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Abstract
Dans ce travail, nous considérons le cadre de classifi-
cation multi-classes avec des exemples d’apprentissage
présentant des imperfections dans leurs étiquettes de
classes. Nous modélisons cette imperfection avec un
modèle d’erreur probabiliste. Sur cette base, nous
dérivons des garanties théoriques pour un classifieur de
vote majoritaire en étendant la borne C multi-classes,
une borne supérieure du second ordre. Enfin, nous
montrons empiriquement le comportement de la borne
et discutons de son application pour les approches
semi-supervisé basées sur le pseudo-étiquetage, en par-
ticulier pour l’auto-apprentissage.
Keywords: Noisy Labels, Ensemble Methods, Semi-
supervised Learning.

1 Introduction
We consider classification learning problems where
training examples are available only with imperfect la-
bels. This is for example the case of semi-supervised
learning [CSZ10], where the available set of perfectly
labeled examples is scarce due to expensive data an-
notation, while unlabeled data are abundant. In this
context, a model learned on the labeled examples only
usually leads to poor learning performance, so the un-
labeled examples are often incorporated to the train-
ing set along with pseudo-labels obtained through self-
learning [THTS05] or co-training [BM98]. This situa-
tion makes the context different from the classical su-
pervised setting, since the pseudo-labels may be erro-
neous thereby making analysis of a learning algorithm
more intricate.

∗Prenom.Nom@univ-grenoble-alpes.fr

In this paper, we tackle this problem from a theoret-
ical point of view for the multi-class classification case
and analyze the behavior of majority vote classifiers
(also known as Bayes classifiers, including Random
Forest [LIS19], AdaBoost [GLL+15], SVM [FTAGU15]
and neural networks [LGGL19]). The majority vote
classifier is well studied in the binary case, where a
classical approach is to bound the majority vote risk
indirectly by twice the risk of related stochastic Gibbs
classifier [LST03], which, up to a linear transforma-
tion, is equivalent to the first statistical moment of
the Bayes’ prediction margin [GLL+15]. However, the
voters may compensate the errors of each other, so the
majority vote risk will be much smaller than the Gibbs
risk. In this connection, the majority vote’s risk has
been proposed to be directly upper bounded via the
so-called C-bound [LLM+07], which is based on the
mean and the variance of the prediction margin, so it
reflects both the individual strength of voters and their
correlation in prediction. Nevertheless, the application
of C-bound is limited by the classical supervised set-
ting and by assuming that all training examples are
perfectly labeled.

To overcome this, in our work, we take explicitly
into account possible mislabeling by considering a mis-
labeling error model of [Chi80]. At first, we show the
connection between the true and the imperfect label
in misclassification of a particular example for the ma-
jority vote classifier. Then, we derive a new proba-
bilistic C-bound over the error of the multi-class ma-
jority vote classifier in the presence of imperfect la-
bels. Then, we derive an extension of the multi-class
C-bound [LMRR17] for the probabilistic error in the
presence of imperfect labels. This bound allows us
to evaluate the generalization error of classification al-
gorithms learned on mislabeled data, and particularly
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semi-supervised algorithms based on pseudo-labeling.
The rest of this paper is organized as follows. In

Section 2 we introduce the problem statement and the
proposed framework. Section 4 shows how to derive
the C-bound in the probabilistic framework taking into
account mislabeling errors. In Section 5, we illustrate
the behavior of the new C-bound on real data sets.
Finally, in Section 6 we summarize the outcome of this
study and discuss the future work.

2 Framework and Definitions
Consider a multi-class classification problem with an
input space X ⊂ Rd and an output space Y =
{1, . . . ,K}, K ≥ 2. We denote by X = (X1, . . . , Xd) ∈
X (resp. Y ∈ Y) an input (resp. output) random vari-
able. We assume that training examples xi ∈ X are
drawn i.i.d. according to the fixed yet unknown prob-
ability distribution P (X), and their true labels yi are
generated according to P (Y |X = xi).

In this work, a fixed class of classifiers H = {h|h :
X → Y}, called the hypothesis space, is considered and
defined without reference to the training set. Over H,
a posterior probability distribution Q is defined after
observing the training set. Further, we focus on the Q-
weighted majority vote classifier (also called the Bayes
classifier)1 defined for all x ∈ X as:

BQ(x) := argmax
c∈{1,...,K}

[
Eh∼Q1h(x)=c

]
, (1)

which represents a class of learning methods, where
the predictions of hypotheses are aggregated using the
majority vote rule scheme.

The goal of learning is formulated as to choose a pos-
terior distribution Q over H based on a given training
set such that the classifier BQ will have the smallest
possible error value. Compared to many works like
[GLL+15, LMRR17] where the deterministic case is
considered, i.e. for each example there is one and only
one possible label, in this paper, we consider the more
general probabilistic case assuming possibility of mul-
tiple outcomes for each example. Thus, we are focused
on minimization of the probabilistic risk, which is de-
fined as follows:

R(BQ) := EP (X)

∑
c∈{1,...,K}
c̸=BQ(x)

P (Y = c|X = x). (2)

1For the sake of brevity, we will tend to use the latter name,
which should not be confused with other learning paradigms
based on the Bayesian inference, e.g. the Bayesian statistics.

To measure confidence of the majority vote classifier
in its prediction, the notions of class votes and margin
are further considered. Given an observation x and
class c ∈ Y, we define a class vote vQ(x, c) that corre-
sponds to the vote given by the majority vote classifier
BQ to class c for an example x:

vQ(x, c) := Eh∼Q1h(x)=c =
∑

h:h(x)=c

Q(h).

In practice, the vote vQ(x, c) can be regarded as an
estimation of the posterior probability P (Y = c|X =
x); a large value indicates the high confidence of the
classifier that the true label of x is c.
Given an observation x, its margin is defined in the
following way:

MQ(x, y) := vQ(x, y)−max
c∈Y
c̸=y

vQ(x, c). (3)

The margin measures a gap between the vote of the
true class and the maximal vote among all other
classes. If the value is strictly positive for an exam-
ple x, then y will be the output of the majority vote,
so the example will be correctly classified.

3 Mislabeling Error Model
In order to model potential mislabeling of training
examples, we consider an imperfect output Ŷ that
has a different distribution from the true output Y .
More specifically, we summarize the label imperfection
through the mislabeling matrix P = (pj,c)1≤j,c≤K , de-
fined by:

P (Ŷ = j|Y = c) := pj,c ∀(j, c) ∈ {1, . . . ,K}2, (4)

where
∑K

j=1 pj,c = 1. We additionally assume that Ŷ
does not influence the true distribution of classes, i.e.
P (X|Y, Ŷ ) = P (X|Y ). This implies that

P (Ŷ = j|X = x) =

K∑
c=1

pj,cP (Y = c|X = x). (5)

This class-related model is a common approach to deal
with the label imperfection [Chi80, AG03, NDRT13,
Sco15].

At first, we find the connection between the error
of the true and the imperfect label in misclassifying a
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particular example x ∈ X . We denote

r(x) =
∑

c∈{1,...,K}
c ̸=BQ(x)

P (Y = c|X = x),

r̂(x) =
∑

c∈{1,...,K}
c ̸=BQ(x)

P (Ŷ = c|X = x).

Theorem 3.1. Let P be the mislabeling matrix, and
assume that pi,i > pi,j , ∀i, j ∈ {1, . . . ,K}2. Then, for
all choice of Q on a hypothesis space H we have, for
all x ∈ X ,

r(x) ≤ r̂(x)

δ(x)
− 1− α(x)

δ(x)
, (6)

with δ(x) := pBQ(x),BQ(x) − maxj∈Y\{BQ(x)} pBQ(x),j

and α(x) := pBQ(x),BQ(x).

Sketch Proof. First, from the definition of r̂(x) and ap-
plying (5) we obtain that

r̂(x) = 1−
K∑
j=1

pBQ(x),jP (Y = j|X = x)

Let us denote Ȳx := Y \ {BQ(x)}. Then, it can be
noticed that∑

j∈Ȳx

pBQ(x),jP (Y = j|X = x) ≤ max
j∈Ȳx

pBQ(x),jr(x).

As pBQ(x),BQ(x)P (Y =BQ(x)|X=x) = pBQ(x),BQ(x) −
pBQ(x),BQ(x)r(x), we infer the following inequality:

r̂(x) ≥ δ(x)r(x) + 1− α(x). (7)

Taking into account the assumption that pi,i >
pi,j , ∀i, j ∈ {1, . . . ,K}2, we deduce that δ(X) > 0,
which concludes the proof.

This theorem gives us insights on how the true error
can be bounded given the error of the imperfect label
and the mislabeling matrix. With the quantities δ(x)
and α(x), we perform a correction of r̂(x). Note that
when there is no mislabeling, α(x) = 1 and δ(x) = 1,
so the true error rate is obtained.

Note that this theorem holds also for a more general
case when correction probabilities depend on the ex-
ample x. In this case, all probabilities pi,j are replaced
by pxi,j := P (Ŷ = i|Y = j,X = x). Since it is harder
to estimate pxi,j compared to pi,j , we stick to consider
the class-related model described in Eq. (5).

In the theorem the mislabeling matrix is assumed
given, while in practice it has to be estimated. Since

the number of matrix entries grows quadratically with
the increase of K, the model (5) may be more affected
by the estimation error than the bound itself as the
latter needs to know only 2K entries. We give more
details about estimation of the mislabeling matrix in
Section 6.

The bound can be compared with a bound derived in
[Chi80, Eq. (3.14), p. 284] for the optimal Bayes clas-
sifier (maximum a-posteriori rule). It is shown that
r(x) ≤ 1− 1−r̂(x)

β , where β = maxi=1,...,K

(∑K
j=1 pi,j

)
.

One can notice that the regularizer β is constant with
respect to x, so the penalization of the error r̂(x) does
not depend on the label the classifier predicts. An-
other limitation is that the bound assumes that the
Bayes classifier is optimal, while our bound holds for
any posterior Q.

The assumption of Theorem 3.1 requires that the di-
agonal entries of the mislabeling matrix are the largest
elements in their corresponding columns, which means
that the imperfect label is reasonably correlated with
the true label. However, in practice, the assumption
may not hold, so the theorem is not applicable. To
overcome this, the bound can be relaxed by consider-
ing λ > 0 such that λ + δ(x) > 0, so we obtain for all
choices of Q on a hypothesis space H:

r(x) ≤ r̂(x)

λ+ δ(x)
− 1− λ− α(x)

λ+ δ(x)
. (8)

When δ(x) is close to 0, it also avoids the bound to
become arbitrarily large.

4 Probabilistic C-Bound with
Imperfect Labels

In this section, we derive a new risk bound in the pres-
ence of imperfect labels by combining the result ob-
tained in Theorem 3.1 with the C-bound.

4.1 Ordinary C-Bound
[LLM+07] proposed to upper bound the Bayes error by
taking into account the mean and the variance of the
prediction margin. A similar result was obtained in a
different context by [Bre01]. [LMRR17] extended this
bound to the multi-class case.

All these results were formulated in the determinis-
tic case, but they can be further generalized to upper
bound the probabilistic risk (2). In the following theo-
rem, we present the multi-class C-bound in the proba-
bilistic setting.
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Theorem 4.1. Let M be a random variable such that
[M |X = x] is a discrete random variable that is equal to
the margin MQ(x, c) with probability P (Y = c|X = x),
c = {1, . . . ,K}. Let µM

1 and µM
2 be respectively the

first and the second statistical moments of the random
variable M . Then, for all choice of Q on a hypothesis
space H, and for all distributions P (X) over X and
P (Y |X) over Y, such that µM

1 > 0, we have:

R(BQ) ≤ 1− (µM
1 )2

µM
2

. (CB)

Sketch Proof. For a fixed x, we obtain that

P (M ≤ 0|X = x) =
∑

c∈{1,...,K}
c̸=BQ(x)

P (Y = c|X = x).

Applying the total probability law, we obtain that the
Bayes risk is expressed as the probability of having
a non-positive margin: R(BQ) = P (M ≤ 0). Simi-
larly to [LMRR17], we apply the Cantelli-Chebyshev
inequality and infer the final inequality (CB).

The main advantage of C-bound is the involvement
of the second margin moment, which can be related to
correlations between hypotheses’ predictions, as it was
shown in [LLM+07].

4.2 C-Bounds with Imperfect Labels
Theorem 4.1 assumes that all examples are perfectly
labeled. Now, we consider the mislabeling error model
described in Section 3. Remember that R(BQ) =
EXr(X). Then, by taking the expectation from the
both sides of Ineq. (6), we obtain that

R(BQ) = EXr(X) ≤ EX
r̂(X)

δ(X)
− EX

1− α(X)

δ(X)
. (9)

One can see that for every x, r̂(x) is multiplied by a
positive weight 1/δ(X) > 0, so the first term of the
right-hand side is a weighted generalization error of
the imperfect label. To cope with this, we derive a
weighted C-bound by proposing the next theorem.

Theorem 4.2. Let M̂ be a random variable such that
[M̂ |X = x] is a discrete random variable that is equal to
the margin M̂Q(x, i) with probability P (Ŷ = i|X = x),
i = {1, . . . ,K}. Assume that every diagonal entry
of the mislabeling matrix P is the largest element in
the corresponding column, i.e. pi,i > pi,j , ∀i, j ∈
{1, . . . ,K}2. Then, for all choice of Q on a hypoth-
esis space H, and for all distributions P (X) over X

and P (Y |X) over Y, we have:

R(BQ) ≤ ψP −

(
µM̂,P
1

)2

µM̂,P
2

, (CBIL)

if µM̂P
1 > 0, where

• ψP := EX
α(X)
δ(X) with δ and α as in Theorem 3.1,

• µM̂,P
1 :=

∫
Rd+1

m
δ(x)P (M̂ = m,X = x)dxdm is the

weighted 1st margin moment,

• µM̂,P
2 :=

∫
Rd+1

m2

δ(x)P (M̂ = m,X = x)dxdm is the
weighted 2nd margin moment.

Proof. At first, let us introduce a normalization factor
ωP defined as follows:

ωP := EX
1

δ(X)
=

∫
Rd+1

P (M̂ = m,X = x)

δ(x)
dxdm.

Remind that r̂(x) = P (M̂ ≤ 0|X = x). Then, we can
write:

EX
r̂(X)

δ(X)
=

∫
Rd

1

δ(x)
P (M̂ ≤ 0|X = x)P (X = x)dx

= ωP

∫ 0

−∞

∫
Rd P (M̂ = m,X = x)/δ(x)dx∫

Rd+1 P (M̂ = m,X = x)/δ(x)dxdm
dm.

The expression inside the integral in the last equality
is a density, which we denote it by fω and the cor-
responding random variable by M̂ω. Then, we obtain
that EX

r̂(X)
δ(X) = ωPP (M̂ω < 0).

We further notice that the weighted first and
second moments can be represented respectively as
µM̂,P
1 = ωPµ

M̂ω
1 and µM̂,P

2 = ωPµ
M̂ω
2 . Also, we have

var(Mω) =
(
µM̂,P
2 /ωP

)
−

(
µM̂,P
1 /ωP

)2

. Then, using
the Cantelli-Chebyshev inequality we deduce:

P (M̂ω < 0) ≤ 1−

(
µM̂,P
1

)2

ωPµ
M̂,P
2

. (10)

Combining Eq. (10) and Eq. (9) we infer (CBIL):

R(BQ) ≤ EX
r̂(x)

δ(x)
− EX

1− α(x)

δ(x)
≤ ψP −

(
µM̂,P
1

)2

µM̂,P
2

.
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Given data with imperfect labels, the direct evalu-
ation of the generalization error rate may be biased,
leading to an overly optimistic evaluation. Using the
mislabeling matrix P we derive a more conservative C-
bound, where the error of x is penalized by the factor
1/δ(x). When there is no mislabeling, ψP = 1, µM̂,P

1

and µM̂,P
2 are equivalent to µM̂

1 and µM̂
2 , so we obtain

the regular C-bound (CB).
Note that empirical estimation of the margin mean,

the margin variance and the mislabeling matrix may
induce some optimism in the bound evaluation. To
overcome this, the problem can be further analyzed
in the PAC-Bayesian framework initiated by [McA99]
in order to derive a Probably Approximately Correct
bound on R(BQ) based on the sample estimates of
ψP, µ

M̂,P
1 , µM̂,P

2 . A PAC-Bayesian bound additionally
penalizes the bound by the sample size and the diver-
gence between the posterior Q and a fixed prior dis-
tribution P defined over H before observing training
data. Due to the lack of space, we omit derivations,
but the bound can be straightforwardly obtained us-
ing the results of [LMRR17] and [Mau04].

4.3 Application to Semi-supervised
Learning

In the semi-supervised setting, it is assumed available
a training set of labeled examples {(xi, yi)}li=1 and un-
labeled examples {xi}l+u

i=l+1 where l ≪ u. In order to
exploit the unlabeled examples, a common approach is
pseudo-label them, so we end up with an imperfectly la-
beled data set {xi, ŷi}l+u

i=1 . For example, a self-learning
algorithm [THTS05] learns an initial classifier on the
labeled training data, and then selects iteratively a sub-
set of unlabeled examples with confidence score above
a fixed threshold and include them along with their
pseudo-labels in the training set to retrain the super-
vised classifier. [FDA19] have proposed to find this
threshold dynamically as a trade-off between the num-
ber of pseudo-labeled examples and the transductive
error they induce. In order to evaluate the error, they
have derived a transductive bound of the majority vote
error in the multi-class case.

Although the proposed by [FDA19] strategy allows
to minimize the error induced by self-learning, in the
end, the algorithm may be still learned on erroneous
labels, and we do not know how to evaluate the classi-
fier’s error in this noisy case. In addition, their trans-
ductive bound can be regarded as a first-order bound,
since it is linearly dependent on the classifier’ votes, so
it does not take into account the correlation between

Data set # of lab. # of unlab. # of feat., # of classes,
examples, l examples, u d K

Isolet 389 7408 617 26
HAR 102 10197 561 6

Letter 400 19600 16 26
MNIST 175 69825 900 10

Table 1: Characteristics of data sets used in our experi-
ments ordered by the size of the training set (n = l+u).

hypotheses. These two issues can be overcome by ap-
plying our result obtained in Section 4.2 to this setting.

Thus, the (CBIL) represents a semi-supervised
bound on the risk R(BQ), where BQ is learned on
the labeled examples, while the bound is evaluated on
the unlabeled set pseudo-labeled by the self-learning
algorithm. Comparing with the transductive bound
of [FDA19], (CBIL) bounds the risk directly and not
from the conditional risk, so it will be tighter in most
of cases.

Note that there exists other attempts to evaluate the
C-bound in the semi-supervised setting. In the binary
case, [LLM+07] estimated the second margin moment
using additionally unlabeled data by expressing it via
disagreement of hypotheses. However, this holds for
the binary case only.

5 Empirical Illustration
In this section, we empirically illustrate the value
of (CBIL) in the semi-supervised setting. Experi-
ments are conducted on publicly available data sets
[DG17, CL11]. In order to emulate the semi-supervised
context, we do not use the train/test splits that are pro-
posed by data sources. Instead, we propose our own
splits so that l ≪ u. Our experiment is conducted 20
times, by randomly splitting an original data set on a
labeled and an unlabeled parts keeping fixed their re-
spective size at each iteration. The reported results are
averaged over the 20 trials.

Experiments are conducted on 4 real data sets. The
associated applications are image classification with
the MNIST databases of handwritten digits; a signal pro-
cessing application with the human activity recognition
HAR database; speech recognition using the Isolet and
the Letter data sets. The main characteristics of these
data sets are summarized in Table 1.

As a semi-supervised classifier, we take the self-
learning algorithm with dynamic thresholding pro-
posed by [FDA19]. We take the Random Forest al-
gorithm [Bre01] with 200 trees and the maximal depth
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Figure 1: (CBIL) and Oracle C-Bound when varying the number of pseudo-labels on 4 data sets. We keep the
most confident one (with respect to prediction vote) from 20% to 100%.

of trees as the majority vote classifier with the uniform
posterior distribution. We use it also as the base classi-
fier for self-learning. For an observation x, we evaluate
the vector of class votes {v(x, i)}Ki=1 by averaging over
the trees the vote given to each class by the tree. A
tree computes a class vote as the fraction of training
examples in a leaf belonging to a class.

Our experiment consists in empirical study of how
the value of (CBIL) evaluated on the pseudo-labeled
unlabeled examples is penalized by the mislabeling
model. For this, we empirically compare it with the
oracle C-bound (CB) evaluated as if the labels for the
considered unlabeled data would be known.

To do so, we compute the value of the two bounds
varying the number of examples used for evalua-
tion with respect to the prediction confidence: the
pseudo-labeled examples are sorted by the value of
the prediction vote of BQ in the descending order,
and we keep only the first ρ% of the examples for
ρ ∈ {20, 40, 60, 80, 100}.

By using the prediction vote of BQ we expect that
with increase of ρ we have more mislabels, so the
(CBIL) is more penalized. In (CBIL), we use the true
value of the mislabeling matrix (i.e. evaluated using
the labels of unlabeled data) for clear illustration of
the C-bound’s penalization. In Section 6, we discuss
the possible estimations of the mislabeling matrix.

The experimental results on 4 data sets HAR, Isolet,
Letter and MNIST are illustrated in Figure 1. As ex-
pected, the classifier makes mistakes mostly on low

class votes, so the error increases when ρ grows. One
can see that on Isolet, HAR and Letter (CBIL) is
close to the oracle C-bound for small ρ, since most of
pseudo-labels are true. When more noisy pseudo-labels
are included, the difference between the two values be-
comes more evident, leading (CBIL) to be more pes-
simistic. This is probably connected with the choice
of the mislabeling error model (4) that is class-related
and not instance-related. Although we lose some flex-
ibility, the class-related mislabeling matrix would be
easier to estimate in practice. Finally, for MNIST, the
two bounds are very close to each other, and the mis-
labeling is occasional, which is agreed with the per-
formance of the self-learning on this data set [FDA19,
p. 3572] as pseudo-labels are very helpful in this case.

6 Conclusion and Future Work
In this paper, we proposed a new probabilistic frame-
work for analysis of the multi-class majority vote classi-
fier in the presence of imperfect labels. We proposed a
mislabeling error model to take explicitly into account
these mislabeling errors and established the connection
between the true and the imperfect output. Based on
this result, we extended the C-bound to the case when
imperfect labels are used for evaluation. The proposed
bound allows us to evaluate the performance of major-
ity vote learning models in this noisy case. In particu-
lar, the result can be applied to semi-supervised learn-
ing to deal with self-learning approaches that pseudo-
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label unlabeled examples.
In the semi-supervised setting, we illustrated the in-

fluence of the mislabeling error model on the bound’s
value on several real data sets. However, further appli-
cation of C-bound raises several open practical ques-
tions for us, which we detail below and leave as a sub-
ject for future work.
Firstly, the analysis of the learning model learned on
pseudo-labels is perplexing due to the so-called con-
firmation bias: at every iteration, the self-learning in-
cludes into the training set unlabeled examples with
highly confident predictions, which arise from classi-
fier’s overconfidence to its initial decisions that could
be erroneous. This implies that the hypotheses will
have small disagreement on the unlabeled set after
pseudo-labeling, so the votes are no more adequate for
measuring prediction confidence. A correct estimation
of mislabeling probabilities or changing the way self-
learning is learned are possible solutions.
Secondly, (CBIL) requires in practice the estimation
of the mislabeling matrix, which is a complex problem,
but an active subject of study [NDRT13]. Most of these
studies tackle this problem from an algorithmic point
of view: for example, in the semi-supervised setting,
[KARG08] learn the mislabeling matrix together with
the classifier parameters through the classifier likeli-
hood maximization for document classification; in the
supervised setting, a common approach is to detect an-
chor points whose labels are surely true [Sco15]. A po-
tential idea would be to transfer this idea to the semi-
supervised case in order to detect the anchor points in
the unlabeled set and use them together with the la-
beled set for correct estimation of the noise in pseudo-
labels; this may require additional assumptions such as
the existence of clusters [Rig07, MAH18] or manifold
structure [BN04].

We also point out possible applications of (CBIL).
At first, the bound can be used for model selection
tasks as semi-supervised feature selection [SSGC17].
Since minimization of the C-bound implies simultane-
ously margin mean maximization and margin variance
minimization, (CBIL) would guide a feature selection
algorithm to choose an optimal feature subset based on
the labeled and the pseudo-labeled sets.
Next, (CBIL) can be used as a criterion to learn the
posterior Q in the semi-supervised setting. This is-
sue is actively studied in the supervised context, e.g.
[RML16, BCRL20] have been developed the boosting-
based C-bound optimization algorithms.
It should be noticed that for these two applications,
the main objective is to rank models, so the best model
has the minimal error on the unlabeled set. Hence, the

bound analysis goes beyond the classical question of
tightness: the tightest bound does not always imply
the minimal error, and a bound relaxation can have a
positive effect as it is the case for Ineq. (8).
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