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Introduction

The Cosserat brothers, Eugène and François, published a monograph [START_REF] Cosserat | Théorie des corps déformables[END_REF] in 1909 in which they presented a new variant of Continuum Mechanics. This detailed treatise covered the idea of taking into account additionally the couple stresses, the rotational degrees of freedom (micro-rotations) and their gradients of the material particles as independent variables. The existence of the couple stresses was originally postulated by Voigt in 1887 [START_REF] Voigt | Theoretische studien ber die elastizitatsverhiltnisse der kristalle (theoretical studies on the elasticity relationships of crystals)[END_REF].

The couple stress theory using macrorotation as the true kinematical rotation for elastic bodies in which the gradient of the rotation vector is used as a curvature tensor was developed much later by Toupin [START_REF] Toupin | Elastic materials with couple-stresses[END_REF], Mindlin and Tiersten [START_REF] Mindlin | Eects of couple-stresses in linear elasticity[END_REF], Koiter [START_REF] Koiter | Couple-stresses in the theory of elasticity[END_REF]. These formulations use the four foundational continuum mechanical quantities (i.e., force, displacement, couple, rotation) and are the fundamental pillars in the development of size-dependent continuum mechanics. Heterogeneous materials exhibit intrinsic material length scales (like in cellular structures, grains, particles and bers). However, these formulations pose some challenges like the indeterminacy of the spherical part of the couple-stress tensor and the appearance of the body couple in the constitutive relation for the force-stress tensor [START_REF] Mindlin | Eects of couple-stresses in linear elasticity[END_REF][START_REF] Eringen | Theory of micropolar elasticity[END_REF]. Hadjesfandiari and Dargush [START_REF] Hadjesfandiari | Couple stress theory for solids[END_REF] resolved the inconsistencies by revealing the subtle skew-symmetric character of the couple-stress tensor and showed that it was a true vector. The constrained Cosserat theory is a particular case of the couple stress theory in which kinematic constraints have been introduced in order to eliminate some of the degrees of freedom [START_REF] Brand | A constrained theory of a cosserat point for the numerical solution of dynamic problems of non-linear elastic rods with rigid cross-sections[END_REF] in order to obtain a simpler system of equations.

The extension of the linear Cosserat theory to include body microinertia eects is attributed to Eringen [9]. He is also the one who renamed it as the micropolar theory of elasticity [START_REF] Eringen | Linear theory of micropolar elasticity[END_REF]. A complete variant of this theory can be found in Kafadar and Eringen [START_REF] Kafadar | Micropolar media-i the classical theory[END_REF]. Micropolar continuum mechanics [START_REF] Mindlin | Stress functions for a cosserat continuum[END_REF] therefore incorporates a local rotation of points (micropolar continua in the sense of Eringen) including the translation assumed in classical elasticity; and a couple stress as well as the force stress.

Six material parameters are needed in the linear micropolar elasticity of isotropic solids while only two Lamé moduli are necessary in the classical elasticity. A review and survey of the literature on the theory of Cosserat continuum can be found in [START_REF] Altenbach | On generalized Cosserat-type theories of plates and shells: a short review and bibliography[END_REF][START_REF] Hassanpour | Micropolar elasticity theory a survey of linear isotropic equations, representative notations, and experimental investigations[END_REF]. This theory has been extended further to capture more complex micropolar material behavior [1517].

The majority of studies pertaining to the micropolar elastodynamics of materials have been mainly theoretical. The most popular media geometry studied was that of an innite half-plane corresponding to the ground in geology and seismic studies. Many of the problems reported were those concerning reection and refraction of plane waves at plane interfaces in which seismic waves generated within a semi-innite half-plane micropolar solid media interact with, for example, a viscous liquid layer [START_REF] Kumar | Reection and transmission of elastic waves at viscous liquid-micropolar elastic solid interface[END_REF][START_REF] Singh | Longitudinal waves at a micropolar uid/solid interface[END_REF]. The few experimental measurements reported were mainly undertaken using mechanical (static, quasi-static) means [2023]. All six elastic constant parameters (like the apparent shear modulus) have been found from torque and twist measurements in a pure torsion experiment using a circular cylinder and the cylindrical bending of a rectangular plate [START_REF] Gauthier | A quest for micropolar elastic constants[END_REF].

In this study, a theoretical micropolar elastic model was developed and employed to validate a new experimental method to study acoustic wave transmission through airlled closed-cell polystyrene panels considered to obey Cosserat elasticity (micropolar continuum theory) law. The frequency domain ranges from the audible to the ultrasonic regimes but < 120 kHz. The foams studied were two-phase composite materials in which one phase was solid and the other, uid (air). In this case, the size scale is large, the material may no longer be assumed to be continuous [START_REF] Lakes | Strongly Cosserat elastic lattice and foam materials for enhanced toughness[END_REF][START_REF] Anderson | Size eects due to Cosserat elasticity and surface damage in closedcell polymethacrylimide foam[END_REF]. A table in reference [START_REF] Hassanpour | Micropolar elasticity theory a survey of linear isotropic equations, representative notations, and experimental investigations[END_REF] classied the closed-cell polystyrene foams in the family of Cosserat elasticity materials.

The micropolar continuum theory model considered herein was that of the generalized plane strain conditions assuming that the strain distributions do not depend on the third coordinate geometry of the acoustic wave transmission through panels experiment. The other reason motivating this study is that elastic data for closed-cell materials like the EPS and XPS foams are hard to come by in the literature and the only existing methods used by manufacturers are based on the static destructive mechanical methods declined as standard test methods [START_REF]Standard Test Method for Measuring Compressive Properties of Thermal Insulations, American Society for Testing and Materials[END_REF][START_REF]Standard Specication for Rigid Cellular Polystyrene Geofoam, American Society for Testing and Materials[END_REF].

Theoretical and experimental methods

Theoretical method for wave propagation in a Cosserat continuum

The loadings on a micropolar continuum of density ρ and rotational inertia J generate deformation of the body described by the displacement vector u and the rotation vector Φ.

The equations of motion in the micropolar elastic continuum are [START_REF] Eringen | Microcontinuum Field Theories -I. Foundations and Solids, 1st Edition, Classical and Continuum Physics[END_REF][START_REF] Partt | Reection of plane waves from the at boundary of a micropolar elastic half-space[END_REF] 

(λ + 2 µ + K) ∇(∇ • u) -(µ + K) ∇ × (∇ × u) + K∇ × Φ -ρ d 2 dt 2 u = 0, (α + β + γ) ∇(∇•Φ) -γ ∇ × ∇ × Φ + K ∇ × u -2 K Φ -ρ J d 2 dt 2 Φ = 0, (1) 
where λ, µ are the Lamé constants, α, β, K and γ are the new elastic constants usually referred to as the micropolar or Cosserat elastic constants.

In order to uncouple the equations of motion in Eqn. [START_REF] Cosserat | Théorie des corps déformables[END_REF], the Helmholtz decomposition is employed i.e., decompose the vectors u and Φ into their potential and solenoidal parts

u = ∇q + ∇ × Π, ∇ • Π = 0, Φ = ∇ξ + ∇ × Θ, ∇ • Θ = 0, (2) 
The following uncoupled wave equations for the potentials q and ξ are obtained

c 2 1 ∇ 2 q - ∂ 2 ∂t 2 q = 0, c 2 3 ∇ξ -ω 2 0 ξ - ∂ 2 ∂t 2 ξ = 0, (3) 4 
where

c 2 1 = λ+2 µ+K ρ = M +K ρ , c 2 3 = α+β+γ ρ J , ω 2 0 = 2K ρJ .
The coupled system of wave propagation equations for the determination of the vector potential for Π and Θ

c 2 2 ∇ 2 Π + Jω 2 0 2 ∇ × Θ - ∂ 2 ∂t 2 Π = 0, c 2 4 ∇ 2 Θ -ω 2 0 Θ + ω 2 0 2 ∇ × Π - ∂ 2 ∂t 2 Θ = 0. ( 4 
)
where

c 2 2 = µ+K ρ , c 2 4 = γ ρJ ,
These equations govern the propagation of waves travelling in a Cosserat continuum.

The details of deriving the dispersion relations are found in the Appendix A or in [START_REF] Eringen | Microcontinuum Field Theories: I. Foundations and Solids[END_REF].

Finally, there are four dierent waves propagating with four dierent phase velocities

v 2 1 = c 2 1 = λ + 2µ + K ρ , v 2 2 = c 3 2 + ω 0 2 k 2 , v 2 3,4 = ω 2 k 2 3,4 . (5) 
Therefore, in a micropolar elastic medium of innite extent propagates four types of modes, 1) A longitudinal displacement wave mode propagating with a phase velocity, v 1 also called Longitudinal Acoustic mode (LA-mode), 2) A longitudinal microrotation wave (L0-mode) propagates with the velocity v 2 , 3) Transverse acoustic mode (TA-mode),

propagating with phase velocity v 3 , 4) Transverse Optic mode (TO-mode) propagating with phase velocity v 4 .

It can be shown that the velocity of the longitudinal microrotation wave (v 2 ) is dispersive (depends on frequency) when ω > √ 2ω 0

v 2 2 = α + β + γ Jρ(1 - 2ω 2 0 ω 2 ) . (6) 
However, when ω = ω c = √ 2ω 0 , v 2 is innite and the wave number equals zero.

When ω < ω c , v 2 is purely imaginary. The characteristic frequency ω c acts as a cut-o frequency below which the wave number vanishes.

The TO velocity v 3 = ∞ at ω = ω c . The sketches of the phase velocities v 3 and v 4 are given in reference [START_REF] Partt | Reection of plane waves from the at boundary of a micropolar elastic half-space[END_REF]. It was shown that at

ω = ω c , v 3 = ∞. For ω < ω - c , v 3 = -∞
and at ω > ω + c , v 3 = +∞. The transverse optic mode wave velocity v 4 is nite over the whole frequency range.

The experimental analysis of the phenomenon occuring around the cut-o frequency of v 3 was therefore of signicant interest in this study.

Plane strain problem geometry and boundary equations

The direct problem of acoustic wave transmission by a micropolar elastic panel was simplied into a plane strain one. The objective consisted in determining the transmission coecient in a two dimensional setup in which a known plane wave impinged on the boundary of an innite micropolar elastic panel of nite thickness. In this conguration, the panel is bounded on both sides by a uid (air) of semi-innite extent (Fig. 1).

A simple two dimensional problem where displacement u and rotation Φ elds depend only on two space variables u y , u z and Φ x and the time t was studied (Fig. 1). In this case the eld equations can be decomposed into an independent set (plane strain) with

u = (0, u y , u z ), Φ = (Φ x , 0, 0), ∂/∂x = 0.
An incident acoustic plane wave propagating in the uid Ω 0 impinges on the panel at an incident angle θ and is reected at the z = 0 plane at the boundary Γ 

The boundary conditions

The boundary surface Γ 1 and Γ 2 are free from traction and couples, the equations for the boundary conditions for transmission/reection through an innite extent micropolar plate immersed in air. The stress tensors σ zz , σ yz and the couple stress tensor m yz are employed

σ zz (y, z) = λ ∂ 2 ∂y 2 q (y, z) + ∂ 2 ∂z 2 q (y, z) + (2 µ + K) ∂ 2 ∂z 2 q (y, z) - ∂ 2 ∂z∂y Π x (y, z) , σ zy (y, z) = (2 µ + K) ∂ 2 ∂z∂y q (y, z) + (µ + K) ∂ 2 ∂z 2 Π x (y, z) -µ ∂ 2 ∂y 2 Π x (y, z) + K ∂ ∂y Θ z (y, z) - ∂ ∂z Θ y (y, z) , m zx (y, z) = γ ∂ 2 ∂z∂y Θ z (y, z) - ∂ 2 ∂z 2 Θ y (y, z) . (7) 
The continuity of the acoustic particle velocity at the boundaries of the panel Γ 1, and Γ 2, are also sought. The velocity in the panel is given by

v z (y, z) = iω ∂ ∂z q (y, z) -iω ∂ ∂y Π x (y, z) z ≥ Γ 1, ∪ z ≤ Γ 2 ,
The 8 boundary conditions' equations are set using the following stress, torque and velocity equations

σ zz (y, 0) = -p I , z ∈ Γ 1, , σ zz (y, d 1 ) = -p T z ∈ Γ 2 , σ zy (y, 0) = 0, z ∈ Γ 1, , σ zy (y, d 1 ) = 0 z ∈ Γ 2 , m yz (y, z) = 0, z ∈ Γ 1 ∪ Γ 2 , v Γ1+ z (y, 0) = v Γ1- z (y, 0) , v Γ2+ z (y, d 1 ) = v Γ2- z (y, d 1 ) . (8) 
The acoustic pressure in the uid medium at z ≤ Γ 1 (p I ) and at z ≥ Γ 2, (p T ) are given by

p I (y, z) = P I e κ f z z + Re -κ f z z e κ f y y , z ≤ Γ 1 , p T (y, z) = T P I e (κz1+κz3+κz4)d1+κ f z (z-d1) e κ f y y , z ≥ Γ 2 , (9) 
where R and T are the reection and transmission coecients respectively, 

κ f z = iω c f cos (θ I ) (θ I is the oblique angle of incidence), κ f y = iω c f sin (θ I ), c f is
q = a I 1 exp ik 1 sin θ I 1 y + cos θ I 1 z -iω I 1 t + a R 1 exp ik 1 sin θ R 1 y -cos θ R 1 z -iω R 1 t , (10) 
Π x = A I 3x exp ik 3 sin θ I 3 y + cos θ I 3 z -iω I 3 t + A R 3x exp ik 3 sin θ R 3 y -cos θ R 3 z -iω R 3 t + A I 4x exp ik 4 sin θ I 4 y + cos θ I 4 z -iω I 4 t + A R 4x exp ik 4 sin θ R 4 y -cos θ R 4 z -iω R 4 t , (11) 
Since the transverse TA and TO waves are coupled we can write

Θ y = η 3y A I 3x exp ik 3 sin θ I 3 y + cos θ I 3 z -iω I 3 t + A R 3x exp ik 3 sin θ R 3 y -cos θ R 3 z -iω R 3 t + η 4y A I 4x exp ik 4 sin θ I 4 y + cos θ I 4 z -iω I 4 t + A R 4x exp ik 4 sin θ R 4 y -cos θ R 4 z -iω R 4 t (12) 
Θ z = η 3z A I 3x exp ik 3 sin θ I 3 y + cos θ I 3 z -iω I 3 t + A R 3x exp ik 3 sin θ R 3 y -cos θ R 3 z -iω R 3 t + η 4z A I 4x exp ik 4 sin θ I 4 y + cos θ I 4 z -iω I 4 t + A 4x exp ik 4 sin θ R 4 y -cos θ R 4 z -iω R 4 t , (13) 
where the coupling coecients η 3,4 were derived from Eqn. (A.3) using the amplitude ratios

Θy = -iω 2 0 2 (ω 2 -ω 2 0 -c 2 4 k 2 ) k z Πx , Θz = iω 2 0 2 (ω 2 -ω 2 0 -c 2 4 k 2 ) k y Πx , (14) 
and nally the amplitude ratios

η 3,4y = - iω 2 0 2 k 3,4 (v 2 3,4 - ω 2 0 k 2 3,4 -c 2 4 ) cos θ 3,4 , η 3,4z = iω 2 0 2 k 3,4 (v 2 3,4 - ω 2 0 k 2 3,4 -c 2 4 ) sin θ 3,4 , (15) 
The complex wave-numbers

κ f = iϑ f , ϑ f = k f sin(θ I ) (k f is the compressional wave
number in the uid). Simplications can be done on the potentials by writing θ I n = θ R n (n = 1 . . . 4). The complex wave numbers κ zn = ik n cos(θ n ) for the four waves propagating in the micropolar elastic panel are related to the incident wave number in the uid through Snell-Descartes law of refraction and therefore can be written

κ z1 = i k 2 1 -ϑ 2 f , κ z2 = i k 2 2 -ϑ 2 f κ z3 = i k 2 3 -ϑ 2 f , κ z4 = i k 2 4 -ϑ 2 f ( 16 
)
The hysteretic model of inherent damping of the panels were taken into account by introducing a scalar-valued loss factor χ(ω) into Young's modulus [START_REF] Carcione | Handbook of Geophysical Exploration Seismic Exploration[END_REF], such that

E d (ω) = E r (ω) + iE i (ω) = E(ω)(1 + iχ(ω)) (E r (ω) is called the storage modulus and E i (ω) the loss modulus of the panel, M (ω) = E(ω)(1-ν) (1+ν)(1-2ν) where ν is the Poisson ratio). E(ω)
is approximately constant in the chosen bandwidth (there is a basic lag between the stress and the strain and therefore the area of the hysteresis cycle does not depend on the frequency of the harmonic motion). The relationships between the dierent elastic moduli can be found in reference [START_REF] Ogam | Identication of the mechanical moduli of closed-cell porous foams using transmitted acoustic waves in air and the transfer matrix method[END_REF].

A matrix equation is deduced from the 8 boundary conditions' equations

                       sκ z1 -sk z1 • • • -Pi cos(θ I ) c f ρ f 0 . . . . . . 0 0 γ η 3z κ f κ z3 -η 3y κ 2 z3 • • • 0 0                        ×                       a 1I a 1R A 3xI A 3xR A 4xI A 4xR R T                       =                       -Pi cos(θ I ) c f ρ f 0 -P i 0 0 0 0 0                      
, where s = iω.

The matrix equation is written as a linear system in the form Ax = b (A is an 8 × 8 matrix) and the equation solved to obtain T or R.

Materials, experimental method and setup

Expanded polystyrene (EPS) and Extruded polystyrene (XPS) are air-lled (95-98%) closed-cell rigid foams [START_REF] Gibson | Cellular solids : Structure and properties, 2nd Edition[END_REF] panels of dierent thicknesses were employed. These are two types of foams of the same material (polystyrene) but are manufactured dierently. EPS is made from beads that are molded or cut into various sizes and shapes while XPS is made from extruded sheets [START_REF] Gibson | Cellular solids : Structure and properties, 2nd Edition[END_REF].

The experimental setup is shown in Fig. 2. A transient pulse wave was generated using a loudspeaker driven by a waveform function generator (Agilent 33250B, Loveland Colorado, USA) through a power amplier Bruel and Kjaer (B&K2706, Naerum Denmark). The excitation signal generated was a positive rectangular pulse. The Fourier transform of the excitation pulse g(t) with amplitude A and width P wdt in seconds is

G(f ) = A P wdt sinc(πf P wdt ). (17) 
As P wdt becomes very large, the magnitude spectrum approaches a Dirac delta function located at the origin. As the height of the pulse becomes higher and its width smaller, it approaches a Dirac delta function and the magnitude spectrum attens out and becomes a constant. This latter case results in a signal with large frequency band-width being generated. Shorter pulse widths also avoid the risk of damaging the loud-speaker when the amplitude is high. When the panel is thin, the rst mode has a high frequency value, therefore, P wdt is smaller, and relatively wider for a thick panel. The pulse width was chosen 5 µs < P wdt < 12 µs. Even though the generated pulse is rectangular form, the captured pulse of the incident wave will look sinusoidal because the generator signal output is convoluted with the response of the loud-speaker.

The chosen loudspeaker was a Visaton (GmbH, Haan, Germany) magnetostatic ribbon tweeter reference MHT 12 -8 Ohm with an opening, 60 mm wide and × 84 mm high. It was selected among several others because it had a low distortion factor, good power-handling capabilities (100 Watts), highly linear impedance and amplitude frequency response and a broad frequency response range (1 kHz -50kHz). This is the rst time such a tweeter speaker is being employed in this frequency range. This wide range is an advantage over the non-contact air-coupled ultrasonic transducers that are band limited around their central working frequency e.g the Ultran NCG50-S50 (State College, PA USA) is a 50kHz center frequency transducer whose band-with is ≈ 20 kHz.

The transmitted acoustic wave was captured using a small (1/8 inch) pressure-eld condenser microphone (Type B&K4138 , Naerum Denmark) connected to a frequency analyzer (B&K2120, Naerum Denmark). The very low noise and high amplication analyzer was used in the measuring microphone amplier mode (2 Hz -200kHz). The signals from the microphone amplier were then digitized using a Tektronix oscilloscope model TDS3014B (Beaverton, OR USA). The transmission coecient was obtained by calculating the transfer function estimate between the captured incident acoustic pressure(obtained without the panel in place). The transmitted acoustic pressure was acquired when the panel was placed perpendicularly between the acoustic source and the sensor (microphone).

The transmission coecient was computed as a transfer function of a linear timeinvariant (LTI) system giving the ratio between the incident pressure and the transmitted acoustic pressure. The transmission coecient T (f ) was obtained from the quotient of the cross spectral power density S it (between the incident, p i (t) and the transmitted, p t (t)) acoustic pressure) and the auto-spectral power density S ii (p i (t)),

T (f ) = Sit (f ) Sii (f ) . ( 18 
)
where the tilde (∼) indicates that the function is an estimate only. The quotient T (f )

was calculated in Matlab employing the function tfestimate [START_REF] Mathworks | Signal Processing Toolbox for Use with MATLAB: User's Guide, version 7.2 (r2016a) Edition, Computation, visualization, programming[END_REF] using the acquired signals. In order to avoid spectral leakage and attain accurate spectral measurements, the temporal signals were rst windowed [START_REF] Nuttall | Some windows with very good sidelobe behavior[END_REF]. Using a 50 kHz ultrasonic transducer as acoustic source to extend the measurement bandwidth

Frequency Analyzer

The measurement frequency bandwidth beyond 40 kHz was extended by replacing the loudspeaker by an air-coupled ultrasonic probe as an acoustic excitation source [START_REF] Ogam | Non-ambiguous recovery of Biot poroelastic parameters of cellular panels using ultrasonic waves[END_REF].

The exciter probe (Ultran NCG50-S50, State College, PA USA) had a center frequency at 50 kHz and was connected to a Panametrics 5058-PR (Waltham USA) pulser. The replacement of the acoustic exciter just modied the experimental setup slightly as the acoustic receiver remained the same as in the loudspeaker source/microphone conguration. If the ultrasonic detector had been used as receiver in place of the microphone, it would have engendered undesirable reections from its non-negligible larger surface area rendering the modeling more complex. It was actually found to reect the transmitted waves backwards towards the panels due to its large surface area. The NCG50-S50 has a large (50 mm × 50 mm) active area. This is the reason why a tiny 1/8 inch in diameter B&K 4138 microphone was preferred as receiver/detector.

Results

XPS Panels

The temporal signals representing the incident pressure (without the 4cm thick XPS panel) and transmitted pressure (with the panel placed between the speaker and the microphone) and their frequency spectrum are depicted in Figs.

(3)a and b, respectively.

A rectangular window providing a better spectral accuracy was employed during the signal processing.

From the zoomed view of the temporal signals ( 

EPS12 Panel

The results for the 2 cm thick EPS12 panels are shown in Extended bandwidth using a 50 kHz ultrasonic transducer as acoustic exciter source

The frequency band covered by the ribbon twitter loudspeaker was from 2 -≈35 kHz (see Figs. 3c, 4c, 5c andd, 6c). The peaks of the modes were not well marked beyond that bandwidth due to the low signal to noise ratio (SNR). This was due to the limited bandwidth of the loudspeaker. The SNR were lower for the thicker panels. In order to cover the higher frequencies following i.e, from ≈ 30-90 kHz, an air coupled ultrasonic transducer was employed in place of the loudspeaker. The precise optimized values will be given in a future study involving the resolution of a complete inverse problem for wave propagation in Cosserat elastic continuum. A Manufacturer of EPS12 foams under the name of Geofoam (ACH Foam Technologies (Denver, CO USA)), Geofoams (AFM Corporation , Lakeville, MN USA) indicates that the Elastic modulus measured using the ASTM D6817 standard [START_REF]Standard Test Method for Measuring Compressive Properties of Thermal Insulations, American Society for Testing and Materials[END_REF][START_REF]Standard Specication for Rigid Cellular Polystyrene Geofoam, American Society for Testing and Materials[END_REF] at a compression of 1% is 1500 (kPa). Reference [START_REF] Beju | Expanded polystyrene (eps) geofoam: Preliminary characteristic evaluation[END_REF] also reports that the initial tangent modulus (determined from the linear portion of the stress-strain curve [START_REF] Beju | Expanded polystyrene (eps) geofoam: Preliminary characteristic evaluation[END_REF][START_REF]Standard Test Method for Compressive Properties Of Rigid Cellular Plastics, American Society for Testing and Materials[END_REF] ) for EPS12 is 1600 kPa.

These compare well with the value obtained from the experiment. The advantage of the acoustic method is that it is non destructive and is lower compression rate as compared to the Compression test methods where the materials are cut in cylindrical, rectangular and cube form.

Phase wave velocities as a means of verication of some of the material parameters

The phase wave velocity of the P-wave modes (numbered n) propagating in the thickness/layer of the panels are calculated from the following relationship Knowledge of the cut-to frequency f c and the phase velocity are important for determining the bounds of J. The expression for the phase velocity is rewritten as

v n p ≈ 2d 1 f n p n ,
(v 1 p ) 2 = (M + 2π 2 ρ J f 2 c
). This shows that the velocity of the longitudinal modes also depend on the micropolar parameter J (the micro-inertia) among others. The measured and recovered phase velocities are in good agreement (dierence < 4 percent) and are summarized in Table [START_REF] Voigt | Theoretische studien ber die elastizitatsverhiltnisse der kristalle (theoretical studies on the elasticity relationships of crystals)[END_REF].

The It is worth noting that the characteristic length [START_REF] Yang | Experimental study of micropolar and couple stress elasticity in compact bone in bending[END_REF][START_REF] Huang | Bending analysis of micropolar elastic beam using a 3-D nite element method[END_REF] can be obtained from the micropolar twist (γ) and couple (K) modulus. This length is equal to the spherical polystyrene bead diameter size that forms the EPS12 foam (their diameters are usually in the range 0.3mm -4mm). It is an intrinsic dimension dening the heterogeneous structure of the material. The characteristic length in bending in micropolar theory was given by Yang et al [START_REF] Yang | Experimental study of micropolar and couple stress elasticity in compact bone in bending[END_REF], as l b2 = [γ/(2(2µ + K))] 1/2 in mm. In reference [START_REF] Rueger | Cosserat elasticity of negative poisson's ratio foam: experiment[END_REF], K in l b2 was neglected. The beads from the 4cm thick Eps12 foam had several diameters ranging from ≈ 0.3 mm to 4mm. The calculations with the recovered values herein gave l b2 ≈ 0.7 mm.

Comparison between the theoretical micropolar elastic and classical elastic model

The micropolar model reproduces most of the small but dierent peaks (frequency and amplitude) at the beginning of the transmission coecient (around the cut-o frequency) and in the higher modes (Fig. 7). The transmission coecients of the theoretical micropolar elastic (modeling of an XPS 4cm thick panel) and that of the classical elastic continuum model and experiment were compared. The classical model was implemented using the Transfer matrix method (TMM) in which the longitudinal and shear modes were taken into account [START_REF] Ogam | Identication of the mechanical moduli of closed-cell porous foams using transmitted acoustic waves in air and the transfer matrix method[END_REF]. Both formulations capture the resonance peaks in the experimental TC curve (Fig. 9a). The absence of J in the classical elastic model was simulated to examine the eect of its absence on the TC of the micropolar elastic model.

It was given a very small value, J = 1 × 10 -50 Nm -1 (J cannot be zero, it is denominator in the expressions for ω 0 , c 3 and c 4 ). The connection between the two theories is more involved than merely making J → 0 [START_REF] Hassanpour | Micropolar elasticity theory a survey of linear isotropic equations, representative notations, and experimental investigations[END_REF]. The resulting TC had a peak around the cut-o frequency missing (Fig. 9b). The experimental and theoretical micropolar elastic model with a very small rotational inertia value, J = 1.0 × 10 -50 N/m.

Conclusion

An experimental test rig was setup for the obtention of the transmission coecient in air to recover the micropolar elastic properties of XPS and EPS panels in the audible and ultrasonic frequency ranges. Not only did the transmission coecients agree with the theoretical ones but the elastic parameters also agreed well with those in the literature for EPS12 of the same density but obtained using a dierent measurement technique.

It was conrmed for the materials tested (two families of closed-cell polystyrene foams, XPS and EPS) that the Cosserat continuum model, which admits additional degrees of freedom associated with rotation of the microstructure, described best their behavior.

It is a better alternative to the classical continuum model. The absence of transmission at the cut-o frequency and a better correspondence of the transmitted modes with the experiment, were found to be the main features that dierentiates the micropolar elastic material behavior from the classical elastic one. These features were more marked in the transmission coecient curves for the thicker EPS and XPS foams.

The Cosserat couple modulus, K, the micro-inertia J and the twist modulus γ were found to inuence the transmission coecient of XPS and EPS thick plates in air. This

Figure 1 :

 1 Figure 1: Geometry of the acoustic wave transmission problem. The panel is supposed to extend to innity in the positive and negative y -directions.

7

 7 

  the acoustic wave velocity in the uid. The wave velocities are computed using the expressions of the uid pressure above and the linear Euler equation, v z (y, z) = -1 iω ρ f ∂ ∂ z p(y, z). The complex wave numbers κ zn = ik n cos(θ n ) (n= 1 . . . 4) for the waves propagating in the micropolar elastic panel. The incident and reected waves are indicated by superscripts I and R propagate in the slab. The potentials for the micropolar elastic medium are given by

Figure 2 :

 2 Figure 2: The experimental setup for the acoustic wave transmission by a panel.

Fig. ( 3 Figure 3 :Figure 4 :

 334 Figure 3: For the 4.0 cm thick XPS panel, (a) The temporal signals representing the incident and transmitted pressure. The transmitted wave is attenuated, albeit faster than the incident wave. (b) The frequency spectrum. Comparisons between the theoretical micropolar elastic and classical elastic models with experimental data (c) transmission coecients. The computed cut-o frequency is at 5319 Hz.

Fig. ( 5 Figure 5 :Figure 6 :

 556 Figure 5: For the 2.0 cm thick EPS12 panel, (a) The temporal signals representing the incident and transmitted pressure (b) Their frequency spectrum. (c) Comparisons between the theoretical and experimental transmission coecients. (d) The transmission coecient for the 3.0 cm thick EPS12 panel

Figure 7 :

 7 Figure 7: Using an Ultran air-coupled PZT transducer as acoustic source to probe a 2.0 cm XPS panel, (a) The incident and transmitted acoustic waves in the time domain, (b) Their spectrum. (c) Comparison between the theoretical and experimental transmission coecients. (d) TC for the 2 cm thick EPS12 panel.

Figure 8 :

 8 Figure 8: Sensitivity of the transmission coecient to the variations of (a) The Cosserat couple modulus K (K = 42 kPa) and the rotational inertia J = 4.7 × 10 -5 N/m and (b) The twist coecient γ = 5.6 × 10 5 N for an EPS12 4.0 cm thick panel. For the XPS 4.0 cm thick panel (c) Variation of K (K = 51 kPa). (d) Variation of Poisson ratio ν.

Figure 9 :

 9 Figure 9: Comparison between the transmission coecients for an XPS, 4.0 cm thick panel. (a) modeled by the micropolar elastic and the classical elastic formulations using the same E and ν. (b) The experimental and theoretical micropolar elastic model with a very small rotational inertia value, J = 1.0 × 10 -50 N/m.

Table 1 :

 1 Adjusted parameters employed in the theoretical model to t the experimental curves. The microinertia is J. Comparison between the Young's modulus recovered with those obtained using other methods A summary of the micropolar parameters for the problem are tabulated in Table[START_REF] Cosserat | Théorie des corps déformables[END_REF].

	Panel d 1 (cm) ρ (kg/m 3 ) E (MPa) Loss χ	ν	K (MPa) γ (MN) J (N/m)
	XPS	2	32	2.7	0.02	0.49	0.0510	1.68	2.35e-5
	XPS	4	32	2.8	0.02	0.49	0.0510	0.57	2.35e-5
	EPS12	2	12	1.4	0.06	0.45	0.070	0.86	3.13e-5
	EPS12	3	12	1.5	0.06	0.43	0.070	1.2	3.13e-5
	EPS12	4	12	1.2	0.075 0.45	0.037	0.87	3.9e-5
	4. Discussion							
	4.1.								

Table 2 :

 2 Velocities calculated from the frequency of the rst longitudinal mode (f L 1 ) and the recovered micropolar parameter K and the P-wave modulus (longitudinal modulus) M . The cut-o frequency is

	fc.					
	Panel density (kg/m 3 ) d 1 (cm) velocity ( M +K ρ ) (m/s) Velocity (2f L1 d 1 ) (m/s) f c (Hz)
	XPS	32	4	1229	1240	6000
	XPS	32	2	1066	1064	6250
	EPS	12	2	645	660	2171
	EPS	12	3	602	600	3071
	EPS	12	4	620	640	2242
	where d th is the panel thickness, f n p is the frequency of the nth mode determined from	
	the transmission coecient. Velocity can also be computed once the theoretical TC	
	data is tted to the experimental TC and found satisfactory. The following relationships	
	engaging the mechanical moduli and density v 1 p = M +K ρ	from the theoretical model is	
	employed.					

is an important nding because it implies that micropolar parameters: the micro-inertia J and K can be recovered using the measurement method developed herein. Recall that, only M and ν can be recovered using the classical elastic continuum theory [START_REF] Ogam | Identication of the mechanical moduli of closed-cell porous foams using transmitted acoustic waves in air and the transfer matrix method[END_REF].

Finally, this new method appeals to the characterization of closed-cell porous panels and will provide elasticity data especially for the XPS foams that are hard to come by in the available literature.
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Appendix A. The dispersion relationships

Plane wave type of propagation is assumed for which the potentials take the following forms

where k is the wave-number vector (k = k x x + k y ŷ + k z ẑ), r the position vector (r = xx + y ŷ + z ẑ), q, ξ are complex amplitude constants, while Π, Θ are complex vectors.

By using the vector identities in Appendix B and also writing

Eqn. (4) can be written

The dispersion relation is found through elimination of Π and Θ from these equations

which can also be written as a quartic equation of the type with solutions

The two wave numbers, k