset
action, and which permits to relax some timing constraints (allow lag on op-
erations of the circuit) with delayable transitions. This new model is proved
in Section 4 to have a PSPACE-Complete complexity for the reachability (and
TCTL model checking) problem. Moreover, we provide in Section 5 a symbolic
states space exploration algorithm, using simplified zones. This latter allows us
in Section 6 to build a translation into a single-clock timed automata, preserving
timed behaviour. Then it gives the decidability on timed language inclusion and
universality problems. Finally, we present in Section 7 a use case of this model:
to build a pipeline of a circuit, minimising the total number of flip-flops (regis-
ters of one bit), while ensuring the operating frequency to be into an interval.
To do so, we provide a heuristic for the state space exploration, by adding costs
which measure the total number of flip-flops of a state.

2 Maximal step firing rule and Timed Petri Net

The introduction of deterministic time into Petri nets was first attempted by
Ramchandani [20]. The time labels (duration) were assigned to each transition,
denoting the fact that actions take time to complete.
N and R≥0 are respectively the sets of integer and non-negative real numbers.

For vectors of size n, the usual operators +,−,×, <,≤, >,≥ and = are used on
vectors of Nn and Rn≥0 and are the point-wise extensions of their counterparts

in N and R≥0. Let 0̄ be the null vector of size n.

2.1 Three-phases firing

Ramchandani proposed a three-phases firing semantics: delete the input tokens
of the transition (consumption), wait until the firing time is reached (delay) and
create the output tokens of the transition (production). This firing process when
initiated cannot be interrupted or stopped, therefore the consumption phase
can be seen as a reservation (in particular in case of conflict). Moreover, the
transitions in the process of firing are synchronized to a global clock, through
a token balance equation linking the tokens added and removed to the tokens
present in a place between two instants. Zero time firing is prohibited, preventing
the same transition from being fired twice when other transitions are in conflict.

More recently, Popova proposed a semantics based on the same three-phases
firing, allowing null duration but selecting beforehand a maximal-step (a set) of
transitions to be fired in the same action [19]. In other words, instead of being
reserved one after the other, the transitions are selected and then reserved all at
the same time (consumption phase).



2.2 Maximal-step firing

The classical semantics of timeless Petri Nets is the interleaving semantics. From
a practical point of view, the maximal-step semantics avoids interleaving and is
very interesting for synchronous system modelling.

Given a Petri Nets, the maximal-step firing compared to interleaving se-
mantics puts more strain on the firing, increases expressiveness and removes
reachable markings.

Popova shows how a counter machine can be simulated by Timed Petri nets
[19]. But she also shows that this reduction can be done by timeless Petri nets
with maximal-step firing. In particular the so-called zero-test, can be simulated
by a timeless net thanks to the maximal-step firing rule. It means that Timeless
as Timed Petri nets firing in maximal-step are Turing equivalent.

2.3 Timed Petri Net

We propose to rewrite Timed Petri Nets semantics without any reservation:
waiting is done while keeping the tokens in their place, then when at least one
transition is fireable we select the maximal step and fire (consumption and pro-
duction) all the transitions in one atomic action. The maximal step contains, in
our case, enabled transitions which have been enabled for a period of time equal
to their delays.

Informally, with each transition of the Net is associated a clock and a delay.
The clock measures the time since the transition has been enabled and the delay
is interpreted as a firing condition: the transition may and must fire if the value
of its clock is equal to the delay.

Formally:

Definition 1 (TPN). A Timed Petri Net is a tuple (P, T,•(.), (.)•, δ,M0) de-
fined by:

– P = {p1, p2, . . . , pm} is a non-empty set of places,
– T = {t1, t2, . . . , tn} is a non-empty set of transitions,
– •(.) : T → NP is the backward incidence function,
– (.)• : T → NP is the forward incidence function,
– M0 ∈ NP is the initial marking of the Petri Net,
– δ : T → N is the function giving the firing times (delays) of transitions.

A marking M is an element of NP such that ∀p ∈ P , M(p) is the number of
tokens in place p.

A marking M enables a transition t ∈ T if: M ≥• t. The set of transitions
enabled by a marking M is enab (M) = {t ∈ T |M ≥• t}.

Firable transitions are fired according to the maximal-step firing rule and
thus must fire simultaneously. For marked graph where every place has one
incoming arc, and one outgoing arc, there can not be any conflict and the firing
of a transition cannot disable another transition. In the general case, there can
be conflict and, from a given state, there can be several maximal steps τ .



From a marking M , the simultaneous firing of a set τ of transitions leads to
a marking M ′ = M +Σt∈τ

(
t• −•t

)
.

A transition t′ is said to be newly enabled by the firing of a set of transitions
τ if M+Σt∈τ

(
t•−•t

)
enables t′ and (M−Σt∈τ •t) did not enable t′. If t remains

enabled after its firing then t is newly enabled. The set of transitions newly
enabled by a set of transitions τ for a marking M is noted ↑enab (M, τ).

A state is a pair (M,v) where M is a marking and v ∈ RT≥0 is a time
valuation of the system (i.e. the value of the clocks). v(t) is the time elapsed
since the transition t ∈ T has been newly enabled. 0̄ is the valuation assigning
0 to every transition.

Definition 2 (Maximal Step). Let q = (M, v) be a state of the Timed Petri
Net (P, T,•(.), (.)•, δ,M0), τ ⊆ T is a maximal step from q iff:

1. ∀t ∈ τ, v(t) = δ(t)
2.
∑
t∈τ

•t ≤M
3. ∀t′ ∈ T, (v(t′) = δ(t′) and •t′ ≤M and t′ 6∈ τ)⇒

∑
t∈τ

•t +•t′ 6≤M

The set of maximal steps from q is noted maxStep(q)

The first condition ensures that the transitions are ready to fire, i.e. the
clocks are equal to the delays. The second condition ensures that the transition
are firable, i.e. enabled and not in conflict with another transition of τ . The
third condition disallows the existence of a proper superset of τ which fulfils the
previous two conditions.

The semantics of TPN is defined as a Timed Transition System (TTS). Wait-
ing in a marking is a delay transition of the TTS and firing a transition of the
TPN is a discrete transition of the TTS.

Definition 3 (Semantics of a TPN). The semantics of a TPN is defined by
the Timed Transition System S = (Q, q0,→):

– Q = NP ×RT≥0 is the set of states,

– q0 = (M0, 0̄) is the initial state,
– →∈ Q× (R≥0 ∪ 2T )×Q is the transition relation including a discrete tran-

sition and a delay transition.

• The delay transition is defined ∀d ∈ R≥0 by:

(M,v)
d−→ (M,v′) iff ∀t ∈ enab (M) , v′(t) = v(t) + d and v′(t) ≤ δ(t)

• The discrete transition is defined ∀τ ∈ maxStep
(
(M,v)

)
by:

(M,v)
τ−→ (M ′, v′) iff


M ′ = M +

∑
t∈τ
(
t• −•t

)
v′(t) =

{
0 if t ∈↑enab (M, τ) or t 6∈ enab (M ′)

v(t) otherwise

A run in a Timed Petri Net is a sequence q0
α1−→ q1

α2−→ . . . , such that for all

i, qi
αi+1−−−→ qi+1 is a transition in the semantics.



2.4 Comparison with Ramchandani’s semantics

In the absence of conflict, the atomic semantics of Definition 3 is equivalent to
the three-phases one of Ramchandani (extended with zero firing delay [19]): it
exists only one execution, no indeterminism.

In case of conflict, it is possible to construct the three-phases firing in our
semantics: just add a zero time transition before each transition, in order to
simulate the reservation action as illustrated in Figures 1 and 2. Notice that in
Fig 1b, the maximal step {t0, t1, t2} is only the consumption phase, while the
production is done implicitly after the delay. Our semantics is then at least as
expressive as the Ramchandani’s one.

t0

t1

t2

t3

1

1

3

1
p0

p1

p2

p3

p4

p5

(a) Example of Timed Petri Net
N1

{p0, p1, p1}

{p2, p3}
v(t2) = 1

{p2, p3, p4}

{t0, t1, t2}, 1

2

(b) Run of N1 using
three-phases semantics

{p0, p1, p1}
v(t0) = 0
v(t1) = 0
v(t2) = 0

{p1, p2, p3}
v(t1) = 0
v(t2) = 1
v(t3) = 0

{p3, p5}

1, {t0, t1}

1, {t3}

(c) Run of N1 using
atomic semantics

Fig. 1: Comparison with three-phases firing semantics1.

3 TPN with reset and delayable transitions

We now extend TPN. A transition can be of two types: either it is fired as soon
as possible, as in Definition 1, or it is delayable (non-asap) i.e. may fire either if
the value of its clock is equal to the delay or if the value of its clock is greater
than the delay and if it is associated with another transition whose clock is equal
to its delay. Moreover, the clocks can be reset (let reset be the corresponding
action) and the delay between two successive resets is given by an interval Ireset.

Formally:

1 For the sake of brevity, in all the following figures, we note a marking M as a set of
marked places instead of a vector and we give the valuation v only for the enabled
transitions.
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Fig. 2: Timed Petri Net N2 that simulates N1 with the three-phases firing se-
mantics.

Definition 4 (RTPN). A Timed Petri Net with reset and delayable transitions
(RTPN) N is a tuple (P, T, TD,

•(.), (.)•, δ, Ireset,M0) defined by:

– (P, T,•(.), (.)•, δ,M0) is a Timed Petri Net,
– TD ⊆ T is the set of delayable transitions,
– Ireset is the reset time interval with lower (Ireset) and upper (Ireset) bounds

in N.

From a state (M, v), a transition is firable if it is enabled and its clock is
greater or equal to its delay. As for Timed Petri Net, the clock of asap transition
t 6∈ TD cannot exceed δ(t). Hence, v(t) ≤ δ(t) and t must fire when its clock is
equal to its delay.

A delayable transition t ∈ TD, can fire either when v(t) = δ(t) (not delayed in
this case) or when v(t) > δ(t), but in this second case, t must be associated with
at least one (or more if any) other firable transition t′ such that v(t′) = δ(t′).

The maximal step is now maximal only from the asap transitions point of
view as follows:

Definition 5 (Maximal Step w.r.t. TD). Let q = (M,v) be a state of N .
τ ⊆ T is a maximal step w.r.t. TD from q iff:

1. ∀t ∈ τ, v(t) ≥ δ(t)
2. ∃t ∈ τ s.t. v(t) = δ(t)
3.
∑
t∈τ

•t ≤M
4. ∀t′ ∈ T \ TD, (v(t′) = δ(t′) and •t′ ≤M and t′ 6∈ τ)⇒

∑
t∈τ

•t +•t′ 6≤M

The set of maximal steps w.r.t. TD from q is noted maxStep\TD
(q).

A state is now a pair (M, v) where v ∈ RT∪{reset}≥0 is extended with a value
for the reset, i.e. the time elapsed since the last action reset. The reset action
resets all the clocks of the model. It is possible when the clock of the reset is in
the reset time interval v(reset) ∈ Ireset.

The semantics of RTPN is defined as a Timed Transition System (TTS).
Waiting in a marking is a delay transition of the TTS and firing a set of transi-
tions of the RTPN or resetting the clocks is a discrete transition of the TTS.



Definition 6 (Semantics of a RTPN). The semantics of a RTPN N is de-
fined by the Timed Transition System SN = (Q, q0,→):

– Q = NP ×RT∪{reset}≥0 is the set of states,

– q0 = (M0, 0̄) is the initial state,
– →∈ Q × (R≥0 ∪ 2T ∪ {reset}) × Q is the transition relation including a

discrete transition and a delay transition.
• The delay transition is defined ∀d ∈ R≥0 by:

(M,v)
d−→ (M, v′) iff


∀t ∈ enab (M) ∪ {reset}, v′(t) = v(t) + d

v′(reset) ≤ Ireset
∀t ∈ enab (M) \ TD, v′(t) ≤ δ(t)

• The discrete transition is defined by:

∗ ∀τ ∈ maxStep\TD

(
(M,v)

)
,

(M, v)
τ−→ (M ′, v′) iff


M ′ = M +Σt∈τ

(
t• −•t

)
v′(t) =

{
0 if t ∈↑enab (M, τ) or t 6∈ enab (M ′)

v(t) otherwise

∗ (M,v)
{reset}−−−−−→ (M, v′) iff

{
v(reset) ∈ Ireset
v′ = 0̄

Definition 7 (Runs). Let N be a RTPN and SN its semantics. A run of N
from q1 is a finite or infinite sequence ρ = qr

d1−→ qd1
τ1−→ qτ1 . . .

dn−→ qdn
τn−→ qτn

of alternating di delay (possibly null) and τi discrete transition where either
τi ⊆ T or τi = {reset}.

4 Complexity of reachability problem

First we have the following theorem:

Theorem 1. Reachability problem for RTPN is undecidable.

Proof. The behaviour of a timeless Petri Net with maximal step firing rule is
simulated by a RTPN with the same structure and initial marking, and such
that TD = ∅, ∀t ∈ T , δ(t) = 0 and Ireset > 0. Moreover, timeless Petri Nets with
maximal step firing rule are Turing powerful [19]. ut

In the sequel we then consider bounded Nets.

Lemma 1. Reachability for safe timeless Petri Nets with maximal-step firing
rule, for safe TPN and for safe RTPN is PSPACE-hard.

Proof. We first consider 1-safe timeless Petri Net. We reduce the reachability
problem for a 1-safe Petri Net with interleaving semantics to reachability for a 1-
safe Petri Net with maximal-step firing rule. Let N=(P, T,•(.), (.)•,m0) a 1-safe



Petri Net with interleaving semantics. We translateN intoN ′=(P, T ′, pre, post,m0)
with maximal-step firing rule such that T ⊆ T ′, ∀t ∈ T , pre(t) =• t and
post(t) = t•. Moreover, T ′ = T ∪ Tp where Tp is a set of transitions de-
fined by Tp ∩ T = ∅ and ∀p ∈ P there exists a transition tp ∈ Tp such that
pre(tp) = post(tp) = p. Informally speaking, we add a self loop from all places
of P .

Hence, we create a conflict between all transitions of N ′ with a transition
of Tp. Since the firing of a transition tp of Tp preserves the marking of p, this
translation allows to simulate the interleaving semantics from the maximal-step
firing rule.

Since reachability in timeless 1-safe Petri net with interleaving semantics is a
PSPACE-complete problem [10], it follows that reachability for 1-safe Petri net
with Maximal-step firing rules is PSPACE-hard. Moreover, as for the proof of
Theorem 1, we can now consider that N ′ is a TPN with ∀t ∈ T ′, δ(t) = 0 or a
RTPN with TD = ∅, ∀t ∈ T ′, δ(t) = 0 and Ireset > 0 proving the lemma. ut

TCTL, introduced in [2], is a real-time extension of the branching-time tem-
poral logic CTL. It has been trivially adapted in [9] for Time Petri Nets where
atomic propositions are linear constraints over markings such as Generalized
Mutual Exclusion Constraints [12].

To construct a finite structure in order to employ usual discrete model check-
ing techniques, we can use the region equivalence relation ' over clock interpre-
tations defined for timed automata [2, 3]. This region equivalence can be easily
adapted for Timed Petri Nets with or without reset as in [5]. To compute the
region graph, we now just change the computation of the firing step (i.e. the
discrete step) by applying the maximal firing rule. This region graph is expo-
nential in the size of the input T + P . However, we can proceed like in [2, 5] to
check TCTL formulas by a recursive procedure label(vertex, ϕ) called for each
sub-formula leading to a polynomial space algorithm. Finally, thanks to the
PSPACE-hardness (lemma 1), we obtain the following theorem and corollaries.

Theorem 2. Reachability and TCTL model checking for bounded Timed Petri
Nets with or without reset is PSPACE-complete.

Corollary 1. The result holds for Timed Petri Nets “à la Ramchandani”.

Corollary 2. Reachability and CTL model checking for bounded timeless Petri
Nets with maximal-step firing rule is PSPACE-complete.

Note that this PSPACE complexity is theoretical and, for Timed Automata
and Time Petri Nets, no effective PSPACE algorithm has been proposed and all
real implementations are with exponential algorithms.

5 State space computation

The semantics of RTPN is a transition system in which each state is a pair
of a marking and a clock valuation. Observe that there are only finitely many



markings, but there are uncountably many values for clocks due to the denseness
of time (in particular for the states from which a reset can be done). Hence, the
semantics of RTPN has an uncountably infinite state space.

The region graph partitions the space of valuations into a finite number of
regions. However, the region graph approach turns out to be impractical. A more
efficient solution is to work with convex sets of valuations called zones described
by constraints between clocks.

Using zones, a symbolic semantics graph of RTPN, can be defined. A symbolic
state of a RTPN is a pair (M,Z) representing a set of states of the RTPN, where
M is a marking and Z is a zone. A symbolic transition describes all the possible
concrete transitions from the set of states.

Definition 8. A symbolic state is a pair (M,Z) where M is a marking and the
zone Z is a set of valuations v on T ∪ {reset} represented by a conjunction of:

– rectangular constraints over valuations: (v(x) ∼ c) where x ∈ T ∪ {reset}
and ∼∈ {≤,=,≥} and c ∈ N, with

– ∀t ∈ enab (M) diagonal constraints on pairs: (v(reset)− v(t) = c) where
c ∈ N.

We said that a valuation vi is in a zone: vi ∈ Z, if it verifies all its constraints.
We note 0̄ the zone containing only the valuation 0̄.

5.1 Operations over symbolic states

Since diagonal constraints are equalities, by setting the value of a single variable
v(x) we obtain a point in the zone. To ensure this, we set to zero the valuations
of non enabled transitions.

Let M be a marking and Z a zone. The computation of the reachable mark-
ings from M according to the zone Z is done by using the following operations:

1. Compute the possible evolution of time (future):
−→
Z = {v′ | v ∈ Z and v′(x) =

v(x) + d with d ≥ 0, x ∈ enab (M)∪{reset}}. This is obtained by setting all
upper bounds of v(x) to infinity for x ∈ enab (M) ∪ {reset}.

2. Select only the possible valuations for which M could exist, i.e. valuations
of enabled transitions t 6∈ TD must not be greater than δ(t) and valuation of
the reset must not be greater than Ireset:

Z ′ =
−→
Z ∧

(
v(reset) ≤ Ireset

) ∧
t∈enab(M)\TD

(v(t) ≤ δ(t))

So, Z ′ is the maximal zone starting from Z for which the marking M is legal
according to the semantics.

3. Determine the set of firable transitions sets fireablez(M,Z ′) = {(τ, z) | z ⊆
Z ′, τ ∈ 2T ∪ {reset} is fireable from (M, z)} defined by:
– τ ⊆ T is firable from the firing point (M, {vp}) if τ ∈ maxStep\TD

((M, vp))
and ∃t ∈ τ such that Z ′ ∧ (v(t) = δ(t)) = {vp},



– reset is firable from (M, zreset) with zreset = Z ′ ∧
(
v(reset) ≥ Ireset

)
if

zreset is a non-empty zone.
4. Fire transitions

– Firing a firable set of transitions τi ⊆ T from the firing point vp ∈ Z ′
leads to the new marking M ′ = M + Σt∈τ

(
t• −• t

)
and the point zone

vi such that:

∀t ∈ T, vi(t) =

{
0 if t ∈↑enab (M, τ) or t 6∈ enab (M ′)

vp(t) otherwise

and vi(reset) = vp(reset).
– Firing a reset leads to the point zone 0̄ and then to (M, 0̄)

A set of transitions τ ⊆ T is always fired from a point of a zone Z and the
zone obtained after the firing of τ from Z is also a point. A reset is fired from a
part of a zone but since it resets all the clocks, the zone obtained by the firing
of reset from a given zone Z is also a point.

An integer point vi of a zone Z is a valuation such that for all x ∈ T ∪{reset},
v(x) ∈ N.

Lemma 2. ∀τ ⊆ T , (τ, zτ ) ∈ fireablez(M,Z)⇒ zτ is an integer point.

Proof. Each reset leads to an integer point zone 0̄. Between two resets, only
firings of transitions τ ⊆ T can occur. By definition of the semantics (and of
operation 3), the firing of a set of transitions τ ⊆ T can occur only if at least
one transition t ∈ τ is such that v(t) = δ(t) in N. Hence, a set of transitions
τ ⊆ T is always fired from an integer point of a zone Z and the zone obtained
after the firing of τ from Z is also an integer point. ut

Hence, the set of zones is closed under these 4 operations, in the sense that
the result of the operations is also a zone as defined in Definition 8.

The successor operator succ ((M,Z), τ) gives the symbolic state obtained
from (M,Z) by applying successively operations 4 with τ ∈ 2T ∪ {reset}, 1 and
then 2.

5.2 State graph

For a RTPN N , the initial symbolic state (M0, Z0) is obtained from (M0, 0̄) by
applying operations 1 and 2.

We compute forward the reachable symbolic states from (M0, Z0) by itera-
tively applying the successor operator for all the firable transitions. The set of
reachable symbolic states from the initial symbolic state is Reach(N ).

Lemma 3. Reach(N ) is finite.

Proof. First, we consider bounded nets therefore the number of marking is
bounded. Lemma 2 gives that applying operation 4 leads to integer points. The
coordinates of those points are bounded by Ireset, then there is a finite number
of reachable integer points, and then a finite number of zones after applying
operations 1 and 2. ut



Definition 9. The state graph of N is the graph SG(N ) = (Reach(N ), (M0, Z0),

↪→, Σ) such that Σ = 2T ∪ {reset} and ∀s ∈ Reach(N ), τ ∈ Σ, s
τ
↪−→ s′ if

s′ = succ(s, τ)

This symbolic semantics corresponds closely to the operational semantics in

the sense that (M,Z)
τ
↪−→ (M ′, Z ′) implies for all v′ ∈ Z ′, (M, v)

τ−→ (M ′, v′) for
some v ∈ Z. The symbolic semantics is a correct and full characterisation of the
operational semantics given in Definition 6.

Example 1. An example of RTPN is presented in Figure 3a, in its initial state,
where the delays are in red, and the delayable transitions in gray (only t0 here).
The corresponding part of state graph SG(N ) obtained in only one step is given
in Figure 3b.
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t2

t3

5

4

2
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p0

p1

p2

p3

p4

p5

p6

Ireset = [6, 10]

(a) Example of RTPN N

{p0, p3}
0 ≤ v(t0)
0 ≤ v(t3) ≤ 9
0 ≤ v(reset) ≤ 10
v(reset)− v(t3) = 0
v(reset)− v(t1) = 0

{p1, p2, p3}
0 ≤ v(t1) ≤ 4
0 ≤ v(t2) ≤ 2
5 ≤ v(t3) ≤ 9
5 ≤ v(reset) ≤ 10
v(reset)− v(t1) = 5
v(reset)− v(t2) = 5
v(reset)− v(t3) = 0

{p1, p2, p6}
0 ≤ v(t1) ≤ 4
9 ≤ v(reset) ≤ 10
v(reset)− v(t1) = 9

{p0, p6}
9 ≤ v(t0)
9 ≤ v(reset) ≤ 10
v(reset)− v(t0) = 0

{reset}

{t0
}

{t0, t3}

{t3}

sa

sb

sc

sd

(b) Firsts states of SG(N )

Fig. 3: Example of RTPN and part of its state graph

6 Decidability of some timed language problems

A timed word of N is a finite or infinite sequence w = (d1, τ1)(d1 + d2, τ2) . . .

(Σi=1...ndn, τn) such that ρ = q0
d1−→ qd1

τ1−→ qτ1 . . .
dn−→ qdn

τn−→ qτn is a run of N
from q0. The timed language L(N ) recognized by N is the set of words w of N .

The language of a Petri Net is generally prefix-closed but it is easy to extend
Petri Nets with final or repeated markings as in [4] in order to have non-prefix-
closed languages over finite or infinite words.

Language inclusion and universality problems are known to be undecidable
for Timed Automata and Time Petri Nets. However, these problems are decid-
able on finite words for one clock Timed Automata. We then propose, from any
bounded RTPN N , to build a single-clock timed automaton which recognizes
the same timed language as N .



6.1 From bounded RTPN to single-clock Timed Automata

Timed Automata Timed automata were first introduced by Alur and Dill
in [2, 3] and extend finite automata with a finite number of clocks.

An atomic constraint is a formula of the form x ./ c for x ∈ X, c ∈ N and
./∈ {<,≤,≥, >,=}. The set of constraints over a set X of variables is denoted
by ξ(X) and consists of conjunctions of atomic constraints.

Definition 10 (Timed Automaton). A timed automaton A is a tuple (L, l0,
X,Σ,E, Inv) where L is a finite set of locations, l0 ∈ L is the initial location,
X is a finite set of clocks, Σ is a finite set of actions, E ⊆ L×ξ(X)×Σ×2X×L
is a finite set of edges where e = (l, γ, a,R, l′) ∈ E represents an edge from the
location l to the location l′ with the guard γ ∈ ξ(X), the label a ∈ Σ and the
reset set R ⊆ X, Inv ∈ ξ(X)L assigns an invariant to any location; we restrict
the invariants to conjunctions of terms of the form x ≤ k for x ∈ X and k ∈ N.

A clock valuation is a function ν : X → R≥0. If R ⊆ X then v[R 7→ 0]
denotes the valuation such that ∀x ∈ X \ R, ν[R 7→ 0](x) = ν(x) and ∀x ∈ R,
ν[R 7→ 0](x) = 0. The satisfaction relation ν |= c for c ∈ ξ(X) is defined in the
natural way.

Definition 11 (Semantics of a Timed Automaton). The semantics of the
timed automaton A = (L, l0, X,Σ,E, Inv) is the timed transition system SA =
(Q, q0,→) with Q = {(l, ν) ∈ L×(R≥0)X | ν |= Inv(l)}, q0 = (l0, 0̄) is the initial
state and → is defined by:

– the discrete transition relation (l, ν)
a−→ (l′, ν′) iff ∃(l, γ, a,R, l′) ∈ E s.t.

ν |= γ, ν′ = ν[R 7→ 0] and ν′ |= Inv(l′);

– the continuous transition relation (l, ν)
d−→ (l′, ν′) iff l = l′, ν′ = ν + d and

ν′ |= Inv(l).

Translation from RTPN to single-clock timed automaton. By definition
of zone, all enabled transition t verify the diagonal contraint (v(reset)− v(t) = c)
with c ∈ N and all transition t′ not enabled verify v(t′) = 0. Hence, a point of a
zone is fully characterised by v(reset). Note that v(reset)− v(t) = c means that
the transition t has been enabled c time units after the last reset.

From any RTPN N , we wish to build a single-clock timed automaton AN in
which the single clock x has the value of v(reset).

We construct the single-clock timed automaton AN = (L, l0, X,Σ,E, Inv)
from the state graph SG(N ) = (Reach(N ), (M0, Z0), ↪→, Σ), as follows:

– φ : Reach(N ) 7→ L is a bijection
– L = {φ(s) | s ∈ Reach(N )}
– X = {x}
– The initial location is l0 = φ

(
(M0, Z0)

)
– For each l ∈ L, set the invariant (x ≤ Ireset)



– For each s ∈ Reach(N ),

add
(
φ(s), x ≥ Ireset, {reset}, {x}, φ

(
succ(s, {reset})

))
to E

– For all (τ, vτ ) = fireablez(M,Z) such that (M,Z)
τ
↪−→ (M ′, Z ′) do both

statements:
• add

(
φ
(
(M,Z)

)
, x = vτ (reset), τ, ∅, φ

(
(M ′, Z ′)

))
to E

• if ∃t ∈ τ such that t 6∈ TD then add the constraint (by conjunction)(
x ≤ vτ (reset)

)
to Inv

(
φ((M,Z))

)
Theorem 3. The single-clock timed automaton AN and the RTPN N recognize
the same timed language: L(N ) = L(AN ).

Proof. Let (MN , v) a state of N and
(
φ((MA, Z)), ν

)
a state of AN . The relation

', defined by (MN , v) '
(
φ((MA, Z)), ν

)
iff MN = MA, v ∈ Z and v(reset) =

ν(x) is a timed bisimulation between N and AN . From this timed bisimulation
we can state that L(AN ) = L(N ). ut

Example 2. Figure 4 presents the timed automata constructed from the RTPN
N of Figure 3a, where the guards and clock resets (denoted x← 0) are in pink,
the invariants in orange, and the locations reachable by a reset are in cyan.
In the TA, we omit reset when it is not possible i.e. from a location with an
invariant x ≤ c with c < Ireset.
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{reset}

x← 0x ≥ 6{reset}
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x ≥ 6
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x ≥ 6
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x = 2
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x← 0
x ≥ 6

{reset}

x = 4

{t1}

x← 0
x ≥ 6

{reset}
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x ≥ 6
{reset}

x← 0
x ≥ 6

{reset}

x← 0
x ≥ 6

{reset}

x← 0
x ≥ 6

{reset}x← 0
x ≥ 6

{reset}

Fig. 4: Translation from the RTPN N into a single-clock TA AN

6.2 Corollaries

Thanks to the translation from RTPN to one-clock Timed Automata, we inherit
these decidability results established on one-clock Timed Automata.



Given two timed model A and B, asking if all the timed words recognized by
B also recognized by A (language inclusion problem) is known to be undecidable
for Timed Automata. However, it becomes decidable on finite words if A is
restricted to having at most one clock [18].

Corollary 3. Language inclusion problem is decidable for finite words for RTPN.

The universality problem for timed model is: given a timed model A, does A
accept all timed words? Alur and Dill have shown that the universality problem
is undecidable for timed automata with two clocks. However, for one-clock timed
automata over finite words, the one-clock universality problem is decidable [1].

Corollary 4. Universality problem is decidable for finite words for RTPN.

7 Application to the pipeline problem

Now that we have a model that closely represents pipelined synchronous cir-
cuits, we are able to perform model checking of TCTL properties, for example
to ensure the sequentiality of some operations. An interesting use case would be
the sharing of resources (sections of the circuits), indeed thanks to some simple
TCTL properties, one can build a pipeline that prevents conflicts with shared
resources. But as it is a high stakes issue for the designing of synchronous sys-
tems, we wish to focus on the building of an optimised pipeline w.r.t. the number
of registers.

The problem of building a pipeline that minimises the number of registers,
while ensuring a minimal throughput has already been solved in [15]. However,
this problem formulation does not easily allow the extension with additional
constraints on the produced pipeline. With our model, the TCTL makes it very
easy to express expected properties on the pipeline. An interesting example that
can be handled is the time-multiplexing. 2

For a circuit representation, where the transitions illustrate the operators,
and the places illustrate the connections, the Petri Net is actually a Marked
Graph, thus there is no conflict. However, the state space still has an exponentiel
size w.r.t. the size of the RTPN, then we will add features that allows us to cut
branches in the exploration according to an optimisation goal. In this particular
case, we aim at the minimisation of the total number of flip-flops (1-bit register),
thus we extend our model with costs which represent the number of flip-flop of a
given pipeline. Remind that the considered circuits are finite with unfolded loops,
so we only focus on finite runs of the RTPN, then adding an only increasing cost
won’t affect the termination.

7.1 RTPN with cost

We extend RTPN with a cost associated with each place and a marking cost
function.

2 This paragraph fixes an error in the original paper.



Definition 12 (RTPN with Cost). A RTPN extended with cost (RTPN with
Cost) is a tuple (N , C, ω) where N = (P, T, TD,

•(.), (.)•, δ, Ireset,M0) is a RTPN
and

– C : P → N is the place cost function.
– ω : NP → N is the marking cost function (recall that a marking M ∈ NP ).

In Marked Graphs, the marking of a place M(p) can only take its value in {0, 1},
which can be interpreted both as a boolean and as an integer value. Therefore, we
allow to use both arithmetical operators (in {+, ∗}) and the logical or operator
∨ in the definition of the marking cost function ω.

Example for ω(M) = (M(p1) ∨M(p2)) ∗ 4 + M(p2) ∗ 10. Assume M1(p1) =
M1(p2) = 1 then ω(M1) = (1 ∨ 1) ∗ 4 + 1 ∗ 10 = 14.

A classical marking cost function is ω(M) =
∑
p∈P M(p) ∗ C(p) which is the

sum of marked places weighted by their cost.

Definition 13 (Cost of a run). The cost Ω(ρ) of a run ρ is the cumulated
marking cost of the states after each reset transition over the run, starting with
the cost of the initial marking. It is inductively defined on a run ρn = ρn−1

αn−−→
qn, with αn ∈ R≥0 ∪ 2T ∪ {reset} and qn = (Mn, vn) by:

– Ω(q0) = ω(M0)

– Ω(ρn) =

{
Ω(ρn−1) + ω(Mn) if αn = {reset}
Ω(ρn−1) otherwise

7.2 From a pipelining problem to a RTPN with Cost

As stated before, Marked Graphs have been extensively used to model circuits,
where transitions stand for the atomic operators, places for the connections
in between, and where tokens represent the registers on each connection. This
can be improved by considering branch points (points where a signal is used
by multiple operators) as operators with a null propagation delay, and then
integrating them into the model with more transitions.

We propose to use our model of Timed Petri Net with reset and delayable
transitions, in order to build a pipeline of a synchronous circuit, which minimises
the number of registers, while ensuring that the throughput is in a target interval
[fmin, fmax].

We build the RTPN with Cost ((P, T, TD,
•(.), (.)•, δ, Ireset,M0), C, ω) from

the circuit by creating a transition t ∈ T for each operator and branch point, with
its delay equal to the propagation delay, a place p ∈ P for each connection of the
circuit, and with •(.) and (.)• preserving the network structure of the circuit. The
initial marking M0 sets a token in all the places corresponding to input connec-
tions of the circuit. The placement of tokens models the placement of registers,
so our model won’t hold the fully pipelined circuit in its state, but only one stage
at a time, a complete pipeline is built from a run. The reset action settles the
registers’ placement of each pipeline stage, then Ireset = [ 1

fmax
, 1
fmin

] guarantees



the throughtput to be in [fmin, fmax]. The cost of each place C(p) will be the size
of the signal (in bits) held by the corresponding connection in the circuit. The
marking cost function is such that it gives the number of flip-flops corresponding
to a marking M : ω(M) =

∑
pk∈POp

C(pk) · (M(pk) ∨
∨
pkl∈PB(pk)

M(pkl)),
where POp is the set of places respectives to connections outgoing from opera-
tors, and PB(pk) is the set of places respectives to connections outgoing from the
branch point after the connection corresponding to pk. In this manner, the cost
of a run will be equal to the number of flip-flops in the pipeline so far. Finally,
all the transitions t corresponding to operators with a larger bus width at the
output than at the input, are set to be delayable t ∈ TD. Thus, we relax the
constraints on those transitions, and allow exploring states where the register is
before the operator, and so with fewer flip-flops. It is actually possible to make
all transitions delayable, but this will obviously lead to an explosion of the state
space of the model.

An example of circuit is presented on Fig. 5a, involving some operators opi
with propagation delays in red and some signals sj transmitted by connections
with sizes in green.
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5 6
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3
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(a) Pipelined circuit (with frequency 1
8
≤ f ≤ 1

4
)
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s4

s5
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8 8
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8

1

16
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Ireset = [4, 8]

(b) RTPN with Cost

Fig. 5: A synchronous circuit example

The RTPN with Cost produced from this circuit is represented on Fig. 5b,
with the delays of transitions in red, the costs of places in green, and the delayable
transitions in gray. The two places s11 and s12 are represented inside a dotted
green box, because they “share” their cost, as it models signals outgoing from
the same branch point. The cost function is ω(M) = 8 ·M(s0) + 8 · (M(s1) ∨
(M(s11) ∨M(s12))) + 4 ·M(s2) + 8 ·M(s3) +M(s4) + 16 ·M(s5) +M(s6).



Firstly the benefit of this approach is that it builds the pipeline from a non-
pipelined circuit. Secondly, the stage produced can be compared on-the-fly, as
they are added to the pipeline. Therefore, the exploration can be lead by some
heuristics.

Finally, the reset interval offers flexibility over a fixed value and shorter
pipeline stages can be defined to allow exploration of other configurations. How-
ever, if the stages are too short, this increases the number of stages (and thus

the cost in registers). A good trade-off is to restrict Ireset to
[

1
2f ,

1
f

]
with some

target frequency f .

7.3 Pipeline exploration

Each reachable state of the model represents a possible pipeline stage of the real
circuit. A reset operation defines a transition from one pipeline stage to the next
one. The full pipeline is retrieved by a walk along a branch of the state graph,
collecting reset operations.

{s0}
v(op0) = 0
v(reset) = 0

{s0}
v(op0) = 5
v(reset) = 5

{s1}
v(b1) = 0
v(reset) = 5

{s11, s12}
v(op1) = 0
v(op2) = 0
v(reset) = 5
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v(op2) = 6
v(reset) = 6

{s11, s12}
v(op1) = 6
v(op2) = 6
v(reset) = 6
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v(op1) = 0
v(op2) = 0
v(reset) = 0
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v(op2) = 0
v(reset) = 0
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v(op2) = 1
v(reset) = 1
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v(op4) = 0
v(reset) = 1
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v(reset) = 0
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v(reset) = 8
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(a) One run of the RTPN with Cost of Fig. 5b. States after a reset are
framed in cyan (q0, q4, q7 and q12)
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(b) One possible pipeline of the circuit of Fig. 5a

Fig. 6: Example of the extraction of a pipeline from a run

One run ρ of the RTPN with Cost of Fig. 5b, is represented on Fig. 6a. It is
the best run achievable by our model, i.e. the one that minimises the cost. The
corresponding pipeline on the circuit is presented on Fig. 6b.



The marking of every state after a reset (framed in cyan in Fig. 6a) gives
the position of the registers in the pipelined circuit. Although, if all the signals
outgoing from a branch point are marked, then only one register is needed for
the unique signal that they represent. For example the marking M4 = {s11, s12},
leads to only one register on s1.

Let qi = (Mi, vi) (0 ≤ i ≤ 12) be the states of this run ρ. The run cost is
Ω(ρ) = ω(M0)+ω(M4)+ω(M7)+ω(M12) = C(s0)+C(s1)+C(s1)+C(s2)+C(s5)+
C(s6) = 45. This cost matches with the number of flip-flops in the pipeline of
Fig. 6a. Note that on this example, a classical greedy algorithm as implemented
in FloPoCo [13] (a well-known generator of arithmetic operators with pipeline
for FPGAs), produces the result in Fig. 5a, with a total of 55 flip-flops.

8 Conclusion

We have proposed an extension of Timed Petri Nets for the modeling of syn-
chronous electronic circuits, addressing pipelined design problems.

Through a translation from RTPN into a single-clock timed automata, we
have proved the decidability of language inclusion and universality problems for
bounded RTPN. We have proved that the complexity of the reachability problem
for bounded RTPN is PSPACE-Complete. This induces the same complexity for
Timed Petri Nets “à la Ramchandani” and for timeless Petri Nets with maximal-
step firing rule.

We have given a symbolic abstraction of the state space for RTPN. Thanks to
two degrees of freedom through delayable transitions and reset interval of RTPN,
the state space computation allows us to generate multiple pipeline configura-
tions. This makes it possible to address a wide range of interesting problems
such as checking the absence of conflict between sharing resources (sections of
the circuits).

We then have shown that we can also deal with the problem of the construc-
tion of a pipeline optimised w.r.t. the number of registers. We have proposed
a cost extension leading to a state space exploration algorithm guided by cost,
allowing to choose among all combinations those that minimizes the resources
allocated to the pipeline, while ensuring a frequency objective. While this use
case is interesting on its own, we believe that RTPN can handle the design of
pipelined circuits in many ways: for instance to address timed division multi-
plexing problem, or to manage behavioural registers by adding explicit reset
transitions in the model.
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