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Abstract—This paper examines the effect of Band Jamming
(BJ) and Tone Jamming (TJ) on LoRa signals in a flat Additive
White Gaussian Noise (AWGN ) channel. In this scenario, LoRa
proves to have good resiliency against these jamming attacks.
Furthermore, a simple and lightweight BJ and TJ jammer
detection scheme is derived. Theoretical and simulation results
shows good detection capability, especially with Single Tone
Jamming (STJ).
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I. INTRODUCTION

The Internet of Things (IoT ) is experiencing striking growth
since the past few years enabling much more devices to
communicate and allowing many scenarios to be a reality such
as smart cities. The number of IoT devices is expected to
rapidly grow, jumping from almost 10 to more than 21 billion
[1]. Many technologies were developed in that sense relying
on licensed bands (Narrow Band IoT (NB− IoT ), Extended
Coverage GSM (EC−GSM ) and LTE-Machine (LTE−M ))
or unlicensed bands such as SigFox, Ingenu, Weightless or
Long Range (LoRa) [2]. This paper focuses on LoRa standard.
LoRa has been initially developed by the French company
Cycleo in 2012 and is now the property of Semtech company,
the founder of LoRa Alliance. LoRa is nowadays a front runner
in LP-WAN solutions and holds a lot of attention by the
scientific research community. The LoRa vulnerabilities were
addressed in the literature. In [3], a malicious LoRa user acts
as a reactive jammer by sending random LoRa symbols to a
legitimate LoRa node. The authors evaluated the jamming im-
pact on Packet Delivery Ratio (PDR) and the frame detection
probability by the jammer with real world LoRa transceivers.
The authors from [4], [5] highlighted that the long Time On
Air (TOA) of LoRa gives a bigger opportunity window for
the jammer, especially with high modulation orders. Physical
layer mitigation techniques were proposed to reduce jamming
effectiveness such as frequency hopping scheme that was
presented in [6]. To the best of authors knowledge, traditional
jamming (mainly Band Jamming (BJ) and Tone Jamming
(TJ)) impact on LoRa has not been investigated yet. Although
smart jammers (e.g. malicious LoRa user) are more efficient,
traditional jammers are still a threat for LoRa networks.
Indeed, traditional jammers use usually low-cost devices and
require minimal setup procedures. They can be then easily

implemented and need therefore to be tackled. This paper fo-
cuses on the LoRa victim node. We propose to investigate the
effect of both BJ and TJ on LoRa signals, the performance
associated and a simple jamming detection scheme leveraging
LoRa physical layer characteristics is derived. This gives the
ability to a LoRa node to alert the presence of a jammer in
the close environment. The main contributions of this paper
are:

• An analysis of both BJ and TJ applied on LoRa signals
that reveals the good LoRa’s resiliency against these
jamming attacks.

• A simple and efficient BJ and TJ detection scheme
enabling more security in LoRa networks.

The remainder of the paper is organized as follows. In
Section II, a brief review of LoRa physical layer is performed.
Section III presents BJ and TJ models and the different jam-
ming strategies are discussed. Section IV evaluates the impact
of BJ & TJ on LoRa signals while Section V introduces the
jammer detection scheme. Simulation results are presented in
Section VI to assess jamming impact on Symbol Error Rate
(SER) performance and jamming detection capability. Finally,
Section VII concludes the paper.

II. LORA MODULATION OVERVIEW

A. LoRa waveforms

In the literature, LoRa waveforms are of the type of
Chirp Spread Spectrum (CSS) signals. These signals rely
on sine waves with Instantaneous Frequency (IF ) that varies
linearly with time over frequency range f ∈ [−B/2, B/2]
(B ∈ {125, 250, 500} kHz) and time range t ∈ [0, T ] (T
denotes the symbol period). This basic signal is called an
up-chirp or down-chirp when frequency respectively increases
or decreases over time. A LoRa symbol consists of SF bits
(SF ∈ {7, 8, . . . , 12}) leading to an M -ary modulation with
M = 2SF ∈ {128, 256, . . . , 4096}. The symbol duration T is
defined as T = M/B. This gives T ≈ {1, 2, . . . , 32} ms for
B = 125 kHz and SF = {7, . . . , 12}. We may see that LoRa
has quite long symbol duration compared to other modulation
schemes such as OFDM where symbols usually last only
tens of µs. In the discrete-time signal model, the Nyquist
sampling rate (Fs = 1/Ts) is used (i.e. Ts = 1/B = T/M ) to
reduce complexity. The signal symbol has then M samples.
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Each symbol a ∈ {0, 1, . . . ,M − 1} is mapped to an up-
chirp that is temporally shifted by τa = aTs periods. We
may notice that a temporal shift τa conducts to shift by
aB/M = a/(MTs) = a/T the IF . The modulo operation is
applied to ensure that IF remains in the interval [−B/2, B/2].
This behavior is the heart of CSS process. A mathematical
expression of LoRa waveform sampled at t = kTs has been
derived in [7] :

x(kTs; a) , xa[k] = e2jπk(
a
M−

1
2+

k
2M ) k = 0, 1, . . . ,M − 1

(1)
We may see that an up-chirp is actually a LoRa waveform

with symbol index a = 0, written x0[k]. Its conjugate x∗0[k]
is then a down-chirp.

B. LoRa demodulation scheme

Reference [8] proposed a simple and efficient solution to
demodulate LoRa signals. In Additive White Gaussian Noise
(AWGN ) channel, the demodulation process is based on the
Maximum Likelihood (ML) detection scheme. The received
signal is:

r[k] = xa[k] + w[k] (2)

with w[k] a complex AWGN with zero-mean and variance
σ2 = E[|w[k]|2]. The Signal to Noise Ratio (SNR) is
defined as SNR = 1/σ2. ML detector aims to select
index â that maximizes the scalar product 〈r[k], xn[k]〉 for
n = 0, 1, . . . ,M − 1 defined as:

〈r[k], xn[k]〉 =

M−1∑
k=0

r[k]x∗n[k]

=

M−1∑
k=0

(xa[k] + w[k])x∗0[k]︸ ︷︷ ︸
r̃[k]

e−j2π
n
M k

= R̃[n] = X̃a[n] + W̃ [n] = Mδ[n− a] + W̃ [n]
(3)

with X̃a[k] = DFT{xa[k]x∗0[k]} = Mδ[n−a] and W̃ [k] =
DFT{w[k]x∗0[k]} ∼ CN (0, σ2

w), σ2
w = Mσ2. DFT{.}

denotes the Discrete Fourier Transform (DFT ) function. The
demodulation stage proceeds with two simple operations:
• multiply the received signal by the down-chirp x∗0[k], also

called dechirping,
• compute R̃[n], the DFT of r̃[k] and select the discrete

frequency index â that maximizes R̃[n].
This way, the dechirp process merges all the signal energy in

a unique frequency bin a and can be easily retrieved by taking
the magnitude or square magnitude (non-coherent detection)
of R̃[n]. The symbol detection is then:

âNCOH = arg max
n

|R̃[n]|2 ≡ arg max
n

|R̃[n]| (4)

III. TRADITIONAL JAMMER MODELS

This section briefly reviews traditional jammer models and
the main strategies that can be adopted by the jammer.

A. Band Jamming

BJ model is presented in Figure 1. It adds a jamming signal
wJ [k], usually an AWGN , in the data signal bandwidth. The
jamming signal bandwidth may be restricted to a fraction of
the data signal bandwidth as:

BJ = B × ρ, ρ ∈]0; 1] (5)

When ρ = 1, the jammer covers the entire useful bandwidth
and is called Full Band Jamming (FBJ). For ρ 6= 1, the
jammer is a Partial Band Jammer (PBJ). The total jamming
power is fixed to σ2

J = B×N where N is the spectral density
level and B the total available bandwidth, as depicted in Figure
1. ρ is the fraction of B to be covered by the jammer. As
total available jamming power is fixed, reducing ρ increases
therefore the spectral density level by a factor 1/ρ.

The jammer can also tune the bandwidth position i.e. center
frequency νJ .

N/ρ

B

BJ = Bρ

N

νJ

ν

Power Spectral Density

Maximum jamming bandwidth

Tuned jamming bandwidth

Fig. 1. Band Jamming model illustration.

B. Tone Jamming

TJ adds several sine waveforms in the useful bandwidth as
depicted in Figure 2. The expression of the discrete jamming
signal sampled at t = kTs is then:

sTJ [k] =

V−1∑
v=0

svTJ [k] =

V−1∑
v=0

σvJe
2jπνvk+jφv

νv =
uv
M
, uv ∈]0;M − 1]

(6)

With φv the initial phase of the vth tone signal and uni-
formly distributed over [0; 2π]. When V = 1 the jamming sig-
nal is Single Tone Jamming (STJ) and Multi Tone Jamming
(MTJ) otherwise. From (6) the jammer can tune each sine
waveform power. An optimal power strategy for the jammer
is to adopt an uniform scheme [9] i.e. (σvJ)2 = σ2

J/V . This
scheme is considered in this paper.

C. Jamming behaviors

In the literature, the jammer has mainly three different
behaviors: the constant, reactive and random jammers. The
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Fig. 2. Tone Jamming model illustration for V = 3.

constant jammer has the maximum impact on the victim but
is not energy efficient and easily detectable. This behavior
is therefore usually ignored at the expense of the reactive
jammer that is passive most of the time and sends a jamming
signal only when detecting the target signal to be jammed.
This behavior is a good energy/impact trade-off and is very
likely to be found in real threats. We consider this strategy
in the rest of the paper. Random jamming is less effective
than reactive jamming but difficult to detect due to its random
nature. Depending on the jammer behavior, the received signal
at the victim LoRa node follows the next four hypotheses:
• H0 : r[k] = w[k]
• H1 : r[k] = xa[k] + w[k] + s[k]
• H2 : r[k] = xa[k] + w[k]
• H3 : r[k] = w[k] + s[k]

Hypotheses H1 and H3 are only valid for the constant
jammer. The reactive jammer enables hypotheses H0 and H1

while random jammer enables the four hypotheses.

IV. BJ & TJ EFFECT ON LORA SIGNALS

The effect of jamming is only present for H1. We denote
the Noise Jamming Ratio (NJR) as NJR = σ2/σ2

J . The
received signal at the victim LoRa node after dechirp process
and DFT is:

R̃[n] = X̃a[n] + W̃ [n] + S̃[n] (7)

The term S̃[n] in (7) introduces interference. We focus on
this term for the study of jamming. The term S̃[n] is renamed
as S̃BJ [n] for BJ and S̃TJ [n] for TJ .

A. BJ effect

The effect is illustrated in Figure 3. We may see that PBJ
has the same effect as FBJ thanks to dechirp operation. The
DFT output will have then an equivalent noise power of
σ2
BJ = σ2

w + Mσ2
J with limited impact on performance as

it will be highlighted in Section VI.

B. TJ effect

TJ effect is illustrated similarly as BJ in Figure 4. We
consider for instance integer uv values. The dechirp and DFT
operations lead to an effect equivalent as computing the DFT
of a LoRa symbol with value a = uv and modulated by a
down-chirp. The interference term is then:

n/M

k
M − 1

M−1
M

M − 1

M−1
M

k

n/M

x∗0[k]
w̃J [k] = wJ [k]x

∗
0[k]

BJ BJ

BJ

wJ [k]

Fig. 3. Partial Band Jamming effect on LoRa DFT .

S̃TJ [n] =

V−1∑
v=0

DFT{x∗uv [k]} (8)

Without loss of generality we consider V = 1 to evaluate
(8). Developing (8) yields:

S̃STJ [n] =
√
σ2
J

M−1∑
k=0

e2jπ
−k2+(M+2u0−2n)k

2M (9)

The sum in (9) is in the form of a Generalized Quadratic
Gaussian Sum (GQGS) resolution task. The GQGS is defined
as [10]:

G(η, ε, γ) =

|γ|−1∑
x=0

e

(
ηx2 + εx

γ

)
, e(x) = e2jπx (10)

With η, ε and γ integers. When η odd, ε even and γ a power
of 2, G(η, ε, γ) is:

G(η, ε, γ) = e

(
−

ε2

4η

γ

)
G(η, |γ|) (11)

with G(η, |γ|) = (1 + jη)
√
|γ|. By identification between

(9) and (10), η = −1, ε = M + 2u0 − 2n and γ = 2M
for LoRa. η is odd, ε is even and γ a power of 2 so
(11) is valid. G(η, |γ|) is then for LoRa G(−1, 2M) =
(1 − j)

√
2M . We note that the sum in (9) has a range of

k = 0, . . . ,M − 1, contrarily to (10) that supposes to have
a sum from x = 0 to x = 2M − 1. It can be normalized
knowing that

∑2M−1
k=0 e2jπ

ηk2+εk
γ = 2

∑M−1
k=0 e2jπ

ηk2+εk
γ with

e2jπ
ηk2+εk

γ = e2jπ
η(k+M)2+ε(k+M)

γ , k = 0, . . . ,M−1. S̃STJ [n]
is then:

S̃STJ [n] =
√
σ2
J

G(−1, ε0, 2M)

2
, ε0 = M+2u0−2n (12)

S̃TJ [n] is finally for any V :

S̃TJ [n] =
√
σ2
J/V

V−1∑
v=0

G(−1, εv, 2M)

2
, εv = M+2uv−2n

(13)
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When uv is not integer, the computation of (9) is not pos-
sible with (13). The sum must be then computed numerically
for each n value.

n/M

k
M − 1

u0

M − 1

M−1
M

ku0

n/M

u0

x∗0[k] s0TJ [k]
s̃0TJ [k] = s0TJ [k]x

∗
0[k]

M−1
M

Fig. 4. Single Tone Jamming effect on LoRa DFT .

Figure 5 presents the DFT output of received LoRa signal
contaminated by TJ , for SF = 7. This SF value is considered
for the rest of the paper. The noise term W̃ [n] is neglected for
convenience. When V = 1 and u0 integer, the DFT magni-
tude is equal for each bin at n 6= a and of value

√
Mσ2

J = 16
in this example (σ2

J = 2). When u0 is not integer, the DFT
experiences deformations. These deformations are maximum
when u0 = bu0c+0.5 and has an oscillation behavior centered
around

√
Mσ2

J , as showed in the figure. The oscillation is null
at n = M/2+bu0c+1. When V = 2, a sine modulation wise
behavior appears with frequency of approximately |u0 − u1|
mod M and shifted circularly by min(u0, u1) positions. The
DFT output is quite unpredictable for V > 1 and uv not
integer. We may see that the bin magnitude at n = a depends
on a. That is, certain a values depending on uv will reduce
or increase the expected magnitude of M without jamming.
More precisely, we may see the following condition leading
to performance improvement or degradation:

if

{
<{S̃[a]} > 0, |R̃[a]| > M : performance improvement
<{S̃[a]} < 0, |R̃[a]| < M : performance degradation

(14)
The symbols minimizing and maximizing performance are

denoted amin and amax and are derived as:

amin = arg min
n

<{S̃[n]}

amax = arg max
n

<{S̃[n]}
(15)

An example of DFT output with symbols a = amax and
a = amin is showed in Figure 6, with u0 = 20. In this case,
amax = 67 and amin = 3. Moreover, the performance gain
and loss are respectively Γ+ = R̃[amax]−M =

√
Mσ2

J and
Γ− = M − R̃[amin] =

√
Mσ2

J , for V = 1. When V > 1, the
performance gain/loss does not hold exactly the same behavior
with Γ+ > Γ− or Γ+ < Γ−, depending on uv values.

Fig. 5. DFT output of received LoRa plus TJ signal without noise for V =
{1, 2} and different sine waveform of frequencies uv . SF = 7, a =M/2.

Fig. 6. DFT output of received LoRa plus TJ signal without noise for
V = 1, u0 = 20 and SF = 7.

V. JAMMER DETECTION SCHEME

A. LoRa DFT PDF s

The jamming detection scheme is performed in the fre-
quency domain i.e. the LoRa dechirped DFT to keep simple
implementation. We may recall the Probability Density Func-
tions (PDF ) of |R̃[n]| for the two hypotheses H0 and H1

(reactive jammer), noted as |R̃H0
[n]|, |R̃BJH1

[n]| and |R̃TJH1
[n]|

for BJ and TJ , respectively. In H0, only AWGN is present.
Its statistic is not changed by the dechirp process. We can
easily conclude that Random Variable (RV ) XH0

of |R̃H0
[n]|

follows a Rayleigh distribution fXH0
(t) = Rayl(t, bXH0

) with
bXH0

=
√
Mσ2/2 the scale parameter.

The term S̃[n] in H1 leads to a Rayleigh PDF fXBJH1
(t) =

Rayl(t, bXBJH1
) with bXBJH1

=
√
M(σ2 + σ2

J)/2, for BJ and

n 6= a. TJ throws a Rician PDF to |R̃TJH1
[n]| ∼ XTJ

H1
,
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fXTJH1
(t) = Rice(t, µXTJH1

, σXTJH1
) with non centrality param-

eter µXTJH1
=
√
Mσ2

J and scale parameter σXTJH1
= bXH0

,
n 6= a.

B. Jammer detector

A simple solution to detect the BJ or TJ jammer is to
compute the following normalized quantity test:

z =

L−1∑
l=0

|R̃[nl]|
bXH0

, nl 6= a (16)

As the jammer is reactive, the LoRa node can estimate regu-
larly w[k] variance during silence periods i.e. in H0 hypothesis
and leverage this information to detect the jammer. From (16),
the receiver chooses randomly L frequency indexes different
from n = a. Indeed, the PDF of |R̃H1 [a]| depends on a for
both BJ and TJ , an information not available. To mitigate this
situation, the receiver can eliminate the Nλ frequency bins that
are above a certain threshold. The threshold is designed with
Neyman-Pearson (NP ) criterion. The False Alarm Probability
(FAP ) Pfa is fixed and the threshold is derived by:

λ = F−1Rayl(1− Pfa;
√
Mσ2/2) (17)

with F−1Rayl(.; .) denoting the inverse Cumulative Density
Function (CDF ) of Rayleigh RV . We note zH0 and zH1

the quantity test in H0 and H1 hypotheses, respectively. It
is worth-noting that zH0

is a sum of Rayleigh RV s. The
evaluation of PDF and CDF of a sum of Rayleigh RV s
has been studied in the literature. The authors from [11] de-
rived a closed-form approximation based on Small Argument
Approximation (SAA) approach. Their solution is widely used
but has the drawback to introduce bias as L grows. More recent
studies proposed a closed-form expression but limited to small
L values, L ∈ {2, . . . , 16} in [12] for example. To have more
flexibility, we choose SAA technique. From [11], PDF ZH0

is:

fSAAZH0
(t) =

L−1∑
l=0

X l
H0

=
t2L−1e

− t2

2b
ZSAA
H0

2L−1(bZSAAH0
)L(L− 1)!1

bZSAAH0
=

1

L
[(2L− 1)!2]1/L

(18)

where

x!c = 1× (1 + c)× (1 + 2c)× . . .× x (19)

Its CDF is:

FSAAZH0
(t) = 1− e

− t2

2b
ZSAA
H0

L−1∑
l=0

(
t2

2b
ZSAA
H0

)l
l!1

(20)

In H1 and BJ , zBJH1
follows the same PDF as zH0 but

with different parameter bZBJ,SAAH1

=
1+

σ2J
σ2

L [(2L − 1)!2]1/L

as the noise DFT has variance σ2
BJ . The associated CDF

is FBJ,SAAZH1
. In TJ case, zTJH1

is a sum of Rician RV s.
Similar research to evaluate sum of Rician RV s has been
performed [13], [14] but are still limited to small L values
(up to L = 10 in [14]) and reduced number of possible NJR
values, NJRdB ∈ {−7,−5,−3,−1} in [13]. This limits the
application to our LoRa jammer detector. We decide to use
instead the approximation of the Rician distribution when
V = 1. If NJRdB →∞, fSTJZH1

approaches fSAAZH0
and noted

fSTJ
+

ZH1
. If NJRdB → −∞, fSTJZH1

is a normal distribution

noted fSTJ
−

ZH1
:

fSTJ
−

ZH1
(t) = N (t, µ

ZSTJ
−

H1

, σ
ZSTJ

−
H1

)

µ
ZSTJ

−
H1

=

√
M(σ2/2 + σ2

J)L

bXH0

, σ
ZSTJ

−
H1

= 1
(21)

The CDF are F
ZSTJ

−
H1

and F
ZSTJ

+
H1

. Intermediate NJRdB
values will lead to reasonably small bias. When V > 1, the
PDF has not analytical expression and must be therefore
numerically computed. CDF is noted FMTJ

ZH1
. Finally, the re-

ceiver detects the jammer with a threshold identically designed
as λ with fixed FAP :

λSAA =
(
FSAAZH0

)−1
(1− PSAAfa ) (22)

z
H1

R
H0

λSAA (23)

An illustration for BJ case of theoretical PDF s and
histograms for both H0 and H1 hypotheses are depicted in
Figure 7.

Fig. 7. Theoretical PDF s and histograms of quantities test zH0 and zBJ
H1

for BJ . NJRdB = −5, SNRdB = −5, L = 8 and ρ = 0.6. Histograms
have indexes th normalized such that t = th/

√
L as stated in [12].
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VI. SIMULATION RESULTS

This section provides Monte-Carlo simulation results to
evaluate BJ and TJ performance impact on SER and assess
the jammer detection capability. To simulate BJ , an AWGN
is generated and filtered according to ρ and σ2

J constraints.

A. PBJ and MTJ performance impact on SER

The simulations are performed with respect to Signal Jam-
ming Ratio (SJR) SJR = 1/σ2

J . The SNR is fixed to
SNRdB = −8.

1) PBJ performance impact on SER: Figure 8 highlights
the impact of ρ on performance as mentioned in Section IV-A.
SJRdB ∈ {−3, 0, 3} and AWGN performance showed as
comparison. Higher SJRdB values slowly reduce performance
with a SER difference of roughly 1.1 × 10−2 between
SJRdB = −3 and SJRdB = 3. We may see in the Figure that
ρ has virtually no impact on performance whatever SJR is.
This confirms performance predictions made in Section IV-A,
as σ2

J is fixed. It is obvious that BJ is not a good strategy for
the jammer.

Fig. 8. PBJ SER performance depending on ρ ∈ {0.1, 0.2, . . . , 0.9}
SNRdB = −8 and SJRdB ∈ {−3, 0, 3}.

2) MTJ performance impact on SER: For MTJ perfor-
mance impact evaluation, uv is integer and chosen uniformly
in uv ∈ {0, . . . ,M − 1} at each Monte-Carlo trial. Figure 9
points out two interesting performance results. First, V has no
particular influence on performance when uv is integer. This
also true for uv non integer. Indeed, the periodic DFT output
behavior for uv non integer as depicted in Figure 5 has average
magnitude values around

√
Mσ2

J , the value when uv is inte-
ger. Statistically, for a random and uniform over [0;M−1], this
does not influence performance. Second, a value has a huge
impact on performance. The symbol minimizing performance
amin leads to very poor performance that reaches AWGN one
only from SJRdB = 20. Interestingly, amax does not improve
so much performance, with only a gain of about 1.1 × 10−3

at SJRdB = −5.

Fig. 9. MTJ SER performance as a function of SJR. SNRdB = −8,
uv integer and considering amin and amax symbol values.

B. Jammer detection performance

We compare in this section jammer detection performance
for several NJRdB and L values. Theoretical CDF s FSAAZH0

and FBJ,SAAZH1
for BJ are computed using Equation (20).

Depending on V , F
ZSTJ

−
H1

, F
ZSTJ

+
H1

or FZMTJH1
are computed

for TJ case. Note that FZMTJH1
is numerically computed based

on its PDF with Monte-Carlo trials. λSAA is also computed
numerically as [12] does not provide inverse CDF . The Miss
Detection Probability (MDP ) for BJ and TJ are respectively
computed as:

PBJmd =

∫ λSAA

−∞
fBJ,SAAZH1

(t)dt = FBJ,SAAZH1
(λSAA) (24)

PSTJmd =

∫ λSAA

−∞
fSTJ

+/−

ZH1
(t)dt = FSTJ

+/−

ZH1
(λSAA) (25)

PMTJ
md =

∫ λSAA

−∞
fMTJ
ZH1

(t)dt = FMTJ
ZH1

(λSAA) (26)

1) Theoretical performance: Theoretical Pmd performance
as a function of L and NJR are plotted in Figures 10 and
11, respectively, for FBJ and STJ . ρ then equals 1. We may
see that as L increases or NJR decreases, the Pmd reduces.
Consequently, the jammer detection performance increases. It
can be easily explained by the fact that for L = 1, taking a
single frequency bin is insufficient to make a proper decision.
Ideally, L = M − Nλ (the bin magnitude at n = a is
ignored). However, the theoretical/simulation bias will be more
important for large L due to SAA limitation and therefore the
obtained Pmd will be slightly different, as it will be highlighted
in next section. If NJR is to high, the jammer power is
overlooked in the noise floor leading to impossible detection.
A trade-off between PSAAfa and Pmd is necessary as less false
alarm will increase non detection. It can also be seen that STJ
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detection outperforms FBJ detection. A Pmd factor of about
390 at L = 64 and PSAAfa = 10−3 is experienced in Figure
10.

Fig. 10. Theoretical FBJ and STJ Pmd as a function of L for different
PSAA
fa ∈ {10−2, 10−3, 10−4, 10−5}. NJRdB = −3.

Fig. 11. Theoretical FBJ and STJ Pmd as a function of NJR for different
PSAA
fa ∈ {10−2, 10−3, 10−4, 10−5}. L = 32.

2) Theoretical versus Simulation performance: We finally
compare simulation against theoretical Pmd. PBJ simulation
are performed with ρ = 0.6. MTJ is evaluated for V ∈ {1, 3}
with νv values ν0 = 0.711, ν1 = 0.812 and ν2 = 0.273. From
Figure 12, we may see that L = 16 introduces a slightly higher
bias compared with L = 4, as expected, in favor of higher Pmd
performance.

From Figure 13, we remark that the theory/simulation bias
is reduced for V = 3. Indeed, computing numerically FZMTJH1

removes CDF/histogram bias. MTJ detection experiences a
performance hit with V = 3 but is still more efficient than
PBJ . At NJRdB = −10 and PSAAfa = 10−5, BJ has a Pmd
of roughly 9 × 10−2 against 6 × 10−2 for MTJ . Higher V

values does not change Pmd performance i.e. P v−1md ≈ P vmd
for V > 1.

Fig. 12. Theoretical versus simulation Pmd for PBJ as a function of NJR
for different PSAA

fa = 10−5, L ∈ {4, 16}, SNRdB = 0 and ρ = 0.6.

Fig. 13. Theoretical versus simulation Pmd for STJ (V = 1) and MTJ
(V = 3) as a function of NJR for different PSAA

fa = 10−5, SNRdB = 0
and L = 4.

VII. CONCLUSION

In this paper, analysis of both BJ and TJ on LoRa signals
was carried out. We pointed out that PBJ has virtually same
effect as FBJ . It is therefore equivalent to an additional
source of AWGN leading then to small SER performance
degradation. We also highlighted that TJ parameters V and uv
has negligible impact on SER performance. We can conclude
that LoRa is quite robust to BJ and TJ . We also developed a
simple scheme to detect efficiently BJ and TJ . The method
leverages traditional basic LoRa processing without adding a
burden on complexity. Overall, TJ detector performs better
than BJ , even when considering MTJ scenario even though
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MTJ detection appears to be less efficient than TJ . This
work can be further extended. For example, real tests on LoRa
transceivers can be performed to assess the article conclusions
drawn beforehand in more realistic conditions. Furthermore,
the theoretical impact of a multi-path channel on these jam-
ming schemes can be explored. Temporal and frequency de-
synchronizations impact may be also investigated.

ACKNOWLEDGMENT

This work was jointly supported by the Brest Institute of
Computer Science and Mathematics (IBNM ) CyberIoT Chair
of Excellence of the University of Brest, the Brittany Region
and the “Pôle d’Excellence Cyber”.

REFERENCES

[1] Statista. (2016, November) Internet of things (IoT) active device
connections installed base worldwide from 2015 to 2025.
[Online]. Available: https://www.statista.com/statistics/1101442/iot-
number-of-connected-devices-worldwide/

[2] C. Goursaud and J. Gorce, “Dedicated networks for IoT: PHY / MAC
state of the art and challenges,” EAI endorsed transactions on Internet
of Things, October 2015.

[3] C. Huang, C. Lin, R. Cheng, S. J. Yang, and S. Sheu, “Experimental
evaluation of jamming threat in lorawan,” in 2019 IEEE 89th Vehicular
Technology Conference (VTC2019-Spring), April 2019, pp. 1–6.

[4] E. Aras, G. S. Ramachandran, P. Lawrence, and D. Hughes, “Exploring
the security vulnerabilities of lora,” in 2017 3rd IEEE International
Conference on Cybernetics (CYBCONF), 2017, pp. 1–6.

[5] E. Aras, N. Small, G. Ramachandran, S. Delbruel, W. Joosen, and
D. Hughes, “Selective jamming of lorawan using commodity hardware,”
Proceedings of the 14th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services, 2017.

[6] A. Ahmar, E. Aras, W. Joosen, and D. Hughes, “Towards more scalable
and secure lpwan networks using cryptographic frequency hopping,” in
2019 Wireless Days (WD), 2019, pp. 1–4.

[7] M. Chiani and A. Elzanaty, “On the LoRa modulation for IoT: Wave-
form properties and spectral analysis,” IEEE Internet of Things Journal,
vol. 6, no. 5, pp. 8463–8470, May 2019.

[8] L. Vangelista, “Frequency shift chirp modulation: The LoRa modula-
tion,” IEEE Signal Processing Letters, vol. 24, no. 12, pp. 1818–1821,
December 2017.

[9] T. Li, T. Song, and Y. Liang, Wireless Communications under Hostile
Jamming: Security and Efficiency. Springer Singapore, 2018.

[10] B. Berndt, R. Evans, and K. Williams, Gauss and Jacobi Sums. Wiley,
1998.

[11] M. Schwartz, W. Benett, and S. Stein, Communication Systems and
Techniques. New York:McGraw Hill, 1966.

[12] J. Hu and N. C. Beaulieu, “Accurate simple closed-form approximations
to the distributions and densities of a sum of independent rayleigh
random variables,” in Conference Record of the Thirty-Eighth Asilomar
Conference on Signals, Systems and Computers, 2004., vol. 1, 2004, pp.
1092–1095 Vol.1.

[13] ——, “Accurate closed-form approximations to ricean sum distributions
and densities,” IEEE Communications Letters, vol. 9, no. 2, pp. 133–135,
2005.

[14] J. A. Lopez-Salcedo, “Simple closed-form approximation to ricean sum
distributions,” IEEE Signal Processing Letters, vol. 16, no. 3, pp. 153–
155, 2009.


