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Abstract—Cryo electron microscopy (cryo-EM) allows high-
resolution 3D reconstruction of biomolecular structures from
highly noisy 2D parallel-beam projection images containing tens
of thousands of copies of the same macromolecular complex
but at different random orientations and positions. However,
biomolecular complexes are not rigid but flexible entities that
change their conformations gradually (continuous transition with
many intermediate states) to accomplish biological functions
(e.g., DNA replication, protein synthesis, etc.). The determination
of the full distribution of conformations (conformational space
or landscape) from cryo-EM images is challenging but could
provide insights into working mechanisms of the complexes.
In this paper, we present a method for conformational space
determination, which uses deep learning in combination with
cryo-EM image analysis and normal mode analysis (molecular
mechanics simulation), where the amplitudes of normal modes
are used as parameters of the elastic 3D shapes of complexes
(the parameters determining the conformation). We show the
performance of this new method using synthetic cryo-EM data.

Index Terms—Deep Learning, Cryo-EM, Elastic 3D-to-2D
alignment, Normal Modes, Molecular Dynamics

I. INTRODUCTION

Biomolecular complexes are dynamical objects. They switch
among different conformations in response to the environment
to accomplish different functional roles. Single-particle cryo
electron microscopy (cryo-EM) allows biomolecular structure
determination at near-atomic resolution from vitrified homoge-
neous samples containing many copies of the complex (known
as single particles) at random unknown 3D orientations and
positions. For conformationally heterogeneous samples, such
high resolution of reconstruction can be achieved in many cases
but only after many rounds of computationally demanding 2D
and 3D classifications to disentangle the 3D shape heterogeneity
from 3D orientational and translational heterogeneity [1].
Typically, these approaches result in throwing away all particle

images that do not coincide with the class of images yielding the
highest-resolution 3D reconstruction. However, elucidation of
conformational variability of biomolecular complexes is the key
to understanding their biological functions (e.g., DNA replica-
tion, protein synthesis, virus maturation, etc.) and to novel drug
discovery [2]. The particle images thrown away in the process
of high-resolution 3D reconstruction could carry important
biomedical information. Besides, splitting the set of images into
a number of classes defined prior to conformational variability
analysis is suited to discrete conformational changes (e.g., two-
state heterogeneity of binding and unbinding of a complex
with another molecule) but, generally, it is suboptimal. Indeed,
biomolecular complexes generally adopt gradual transitions
with a large unknown number of intermediate conformational
states (continuous conformational changes), which yields a
particularly challenging type of hetereogeneity [3].

The majority of the existing methods are based on classifi-
cation into a small number of discrete classes, which is often
defined using a prior knowledge about the number of expected
conformations [4], [5]. The other group of methods deal with
continuous conformational heterogeneity by determining the
full conformational distribution (also called conformational
space, conformational landscape, or conformational manifold)
[6], [7], [8], based on which groups of images with similar
conformations are made and 3D reconstructions from these
groups computed. The development of methods for continuous
conformational hetereogeneity analysis is currently an active
field of research (for more information, the reader is referred
to the recent review in [9]). This article presents an original
approach to this problem, which is based on deep learning.

Currently, the major applications of deep learning in cryo-
EM are automated particle picking [10] and pruning [11].
Recently, a deep learning approach has been reported tackling



Fig. 1: Pipeline of the approach that combines HEMNMA with deep learning based on Resnet. Only two of HEMNMA modules
(the first two HEMNMA steps) are used here, namely “Normal Mode Analysis” and “Elastic and rigid-body alignment” (the
blocks with highlighted edges). The inputs to HEMNMA are single particle images and a 3D reference (an atomic structure or
a density volume as the volumes that can be obtained by 3D reconstruction from 2D images). The outputs of “Elastic and
rigid-body alignment” step are the estimated normal mode amplitudes and the estimated image orientations and translations.
For training, only the HEMNMA-estimated normal-mode amplitudes and the input single particle images are used. The neural
network is trained to infer normal-mode amplitudes for new input single particle images that were not seen during the training.

the problem of continuous conformational variability using
a variational autoencoder but assuming that the orientations
and translations of images are already known i.e., determined
through alignment with a consensus density map by standard
cryo-EM approaches [12]. This is a typical assumption in
the majority of other continuous conformational variability
analysis methods [7] and its consequence is that these methods
are suited to the cases where the conformational heterogeneity
is smaller than the orientational and translational heterogeneity
so that the orientations and translations can be accurately
determined by assuming conformational homogeneity. This
limits their applications and requires a prior reduction of the
conformational heterogeneity in the given set of images using
standard cryo-EM approaches based on multiple runs of 2D
and 3D classifications and subclassifications.

Contrary to other approaches, the method known as HEM-
NMA determines simultaneously all unknown parameters
(orientation, position, and conformation), but at the price of
high computational cost [6], [13]. HEMNMA software is freely
available as part of ContinuousFlex plugin [13] for Scipion V3
open-source software package [14], extensively used in cryo-
EM. In this article, we present a hybrid approach that combines
HEMNMA with deep learning to speed up the determination
of the conformational manifold. In a preliminary work (not
presented here), we have compared convolutional autoencoders
[15] and residual neural networks (Resnet) [16]. Here, we
present our approach using Resnet 34 model, which showed
the highest accuracy for this application over the other tested
models. The results of our hybrid approach are shown using
synthetic cryo-EM data.

II. METHODS

In this section, we present our hybrid approach combining
HEMNMA with deep learning (Fig. 1).

A. HEMNMA

HEMNMA is a method that combines cryo-EM image
analysis with molecular mechanics simulation by normal mode
analysis (NMA). NMA based on the so-called elastic network
model [17] of the structure is a simple and fast method to
calculate vibrational modes and has been successfully used
to predict biologically relevant motions [18]. NMA uses a
quadratic approximation of the potential energy function of
the molecular system around the given reference structure.
The reference structure can be represented with atoms (such
as the structures publicly available in the protein data bank
PDB at www.rcsb.org) or with pseudoatoms (e.g., 3D Gaussian
functions with which the preliminary 3D reconstruction from
cryo-EM images can be represented [19]). In the elastic network
model, atoms or pseudoatoms are considered to be connected
by elastic springs [17] and normal modes are obtained by diag-
onalizing the Hessian matrix (the matrix of second derivatives
of the potential energy function). Normal modes (vectors) and
their (squared) frequencies are eigenvectors and eigenvalues of
the Hessian matrix, respectively. Low-frequency modes describe
collective motions while high-frequency modes describe local
motions. Several studies have shown that low-frequency modes
correspond to functionally relevant biomolecular motions and
that conformational transitions globally follow one or a few
low-frequency normal modes [20]. It has been demonstrated
that low-frequency normal modes are directly linked to the
shape of the molecular system [21].

Atoms (or pseudoatoms) are displaced, to form a new
conformation, using a linear combination of normal modes.
The coefficients of the linear combination are contributions
of different normal modes to the displacement (normal-mode
amplitudes). The elements of a normal-mode vector provide
information on the direction of the displacement of each atom
with this normal mode (the displacement is in angstroms, Å,



which are standard atomic-coordinate units). The length of the
vector is determined by the number of atomic coordinates (3
times the number of atoms). The amplitudes of normal modes
have no units. NMA allows calculating normal-mode vectors
but not the amplitudes of normal modes. The normal-mode
amplitudes determine the 3D shape of the molecular system.
HEMNMA allows calculating the normal-mode amplitudes
for each single particle image (i.e., the 3D shape of the
biomolecular complex in each image), which is done simulta-
neously with the calculation of orientations and translations.
The normal-mode amplitudes (elastic parameters) and the
image orientation and translation (rigid-body parameters) are
iteratively adjusted by optimization of a measure of similarity
(alignment) between the image and the projection of the
reference structure being elastically modified using normal
modes, until the best alignment is achieved. The first six lowest-
frequency modes (modes 1-6) are related to combinations
of rigid-body motions and are not used because we deal
with rotations and translations using rigid-body alignment that
HEMNMA performs simultaneously with the elastic alignment.

B. Approach combining HEMNMA with deep learning

The proposed pipeline consists of HEMNMA image analysis
followed by deep learning using a convolutional neural network
(Fig. 1). The network has two blocks. The first block consists
of a Resnet-based model (Resnet 34) that serves to extract
features. The second block consists of a 4-layer multilayer
perceptron that serves to predict normal mode amplitudes.

HEMNMA is first used to calculate normal modes of the
given reference structure (an atomic structure or a density
volume), by normal mode analysis. Then, the normal modes,
the reference structure, and a set of single-particle images
are used within the elastic and rigid body alignment method
of HEMNMA to estimate (simultaneously) normal-mode
amplitudes, orientations and translations of the images.

The neural network is trained using the HEMNMA-estimated
normal-mode amplitudes and the single-particle images. At
the inference step, the neural network infers the normal-mode
amplitudes from a new set of single particle images.

We use images of size 256 × 256 pixels for training,
validation, and inference. We use their resized versions to
128 × 128 pixels for HEMNMA estimation, which reduces
noise and makes HEMNMA faster.

III. EXPERIMENTS

In this section, we describe our procedure for data synthesis
and the experiments performed with these data.

A. Data

We synthesized 2D single particle images of an atomic
structure of Adenylate Kinase chain A (AK) from the PDB
database (code PDB:4AKE, Fig. 2).

We calculated normal modes of the AK structure and selected
three lowest-frequency non-rigid-body modes (modes 7-9). To
synthesize one image, AK atoms were first displaced along
modes 7-9 with random displacement amplitudes and converted

Fig. 2: Atomic structure of AK from PDB database used to
synthesize images and examples of synthetic images. (a) Three
views of AK. (b) Left: ideal synthetic image of one view of
AK. Right: synthetic image shown on the left side but with
applied noise (SNR=0.1) and CTF (defocus of -0.5 µm).

into a density map, which was then projected onto an image
plane at random orientation in 3D space defined by two out-
of-plane rotations (the views covering the entire 3D sphere).
Random in-plane rotations (between 0° and 360°) and in-plane
shifts (between -5 and +5 pixels in x and y directions) were
also generated for some tests (different data sets were generated
as explained below). Then, the obtained ideal projection
image was modified by applying noise (SNR=0.1) and the
contrast transfer function (CTF) of the simulated cryo-electron
microscope with the defocus of -0.5 µm (the noise and defocus
levels corresponding to realistic conditions). This process
was repeated to synthesize the desired number of images.
In this process, the random amplitudes q7-q9 for modes 7-
9, respectively, were generated as follows:

q7(r) =− 200 · r, q8(r) = 200 · sin(π · r),
q9(r) = 200 · cos(π · r),

(1)

where r is a random variable, uniformly distributed between
0 and 1, meaning that each image was synthesized using a
different random value of r.

To investigate the limitations of our method, the following
types of images were generated without and with imperfections
(noise and CTF) using the above procedure (random normal-
mode amplitudes q7-q9 and random out-of-plane rotations were
used in each set): 1) no in-plane rotation, no in-plane shift; 2)
random in-plane rotation, no shift; 3) random in-plane shift, no
in-plane rotation; and 4) random in-plane rotation and random
in-plane shift. Each of these eight sets of synthetic images
consisted of 20,000 images (size of 256x256 pixels).

B. Results

In this section, we describe the following two types of
experiments: 1) training of our network using synthetic images
and normal-mode amplitudes with which the images were
generated (ground-truth normal-mode amplitudes); and 2)
training of our network using synthetic images and normal-
mode amplitudes estimated with HEMNMA from the same
images (HEMNMA-estimated normal-mode amplitudes).



TABLE I: Mean absolute error and standard deviation of the inferred normal-mode amplitudes q7-q9, after training with
ground-truth amplitudes. The errors are calculated with respect to the ground-truth amplitudes. The mean (mean) and the
standard deviation (std) are indicated by mean ± std. The global error is the mean absolute error over q7-q9. In all eight cases,
out-of-plane rotations are random. The last row is a typical case in cryo-EM where all rotations and shifts are random.

Cases Noise Defocus Global error q7 error q8 error q9 error
No in-plane rotation, no shift No No 2.32 1.49 ± 2.06 3.10 ± 4.49 2.35 ± 2.90
No in-plane rotation, no shift SNR 0.1 -0.5 µm 5.79 3.62 ± 4.91 7.27 ± 10.69 6.49 ± 9.09
No in-plane rotation, random shift No No 4.83 3.02 ± 4.55 6.14 ± 10.11 5.32 ± 8.61
No in-plane rotation, random shift SNR 0.1 -0.5 µm 7.95 4.90 ± 6.72 9.85 ± 14.72 9.10 ± 13.32
Random in-plane rotation, no shift No No 16.86 10.32 ± 15.38 19.53 ± 29.60 20.74 ± 33.43
Random in-plane rotation, no shift SNR 0.1 -0.5 µm 19.62 12.00 ± 17.64 22.32 ± 31.95 24.53 ± 39.03
Random in-plane rotation and shift No No 23.51 14.67 ± 21.14 24.44 ± 34.00 31.42 ± 49.10
Random in-plane rotation and shift SNR 0.1 -0.5 µm 27.60 17.14 ± 23.65 29.12 ± 39.42 36.55 ± 54.46

TABLE II: Mean absolute error and standard deviation of the inferred normal-mode amplitudes q7-q9, for images affected by noise
and CTF, with random in-plane and out-of-plane rotations and random in-plane shifts, after training with HEMNMA-estimated
amplitudes. The errors are calculated with respect to HEMNMA-estimated amplitudes and ground-truth amplitudes. The errors
of HEMNMA-estimated amplitudes with respect to ground-truth amplitudes are also provided. The mean (mean) and the
standard deviation (std) are indicated by mean ± std. The global error is the mean absolute error over q7-q9. See also Figure 3.

ERRORS GLOBAL q7 q8 q9

INFERRED vs. HEMNMA-ESTIMATED 19.03 12.35 ± 16.47 19.58 ± 26.15 25.16 ± 34.60
INFERRED vs. GROUND-TRUTH 20.22 12.61 ± 16.84 20.94 ± 27.37 27.13 ± 36.82
HEMNMA-ESTIMATED vs. GROUND-TRUTH 6.58 5.75 ± 8.42 6.23 ± 7.20 7.76 ± 7.23

(a) (b)

Fig. 3: Results of inferring normal-mode amplitudes for images affected by noise and CTF, with random in-plane and out-of-plane
rotations and random in-plane shifts, after training with HEMNMA-estimated normal-mode amplitudes. (a) Overlap between
inferred (red), ground-truth (black), and HEMNMA-estimated (blue) amplitudes (each point corresponds to an image and the
molecular conformation inside it), with 4 selected points corresponding to 4 conformations (C1-C4) on a hypothetical trajectory
through the points. (b) Three views of a sequence of 4 conformations (magenta) depicted in (a) by C1-C4 (one row per view to
show, with arrows, a different motion for each of the three normal modes). See also Table II.

From each of the eight sets of synthesized images (Section
III-A), one half of images (10,000) were used for the network
training with ground-truth normal-mode amplitudes. They were
split into 6,000 images for training, 2,000 images for validation,
and 2,000 images for inference. The amplitude inference errors
with respect to the ground-truth amplitudes are shown in Table I.
One can note that the mean absolute error over q7-q9 (“global
error”) increases as the randomness of parameters increases and
that it is slightly higher for images with noise and CTF than
for those without. It should be noted that the training was done

without data augmentation (e.g., generating multiple copies of
the same image by random in-plane rotations) and that such
strategies may be investigated in the future to improve training
and reduce the inference errors.

The case with noise, CTF, and all parameters random (the
last row in Table I) is typical in practice and was used for the
network training with HEMNMA-estimated amplitudes. From
the eight synthesized sets of images, we took the set of 20,000
images affected by noise and CTF, with random in-plane and
out-of-plane rotations and random shifts, and used HEMNMA



to estimate the normal-mode amplitudes for this set of images.
Then, we analyzed the HEMNMA-estimated amplitudes and
removed some outliers based on the Mahalanobis distance
measure. From the remaining images (18,055 images), we
used 14,000 images for training, 2,000 images for validation,
and 2,000 images for inference. The amplitude inference errors
with respect to the HEMNMA-estimated and ground-truth
amplitudes in this case (training with HEMNMA-estimated
amplitudes) are shown in Table II, together with the errors of
the HEMNMA estimation with respect to the ground-truth.

The smaller errors in the second row of Table II than in the
last row of Table I can be explained by a larger number of
images used for training in Table II than in Table I (14,000
and 6,000 images, respectively). In Table II, the mean absolute
errors of the inferred amplitudes with respect to the ground-
truth amplitudes correspond to an average atomic-coordinate
error of around 0.9 Å, as determined by the root-mean-square
deviation (RMSD) between the reference atomic coordinates
and these coordinates displaced (with normal modes) using
the mean absolute errors as the normal-mode amplitudes. In
the RMSD terms, the standard deviations of the same errors
(more precisely, mean ± std in the second row of Table II)
correspond to the minimum and maximum atomic-coordinate
errors of around 0.3 Å and 2 Å, respectively. A 3D plot of the
inferred, ground-truth, and HEMNMA-estimated amplitudes
is shown in Figure 3a. Four points were selected along a
hypothetical parabolic trajectory through the point cloud in the
resulting conformational space and the normal-mode amplitudes
corresponding to each of the four points were applied onto the
reference atomic structure to displace it with normal modes.
Figure 3b shows three views of the sequence of the four
obtained conformations, describing motions that coincide well
with the synthesized motions.

IV. CONCLUSION

We presented a hybrid method to accelerate determination
of conformational landscapes of biomolecular complexes from
cryo-EM images. It combines a convolutional neural network
with HEMNMA cryo-EM image analysis method, which on
its turn combines normal mode analysis (a simple and fast
molecular mechanics simulation method) with cryo-EM image
analysis. The amplitudes of normal modes determine the 3D
shape (conformation) of the complex and are calculated from
cryo-EM images using the proposed hybrid approach in which
HEMNMA is followed by the neural network. In the neural
network step, a residual neural network (Resnet 34) extracts
features and it is followed by a 4-layer multilayer perceptron
that predicts the amplitudes of normal modes. In the presented
experiments, using synthetic cryo-EM images with realistically
high noise and other imperfections, the atomic-coordinate
errors corresponding to the normal-mode amplitude inference
errors are below 2 Å and they are on average around 0.9 Å.
In this work, we showed how the obtained conformational
space can be interpreted in terms of the reference-structure
displacement along the trajectories identified in this space
(the reference structure is required by HEMNMA and can

be an atomic structure or a 3D cryo-EM map representation
with 3D Gaussian functions called pseudoatoms). In the future
work, we will show how the proposed method can be used
to obtain 3D reconstructions from images corresponding to
similar conformations in this space, which is already possible
with HEMNMA alone. Also, we will perform tests with larger
synthetic data sets (for both training and test) and tests with
experimental cryo-EM data of various complexes.
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