
HAL Id: hal-03266186
https://hal.science/hal-03266186v2

Preprint submitted on 18 Jul 2021 (v2), last revised 22 Feb 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ϵ Suboptimality Based Accelerated Termination for
Quadratic Programming Using Dual Decomposition

Xiang Dai, Romain Bourdais, Hervé Guéguen

To cite this version:
Xiang Dai, Romain Bourdais, Hervé Guéguen. ϵ Suboptimality Based Accelerated Termination for
Quadratic Programming Using Dual Decomposition. 2021. �hal-03266186v2�

https://hal.science/hal-03266186v2
https://hal.archives-ouvertes.fr

JOTA manuscript No.
(will be inserted by the editor)

ε Suboptimality Based Accelerated Termination for

Quadratic Programming Using Dual Decomposition

Xiang Dai · Romain Bourdais · Hervé

Guéguen

Received: date / Accepted: date

Abstract In solving quadratic programming, analytical and dual decomposi-

tion based iterative method are 2 main approaches. However, the defects are

evident: the former only works with small size problems and the latter only

guarantees feasibility and optimality in the limit of iterations. In this paper, we

Xiang Dai, Corresponding author

Department of Automatic Control, IETR, CentraleSupélec

Rennes, France

xiang.dai@centralesupelec.fr

Romain Bourdais,

Department of Automatic Control, IETR, CentraleSupélec

Rennes, France

romain.bourdais@centralesupelec.fr

Hervé Guéguen,

Department of Automatic Control, IETR, CentraleSupélec

Rennes, France

herve.gueguen@centralesupelec.fr

2 Xiang Dai et al.

propose a proactive method by combining these 2 methods to solve the optimal

solution through dynamically identifying the active inequalities constraints.

Further, to faster terminate the iterative process, we propose a suboptimal

method based on cone programming to deliver feasible solutions with subop-

timality guarantee. In addition to the mathematical proofs provided, various

random simulations illustrate the effectiveness of the suboptimal method.

Keywords Quadratic programming · Suboptimality · Dual decomposition ·

Active set

Mathematics Subject Classification (2000) 49J53 · 49K99 · more

1 Introduction

Quadratic programming has long tracked massive interests in the society of

control system, applied mathematics, and computer science, for it encompasses

a large variety of application as computational geometry, finance, process net-

works, robotics, telecommunications, energy, and data confidentiality, etc[1].

In brief, iterative and analytical methods are 2 main approaches to solve

such a problem. The former was first studied in 1956 by Frank and Wolfe [2],

and has been advanced over last decades in combination with dual decomposi-

tion and methods for general nonlinear and convex optimization[3], for instance

gradient method[4], steepest descent method[5], Newton’s method[6], Quasi-

Newton method[7] and conjugate gradient/direction method[8], etc. Generally,

the the dual decomposition based iterative process converges to the optimal so-

Title Suppressed Due to Excessive Length 3

lution, the convergence, however, is only guaranteed in the limits of iterations,

so as feasibility[7].

The analytical methods, using multi-parametric quadratic programming

(mp-QP) [9], was initially proposed in [10], where the initial state was deemed

as the multi-variables to form an offline mapping by partitioning its Euclidean

space into neighboring critical regions. That is obtained via two steps: first,

solving a Karush-Kuhn-Tucker (KKT) condition based linear programming for

a polyhedron with a given feasible starting point; second, visiting the opposite

side of the polyhedron border (hyperplane) one by one to form other critical

regions. A great deal of related research has been developed either to extend its

application scope or to improve its efficiency, including reduction of unneces-

sary critical region partition [11], linear independence constrains qualifications

free and semi-definite hessian cases [12], pruning infeasible set during critical

region partition [13], using graph traversal algorithm to cope with degeneracy

cases [14]. The "ergodic" property of critical region visit, however, limits its

applicability only for small size system [15].

It is worth noting that in practice, visiting all active set combinations is

extraordinarily time-consuming and memory exhausting even for medium size

problem[16]. In particular, as a compromise, a suboptimal but strictly feasible

(in some applications of security concerns or physical limits) solution is pre-

ferred over an optimal solution in practical application. In [17], suboptimality

focused on variable has been investigated; however, no definite criterion of

objective value suboptimality has been demonstrated, and the method may

4 Xiang Dai et al.

generally fail large suboptimality. In [18], though arbitrary suboptimality is

fulfilled, solving an exponentially increasing number of QP is required to build

the stopping criterion.

In this paper, combining iterative and analytical methods, we propose a

proactive method to search for the optimal active set during iterations, after

which the optimal solution can be solved analytically. Furthermore, we pro-

pose a suboptimal method by extending the idea of suboptimality oriented

faster stop in iterative process [19] to general quadratic programming. Taking

advantage of variables during iterative process, the suboptimal method can

deliver suboptimal and feasible solutions with no information of the optimal

active set.

The main contributions of this paper are twofold. First, the combination

of iterative and analytical methods can reduce the enumerations massively in

solving analytical solutions. Second, the suboptimal method, with iteration

number upper bounded by the proactive method, can generate feasible solu-

tions with predefined suboptimality without information of the optimal active

set, which enables an accelerated termination of iterative process prior to find

the optimal active set.

This paper is organized as follows. Section 2 sets up the optimization prob-

lem and fundamentals. Section 3 proposes a proactive method to enumerate

active set in searching for the optimal solution. Section 4 illustrates trans-

formations from active inequality constrains into equality ones and proposes

Title Suppressed Due to Excessive Length 5

criterion to generate ε primal solution. Numerical experiments and results dis-

cussions are presented in Section 5. And conclusions are given in Section 6.

Notation: For n ∈ N>0, Sn
+ and Sn

++ denote semidefinite positive and

definite positive matrix of size n × n repectively. The norm || · || denotes

the Euclidean norm, for x ∈ Rn, R ∈ Sn
+, ||x||R =

√
xTRx, min eig(R) de-

notes the minimal eigenvalue of R. For matrix A ∈ Rm1×n and B ∈ Rm2×n

(m1,m2 ∈ N+), A⊕ B = (AT , BT)T , and rank(A) denotes the rank of A. 1n

denotes column vector with elements being 1 of size n.

2 Problem statement and fundamentals

In this section, the linear constrained quadratic problem dealt with in the

paper is formulated. Besides, ε primal solution, iteration mechanism and defi-

nition of optimal active set are introduced as fundamentals of methods studied

later.

2.1 Problem statement and main objective

In this paper, we consider a constrained quadratic problem as below:

J ∗ = min
y
J (y) (1a)

s.t. Ay = b, (1b)

Cy ≤ d, (1c)

where J (y) = 1
2 ||y||

2
R, y ∈ Rny, R ∈ Sny

++, A ∈ Rne×ny, rank(A) = nr,

b ∈ Rne , C ∈ Rnie×ny and d ∈ Rnie .

6 Xiang Dai et al.

Definition 2.1 (Feasible set) We define the feasible set of problem (1) as

Y :

Y = {y ∈ Rny | Ay = b,Cy ≤ d}. (2)

Assumption 1 We assume that Y is compact, closed and not empty, and

there is at least one y in the interior of Y . We also assume that nr < ny.

Definition 2.2 (ε suboptimal solution) y is said to be an ε primal solution

of problem (1) if and only if y ∈ Y and

J (y)− J ∗ ≤ ε. (3)

The main objective of this paper is to find an efficient way to solve an ε primal

solution of problem (1).

2.2 Dual problem and iterative process

In this subsection, we introduce dual variables to form the dual problem asso-

ciated with (1), which can be solved by a general iterative process.

To begin with, the dual problem of problem (1) is defined as:

g∗ = max
θ,λ≥0

g(θ,λ) = max
θ,λ≥0

min
y
L(y,θ,λ), (4)

L(y,θ,λ) = 1
2 ||y||

2
R + θT (Ay − b) + λT (Cy − d),

where θ ∈ Rne and λ ∈ Rnie
+ are the dual variables associated with constraint

(1b) and (1c) respectively.

Title Suppressed Due to Excessive Length 7

Remark 2.1 Since R ∈ Sny
+ , (1b) and (1c) are linear, problem (1) is convex.

As the Slater’s condition is satisfied by Assumption 1, thus the strong duality

holds by Slater’s theorem[5], namely J ∗ = g∗.

To solve dual decomposition based problem (4) in a iterative manner, we

initiate a general gradient method as:

θk+1 = θk + αk
θ(Ayk − b), (5a)

λk+1 = max{0,λk + αk
λ(Cyk − d)}, (5b)

yk+1 = −R−1(ATθk+1 +CTλk+1), (5c)

where αk
θ, α

k
λ ∈ R>0 are step size associated with θk and λk respectively, and

(5c) is obtained by subsituting λk+1 and θk+1 into ∇yL(y,θ,λ)=0.

Assumption 2 We assume that αk
θ and αk

λ satisfy one of step size conditions

as: minimization rule, Armijo rule and diminishing step size [7], such that the

sequence {yk} converges to the optimal solution of problem (1):

lim
k→∞

yk = y∗. (6)

Note that in implementing iterative process (5), the primal feasibility of yk

can only be guaranteed in the limit of iterations.

Let P = {1, ..., nie}, we give definitions of active constraint, active set and

inactive set respectively.

Definition 2.3 (Active set) During iterative process (5), the i-th constraint

of (1c): Ciy ≤ di (C =
⊕nie

i=1Ci, d =
⊕nie

i=1 di), is said to be active at yk if

Ciy
k ≥ di, i.e., the equality is reached or the inequality is violated; or λk

i > 0,

8 Xiang Dai et al.

its corresponding dual variable is turned positive. Denote Ak and Ik the active

and the inactive set of constraints (1c) at yk, which are defined as:

Ak = {i ∈ P | Ciy ≥ di or λk
i > 0}, (7)

Ik = P\Ak. (8)

Let y∗ denote the optimal solution of problem (1), we use A∗ and I∗ to denote

the optimal active and inactive set, A∗ = {i ∈ P | Ciy
∗ = di}1, I∗ = P\A∗.

2.3 Active set enumeration approach

A linear programming (LP) presented in [13] can be used to test if a candidate

active set A 2 is equal to A∗, whose solution is denoted as (y∗,λ∗, s∗, h∗) if it

1 It is felicitous to replace "≥" with "=", and remove the dual variable check at the optimal

solution.
2 Note that in active set enumeration approach, Ak can be any subset of P.

Title Suppressed Due to Excessive Length 9

exists.

LP(A) : min
y,λA,sI ,h

− h (9a)

s.t. Ry +ATθ +CT
AλA = 0, (9b)

Ay − b = 0, (9c)

CAy − dA = 0, (9d)

CIy − dI + sI = 0, (9e)

h · 1cA ≤ λA, (9f)

h · 1nie−cA ≤ sI , (9g)

0 ≤ h, (9h)

where CA =
⊕

i∈ACi, CA ∈ RcA×ny, dA =
⊕

i∈A di, dA ∈ RcA , CI =⊕
i∈I Ci, CI ∈ R(nie−cA)×ny, dI =

⊕
i∈I di, dI ∈ Rnie−cA .

Note that we do not assume that the strict complementarity condition or

linear independence constraint qualification (LICQ) in this paper3. As a result,

A∗ is not necessary to be unique, for which case LP(A) is still valid to generate

y∗.

3 The notion of LICQ and strict complementarity condition are borrowed from [20]. In

this paper, LICQ is said to hold if matrice AAk ,AAk = A⊕CAk has full row rank; strict

complementarity condition is said to hold if λi > 0 for each Ciy
∗ = di.

10 Xiang Dai et al.

3 Proactive optimal active set identification method (POASIM)

In this section, combining iterative process and active set enumeration ap-

proach, we propose a proactive method to solve for the optimal solution of

problem (1) by enumerating Ak during the iterative process, which requires

fewer enumerations in total compared to conventional analytical method.

In [21] [13], the power set of P is "passively" enumerated in search of A∗,

which would lead to explosive growth of enumeration number as problem size

increases, i.e.
∑ny−nr

i=1
(

nie

i

)
, no matter what kind of pruning technique is

applied, for intrinsically it cannot offset the boost of binomial coefficient.

By contrast, as presented in Alg. 1, proactive identification of A∗ along

iterative process (5) is proposed, which enables a proactive enumeration of

candidate active sets, and avoids massive meaningless combinations, i.e.
(

nie

i

)
,

i = 1, ..., ny − nr. Note that Ak and Ak−i (i = 1, ...k) are possible to be

identical, it is sufficient to test Ak when it has not been tested before.

The optimal solution of problem (1) can be solved out if LP(Ak) has a

solution in implementing POASIM, which, however, cannot be guaranteed to

happen during the iterative process. Therefore, it is one crucial drawback of

POASIM, and we will show that it can be overcome by the suboptimal method

proposed in the next section.

Title Suppressed Due to Excessive Length 11

Algorithm 1 Proactive Optimal Active Set Identification Method (POASIM)
1: Initialize: θ−1, λ−1, k = 0 and ε. y−1 is obtained by (5c).

2: repeat

3: Update primal and dual variables by (5), update Ak by (7)

4: if LP(Ak) has a solution then return y∗

5: end if

6: k ← k + 1

7: until y∗ is returned

4 Active set based ε suboptimal approach

In this section, based on Definition 2.3, we dynamically convert problem (1)

into only equality constrained formulation during the iteration, whose optimal

solution can be solved explicitly. With that and the best dual objective value

of problem (4), we can check whether an ε primal solution of problem (1) is

available under Ak.

4.1 Transforming active constraints into equality constraints

Definition 2.3 can be used to identify the active and inactive constraints of

(1c) at k-th iteration. By doing so, Problem (1) can be dynamically converted

into the only equality constrained problem (denote its optimizer as y∗Ak) as:

J ∗Ak = min
y
J (y) (10a)

s.t. AAky = bAk , (10b)

where AAk = A⊕CAk , and bAk = b⊕ dAk .

12 Xiang Dai et al.

Lemma 4.1 y∗Ak can be computed by the linear equation group below:
AAky = bAk ,

F T
AkRy = 0,

(11)

where FAk is an orthonormal null space matrix of AAk satisfying AAkFAk =

0, and FAk ∈ Rny×(ny−nr−nk), rank(CAk) = nk.

Proof First, we have rank(F T
Ak) = ny − nr − nk. Since rank(AAk) = nr + nk,

and R ∈ Sny
++, AAk

⊕
F T
AkR has full row rank, which means linear equation

group (11) has a unique solution.

Here, we characterize the feasible set YAk of problem (10) as:

YAk ={y ∈ Rny | AAky = bAk}

={ŷAk + FAktAk | tAk ∈ Rny−nr−ck}, (12)

this characterization is based on any point ŷAk ∈ YAk .

It is trivial that the solution of the linear equation group is a feasible

solution of problem (10) since (10b) is satisfied.

Next, we prove the optimality. By (12), problem (10) is equivalent as:

J∗Ak = min
tAk

J(tAk), (13)

where JAk (tAk) = 1
2 ||ŷAk + FAktAk ||2R, and J∗Ak = J ∗Ak .

Accordingly, we have

∇JAk (tAk) = F T
AkR(ŷAk + FAktAk), (14)

∇2JAk (tAk) = F T
AkRFAk . (15)

Title Suppressed Due to Excessive Length 13

For ∀tAk ∈ Rny−nr−ck , we can assign a feasible solution of (10b), denoted as

yAk , to have

yAk = ŷAk + FAktAk , (16)

then we have

∇JAk (tAk) = F T
AkRyAk . (17)

Next, we have the necessary and sufficient optimality condition of uncon-

strained convex optimization (13) as:

||∇JAk (tAk)|| = 0. (18)

And we can conclude the proof by (11). �

4.2 Active set based ε suboptimal criterion

To emphasis the main contribution, henceforth we delineate the methodology

only for case ck + nr < ny4. Let gk
best = supi≤k,i∈N>0 g(θi,λi). By the primal-

dual theory[5], we have gk
best ≤ J ∗. Combining with Definition 2.2, if y ∈ Y ,

and satisfies

J (y)− gk
best ≤ ε, (19)

then y is an ε primal solution of problem (1).

4 The case ck + nr > ny is unsolvable, executing Ak ← Ak\{i ∈ Ak | λk
i < λ̄k} (λ̄k

denote the ny-th largest value of λk
i), it can be converted into case ck +nr = ny, for which

case the only solution can be obtained by (10b).

14 Xiang Dai et al.

In solving an ε primal solution of problem (1), condition (19) enables us

to further reduce the gap between gk and J ∗ by taking advantage of the

sequence {gk
best} generated. Since the solution of problem (10) is not unique,

we need the relation between gk
best and y∗Ak as a base to build the criterion for

ε suboptimality.

There are 3 possibilities between J ∗Ak and gk
best depending on the identifi-

cation correctness of Ak, and the gap between gk
best and J ∗:

J ∗Ak < gk
best, (20a)

0 ≤J ∗Ak − gk
best ≤ ε, (20b)

ε <J ∗Ak − gk
best. (20c)

Note that in case (20c), no definite ε suboptimality criterion can be devised

without knowing A∗, since even J ∗Ak , the optimum by far fails (19). The fol-

lowing lemma and corollary will be used to build criteria for ε suboptimality

when (20a) and (20b) are satisfied respectively.

Proposition 4.1 Denote βAk = min eig(F T
AkRFAk). Given ∆ ∈ R>0. If y

satisfies (10b) and

||F T
AkRy|| ≤ (2βAk∆) 1

2 , (21)

then we have

J (y)− J ∗Ak ≤ ∆. (22)

Proof As y satisfies (10b), it is a feasible solution of problem (10). Since prob-

lem (13) is convex and unconstrained, and ∇2JAk (tAk) is lower bounded by

Title Suppressed Due to Excessive Length 15

βAk (because AAk is full row rank), then (22) holds by applying (9.10) of [5].

�

Now, consider the cone programming (CP) below, denote its optimizer, if it

exists, as (ysub, s
1
Ik , h

1).

CP(Ak) : min
y,sIk ,h

−h (23a)

s.t. (10b),

CIky − dIk + sIk = 0, (23b)

h · 1nie−cAk
≤ sIk , (23c)

0 ≤ h, (23d)

||F T
AkRy|| ≤ (2βAk (ε+ gk

best − J ∗Ak)) 1
2 . (23e)

Based on ε suboptimality criteria demonstrated in Proposition 4.1, we can use

CP (Ak) to obtain an ε primal solution of problem (1), which is illustrated in

the following 2 propositions.

Proposition 4.2 If CP (Ak) has a solution and

J ∗Ak − gk
best ≤ ε, (24)

then ysub is an ε primal solution of problem (1).

Proof First, consider case (20a), let δk = gk
best−J ∗Ak . As ysub satisfies (10b),(9e),

(9g), (9h), we have AAkysub = bAk , and CIkysub ≤ dIk . Since at each it-

eration, C consists of CIk and CAk , then by (2), ysub ∈ Y , then by the

16 Xiang Dai et al.

primal-dual theory[5],it gives

0 ≤ J (ysub)− gk
best. (25)

As (23e) is satisfied by ysub, we have by Proposition 4.1:

0 ≤ J (ysub)− gk
best ≤ ε. (26)

As a consequence, combining ysub ∈ Y , (25) and (26), ysub is an ε primal

solution of problem (1) by (19).

Second, consider case (20b), let ∆k = J ∗Ak − gk
best, we have by (22) that:

J (y)−J ∗Ak ≤ ε−∆k. Namely, J (y)−gk
best ≤ ε. The rest of the proof remains

the same as that of case (20a). �

In a cost ascending order, Alg. 2 presents The complete algorithm of computing

an ε primal solution of problem (1): after obtaining Ak y∗Ak at k-th iteration;

firstly, check whether y∗Ak is an ε primal solution; if not, check whether Ak is

an optimal active set by LP(Ak); if not, check whether an ε primal solution

can be found by CP (Ak) using gk
best.

4.3 Optimization properties of ASBSA

From here, we will use the following 2 lemmas to derive the lower bound of ε:

for any value above the bound, ASBSA can terminate within finite iterations.

Lemma 4.2 Under Assumption 2, (24) can be satisfied within finite iterations

in implementing ASBSA.

Title Suppressed Due to Excessive Length 17

Algorithm 2 Active Set Based Suboptimal Algorithm (ASBSA)
1: Initialize: θ−1, λ−1, k = 0 and ε. y−1 is obtained by (5c).

2: repeat

3: Update primal and dual variables by (5), update Ak by (7), compute y∗Ak by (11)

4: if y∗Ak ∈ Y then

5: if y∗Ak satisfies (19) then return y∗Ak

6: end if

7: end if

8: if LP(Ak) has a solution for Ak then return y∗

9: end if

10: if y∗Ak satisfies (24) then

11: if CP (Ak) has a solution then return ysub

12: end if

13: end if

14: k ← k + 1

15: until one of y∗Ak , y∗ and ysub is returned

Proof First, consider the following problem: δ = infi∈I∗{miny ||y−y∗|| |Ciy =

di}. Then, as yk asymptotically converges to y∗ by Assumption 2, there exists

a k1 such that ∀k ≥ k1, ||yk − y∗|| ≤ δ. So, for Ak generated by (7), ∀k ≥ k1,

we have I∗ ∩ Ak = ∅. Therefore, we have Ak ⊂ A∗ for ∀k ≥ k1, which means

Y is a proper subset of the feasible set of problem (10), thus we have:

J ∗Ak ≤ J ∗, ∀k ≥ k1. (27)

For a given ε > 0, there exists a k2 by Remark 2.1 such that

J ∗ − gk
best ≤ ε, ∀k ≥ k2. (28)

18 Xiang Dai et al.

Consequently, combing (27) and (28), we have

J ∗Ak − gk
best ≤ ε, ∀k ≥ max{k1, k2}. (29)

And this completes the proof. �

Here, consider the following norm minimization:

δ̄ = min
y
||F TRy||, s.t. y ∈ Y,

where F ∈ Rny×(ny−nr) is a orthonormal null space matrix of A satisfying

AF = 0.

Lemma 4.3 Let βA = min eig(F TRF). Under Assumption 2, for ∀ε > δ̄/2βA,

an ε suboptimal solution of problem (1) can be generated within finite iterations

in implementing ASBSA.

Proof By Lemma 4.2, given an arbitrary ε′ > 0, there exist a k such that

J ∗Ak − gk
best ≤ ε′. (30)

Next, consider the problem:

δk = min
y
||F T
AkRy||, s.t. (10b),CIky ≤ dIk .

Observing CP (Ak), for εk = (δk)2/2βAk + J ∗Ak − gk
best, an εk suboptimal

solution of problem (1) can be found by solving CP (Ak).

By (30), we have that an ((δk)2/2βAk + ε′) suboptimal solution of problem

(1) can be generated with at most k iterations. If it can be shown that

(δk)2/2βAk ≤ δ̄2/2βA, (31)

Title Suppressed Due to Excessive Length 19

then for ε = δ̄/2βA + ε′, an ε suboptimal solution of problem (1) can be

generated with at most k iterations. Since ε′ can be arbitrary small, we have

that for ∀ε > δ̄/2βA, an ε suboptimal solution of problem (1) can be generated

within finite iteration.

We give the proof of (31) from here. If AAk = A, (31) trivially holds. We

consider the caseAAk 6= A, which indicatesAAk = A⊕CAk . Subsequently, by

AF = 0, AFAk = 0, and CAkFAk = 0, the null space of AAk is a subspace of

the null space of A. Since F ∈ Rny×(ny−nr) and FAk ∈ Rny×(ny−nr−ck), there

exists a semi-orthogonal matrix P ∈ R(ny−nr)×(ny−nr−ck) with PTP = I,

such that FP = FAk . It follows F T
AkRFAk = PTF TRFP . Then by Poincaré

separation theorem[22],

βA ≤ βAk . (32)

For any y ∈ Y ,

||F T
AkRy|| = ||PTF TRy|| ≤ ||PT ||||F TRy|| = ||F TRy||, (33)

where the inequality uses Cauchy-Shwarz inequality, and the equality uses the

property of semi-orthogonal matrix that ||PT || = ||P || = 1.

Finally, (31) can be concluded by (32) and (33), and this completes the

proof. �

Remark 4.1 Note that ε > δ̄/2βA is a sufficient condition for ASBSA to be ter-

minated within finite iterations. In practice, it is possible to take ε much lower

than δ̄/2βA, which will be illustrated with a numerical example in Subsection

5.1.

20 Xiang Dai et al.

Remark 4.2 Suppose that POASIM terminates with k iterations, since POASIM

and ASBSA share iterative process (5), and LP(Ak) (test if Ak is A∗ or not),

then ASBSA can return y∗ with k iterations. Alternatively, if one of y∗Ak or

ysub is returned prior to k-th iteration, ASBSA terminates with less than k

iterations. All in all, ASBSA terminates for ∀ε > 0 with the same or fewer

iterations than that of POASIM.

In terms of ASBSA, economic computation techniques as follows can further

improve the efficiency of implementation:

1. for each distinct Ak, its according variables CAk ,dAk ,CIk ,dIk ,y∗Ak ,FAk

and J ∗Ak can be stored, then if Ak+i = Ak, i = 1, 2, ..., the above mentioned

variables can be retrieved from the stored data, instead to compute from

the scratch5;

2. we require that Ak in Step 8 of ASBSA has not been tested by LP(Ak)

before 6. Likewise, we require that Ak in Step 11 of ASBSA has not been

tested by CP (Ak) before;

3. at each iteration, if y∗Ak ∈ Y and satisfies (19), then ASBSA can be ter-

minated without excess computation. In addition, to avoid unnecessary

solving of LP(Ak) and CP(Ak), for each y∗Ak ∈ Y and J (y) − gk̄
best > ε,

denote DAk = J ∗Ak − ε, then at every k̄ > k, we can claim that y∗Ak is an

5 This technique is also applied to POASIM.
6 In the same argument, we require that Ak in Step 4 of POASIM has not been tested by

LP(Ak) before in POASIM.

Title Suppressed Due to Excessive Length 21

ε suboptimal solution of problem (1) if

gk̄
best ≥ DAk . (34)

5 Numerical experiments

In this section, we carry out 2 groups of experiments: firstly, a single small

size problem to give a clear-cut comparison of time and iteration number

magnitude among the 2 algorithms proposed in this paper (POASIM and

ASBSA), and 2 existing methods (Nesterov gradient descent[23] [24], Gupta

method[13]); secondly, we consider 1000 randomly generated tests to demon-

strate general performance between POASIM and ASBSA. The complete datasets

generated in numerical experiment are available at https://github.com/

SettingTheWorld/epsilon-Suboptimality-QP.

To detail each problem, inequality constraints (1c) are 0 ≤ y ≤ 1, the

penalty matrix is R = I. For each test, ne is a integer randomly drawn from

uniform distribution (0, ny), each entry of A is randomly drawn from uniform

distribution (−0.5, 0.5), and each entry of b is randomly drawn from uniform

distribution (0,Ai · 1ny) to make problem (1) feasible, where Ai denote the

i-th row ofA. Specifically, we adopt Nesterov gradient descent[23] for iteration

(5a) (5b)7, which is proved to be the best fist order gradient method [3]. All

numerical experiments are carried out using Matlab 2021a on a Windows 10

7 θk+1 = θ̂k + 1
L

(Aŷk − b), λk+1 = max{0, λ̂k + 1
L

(Cŷk − d)}, where for a vector ν,

ν̂k = νk + k−1
k+2 (νk − νk−1), L = ||ER−1ET ||2, and E = (AT ,CT)T

https://github.com/SettingTheWorld/epsilon-Suboptimality-QP
https://github.com/SettingTheWorld/epsilon-Suboptimality-QP

22 Xiang Dai et al.

Table 1: Performance comparison among POASIM, Nesterov gradient descent,

Gupta method and ASBSA of a single test

with ny=10, and predefined relative ε as 1× 10−2

Gupta***
Nesterov

POASIM ASBSA
ε* ε+ Y **

Computation

time (s)
10 5.8 ×10−3 4.3 ×10−1 8.9 ×10−2 1.7 ×10−2

of iterations

or (9) solved
911 15 74803 20 15

Primal feasible yes no yes yes yes

* solved by (5a)-(5b), a posterior ε suboptimality criterion is used: p∗ − g̃(θ̃k, λ̃k) ≤

0.01p∗, where p∗ is known as a parameter.

** solved by (5a)-(5b), ε suboptimality criterion: p∗ − g̃(θ̃k, λ̃k) ≤ 0.01p∗, feasibility

criterion: ||Ay − b|| ≤ 1 × 10−16, Cy − d ≤ 1 × 10−16, the magnitude 1 × 10−16 is

computed from optimal solution y∗ that solved by POASIM.

*** Gupta method refers to the algorithm in [13]. In this test, 18779 candidate sets

are pruned, making in total 19690 candidate sets enumerated.

PC with 2.20 GHz Core i7-8750H CPU and 16GB RAM, LP(Ak) and CP(Ak)

are solved by Matlab solver linprog and coneprog respectively.

5.1 Single test comparison among 4 methods

To initiate a perception of POASIM, ASBSA, iterative process (5) and Gupta

method, here we present the comparison by a small size (ny = 10, ne = 5) test

in Table. 1. Unsurprisingly, the Gupta method shows the explosion of candi-

Title Suppressed Due to Excessive Length 23

date sets enumerated and overwhelming defect of time, which is incompetent

for larger size problems. When ε suboptimality is only concerned, Nesterov

gradient descent discloses evident superiority in iteration number and time.

However, if feasibility is required, Nesterov gradient descent requires 5000

times more iterations, which results in worse time performance than our 2

methods. POASIM and ASBSA promised to deliver optimal (obviously feasi-

ble) solutions, reveal favorable results in iteration number and time, and hence

will be investigated further with randomly generated problems of larger size

in the next subsection.

Note that, in this test, δ̄/2βA = 0.0348, if we take ε = δ̄/2βA, then the

corresponding relative suboptimality is 0.0424, which is a sufficient condition

for ASBSA to be terminated within finite iterations. In fact, it is quite safe to

take much smaller ε in practice, e.g. in the next subsection, predefined relative

suboptimality is set as 0.0001, and all the tests can generate ε suboptimal

solution within in finite iterations.

5.2 Random tests between POASIM and ASBSA

In this subsection, we use 1000 independent randomly generated linear con-

strained quadratic problem to test POASIM and ASBSA; for each problem,

ASBSA is tested under 4 different relative suboptimality8: 0.0001, 0.001, 0.01

and 0.1. For each random problem, ny = 100, and sparsity concerning matrix

8 The relative suboptimality is computed as suboptimality divided by J ∗.

24 Xiang Dai et al.

Table 2: Average and maximal relative error of ASBSA (The magnitude of

1×10−4, 1×10−3, 1×10−2 and 1×10−1 are omitted from the results according

to the relative suboptimality referred for space-saving. As a consequence, any

result presented with value less than 1 means that predefined suboptimality

is fulfilled.)

Predefined Rel. Subopt. 10−4 10−3 10−2 10−1

Ave. Rel. Error 0.15 0.06 0.21 0.25

Max. Rel. Error 0.81 0.91 0.84 0.78

A in equality constraints (1b) are randomly drawn from uniform distribution

(0, 1).

Table 2 shows that the predefined suboptimality of all random tests is

fulfilled, which in general is significantly larger than the average relative error.

From Fig. 1, as predefined relative suboptimality increases from 1 × 10−4

to 1× 10−1, the range of boxplot decreases gradually, indicating an increasing

iteration number of ASBSA. The reason behind this is the higher suboptimal-

ity, the higher tolerance of incorrectness of Ak, and the higher possibility for

(20a) or (20b) to occur, thus the higher probability for CP(Ak) to have a solu-

tion. This tendency is also shown in Table. 3, where the average number of CP

calculated and the number of ysub grows dramatically as predefined relative

suboptimality increases, which in return has an undesired effect on the time

performance of ASBSA. Together with the following facts: computation time

ratio of one CP to one iterate of (5) is 4−5×104, of one CP to one LP ranges

Title Suppressed Due to Excessive Length 25

1e-4 1e-3 1e-2 1e-1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ite
ra

tio
n

nu
m

be
r

ra
tio

 o
f A

S
B

S
A

 to
 P

O
A

S
IM

Fig. 1: Iteration number ratio of ASBSA to POASIM (Sample value exceeded

+/−2.7σ shows as whisker, same setting for other box plots. Sample value less,

greater than or equals to 1 (green horizontal line) means ASBSA consumes

less, more or the same iteration as POASIM in the same test. The lower value,

the better performance of ASBSA.)

from 3.1 to 5. The more CP calculated, the more likely that ASBSA consumes

a longer time in total because for a Ak, the calculation of CP comes after an

LP is failed, resulting 2 solving process for one Ak. Nevertheless, as shown

in Fig. 2, ASBSA dominates time performance with comparison to POASIM,

even though the superiority is blunted somewhat under 1×10−2 and 1×10−1.

Note that the considerable number of y∗Ak and y∗ (the first 3 columns of Ta-

26 Xiang Dai et al.

1e-4 1e-3 1e-2 1e-1

0

0.5

1

1.5

2

2.5

3

3.5

C
om

pu
ta

tio
n

tim
e

ra
tio

 o
f A

S
B

S
A

 to
 P

O
A

S
IM

Fig. 2: Ratio of ASBSA to POASIM on computation time (Sample value less,

greater than or equals to 1 (green horizontal line) means ASBSA spends less,

more or the same computation time as POASIM in the same test. The lower

value, the better performance of ASBSA.)

ble. 3) returned as ε primal suboptimal solution can also account for time

supremacy of ASBSA, which spare the effort in computing CP, leading even

less time demanded.

6 Conclusion

In solving quadratic programming, through the combination of active set enu-

meration and general gradient method, we have proposed a proactive method

Title Suppressed Due to Excessive Length 27

Table 3: Statistics of 1000 random tests: termination by different approaches

in ASBSA and calculation number of CP

Predefined

Rel. Subopt.

Total # returned Ave. # of CP

CalculatedDAk y∗Ak y∗ ysub

10−4 51* 24** 899 26 0.039

10−3 210 193 379 218 0.270

10−2 109 126 68 697 0.972

10−1 27 31 49 893 2.079

* data in column DAk means that the ε suboptimal solution is

found by (34).

** data in column y∗Ak means that the ε suboptimal solution is

found by Step 5 in ASBSA.

to obtain the optimal active set in an iterative manner, by which the optimal

solution can be solved out. In the hope to terminate the iterative process faster,

we have further initiated a suboptimal method based on cone programming to

generate suboptimal and feasible solutions, which requires no information on

the optimal active set. Furthermore, we have demonstrated the lower bound of

suboptimality, which can ensure the iterative process to be terminated within

finite iterations.

Through random numerical experiments, the ε-suboptimality and feasibil-

ity have been verified for the suboptimal method, which has moreover revealed

statistical improvement of computation time and iteration number under cer-

tain predefined relative suboptimality.

28 Xiang Dai et al.

Future work can be addressed in the following aspects for the 2 methods

proposed: exploitation of the performance for various problem sizes and set-

tings, application in model predictive control, comparison with primal[20] and

dual[25] active set method.

References

1. Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., Liberti,

L., Lodi, A., Misener, R., Mittelmann, H., Sahinidis, N.V., Vigerske, S., Wiegele, A.:

QPLIB: A library of quadratic programming instances. Mathematical Programming

Computation 11(2) (2019). DOI 10.1007/s12532-018-0147-4

2. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval research logistics

quarterly 3(1-2), 95–110 (1956). DOI 10.1002/nav.3800030109

3. Nesterov, Y.: Lectures on Convex Optimization, vol. 137. Springer (2018)

4. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA journal of

numerical analysis 8(1), 141–148 (1988). DOI 10.1093/imanum/8.1.141

5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge university press (2004)

6. Josephy, N.H.: Newton’s Method for Generalized Equations. Tech. rep., Wisconsin

Univ-Madison Mathematics Research Center (1979)

7. Bertsekas, D.P.: Nonlinear Programming. Athena scientific Belmont (1999)

8. Shewchuk, J.R.: An Introduction to the Conjugate Gradient Method without the Ago-

nizing Pain. Carnegie-Mellon University. Department of Computer Science (1994)

9. Alessio, A., Bemporad, A.: A survey on explicit model predictive control. In: Nonlinear

Model Predictive Control, pp. 345–369. Springer (2009)

10. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic

regulator for constrained systems. Automatica 38(1), 3–20 (2002). DOI 10.1016/

S0005-1098(01)00174-1

11. TøNdel, P., Johansen, T.A., Bemporad, A.: An algorithm for multi-parametric quadratic

programming and explicit MPC solutions. Automatica 39(3), 489–497 (2003)

Title Suppressed Due to Excessive Length 29

12. Tondel, P., Johansen, T.A., Bemporad, A.: Further results on multiparametric quadratic

programming. In: 42nd IEEE International Conference on Decision and Control (IEEE

Cat. No. 03CH37475), vol. 3, pp. 3173–3178. IEEE (2003). DOI 10.1109/CDC.2003.

1273111

13. Gupta, A., Bhartiya, S., Nataraj, P.S.V.: A novel approach to multiparametric quadratic

programming. Automatica 47(9), 2112–2117 (2011). DOI 10.1016/j.automatica.2011.

06.019

14. Patrinos, P., Sarimveis, H.: A new algorithm for solving convex parametric quadratic

programs based on graphical derivatives of solution mappings. Automatica 46(9), 1405–

1418 (2010). DOI 10.1016/j.automatica.2010.06.008

15. Wang, Y., Boyd, S.: Fast model predictive control using online optimization. IEEE

Transactions on control systems technology 18(2), 267–278 (2009). DOI 10.1109/TCST.

2009.2017934

16. Mayne, D.Q.: Model predictive control: Recent developments and future promise. Au-

tomatica 50(12), 2967–2986 (2014). DOI 10.1016/j.automatica.2014.10.128

17. Bemporad, A., Filippi, C.: Suboptimal explicit rhc via approximate multiparametric

quadratic programming. Technical Report ETH Zurich, AUT02-07 (2002)

18. Johansen, T.A., Grancharova, A.: Approximate explicit constrained linear model pre-

dictive control via orthogonal search tree. IEEE Transactions on Automatic Control

48(5), 810–815 (2003). DOI 10.1109/TAC.2003.811259

19. Dai, X., Bourdais, R., Guéguen, H.: Dynamic Reduction of the Iterations Requirement in

a Distributed Model Predictive Control. In: 2019 IEEE 58th Conference on Decision and

Control (CDC), pp. 6392–6397. IEEE (2019). DOI 10.1109/CDC40024.2019.9029783

20. NOCEDAL, J., Wright, S.J.: NUMERICAL OPTIMIZATION. Springer (2006)

21. Mitze, R., Mönnigmann, M.: A dynamic programming approach to solving constrained

linear–quadratic optimal control problems. Automatica 120, 109,132 (2020). DOI

10.1016/j.automatica.2020.109132

22. Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statis-

tics and Econometrics. John Wiley & Sons (2019)

30 Xiang Dai et al.

23. Nesterov, Y.E.: A method for solving the convex programming problem with conver-

gence rate O (1/k2̂). In: Dokl. Akad. Nauk Sssr, vol. 269, pp. 543–547 (1983)

24. Giselsson, P., Doan, M.D., Keviczky, T., De Schutter, B., Rantzer, A.: Accelerated

gradient methods and dual decomposition in distributed model predictive control. Au-

tomatica 49(3), 829–833 (2013). DOI 10.1016/j.automatica.2013.01.009

25. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: A para-

metric active-set algorithm for quadratic programming. Mathematical Programming

Computation 6(4), 327–363 (2014). DOI 10.1007/s12532-014-0071-1

	Introduction
	Problem statement and fundamentals
	Proactive optimal active set identification method (POASIM)
	Active set based suboptimal approach
	Numerical experiments
	Conclusion

