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ABSTRACT

Hundreds of fast scoring functions have been developed over the last 20 years to predict binding free
energies from the three-dimensional structures of protein-ligand complexes. Despite numerous
statistical promises, we believe that none of them has been properly validated for daily prospective
high-throughput virtual screening studies, mostly because in silico screening challenges usually employ
artificially-built and biased datasets. We herewith carry out a fully unbiased evaluation of four scoring
functions (Pafnucy, AvinaRF20, IFP, GRIM) on an in-house developed data collection of experimental
high-confidence screening data (LIT-PCBA) covering about 3 million data points on 15 diverse
pharmaceutical targets. All four scoring functions were applied to rescore the docking poses of LIT-
PCBA compounds in conditions mimicking exactly standard drug discovery scenarios, and were
compared in terms of propensity to enrich true binders in the top 1%-ranked hit lists. Interestingly,
rescoring based on simple interaction fingerprints or interaction graphs outperforms state-of-the-art
machine learning and deep learning scoring functions in most cases. The current study notably
highlights the strong tendency of deep learning methods to predict affinity values within a very narrow
range centered on the mean value of samples used for training. Moreover, it suggests that the

knowledge of preexisting binding modes is the key to detecting the most potent binders.



INTRODUCTION

Predicting binding free energies from the three-dimensional (3D) structure of a bimolecular complex
remains a grand challenge of computational chemistry.! In the field of drug discovery, this problem is
of paramount importance since billions of "make-on-demand" compounds can nowadays be screened
either experimentally or virtually at unprecedented speeds.?? To limit efforts in human and financial
resources, virtual screening* has gained considerable importance in the last decade with three major
objectives: (i) prioritize binding modes to a target of interest, (ii) rank compounds by decreasing
binding free energy (affinity) values, and (iii) guide hit-to-lead optimization. Molecular docking®
remains the computational method of choice to answer these three questions, notably when it comes
to addressing a large chemical space. It consists in simultaneously solving two issues: finding the best
orientation of a ligand inside a protein cavity, and predicting its binding free energy or free energy
difference in comparison to a reference ligand. Hundreds of potential algorithmic solutions have been
proposed and surveyed in numerous reviews.®® The drug discovery community now agrees on the
statement that most docking algorithms are generally able, if a biologically relevant target's 3D
structure is available and if the docked ligand obeys drug-likeness rules, to propose a docking pose
close to the experimental binding mode.?® The major issue is still to prioritize near-native binding
modes from irrelevant poses, and consequently to rank potential ligands from a large chemical space.
On the one hand, free energy perturbation methods have reached the speed and an accuracy level
necessary to properly rank a limited set of congeneric ligands for a wide array of targets.!! On the other
hand, fast empirical scoring functions (SFs) can score billions of docking poses but with very limited
accuracy.!? Post-processing docking poses by alternative scoring schemes has therefore been the
subject of intense research during the last decade.’®!* Notably, machine learning (ML)*® has gained
considerable popularity, since the corresponding algorithms (e.g. support vector machines, random
forests, decision trees, deep neural networks) can theoretically delineate subtle non-linear
relationships in a vast hyperparameter space describing experimentally solved protein-ligand
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complexes. Unfortunately, the true benefit of ML-based SFs remains a matter of debate, notably



because of a lack of unbiased and shared data/protocols to rigorously compare such methods.
Noticeable attempts to organize international docking/scoring contests (CSAR, CASF, D3R, CELPP) 192
10,24 have flourished and helped the community to better define the remaining challenges involving:®®
(i) the ability to discriminate near-native docking poses from irrelevant ones (docking power), (ii) the
propensity to predict experimental affinities (scoring power), (iii) the capability of ranking known
ligands by decreasing binding free energy values (ranking power); and (iv) the ability to detect true
binders among a large set of compounds (screening power). The impact of these challenges on the
development of better predictive SFs remains, however, disappointingly limited for multiple reasons.
First, many algorithm developers are not aware of these initiatives or do not participate in these
contests, leaving their methods insufficiently validated. Consequently, virtual screening (VS)
practitioners observe a huge gap between the claimed accuracy level in retrospective studies and real-
life performances in prospective VS campaigns.?® Last, recent studies have brought to light
unintentional biases in datasets (e.g. DUD, DUD-E) classically used in VS challenges,?’-?® leading to an

overestimation of virtual screening accuracy in all existing studies.

To foster unbiased VS comparisons, we recently developed a novel dataset (LIT-PCBA),%® specifically
designed to evaluate the accuracy of VS methods, consisting of 15 target sets, 8020 true actives and
2,675,399 true inactive compounds. LIT-PCBA differs from all existing benchmark sets in the following
key properties: (i) the dataset mimics real-life screening decks as it has been designed to discriminate
moderately potent actives (primary hits) from inactive compounds; (ii) the potency of all compounds
(actives, inactives) for a particular target has been determined experimentally under homogeneous
conditions; (iii) the active-to-inactive ratio (0.1-0.5%) reflects hit rates typically observed in high-
throughput screening (HTS) campaigns against targets of pharmaceutical interest; (iv) the actives have
been filtered to remove false positives, frequent hitters, assay artifacts and truly undruggable

molecules; (v) dose-response curves are available for all actives.



Preliminary VS experiments logically provided evidence that LIT-PCBA is very challenging whatever the
computational screening method,?® thereby offering an opportunity to estimate the true virtual
screening accuracy of state-of-the-art SFs. In the current study, we specifically evaluated four SFs in

terms of VS accuracy on the same set of LIT-PCBA docking poses (Figure 1).
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Figure 1. Overall flowchart of the current study. LIT-PCBA compounds were docked into their
respective 15 targets and rescored according to four scoring fucntions: two machine learning (AvinaRF2o,
Pafnucy) and two knowledge-based topological functions (IFP, GRIM). For each target, compounds
were ranked by decreasing scores and the virtual screening accuracy of each rescoring method was
analysed statistically (enrichment in true actives at 1% false positive rate, EF1%)



The first two SFs (Pafnucy, AvinaRF20) are representative of recently-developed ML-based methods while
the two others (IFP, GRIM) illustrate simpler knowledge-based topological SFs. In other words, the first
two methods predict absolute binding free energies whereas the last two approaches rank compounds

irrespective of energetic criteria. Each rescoring method is briefly described below.

Pafnucy?® was selected as a representative of recent deep neural network (DNN)-based SFs. By mimicry
to image recognition, the protein-ligand complex is voxelized in a 1 A-resolution 20 A-wide 3D cubic
grid, with each voxel storing 19 features of the complex (e.g. physicochemical and pharmacophoric
properties, interaction energies). In Pafnucy's architecture, the protein-ligand complex is described by
a 4D tensor processed by three convolutional layers and three dense layers to predict the binding
affinity. The DNN achieved a scoring performance on par with the best ML or DNN-based SFs on the

standard PDBbind 2016 benchmark dataset.®

The AvinaRF20scoring function3! was chosen as a prototypical ML-based SF achieving top performances,
among a wide list of competing functions, in several challenges (scoring, docking, ranking, virtual
screening) using three benchmark sets (CASF-2007, CASF-2013, CASF-2016).3 %5 In brief, a random
forest (RF) algorithm is applied to predict the differences between experimental affinities and those
calculated by Autodock Vina’s scoring function3? from a set of 20 molecular features. The RF correction
term is then added to the native AutoDock Vina score to predict the absolute binding free energy of a

ligand for a given protein.

The IFP* method relies on the similarity of protein-ligand interactions between a docking pose and
any given template (e.g., the X-ray structure of the cognate protein with a known active ligand). In the
first step, an interaction fingerprint for each docking pose is generated as a fixed-length bit string
registering the presence or the absence of seven non-covalent interactions with user-defined cavity-
lining amino acids (including co-factors, ions and water molecules if desired). Docking poses and
consequently ligands are then sorted by decreasing interaction fingerprint similarity levels to that

given by the template, expressed by a simple Tanimoto coefficient.?® In the hands of independent



research groups, IFP rescoring has demonstrated its superiority to conventional energy-based SFs in
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several retrospective virtual screening studies and has repeatedly enabled the discovery of

experimentally verified hits for a wide array of protein targets.3”

Last, GRIM* focuses on coordinate-frame invariant protein-ligand interaction patterns. The
interaction pattern is formalized as a graph whose nodes are placed on so-called interaction
pseudoatoms (IPAs) featuring for each non-covalent interaction a ligand-interacting atom, a protein-
interacting atom, and the barycenter of these two atoms. A graph is first computed for a reference
template, which is usually an X-ray protein-ligand structure, and another graph is then created for a
given docking pose. A clique detection algorithm is used to find the maximal common subgraph
between the above two graphs. The similarity of the two interaction patterns is expressed by a
composite score (GRIMscore) featuring the number of matched IPAs, the quality and the root-mean-
square deviation of the matched clique.*! In comparison to interaction fingerprints, interaction pattern
graphs are not restricted to a fixed list of binding site atoms such that pairwise comparisons are also
possible for binding cavities of different sizes. GRIM rescoring has been proven effective in predicting,
with a high accuracy level, the binding modes of various ligands before the release of experimental

crystallographic structures in international docking/scoring contests.*?3



COMPUTATIONAL METHODS

LIT-PCBA dataset. The full dataset?® was downloaded from http://drugdesign.unistra.fr/LIT-PCBA and
used with no modifications. For each of the 15 targets, at least four files are provided: the protein PDB
X-ray structure (MOL2 file format), the bound PDB ligand (MOL2 file format), a list of true actives
(SMILES string), and a list of true inactives (SMILES string). In case several PDB templates are available,
several protein and ligand input files are given. Ligand and protein input coordinates (protonation,
tautomerism, generation of ligand 3D structures; inclusion of water molecules, co-factors and ions in

protein structures) were prepared as previously described.?®

Docking poses. Starting from the mol2 structure of the template protein and that of its co-crystallized
ligand, a protomol representing the ligand-binding site was generated from protein-bound ligand
atomic coordinates using default settings of Surflex-Dock v.3066.% All molecules in the relevant target
set were docked into the protomol using the "—-pgeom" parameter (geometric docking search) of the
docking engine. The best 20 poses ranked by decreasing pKy values were retained for further rescoring.
Surflex-Dock** uses an empirically derived scoring function based on the binding affinities of protein-
ligand complexes coupled with their crystallographically determined structures. The function's primary
terms involve hydrophobic and polar complementarity, with additional terms for entropy and solvation

effects.

Deep learning rescoring (Pafnucy). The package was downloaded from
https://gitlab.com/cheminfIBB/pafnucy. In the first step, 3D grids were prepared for each protein-
ligand complex in MOL2 file format, to create an HDF file with atoms' coordinates and features. In the
second step, the recommended model (batch5-2017-06-05T07:58:47-best) was used to rescore each

protein-ligand complex, expressing results in pKq unit.



Machine learning rescoring (AvinaRF20). DeltaVina®! was downloaded from
https://github.com/chengwang88/deltavina and directly used to rescore the interactions between the
above-described protein coordinates and LIT-PCBA docked poses in MOL2 file format, outputting

results in pKq unit.

Rescoring by Protein-Ligand Interaction Fingerprint (IFP) Similarity. The IFP module3 of the IChem
v5.2.9 package* was employed to compute the similarity between the IFP recorded for each docked
LIT-PCBA ligand and that of a protein-ligand PDB template. The mol2 structure of the template binding
site and the multi-mol2 files containing the merged docking poses issued by Surflex-Dock were used
as input for IChem processing. The binding site refers here to amino acid residues (plus water
molecules, ions and co-factors) of the protein having at least one heavy atom within 5.0 A from any
heavy atom of the co-crystallized template ligand. The IFP similarity between the template and each

docking pose was expressed by a Tanimoto coefficient.

Rescoring by Interaction Graph-Matching (GRIM). The GRIM module*! of the IChem v.5.2.9 package®
was employed to post-process Surflex-Dock docking poses, using the same input files as those

described for IFP rescoring. Output was expressed by decreasing GRIMscores.*

Statistics. The enrichment in true active molecules at a constant 1% false positive rate over random
picking (EF1%) was calculated for each separate hit list. The same procedure was carried out by fusing
all lists for a given target (in case of multiple PDB templates) and keeping the highest score value for
each compound (“max-pooling” approach) and each specific scoring function. In other words, all

ligands from a target set (e.g. ADRB2) are first ranked by decreasing scores, thereby generating 4 hit



lists (Pafnucy, AvinaRF20, IFP, GRIM) for each PDB template. For each scoring function (e.g. Pafnucy), the
lists originating from all templates (8 in the ADRB2 case) are then merged, retaining the highest score

for each ligand.

RESULTS AND DISCUSSION

We recently proposed a novel dataset (LIT-PCBA)?® for benchmarking virtual screening methods in a
truly unbiased manner. Since the dataset is applicable to both ligand-based and structure-based
methods, it can be used to compare state-of-the-art SFs of diverse physicochemical backgrounds. In
the current study, all LIT-PCBA ligands (true actives as well as true inactives) were docked to their
cognate targets with a single tool, thereby offering the possibility to compare, head to head, four
representative scoring schemes in a virtual screening exercise very close to daily encountered drug

discovery scenarios.

Simple rescoring methods constantly outperform machine leaning and deep learning methods. EF1%
values were first computed from pooled lists in which the highest score was assigned to a given ligand
bound to its target, whatever the target PDB structure (some targets have up to 15 input X-ray
structures) and the number of docking poses (Table 1, Figure 2). The obtained results confirm that the
dataset is really challenging since EF1% enrichment factors (ranging on average from 2 to 7, Table 1,
see all values in Tables S1-S5) are much lower than those obtained in previous benchmarking studies
on easier but unfortunately biased datasets.***” All four investigated SFs clearly outperformed the

native Surflex-Dock function in enriching true binders among the top scorers.

To verify whether the Surflex-Dock docking engine was responsible for hidden biases or not (e.g. if
better performances of Surflex-Dock in reproducing crystallographic structures translate into higher
EF1% values), we redocked all 129 LIT-PCBA template ligands to their cognate targets (Table S6). For

108 out of the 129 ligands, Surflex-Dock is able to generate at least a docking pose that does not
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deviate more than 2.0 A from the corresponding X-ray pose (rmsd < 2.0 A). Considering the top-ranked
pose only, this ratio is, as expected, lower (78/129). The top-ranked pose is rarely the one with the
lowest rmsd value to the X-ray pose. The average rmsd of the top poses (2.87 A) is indeed much higher
than that of the absolute lowest rmsd poses (1.41 A). The benefit of rescoring all docking poses over
just picking the top-ranked solution is independent of the target set, and observed for all targets. To
get the maximal benefit of rescoring, all poses should therefore be considered. Rescoring the sole top-
ranked docking pose by alternative methods, as proposed by many recent deep learning models,*->°
should be avoided in the light of this study. Altogether, we could not see any relationship between the
self-docking performance of our docking engine and the observed EF1% values for the 15 LIT-PCBA

targets. We therefore conclude that the docking performance of Surflex-Dock has not brought obvious

biases in our data collection.

Four target sets (IDH1, MTORC1, TP53, VDR) are really challenging since none of the rescoring methods
was able to yield EF1% values above 5 (Table 1; Figure S1). The main reason for this failure is the weak
potency of some actives (notably for IDH1 and VDR ligands). In addition, we cannot rule out the
possibility that the Surflex-Dock pose sampler has been unable to propose at least one native-like pose
for these ligands. The inability to recover true LIT-PCBA actives might also come from possible binding
of these molecules to different pockets other than those investigated in the present study (e.g.
allosteric ones). In most cases, such additional pockets could be detected at the surface of the
corresponding target structures. Last, the bad performance observed for the TP53 set may also be
explained by the lack of a full-length PDB structure. For the remaining 11 targets, a clear trend is
observed, with simple interaction-based SFs (IFP, GRIM) outperforming machine learning/deep
learning functions (Pafnucy, AvinaRF20). The particular advantage of an SF can be target-dependent but
target-averaged EF1% values unambiguously demonstrate equal performances of IFP and GRIM,
superior to that of Pafnucy and AvinaRF20 (Table 1). Paired samples t-tests at a 0.05 significance level
show that Pafnucy and AvinaRF20 score distributions are statistically not different (p-value = 0.82), as

well as IFP and GRIM score distributions (p-value = 0.92). However, the GRIM score distribution was
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found significantly different from those of both ML SFs (p-values of 0.012 and 0.0085 against Pafnucy
and AvinaRF20, respectively). Considering EF1% values of increasing thresholds (2, 5, 10) corresponding
to virtual screening results of increasing accuracy levels (EF1%>2: moderate, EF1%>5: good, EF1%>10:
excellent), GRIM came up as the most successful method when applied to the LIT-PCBA dataset, closely
followed by IFP and then by Pafnucy and AvinaRF20, which, although different in their conception and
physical background, exhibit almost identical behaviors (Figure 2, Table 1). The apparent superiority
of interaction-based SFs is not explained by the number of existing protein-ligand PDB templates from
which similarity values are inferred, since target sets with a single PDB template used for docking (e.g.
FEN1, OPRK1) are also better handled. Likewise, we could not depict any relationship between VS
performances and the number of true actives for all investigated targets. Last, previous comparisons
of true actives to PDB ligands used as templates did not detect high 2D fingerprint or 3D shape-based
pharmacophore similarities,?® therefore excluding the possibility that rescoring based on interaction
fingerprints or interaction graphs could be dominated by simple ligand neighborhoods. Although
simplistic in their formulation, selecting hits based on protein-ligand interaction similarity to existing
templates can therefore be considered a very robust approach, if at least one holo-protein structure
and a binding pocket is known. Two state-of-the-art ML SFs still provide a significant enrichment in
true actives in comparison to both random picking and docking scores, but disappointingly exhibit a
lower performance than IFP/GRIM, although being trained on a much larger body of experimental
protein-ligand complexes.3 2 |[FP/GRIM can be considered as target-focused SFs where preliminary
data on co-crystallized ligands with the target of interest are used as a guide to rank poses for new
ligands. This is the main difference to general-purpose ML SFs that have been parameterized from a
limited target space (usually the PDBbind dataset)*! and therefore lack the close (ligand) neighborhood
relationships that we believe to be important to discriminate realistic poses from irrelevant ones. It is,
however, very disappointing to see that the enhanced ranking accuracy (ability to predict experimental
affinities) reported for these new scoring functions®" 2> does not translate into an enhanced virtual

screening accuracy level, suggesting either some overtraining or more likely a narrow applicability

12



domain that is limited to the PDBbind target space. In the face of a very challenging task, a much
broader and more diverse target space is required to properly train ML SFs in order to reach the

simplicity and interpretability of interaction-based SFs.
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Figure 2. Performance of four rescoring methods (Pafnucy, AvinaRF20, IFP, GRIM) on 15 LIT-PCBA target
sets, in comparison to those of Surflex-Dock’s native scoring function (SD). The graph represents the
distribution of EF1% values (enrichment in true actives at a constant 1% false positive rate over random
picking) obtained after virtual screening. The boxes delimit the 1% and the 3 quartiles, the whiskers
delimit the minimum and the maximum values. The median and the mean values are indicated by a
green vertical line and a red dot located in each box, respectively. In cases where there is only one PDB
template for a target set, or all templates gave the same EF1% value, the boxes are shrunk down into
a single line. The purple crosses represent the EF1% values obtained by the max-pooling approach.

Table 1. Virtual screening accuracy of five scoring functions in scoring LIT-PCBA docking poses.
Accuracy is expressed as the enrichment factor in true positives at a 1% false positive rate (EF1%).
Enrichment factors are highlighed in yellow and green in cases of acceptable (EF1%>2) or high
(EF1%>10) performances, respectively. Target-specific EF1% values corresponding to the most
accurate function are underlined. All enrichment factors were calculated from pooled hit lists ("max-
pooling" approach keeping the highest score for a given protein-ligand complex).

Target set Scoring function PDB Number EF1%
Surflex Pafnucy  AvinaRF2o IFP  GRIM Templates of Actives max
ADRB2 5.88 11.76 11.76 23.53 17.65 8 17 100.00
ALDH1 0.96 15.93 15.74 15.35 15.76 8 7168 20.24
ESR1-ago 0 7.69 7.69 7.69 7.69 15 13 100.00
ESR1-ant 0.98 0.98 0.98 5.88 0.98 15 102  49.50
FEN1 4.34 5.15 5.15 6.78 7.32 1 369 100.00
GBA 8.43 9.64 9.64 9.64 10.84 6 166 100.00
IDH1 0 2.56 0 1.61 2.56 14 39 100.00
KAT2A 2.58 3.09 3.61 3.61 3.61 3 194 100.00
MAPK1 1.62 1.3 1.3 1.62 39 15 308 100.00
MTORC1 1.03 1.03 206 3.61 2.06 11 97 100.00
OPRK1 4.17 8.33 .33 125 125 1 24 100.00
PKM2 0.18 0.37 238 7.14 5.86 9 546 100.00
PPARG 7.41 11.11 11.11 11.11 11.11 15 27 100.00
TP53 0 0 0 0.66 0 6 79 53.75
VDR 0 0.91 091 124 1.24 2 884 100.00
Average 2.51 5.32 538 7.46  6.87
EF1% > 2 6 9 10 11 12
EF1% >5 3 7 7 9 8
EF1% > 10 0 3 3 4 5

Do different scoring functions retrieve the same hits? The previous analysis suggests that Pafnucy and
AvinaRF20, although different in their conception and physical background, often provide almost
identical enrichment factors (Table 1). We next examined whether the same set of actives tend to be
retrieved by ML SFs on the one hand, and by interaction-based functions on the other hand. To this

end, we counted the numbers of true actives uniquely found among the top 1% scored compounds by
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each scoring function and each possible combination of two up to four rescoring schemes (Figure 3).
To avoid biasing the statistics from ALDH1 inhibitors, which provide most of the recovered true actives
(2671 out of 2949 ligands), these ligands were discarded from the current analysis. Interestingly, more
than 50% of the hits were uniquely found by a single function, evidencing a rather orthogonal selection
of compounds by the herein investigated SFs. As to be expected, IFP and GRIM interaction-based SFs,
sharing the same roots, select a large number of identical ligands. However, each of these interaction-
based SFs also retrieves some unique hits of its own, most likely by different treatment of apolar
interactions, with the latter being less weighted in GRIM.*! Interestingly, very few compounds were
selected by any other possible combination of two scoring functions. Clearly, ML scoring functions
(Pafnucy and A.inaRF20) do not select the same sets of hits as those issued by interaction-based
functions, and they also pick different sets of ligands (Figure 3). The observed trends were not

significantly altered by looking at all target sets including ALDH1 inhibitors (Figure S2).

True Actives
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Figure 3. Number of unique true actives retrieved among the top 1% scored compounds by individual
scoring functions or all possible scoring combinations (P: Pafnucy, V: AvinaRF20, I: IFP, G: GRIM). ALDH1
inhibitors have been discarded from the current analysis.

ML-based SFs logically select compounds based on their predicted biding affinity, irrespectively of
known interaction patterns. Conversely, interaction-based SFs retrieve true actives which are not
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necessarily chemically similar to known PDB ligands, but present key non-covalent interactions with

key active site residues already observed in co-crystallized ligands.

Beware of score distributions. We previously described the tendency of ML SFs to predict binding
affinities within a very narrow range centered on the mean values of samples on which they have been
trained.’® We therefore plotted the predicted values (pKq for Pafnucy and AvinaRF20, similarity scores

for IFP and GRIM) for the entire LIT-PCBA set (Figure 4).
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Figure 4. Distribution of Pafnucy, AvinaRF20, IFP, and GRIM scores on 15 target sets of the LIT-PCBA data
collection using the “max-pooling” approach. The boxes delimit the 1% and the 3™ quartiles. The
whiskers delimit the 5" and the 95™ percentiles. The crosses indicate the minimal and the maximal
scores. The median and the mean scores are indicated by a green vertical line and a red dot located in
each box, respectively.

Analogously to our previous observation on ML SFs,® Pafnucy-predicted affinities are almost target-
independent, clearly distributed within a very tiny range (1.5 pKq unit), with almost 90% of predictions
lying between pKq values of 5 and 6.5, and no predicted value below 3.7 (Figure 4). Conversely, affinity

values predicted by the other three SFs are much more widely spread, with a mean value that is clearly
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target-dependent, and both low minimal and high maximal values (Figure 4). The above-described
Pafnucy behavior has also been observed for in-house developed DNNs on the PDBbind dataset (data
not shown), remains highly suspicious and likely to indicate overtraining and a very tiny applicability
domain outside the training space. We therefore strongly advise considering the width of predicted

affinity distributions when it comes to benchmarking novel SFs.

Retrieving highly potent compounds. We next checked the ability of the SFs studied herein to predict
highly potent binders by plotting the predicted scores versus the experimental affinities of 93 highly
potent LIT-PCBA ligands (pKg > 7.0) spread over all targets. Hence, the above-reported tendency of
Pafnucy to predict affinities within a very narrow range can still be acceptable on the condition that
high scores are assigned to highly potent ligands that any VS method must prioritize for experimental
validation. Both ML SFs are disappointingly unable to prioritize these highly potent ligands (Figure 5).
Considering a predicted affinity threshold of 7.0, only eight and 13 out of 93 strong binders would have
been retrieved by Pafnucy and AvinaRF20, respectively. No correlation could be observed between the
predicted and experimental scores for these two SFs (Figure 5). Conversely, a still imperfect but clear
trend is observed for the two interaction-based SFs to correlate predictions with experiments
(Pearson's r of 0.39 and 0.43 for IFP and GRIM rescoring, respectively; Figure 5). Applying cut-off values
(0.70 for IFP and GRIM similarity scores) higher than those recommended (0.60 for IFP,3*3740 0,65 for
GRIM*43), 3 large majority of strong binders (60 and 61 after IFP and GRIM rescoring, respectively)
would have been retrieved for experimental conformation. We acknowledge that the numbers of false
positives at these cut-off values remain very high (97,272 and 44,858 for IFP and GRIM rescoring,
respectively) out of a total of 2.8 million inactive compounds. The above reported trend is independent
of the affinity threshold used to select potent ligands. Hence, retrieving all submicromolar ligands (pKq

> 6.0) leads to the same conclusion. The observed correlation, although less clear, is the same: IFP and
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GRIM similarity scores still correlate better with experimental affinities than those predicted by

Pafnucy and DeltaVina (Figure S3).
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Figure 5. Predicted scores vs. experimental affinities for a subset of 93 highly potent LIT-PCBA ligands

(pKg > 7.0)
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CONCLUSIONS

The previous development of a dataset gathering 3 million high-confidence affinity data points for 15
targets offered an opportunity to compare state-of-the-art scoring functions with diverse
physicochemical backgrounds in a realistic structure-based virtual screening exercise. Although all
rescoring schemes proved to rescue true binders omitted by top-ranked docking poses, simplistic
knowledge-based scoring functions measuring the similarity of protein-ligand interactions to those of
PDB templates appear to systematically outperform two modern machine learning methods in

enriching a small-sized hit list in true binders, as well as prioritizing the most potent actives.

Of course, this conclusion only applies to the herein investigated rescoring methods and experimental
dataset. Given that both machine learning methods are true representatives of the current state-of-
the-art techniques, and are considered among the best existing algorithmic solutions to predict binding

free energies,3> 2% %

we believe that the above conclusions are likely to apply to all scoring functions
with similar physicochemical principles. Importantly, the current study highlights three basic but
important rules often neglected before structure-based virtual screening methods are developed or
applied. First, the accuracy of any scoring function in predicting known experimental affinities is not
indicative of its virtual screening power. Second, assessing the real virtual screening accuracy of a
scoring function requires a careful and unbiased examination on a test set mimicking true compound
screening collections and not artificially assembled ligands/decoy sets. Last, rescoring virtual hits by
mimicry to existing binding modes (already depicted in experimentally-determined protein-ligand

structures) is a simple, robust and efficient approach to secure the chance of identifying potent

binders.
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Supporting Information.

Enrichment factor in true positives at a 1% false positive rate (EF1%) obtained by the native Surflex-
dock scoring on the docking poses issued by Surflex-Dock across all 15 target sets of the LIT-PCBA data
collection; Enrichment factor in true positives at a 1% false positive rate (EF1%) obtained by Pafnucy
rescoring on the docking poses issued by Surflex-Dock across all 15 target sets of the LIT-PCBA data
collection; Enrichment factor in true positives at a 1% false positive rate (EF1%) obtained by AvinaRF20
rescoring on the docking poses issued by Surflex-Dock across all 15 target sets of the LIT-PCBA data
collection; Enrichment factor in true positives at a 1% false positive rate (EF1%) obtained by IFP
rescoring on the docking poses issued by Surflex-Dock across all 15 target sets of the LIT-PCBA data
collection; Enrichment factor in true positives at a 1% false positive rate (EF1%) obtained by GRIM
rescoring on the docking poses issued by Surflex-Dock across all 15 target sets of the LIT-PCBA data
collection. Root-mean-square deviations (in A, heavy atoms only) of Surflex-Dock docking poses to X-
ray structures of the 129 LIT-PCBA templates. Enrichment curves in true positives by docking-based

virtual screening of LIT-PCBA ligands to their 15 targets. Number of unique true actives (including
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ALDH1 inhibitors) retrieved among the top 1% scored compounds by individual scoring functions or all

possible scoring combinations. Predicted scores vs. experimental affinities for a subset of 288 LIT-PCBA

ligands (pKq > 6.0).

This material is available free of charge via the Internet at http://pubs.acs.org.
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Data and Software Availability

Data.

The LIT-PCBA dataset is available at http://drugdesign.unistra.fr/LIT-PCBA. For each of the 15 targets,
at least four input files are provided: the protein PDB X-ray structure (MOL2 file format), the bound
PDB ligand (MOL2 file format), a list of true actives (SMILES string), and a list of true inactive
compounds (SMILES string). All PubChem BioAssay activity data (substance identifier SID, compound
identifier CID, EC50/IC50, pEC50/plC50) are available as an Excel spreadsheet at
http://drugdesign.unistra.fr/LIT-PCBA/Files/LIT-PCBA_bioactivities.xlsx. In case several PDB templates

are available, several protein and ligand input files are given.

Software.

An academic license for Surflex-Dock version 3.3066 was obtained from Biopharmics LLC
(https://www.biopharmics.com/downloads/). Default settings were used to generate protomol files
from protein-bound ligand coordinates, and to dock LIT-PCBA compounds with the exception of the "—

pgeom” parameter used to refine docking poses.

Pafnucy version 1.0 was downloaded from https://gitlab.com/cheminfIBB/pafnucy, and used with
default settings. Rescoring was performed using the recommended model batch5-2017-06-

05T07:58:47-best.

DeltaVinaRF20 (no version specified) was downloaded from

https://github.com/chengwang88/deltavina and used with default parameters.

IChem (version 5.2.9) was downloaded from http://bioinfo-pharma.u-

strasbg.fr/labwebsite/download.html, and used with default settings of IFP and GRIM rescoring.
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