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Ten small size samples of amorphous silica containing 78 atoms have been prepared using classical
molecular dynamics and the van Beest-Kramer-van Santen (BKS) empirical potential. Our final goal
is to use such samples in a forthcoming publication to compute accurately the thermal properties
of silica from first principles calculations. The structural characteristics of these ten samples are in
good agreement with experimental data. Dynamical properties, like the mean-square displacement,
the vibrational density of states or the dynamic structure factor, have also been investigated and
compare relatively well with data from neutron scattering experiments. These small dynamically
stable structures can therefore be used subsequently to study more complicated physical properties,
like the thermal conductivity or the diffusivity at a reduced computational cost.

I. INTRODUCTION

In the last decades, amorphous silica has attracted con-
siderable interest in diverse technological applications,
including microelectronic devices1, optical fibers2 and in
many fields of science such as physics, chemistry and
geology. It is considered as the archetypal network
glass. Its structural3–11 and dynamical12–21 properties
have been extensively studied both theoretically8–17 and
experimentally4–7,18–21, but persistent challenges remain.
Many computer-simulation-based structural models have
been performed for creating realistic structural models
of amorphous silica. The quality of a structural model
depends generally on the choice of the interatomic po-
tential. Different potentials have been used to model
the structure of amorphous silica and the major differ-
ences between them can be found in the medium and
long-range order. The parameters describing the for-
mer, mainly the Si-O-Si dihedral angle distribution, show
some variations, not only in theoretical studies but also
in experiments22. The subject of the determination of
the amorphous structure of silica is thus very complex
and continues to be an object of study.

The complexity of the structure is also reflected in the
dynamics of the system. The characterization of the dy-
namical properties requires accurate calculations to de-
termine exactly the excitations of the system. Theoreti-
cal approaches based on molecular-dynamics simulations
are often used to study the dynamical properties but
the deviations from experimental measurements are no-
ticeable in particular in the case of the determination of
the vibrational density of states (VDOS)13,14. The dif-
ficulty to reproduce accurately the dynamical properties
of amorphous silica can have origins in the incertitude
on the structural model, the small size of the model or
the imperfect empirical interatomic potentials. To get
around the problem related to the flaws of an empirical
potential, first-principles approaches have been used and
the improvement of the results is remarkable12,17.

In this paper we focus on the structural and dynami-
cal properties of amorphous silica. Our goal is to produce
small enough atomic structures to allow us to study phys-
ical properties at the level of Density Functional Theory
(DFT) in forthcoming publications. The structures we
would like to obtain should therefore be small enough,
for those computations to be performed, but at the same
time represent correctly the structural disorder, and be
dynamically stable (i.e no imaginary phonon modes) for
the empirical potential used in molecular dynamics, but
at the DFT level as well. Those requirements are diffi-
cult to satisfy simultaneously since disorder is best de-
scribed using large computational cells, and imaginary
phonon modes may easily appear when periodic bound-
ary conditions are applied. Nevertheless, we succeeded to
build such minimal models of silica using simulation cells
of 78 atoms which fulfill all the above mentioned con-
straints. Periodic boundary conditions have been used
in our molecular dynamics studies to be compatible with
the forthcoming ab initio calculations, since most DFT
codes rely on their use.

Ten such structural models have been generated using
molecular dynamics simulations which reproduce well the
experimentally determined structure. By diagonalizing
the dynamical matrix, we obtain the vibrational eigenfre-
quencies and eigenvectors that allow us to compute the
dynamical properties of the different models. The cal-
culated mean-square displacements and the vibrational
density of states are compared with experiments. The dy-
namic structure factor is evaluated in the one-phonon ap-
proximation, as well as the effective neutron vibrational
density of states. The latter is compared to the experi-
mental vibrational density of states and reasonably good
results are obtained.

This paper is organized as follows: in section II we
describe the computer simulations used to generate the
models. Section III gives the structural properties of the
models. The dynamical properties are calculated in sec-
tion IV. Conclusions are given in section V
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II. GENERATION OF SILICA GLASSES

In this study we consider SiO2 glasses which are de-
scribed at a given temperature using classical molecular
dynamics simulations with the so-called BKS potential23.
This potential describes the interactions between atoms
according to the formula,

U(rij) =
qiqje

2

rij
+Aijexp(−Bijrij)−

Cij
r6ij

, (1)

where rij is the interparticle distance, e the charge of
an electron and qi, qj , Aij , Bij and Cij are parameters.
These parameters are given in24. The BKS potential is
one the most widely used empirical potentials for silica
because it describes very well the structural and vibra-
tional properties of silica. An inconvenience in the BKS
potential is that at short distance it can lead to an un-
physical collapse of ions at high temperatures. In order
to avoid unphysical energies at short distances, this func-
tional form is often modified by adding a strongly repul-
sive term. We use in this study the short range repulsive
term introduced by Jund et al.24.

To obtain a statistical description of amorphous sil-
ica, we consider 10 SiO2 samples, each one containing 78
atoms, 26 silicon, and 52 oxygen, confined in a cubic box
with an edge length of 10.558 Å. This correspond to a
mass density of 2.204 g/cm3 close to the experimental
density (≈ 2.2g/cm3). Periodic boundary conditions are
used, and the long-range electrostatic forces are handled
using the Ewald summation. As explained in a previous
study25, those 78 atoms structures are extracted from a
supercell containing 648 atoms of β−cristobalite which
has been melted at 5000 K to obtain a liquid. In order to
obtain dynamically stable configurations, we carried out
the heating, annealing and cooling processes using clas-
sical molecular dynamics simulations within the micro-
canonical ensemble. All systems are heated up to 7000 K
and relaxed during 350 ps using a time steps of 0.7 fs.
These liquid samples are then quenched to 300 K at a
quenching rate of 2.6 1011 K/s. After the quench, the
atomic configurations are located in a bassin around a
local minimum. This local minimum is finally reached
using a conjugate gradient algorithm. The procedure is
summarized in Fig. 1.

III. STRUCTURAL PROPERTIES

A. Pair correlation functions

Bond length is one of the structural characteristics that
we analyze to check that our amorphous silica structures
are compatible with experiments. Pair correlation func-
tions have been calculated to know informations about
the bond length between nearest neighbors. The pair

Figure 1: Temperature profile as a function simulation
time in nanoseconds.

correlation functions can be expressed as follow16

gαβ(r) =
1

Nαρβ

∑
i∈α,i′∈β

δ (r − |Ri′ −Ri|) (2)

where Nα is the number of particles of type α, Ri the
position vector of atom i and ρβ the average density of
atoms of species β.

The results obtained from the calculation of these func-
tions are plotted in Fig. 2. The average first pair dis-
tances corresponding to the first peaks are 3.18 Å, 1.63 Å
and 2.64 Å for the Si-Si, Si-O and O-O distances respec-
tively. These values are consistent with previous classical
molecular dynamics results in25,(3.21 Å, 1.62 Å and 2.66
Å). The authors of25 also performed ab initio molecular-
dynamics simulations and the average Si-Si distance that
they found is smaller than our results (3.08 Å). This can
be explained by the lack of a Si-Si short-range attraction
term in the BKS potential. First-principles calculations8

performed on smaller samples (72 atoms) of amorphous
silica have also shown smaller values for the Si-Si dis-
tances (3.1 Å) compared to those found with the BKS
potential (3.12 Å). A densification can also decrease the
Si-Si pair distances. This has been recently experimented
by Trease et al.7.

One important parameter is the area under the first
Si-O peak. It gives the number of oxygen atoms coordi-
nated to the silicon atoms. Its calculated value is equal
to four in this study, indicating a perfect chemical short-
range order made of the expected structural units (SiO4

tetrahedra).

B. Bond angle distribution

In this section, we quantify the dihedral angle (Si-O-Si)
and the tetrahedral angle (O-Si-O) distributions which
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Figure 2: Pair correlation functions for Si-Si (upper
graph), Si-O (middle graph) and O-O (lower graph).
Our results are compared to the ab initio calculations

performed in25

.

are important for the validation of the structural anal-
ysis. Results for the bond angle distributions of the 10
samples are reported in Fig. 3 and Fig. 4 for the O-Si-O
and Si-O-Si bond angle respectively. The broad Si-O-Si
bond-angle distribution ranges from 120o to 180o. The
lower limit and the upper limit of the range are similar to
those found in the experimental results of4. The angular
distribution is different from one structure to another and
this difference can be interpreted by the topology of their
structures, for instance, their ring size distribution26. For
each sample the mean Si-O-Si bond angle on different
structures is within the range 150.74o - 154.82o . This
result is close to the experimental value measured (152o)
by da Silva et al.3 and the same value is obtained by
Yan et al.22 in molecular dynamics simulation using the
BKS potential. Indeed, the average Si-O-Si bond angle
varies in different experimental measurements4–6 as well
as in computer simulations17,25,27. The average O-Si-
O bond angle of our calculated structures is within the
range 109.40o - 109.49o. This is in good agreement with
the tetrahedral angle of 109.47o. This indicates that, as
expected, Si centered tetrahedra are the structural units
in all the systems.

C. Elastic structure factor

The elastic structure factor Sel(Q) can be obtained
by neutron scattering experiments when no energy is ex-
changed between the neutrons and the sample. In the
harmonic approximation, it is given by28

Sel(Q) =
1

N〈b2〉

∑
ij

bibje
−(Wi+Wj)eiQ.(Ri−Rj), (3)

Figure 3: O-Si-O bond angle distribution of 10
structural models of amorphous silica

Figure 4: Si-O-Si bond angle distribution of 10
structural models of amorphous silica

where

〈b2〉 =
1

N

∑
i

b2i . (4)

bi is the neutron scattering length of atom i (the over-
bar indicates averages over spin and isotope distributions
for that element), Q is the momentum transfer, N the
number of atoms in the system and Wi the Debye-Waller
factor defined by,

Wi(Q) =
1

2
〈(Q.ui)2〉. (5)

For isotropic systems, Eq. (5) can be replaced by

Wi(Q) =
1

6
Q〈u2

i 〉. (6)

In this equation, 〈u2
i 〉 is the mean squared displacement

of atom i around the equilibrium position and the bracket
denotes an average in a canonical ensemble, or time av-
eraged if ergodicity is assumed.
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Figure 5: Elastic structure factor vs momentum transfer
for amorphous silica calculated using the isotropic

approximation (red solid line) and without this
approximation (blue solid line) compared to

experimental data12

To compare with experiments, it is the average of Eq.
(5) over the Q directions which is needed. We have
performed this computation using 16200 directions, uni-
formly distributed over the solid angle. The results are
shown in Fig. 5 as a blue line. They are in good agree-
ment with experiments, which gives us confidence in our
structural model. The elastic structure factor has also
been calculated using the isotropic approximation (Eq.
6) and the results are shown as a red line. They are very
similar to the exact calculation. It can be noted that
our theoretical calculations overestimate the experimen-
tal results. This can be explained by a too large Debye-
Waller factor since our computed mean-square displace-
ment, 〈u2〉=0.0092 Å2, underestimates the measured one,

〈u2〉=0.0126 Å2.

IV. DYNAMICAL PROPERTIES

A. A. Vibrational density of states

The vibrational density of states (VDOS) allows to ob-
tain information about the atomic dynamics. The basic
ingredient needed to calculate it is the dynamical matrix
which, in the harmonic approximation, can be expressed
as,

Diαi′β =
1

√
mimi′

∂2E

∂xiα∂xi′β
, (7)

where mi is the mass of atom i, α and β are cartesian
directions, and indices i and i′ run over the atoms in the
system. In this study, because we use periodic bound-
ary conditions, we have adopted the approach used for a
crystal to obtain the dynamical properties. In this case,

the real space dynamical matrix is Fourier transformed
over the periodic cell lattice vectors to obtain

Diαi′β(q) =
1

√
mimi′

∑
l′

∂2E

∂x0iα∂xl′i′β
eiq(R

o
l′i′−R

o
0i), (8)

where Ro
li is the equilibrium position of atom i in the cell

l. The vibrational modes are then obtained by solving the
eigenvalue problem∑

i′β

Diαi′β(q)ei
′β
qj = ω2

qje
iα
qj , (9)

q is the wave vector, j is the band index and ωqj and
eiαqj represent the phonon frequency and its eigenmode
respectively.

In this study, we have used the Phonopy package29

to compute these quantities. To calculate the force con-
stants, we have chosen 2×2×2 supercells containing 624
atoms. The normalized vibrational density of states can
be calculated from the obtained eigenfrequencies,

g(ω) =
1

3NNq

∑
qj

δ(ω − ωqj), (10)

where N is the number of atoms in the cell and Nq the
number of q points sampled in the reciprocal space. We
have used a 10 × 10 × 10 q-point sampling mesh. The
function g(ω) is shown in Fig. 6. where we have replaced
the delta function by a Gaussian function with a standard
deviation σ=2.5 meV (0.6 THz).

The vibrational spectrum shown in Fig. 6 shows two
bands separated by a pseudo gap, a wide band in the
frequency domain between 0 and ∼25 THz and an other
band around 30-40 THz with a peak splitting at 35 THz.
Similar results were obtained by Taraskin and Elliott13

(red solide curve in Fig. 6) using the BKS potential as
well. However, comparison with experiments shows that
with this potential the intermediate frequency region is
badly described and in particular it is not possible to
obtain the peak around 12 THz. This peak is indeed
observed in experiments19,20 but also in first-principles
calculations17,30. Therefore it should be interpreted as
a limit of the BKS potential as shown in31.The origin
of the splitting in the high-frequency domain, found in
amorphous silica, and other amorphous materials16, in
experiments and in simulations, is analysed in the liter-
ature. Two origins are discussed. In13 it is related to
the stretching of SiO4 units, with an A1 antisymmetric
stretching significant only in the upper peak. On the
other hand, the authors of32 prefer to see this splitting
as an LO-TO splitting.

The total vibrational density of states can be decom-
posed as a sum of atomic contributions,

gα(ω) =
1

3NNq

Nα∑
i⊂α

∑
qj

|eiqj |2δ(ω − ωqj), (11)
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Figure 6: Vibrational density of states averaged over 10
model structures of amorphous silica (blue solid line)
compared to data from experiments20 (black points)

and theory13 (red solid line).

where i runs over all atoms of type α and eiqj are the
components of eigenmode qj on atom i.

The partial vibrational density of states relative to the
contribution of Si atoms and O atoms are reported in Fig.
7. The oxygen atoms dominate the spectrum below and
above the pseudo gap, while the silicon atoms dominate
around 25THz. This situation is analoguous to the one
observed in α−quartz33.
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Figure 7: Partial vibrational density of states averaged
over 10 model structures of amorphous silica for Si (red
dashed line) and O (green dashed line) compared to the
total VDOS (blue solid line). The standard deviations

are also indicated by vertical lines.

B. Mean-square displacement

The mean-square displacement can be expressed in
terms of eigenfrequencies and eigenvectors as34,

〈u2
i 〉 =

1

Nq

∑
qj

~|eiqj |2

2miωqj
(2nqj + 1), (12)

where nqj is the Bose Einstein occupation function. In
the following we compute this quantity for all the atoms
in the system, and plot its average for the different
species.

Figure 8: Mean-square displacement averaged over all
the structures as a function of temperature for Si atoms
(red solid line), O atoms (blue solid line) and all atoms

in the system (green solid line)

The mean-square displacements calculated for each
sample and averaged over all these samples for silicon
and oxygen atoms are reported in Fig. 8. Our re-

sults at 33K, 〈u2〉=0.0085±0.0003 Å2 compare well with

experiments28 〈u2〉=0.0073 Å2. At 300K the agreement

of our calculations, 〈u2〉=0.0265±0.003 Å2, with exper-
iments is less obvious since several values are reported.
〈u2〉=0.0285 Å2 by Nakamura et al.21 and 〈u2〉=0.0121
Å2 by Wright and Sinclair35. Nevertheless our calculated
results agree well with the ones of Taraskin and Elliott13

who also used the BKS potential.

C. Dynamic structure factor and effective neutron
density of states

The dynamic structure factor is proportional to the
double differential cross-section, and therefore can be ob-
tained from neutron measurements. For SiO2 it reduces
to the coherent part since for silicon and oxygen the in-
coherent contribution is negligible. In the one-phonon
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approximation28, it is given by

S(Q, ω) =
1

NqN〈b2〉

∑
ii′

bibi′e
−(Wi+Wi′ )eiQ.(Ri′−Ri)

×
∑
qj

(Q.eiqj)
∗(Q.eiqj)

2(mimi′)1/2
[nqj + 1]δ(ω − ωqj).

(13)

Figure 9: Average dynamic structure factor vs
momentum transfer for ν = 3.02 THz compared with

experiment12.

As for the elastic structure factor, to be compared to
experiments, the above quantity should be averaged over
the Q directions. The result of this calculation is com-
pared with experiments in Fig. 9 for ν = 3.02 THz. The
relative agreement that we obtain supports the use of
our structural models to study the dynamical properties
of silica.

The previous figure focuses on the Q dependence of the
dynamic structure factor at fixed frequency. To study the
ω dependence, the effective neutron density of states is
usually employed. It is defined by28

G(ω) =

∫ Q2

Q1
G(Q,ω)

Q2−Q1
dQ, (14)

G(Q,ω) =
2mω

~Q2e−2W [n(ω, T ) + 1]
S(Q,ω), (15)

where m−1 =
∑
im
−1
i /N and W = Q2〈u2〉/6 with 〈u2〉

the average of the mean-square displacements over all
atoms.

Figure 10 shows a comparison between our calculations
and data from experiments19,36. The calculation of the
effective neutron density of states according to Eq. (14)
was done at a temperature of 2 K. The average over Q
was performed in the range 6-13 Å−1, corresponding to
the range in the experiment of Carpenter and Price19. At
low-frequency, the theoretical curve follows the results of
the experiment of Buchenau et al.36. The peak, which

0 5 10 15 20 25 30 35 40 45
0   
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0.03

0.04

0.05
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ENVDOS Calculation

ENVDOS Exp. (Buchenau et al)

ENVDOS Exp (Carpenter et al)

Figure 10: Averaged effective neutron density of states
(red solid line) compared to the VDOS (blue solid line)
and data from experiments in Ref.19 (green circles) and

Ref.36 (black circles)

is described as the boson peak36 is not present in the
experiment of Carpenter and Price19. The absence of this
peak is interpreted by a lack of experimental resolution
at low frequences37.

V. CONCLUSION

Using classical molecular dynamics simulations, we
have generated an ensemble of ten small structural mod-
els of amorphous silica and the structural and dynami-
cal properties have been investigated. All the structural
properties of the models (the pair correlation functions,
the O-Si-O and Si-O-Si bond-angle distributions and the
elastic structure factor) show a good agreement with the
experimental data. For the dynamical properties that
we have computed, the overall agreement is good as well.
However, at intermediate frequencies, around 12THz, the
calculated dynamical properties show a poor agreement
with data from inelastic neutron scattering. This is es-
pecially true for the vibrational density of states, which
confirms, in this frequency region, the deficiency of the
BKS potential to reproduce accurately the vibrational
properties, as is known from other studies.

Nevertheless, what can be learned from our study
is that several properties, like the mean square-
displacement, the vibrational density of states, and the
dynamic structure factor, can be computed from an av-
erage over a few samples containing a small number of
atoms (78), with an accuracy comparable to computa-
tions performed on larger systems, like the 648 atoms
models investigated by Taraskin and Elliott13. When
physical properties will have to be computed at the DFT
level (at which the inadequacy of the vibrational spec-
trum around 12 THz is corrected), this represents an
important computational time gain. Indeed, the com-
putation of several physical properties (like the thermal
conductivity or the diffusivity) scales as N2 or N3, with
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N the number of atoms in the computational cell. In our
case, performing the computations over 10 small samples
instead of one large one, allows reducing the computa-
tional time by a factor up to 50: this is not negligible.
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