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Abstract
Primal-dual gradient methods are tractable approaches to solve
quadratic programs, especially for large scale problems with sparse
structures. The associated iterative mechanism allows these methods
to converge to the optimal solution. However, the convergence may
require a considerable number of iterations, and if one decides to termi-
nate the iterative process earlier, the resulting solution may not fulfill
the original constraints of the problem. For the first issue, we propose
a proactive method based on the Karush–Kuhn–Tucker (KKT) condi-
tions to check whether the active set updated during the iterations is
optimal, which can terminate the iterations before its convergence. To
address the second issue and faster terminate the iterations, we first
introduce a degree of suboptimality for objective value, and then pro-
pose a suboptimal method to solve for suboptimal and feasible solutions.
Mathematical developments prove both the feasibility and the guar-
antee of predefined suboptimality for the suboptimal method. Various
random simulations illustrate the effectiveness of the proposed methods.

Keywords: Quadratic programming, Suboptimality, Primal-dual algorithm,
Gradient method, Feasibility
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1 Introduction
Quadratic programming (QP) has long tracked massive interest in the society
of control system, applied mathematics and computer science (Floudas and
Visweswaran, 1995), for it not only encompasses a large variety of applica-
tions (including computational geometry, finance, process networks, robotics,
telecommunications, energy, and data confidentiality, etc. (Furini et al, 2019))
but also serves as preliminaries in many methods for general constrained
optimization (Nocedal and Wright, 2006).

Active set methods, interior point methods and the gradient projection
method are often-used approaches to solve QP (Nocedal and Wright, 2006).
Nonetheless, for large scale problems, active set methods are incapable as the
iterations required increases proportionally to the problem size (Forsgren et al,
2016) (Arnström and Axehill, 2021), and interior point methods (Mehrotra,
1992) (Wright, 1997) are prohibitive by utmost computation burden in com-
puting inverse of Hessian (Chong and Zak, 2004). The gradient projection
method (Zhu and Rockafellar, 1993), however, is most efficient only when box
constraints are dealt with, as the projection step itself can be costly for general
linear inequality constraints (Conn et al, 1988) (Burke and Moré, 1994).

Note that in implementing the primal-dual gradient methods, the optimal
solution may take enormous iterations to generate, which leads to undesirable
long computation time. Another fact is that the fulfillment of constraints in
QP is mandatory in many applications due to security restrictions or phys-
ical limits. On the other hand, the suboptimality of objective value can be
manipulated as a parameter in response to time requirements in various appli-
cations. Consequently, feasible solutions with guaranteed suboptimality can be
of great interest in solving QP using primal-dual gradient methods. And the
motivation of this paper is to reduce the iteration number needed in obtaining
feasible solutions with guaranteed suboptimality.

In this paper, we first propose a proactive method by consolidating the
primal-dual gradient method and the KKT criterion (Kuhn and Tucker, 1951)
to identify if the dynamically updated active set is the optimal active set,
from which the optimal solution can be analytically solved. Further, given a
prespecified suboptimality, we conceive a suboptimal method to generate fea-
sible solutions with guaranteed suboptimality using the dynamically updated
active set, which proceeds in 2 steps: i) the original QP is transformed into the
only equality constrained QP by regarding the active inequality constraints as
equality constraints, whose optimal objective value can be solved explicitly; ii)
taking advantage of the gap between the above-mentioned optimal objective
value and the best dual objective value obtained during iterations, the cone
programming (CP) can be initiated to search for feasible solutions with guar-
anteed suboptimality. It is essential to mention that the updated active set
only needs to be close enough, not necessarily identical, to the optimal active
set, making it possible to consume fewer iterations than the proactive method.

The main contributions of this paper are threefold. First, the proactive
method can deliver the optimal solution using a relatively small number of



Springer Nature 2021 LATEX template

On feasible solutions with guaranteed suboptimality for QP 3

iterations compared to conventional primal-dual gradient methods. Second,
the suboptimal method, requiring fewer iterations than the proactive method,
can generate feasible solutions with guaranteed suboptimality. Third, the lower
bound of suboptimality is demonstrated such that any suboptimality greater
than the bound can make the suboptimal method terminated with finite
iterations.

This paper is organized as follows. Section 2 sets up the QP problem and
fundamentals. Section 3 proposes the proactive method combining the KKT
criterion and the primal-dual gradient method. Section 4 illustrates transfor-
mations from the original QP into equality constrained QP, and proposes the
suboptimal method to generate feasible solutions with guaranteed suboptimal-
ity. Numerical experiments and results discussions are presented in Section 5.
And conclusions are given in Section 6.

Notation: For n ∈ N>0, Sn+ and Sn++ denote semidefinite positive and
definite positive matrix of size n × n repectively. The norm || · || denotes the
Euclidean norm, for x ∈ Rn, R ∈ Sn+, ||x||R =

√
xTRx, min eig(R) denotes the

minimal eigenvalue of R. For matrix A ∈ Rm1×n and B ∈ Rm2×n (m1,m2 ∈
N+), A ⊕ B = (AT , BT )T , and rank(A) denotes the rank of A. 1 denotes
column vector with elements being 1 of appropriate size. For symmetric matrix
C,D ∈ Sn, C � D means that C −D ∈ Sn+.

2 Problem Statement and Fundamentals
In this section, we formulate the QP problem in the first place. After, the
primal-dual gradient method, and the definitions of ε primal solution and
active set are introduced to build fundamentals of methods studied later.

2.1 Problem Statement
In this paper, we consider below a QP with optimizer y∗:

J ∗ = min
y
J (y) (1a)

s.t. Ay = b, (1b)

Cy ≤ d, (1c)
where J (y) = 1

2 ||y||
2
R, y ∈ Rny, R ∈ Sny++, A ∈ Rne×ny, rank(A) = nr,

b ∈ Rne , C ∈ Rnie×ny and d ∈ Rnie .

Definition 1 (Feasible set) We define Y as the feasible set of problem (1):

Y = {y ∈ Rny | Ay = b,Cy ≤ d}. (2)

Assumption 2.1 We assume that Y is compact, closed and not empty, and there is
at least one y in the interior of Y . We also assume that nr < ny.
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Definition 2 (ε primal solution) y is said to be an ε (ε > 0) primal solution of
problem (1) if and only if y ∈ Y and

J (y)− J ∗ ≤ ε. (3)

The main objective of this paper is to find an efficient way to solve ε primal
solutions of problem (1).

2.2 The Primal-dual Gradient Method
The dual problem of problem (1) is formulated as:

g∗ = max
θ,λ≥0

g(θ,λ) = max
θ,λ≥0

min
y
L(y,θ,λ), (4)

L(y,θ,λ) = 1
2 ||y||

2
R + θT (Ay − b) + λT (Cy − d),

where θ ∈ Rne and λ ∈ Rnie
+ are the dual variables associated with constraint

(1b) and (1c) respectively.

Remark 1 As J (y) is quadratic with polyhedron constraints and R ∈ Sny+ , problem
(1) is convex. Next, the Slater’s condition is satisfied by Assumption 2.1, thus the
strong duality holds by Slater’s theorem (Boyd and Vandenberghe, 2004), namely
J ∗ = g∗.

Commonly, the dual problem (4) is solved in a iterative manner, and
the primal-dual gradient method is adopted in this paper for its accessible
implementation and good scalability, whose general general formulation is:

θk+1 = θk + αkθ(Ayk − b), (5a)
λk+1 = max{0,λk + αkλ(Cyk − d)}, (5b)
yk+1 = −R−1(ATθk+1 +CTλk+1), (5c)

where θk ∈ Rne and λk ∈ Rnie

≥0 are dual variables associated with constraint
(1b) and (1c) respectively, αkθ ∈ R>0 and αkλ ∈ R>0 are step size associated
with θk and λk respectively.

Note that the iterative process (5) can be amenable to formulate in flex-
ible manner through exploiting the specialized problem structure for higher
computation efficiency, such as distributed structure (Giselsson et al, 2013),
parallelized structure (Bertsekas and Tsitsiklis, 2015), splitting scheme (Com-
bettes and Pesquet, 2012), and layering structure (Chiang et al, 2007). Since
the methods of solving problem (1) studied later in this paper are generally
compatible with aforementioned structures, we keep a concise formulation of
(5) hereinafter for readability.
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Assumption 2.2 We assume that αkθ and αkλ satisfy one of the following step size
conditions: minimization rule, Armijo rule and diminishing step size (Bertsekas,
1999), such that the sequence {yk} converges to y∗, e.g. limk→∞ y

k = y∗.

Let P = {1, ..., nie}, the definitions of active constraint, active set and
inactive set are given as follows.

Definition 3 (active set) During iterative process (5), the i-th constraint of (1c),
Ciy ≤ di (C =

⊕nie

i=1Ci, d =
⊕nie

i=1 di), is said to be active at k-th iteration if
Ciy

k ≥ di, i.e., the equality is reached or the inequality constraint is violated; or
λki > 0, its corresponding dual variable is turned positive. Let Ak and Ik denote the
active and the inactive set of constraints (1c) at k-th iteration, which are defined as:

Ak = {i ∈ P | Ciyk ≥ di, or λki > 0}, (6)

Ik = P\Ak. (7)

The optimal active and inactive set are defined respectively as: A∗ = {i ∈
P | Ciy∗ = di}, I∗ = P\A∗.

2.3 KKT Criterion of The Optimal Active Set
In this paper, it is not assumed that the strict complementarity condition or
the linear independence constraint qualification (LICQ) is satisfied 1, where
the former is said to hold if matrix AAk (AAk = A⊕CAk) has full row rank
and the latter is said to hold if λi > 0 for each Ciy∗ = di. As a result, A∗ is
not necessary to be unique. Nonetheless, since strong duality holds for problem
(1) and its objective and constraint functions are differentiable, any y∗ must
satisfy the KKT conditions (Boyd and Vandenberghe, 2004).

As such, a KKT conditions based linear programming (LP) (Gupta et al,
2011) below can generate y∗, if the input Ak is A∗. In other words, it can be
used to check whether Ak is A∗.

min
y,λAk ,sIk ,h

− h (8a)

s.t. Ry +ATθ +CT
AkλAk = 0, (8b)

Ay − b = 0, (8c)
CAky − dAk = 0, (8d)
CIky − dIk + sIk = 0, (8e)
h · 1 ≤ λAk , (8f)
h · 1 ≤ sIk , (8g)
0 ≤ h, (8h)

1The notion of LICQ and strict complementarity condition are borrowed from (Nocedal and
Wright, 2006).
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where CAk =
⊕

i∈Ak Ci, CAk ∈ Rck×ny, dAk =
⊕

i∈Ak di, dAk ∈ Rck , CIk =⊕
i∈Ik Ci, dIk =

⊕
i∈Ik di.

3 Proactive Optimal Active Set Identification
Method (POASIM)

In this section, combining the iterative process (5) and KKT criterion (8), we
propose a proactive method to solve y∗. It proceeds by dynamically checking if
Ak is A∗, which can generally terminate process (5) before the convergence of
iterative process (5), as merely A∗ instead of y∗ is sought after. An illustrative
example will show this feature in Subsection 5.1.

This proactive method is summarized in Alg. 1. Note that it is possible
to have Ak = Ak−i (i = 1, ...k), thus it is sufficient to only test Ak that has
not been tested before. We can obtain y∗ if A∗ is identified during iterations
of (5), but that cannot be guaranteed to happen. Therefore, it is one crucial
drawback of POASIM, and we will show that this can be overcome by the
suboptimal method proposed in the next section.

Algorithm 1 Proactive Optimal Active Set Identification Method
1: Initialize: θ−1, λ−1, k = 0 and ε > 0. y−1 is obtained by (5c).
2: repeat
3: Update primal and dual variables by (5), update Ak by (6)
4: if LP (8) has a solution then return y∗
5: end if
6: k ← k + 1
7: until y∗ is returned

4 Active Set Based ε Suboptimal Method
In this section, based on Definition 3, problem (1) can be dynamically trans-
formed into only equality constrained QP, which can be solved explicitly.
During iterative process (5), with the optimal objective value of the equality
constrained QP and the best dual objective value of problem (4) found so far,
a CP can be formulated to check whether an ε primal solution of problem (1)
is available under Ak.

4.1 Transforming Active Inequality Constraints Into
Equality Constraints

By considering the inequality constraints contained in Ak as equality con-
straints, problem (1) can be dynamically converted into the only equality



Springer Nature 2021 LATEX template

On feasible solutions with guaranteed suboptimality for QP 7

constrained QP (denote y∗Ak its optimizer) as:

J ∗Ak = min
y
J (y), (9a)

s.t. AAky = bAk , (9b)
where AAk = A⊕CAk , and bAk = b⊕ dAk .

Lemma 1 y∗Ak can be solved by the linear equation group below:{
AAky = bAk ,

F TAkRy = 0,
(10)

where FAk ∈ Rny×(ny−nr−ck) is a orthonormal null space matrix of AAk satisfying
AAkFAk = 0.

Proof By Assumption 2.1, rank(F TAk ) = ny − nr − ck. Since rank(AAk ) = ck + nr
and R ∈ Sny++, the linear equation group (10) has row rank as ny, and it has the
unique solution.

The feasible set YAk of problem (9) is characterized as:
YAk ={y ∈ Rny | AAky = bAk}

={ŷAk + FAktAk | tAk ∈ Rny−nr−ck}, (11)
where the second equation is based on any ŷAk ∈ YAk .

It is trivial that the solution of the linear equation group is a feasible solution of
problem (9) since (9b) is satisfied.

Next, the optimality will be proved. By (11), problem (9) is equivalent to:
J∗Ak = min

tAk

J(tAk ), (12)

where JAk (tAk ) = 1
2 ||ŷAk + FAktAk ||2R, and J

∗
Ak = J ∗Ak .

By viewing (12), we have ∇JAk (tAk ) = F TAkR(ŷAk +FAktAk ), ∇2JAk (tAk ) =
F TAkRFAk . Next, given ŷAk ∈ YAk , then for any tAk ∈ Rny−nr−ck , there is a corre-
sponding yAk to satisfy yAk = ŷAk + FAktAk . As a result, we have ∇JAk (tAk ) =
F TAkRyAk .

Since the necessary and sufficient optimality condition of unconstrained convex
optimization (12) is: ||∇JAk (tAk )|| = 0, the proof can be concluded by (10). �

4.2 Active Set Based Suboptimal Method (ASBSM)
To emphasis the main contribution, the suboptimal method will be delineated
only for case ck + nr < ny 2 henceforth. Let gkbest = supi≤k,i∈N>0 g(θi,λi). By
the primal-dual theory (Boyd and Vandenberghe, 2004), we have gkbest ≤ J ∗.
Combining with Definition 2, if y ∈ Y , and satisfies

J (y)− gkbest ≤ ε, (13)

2The case ck + nr > ny is unsolvable, executing Ak ← Ak\{i ∈ Ak | λk
i < λ

′k} (λ
′k denote

the ny-th largest value of λk
i , i ∈ Ak), it can be converted into case ck + nr = ny, in which case

the only solution can be obtained by solving linear equation (9b).
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then y is an ε primal solution of problem (1). During the iterations of (5), the
use of gkbest in (13) can reduce the gap between gk and J ∗ by taking advantage
of the sequence {gk} generated.

During iterative process (5), depending on the discrepancy between Ak
and A∗, and difference between gkbest and J ∗, there are 3 possible relations
between J ∗Ak and gkbest given an ε > 0:

J ∗Ak < gkbest, (14)
0 ≤J ∗Ak − gkbest ≤ ε, (15)
ε <J ∗Ak − gkbest. (16)

Note that in case (16), no deterministic ε suboptimality criterion can be
derived without knowing A∗, since even J ∗Ak fails (13).

The following 2 propositions will be used to build criteria for ε primal
solutions when (14) or (15) is satisfied.

Proposition 1 Given ∆ > 0, if y satisfies (9b) and ‖F TAkRy‖ ≤ (2βAk ∆)
1
2 , where

βAk = min eig(F TAkRFAk ), then it must hold that:

J (y)− J ∗Ak ≤ ∆. (17)

Proof As y satisfies (9b), it is a feasible solution of problem (9). Since problem (12)
is convex and unconstrained, and ∇2JAk (tAk ) = F TAkRFAk � βAkI, (17) holds by
applying (9.10) of (Boyd and Vandenberghe, 2004). �

Now, we consider below a CP with optimizer (ysub, s1
Ik , h

1):

min
y,sIk ,h

−h (18a)

s.t. (9b), (8e), (8g), (8h),

||F TAkRy|| ≤ (2βAk (ε+ gkbest − J ∗Ak )) 1
2 . (18b)

Proposition 2 If CP (18) has a solution and

J ∗Ak − gkbest ≤ ε, (19)

then ysub is an ε primal solution of problem (1).

Proof We first prove for case (14). Let δk = gkbest −J
∗
Ak . As ysub satisfies (9b),(8e),

(8g), (8h), we have AAkysub = bAk , and CIkysub ≤ dIk . Since at each iteration,
C consists of CIk and CAk , then by (2), ysub ∈ Y . In the continuation, by the
primal-dual theory (Boyd and Vandenberghe, 2004), we have

0 ≤ J (ysub)− gkbest. (20)
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As (18b) is satisfied by ysub, using Proposition 1 we have:
0 ≤ J (ysub)− gkbest ≤ ε. (21)

As a consequence, combining ysub ∈ Y , (20) and (21), ysub is an ε primal solution
of problem (1) by (13).

Second, consider case (15), let ∆k = J ∗Ak − gkbest, by (17) it holds that: J (y)−
J ∗Ak ≤ ε − ∆k. Namely, J (y) − gkbest ≤ ε. The rest of the proof remains the same
with that of case (14). �

In a cost ascending order, ASBSM (detailed in Alg.2) presents how to
compute an ε primal solution3 of problem (1) with Ak and y∗Ak updated at
k-th iteration of (5): firstly, check whether y∗Ak is an ε primal solution; if not,
check whether Ak is A∗ by (8); if not, then check whether an ε primal solution
can be found by CP (18) using gkbest.

Algorithm 2 Active Set Based Suboptimal Method (ASBSM)
1: Initialize: θ−1, λ−1, k = 0 and ε > 0. y−1 is obtained by (5c).
2: repeat
3: Update primal and dual variables by (5), update Ak by (6), compute
y∗Ak by (10)

4: if y∗Ak ∈ Y then
5: if y∗Ak satisfies (13) then return y∗Ak

6: end if
7: end if
8: if LP (8) has a solution for Ak then return y∗
9: end if

10: if y∗Ak satisfies (19) then
11: if CP (18) has a solution then return ysub
12: end if
13: end if
14: k ← k + 1
15: until one of y∗Ak , y∗ and ysub is returned

4.3 Optimization Properties of ASBSM
From here, we will use the following 2 lemmas to derive the lower bound of ε
such that for any ε above the bound, ASBSM can be terminated with finite
iterations.

Lemma 2 Under Assumption 2.2, in implementing ASBSM, (19) can be satisfied
with finite iterations ∀ε > 0.

3The optimal solution of problem (1) is trivially an ε primal solution of problem (1).
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Proof First, consider the following problem

δ = inf
i∈I∗
{min
y
||y − y∗|| | Ciy = di}.

As yk asymptotically converges to y∗ by Assumption 2.2, there exists a k1 such that
∀k ≥ k1, ||yk−y∗|| ≤ δ. So, for Ak generated by (6), ∀k ≥ k1, we have I∗ ∩Ak = ∅.
Therefore, we have Ak ⊂ A∗, ∀k ≥ k1, which means Y is a proper subset of the
feasible set of problem (9), thus we have:

J ∗Ak ≤ J ∗, ∀k ≥ k1. (22)

Given a ε > 0, there exists a k2 by Remark 1 such that

J ∗ − gkbest ≤ ε, ∀k ≥ k2. (23)

Consequently, combing (22) and (23), we have

J ∗Ak − gkbest ≤ ε, ∀k ≥ max{k1, k2}. (24)

And this completes the proof. �

Here, we consider the following norm minimization:

δ̄ = min
y
||F TARy||, s.t. y ∈ Y,

where FA ∈ Rny×(ny−nr) is a orthonormal null space matrix of A satisfying
AFA = 0.

Lemma 3 Under Assumption 2.2, an ε primal solution of problem (1) can be gen-
erated with finite iterations in implementing ASBSM ∀ε > δ̄/2βA, where βA =
min eig(F TARFA).

Proof By Lemma 2, given an arbitrary ε′ > 0, there exists a k such that

J ∗Ak − gkbest ≤ ε
′. (25)

Next, consider the problem:

δk = min
y
||F TAkRy||, s.t. (9b),CIky ≤ dIk .

Observing (18b), for εk = (δk)2/2βAk + J ∗Ak − gkbest, an ε
k suboptimal solution of

problem (1) can be found by solving CP (18).
By (25), a ((δk)2/2βAk +ε′) suboptimal solution of problem (1) can be generated

with at most k iterations. If it can be shown that

(δk)2/2βAk ≤ δ̄2/2βA, (26)

then for ε = δ̄/2βA + ε′, an ε primal solution of problem (1) can be generated with
at most k iterations. Since ε′ can be arbitrarily small, then an ε primal solution of
problem (1) can be generated with finite iterations ∀ε > δ̄/2βA.

We give the proof of (26) from here. When AAk = A, (26) trivially holds. When
AAk 6= A, which indicates AAk = A⊕CAk . Subsequently, by AF = 0, AFAk = 0,
and CAkFAk = 0, the null space of AAk is a subspace of the null space of A.
Since F ∈ Rny×(ny−nr) and FAk ∈ Rny×(ny−nr−ck), there exists a semi-orthogonal
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matrix P ∈ R(ny−nr)×(ny−nr−ck) with PTP = I, such that FP = FAk . It follows
that F TAkRFAk = PTF TRFP . Then by Poincaré separation theorem (Magnus and
Neudecker, 2019), we have

βA ≤ βAk . (27)
Then we have:

||F TAkRy|| = ||PTF TRy||

≤ ||PT ||||F TRy|| = ||F TRy||,∀y ∈ Y (28)
where the inequality uses Cauchy-Shwarz inequality, and the second equality uses
the property of semi-orthogonal matrix that ||PT || = ||P || = 1.

Finally, we can conclude (26) by (27) and (28), and this completes the proof.
�

Remark 2 Note that ε > δ̄/2βA is a sufficient condition for ASBSM to be ter-
minated with finite iterations. In practice, it is possible to take ε much lower than
δ̄/2βA, which will be illustrated with a numerical example in Section 5.

Remark 3 Suppose that POASIM is terminated at k-th iteration, since POASIM
and ASBSM use the same iterative process (5), and the step 8 in ASBSM tests if Ak is
A∗, ASBSM can also be terminated at k-th iteration with y∗ returned. Alternatively,
if one of y∗Ak or ysub is returned prior to k-th iteration, ASBSM can be terminated
with fewer iterations than k. In conclusion, if POASIM can be terminated with finite
iterations, ASBSM can be terminated using the same or fewer iterations.

In terms of ASBSM, economical treatments as follows can further improve
the efficiency of computation:

1. for each distinct Ak, its corresponding variables
CAk ,dAk ,CIk ,dIk ,y∗Ak ,FAk and J ∗Ak can be stored, then if
Ak+i = Ak, i = 1, 2, ..., the above mentioned variables can be retrieved
from the stored data, instead to compute from the scratch4;

2. Ak used in Step 11 of ASBSM is required to have not been tested by CP
(18) before, which can avoid repeated test of CP (18) under the same Ak;

3. at each iteration, if y∗Ak satisfies (13) and y∗Ak ∈ Y , then ASBSM can be
terminated without excess computation. In addition, to avoid unnecessary
solving of CP (18), for each distinct y∗Ak that satisfies y∗Ak ∈ Y and J (y)−
gk̄best > ε, denoting DAk = J ∗Ak − ε. Then for every k̄ > k, one can claim
that y∗Ak is an ε primal solution of problem (1) if

gk̄best ≥ DAk . (29)

5 Numerical Experiments
For numerical experiments, the Nesterov gradient descent (Nesterov, 1983)
(Giselsson et al, 2013), which has been proved to be the best gradient method

4This treatment is also applied to POASIM.
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Table 1: Performance comparison among the Nesterov gradient descent,
POASIM, and ASBSM of a single test with ny=10, and relative suboptimality
5 as 1× 10−2

Nesterov POASIM ASBSM
ε* ε+ Y **

Computation
time (s) 5.8 ×10−3 4.3 ×10−1 8.9 ×10−2 1.7 ×10−2

# of iterations
or (8) solved 15 74803 20 15

Primal feasible no yes yes yes
* solved by (5a)-(5b), a posterior ε suboptimality criterion is used: J ∗ −
g(θk,λk) ≤ 0.01J ∗, where J ∗ is known as a parameter.
** solved by (5a)-(5b), ε suboptimality criterion: J ∗ − g(θk,λk) ≤ 0.01J ∗,

feasibility criteria: ‖Ay− b‖ ≤ 1× 10−16, Cy− d ≤ 1× 10−16. (Because the
numerical results of ‖Ay∗−b‖ and max{0,Cy∗−d} are of magnitude 10−16.)

in (Nesterov, 2018), is adopted for iteration (5a) (5b) as follows.

θk+1 = θ̂k + 1
L

(Aŷk − b),

λk+1 = max{0, λ̂k + 1
L

(Cŷk − d)},

where for a vector ν, ν̂k = νk + k−1
k+2 (νk − νk−1), L = ‖ER−1ET ‖2, and

E = A
⊕
C.

Specifically, we carry out 2 groups of experiments: (i), single small size
problem for a clear-cut comparison of time and iteration number among
POASIM, ASBSM, and the Nesterov gradient descent; (ii), 1000 randomly
generated problems (of size ny = 100) for general performance comparison
between POASIM and ASBSM. All numerical experiments are carried out
using Matlab 2020b on a Windows 10 PC with 2.20 GHz Core i7-8750H CPU
and 16GB RAM. The complete datasets generated in the numerical experi-
ments are available at https://github.com/SettingTheWorld/epsilon
-Suboptimality-QP.

In detail, we use 0 ≤ y ≤ 1 for inequality constraints (1c), and set ne =
ny/2, and R = I. The sparsity concerning matrix A is randomly drawn from
uniform distribution (0, 1) of each problem, and each non zero entry of A is
randomly drawn from uniform distribution (−0.5, 0.5), and the i-th element
of b is randomly drawn from uniform distribution (0,Ai · 1) to ensure that
Y 6= ∅, where Ai denote the i-th row of A.

5.1 Single Test among 3 Methods
In this subsection, a small size (ny=10) test is carried out to present an
intuitive comparison among POASIM, ASBSM, and the Nesterov gradient
descent, Table. 1 shows that when ε suboptimality is only concerned, the Nes-
terov gradient descent discloses evident superiority in iteration number and

https://github.com/SettingTheWorld/epsilon
-Suboptimality-QP
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Table 2: Average and maximal relative error of ASBSM of 1000 rondom tests
with ny = 100

Predefined Rel. Subopt. 10−4 10−3 10−2 10−1

Ave. Rel. Error 0.15 0.06 0.21 0.25
Max. Rel. Error 0.81 0.91 0.84 0.78

time. However, if feasibility is required, the Nesterov gradient descent requires
5000 times more iterations, resulting in worse performance than POASIM and
ASBSM. By contrast, POASIM and ASBSM reveal more favorable results
in iteration number and computation time. They hence will be investigated
further with randomly generated problems of larger size in the following
subsection.

Specifically, by Lemma 3 we have δ̄/2βA = 0.0348 in this test. Then let
ε = δ̄/2βA, the corresponding relative suboptimality is 0.0424, which is a
sufficient condition for ASBSM to be terminated with finite iterations. In
fact, it is quite reasonable to take much smaller ε in practice, e.g. in the next
subsection, predefined relative suboptimality will be set as small as 0.0001,
and all the tests can generate ε primal solution with in finite iterations.

5.2 Random Tests between POASIM and ASBSM
In this subsection, we use 1000 independent randomly generated QP to test
POASIM and ASBSM; for each problem, ASBSM is tested under 4 different
relative suboptimality: 0.0001, 0.001, 0.01 and 0.1. For each random QP, we
set ny = 100, and the sparsity of matrix A is randomly drawn from uniform
distribution (0, 1).

Table 2 shows that the predefined suboptimality of all random tests is
fulfilled. And the average relative error, in general, is significantly lower than
the maximum relative error of all tests.

From Fig. 1, as predefined relative suboptimality increases from 1×10−4 to
1×10−1, the boxplot of iteration number ratio of ASBSM to POASIM declines
steadily. Since the higher suboptimality, the higher tolerance of incorrectness of
Ak, thus the higher possibility for (14) or (15) to occur (the gap between gkbest
and J ∗ becomes more tolerated). This interpretation is validated in Table.
3, where the average number of CP (18) calculated and the number of ysub
grows dramatically as predefined relative suboptimality increases.

In what follows, we point out some noteworthy statistics related to time
performance: solving CP (18) generally consumes 4− 5× 104 more time than
one iterate of (30); the solving time ratio of CP (18) to LP (8) is invariant
(ranges from 3.1 to 5) to suboptimality setting.

In terms of computation time analysis, the more CP (18) calculated, the
longer time ASBSM consumed. Because solving of CP (18) in ASBSM starts
only after the LP (8) is failed, resulting 2 solving processes for one Ak. Never-
theless, as shown in Fig. 2, ASBSM outperform POASIM statistically on time
performance, even though the superiority is blunted somewhat under 1×10−2
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Fig. 1: Iteration number ratio of ASBSM to POASIM of 1000 rondom tests
with ny = 100 (Sample value exceeded +/ − 2.7σ shows as whisker, same
setting for other box plots. Sample value less, greater than or equals to 1
(green horizontal line) means that ASBSM consumes less, more or the same
iteration as POASIM in the same test. The lower value, the better performance
of ASBSM.)

and 1 × 10−1. Note that the considerable number of y∗Ak and y∗ (the first 3
columns of Table. 3) are returned as ε primal suboptimal solution, which leads
to time superiority of ASBSM, as it spares the effort of solving CP (18).

Table 3: Statistics of 1000 random tests with ny = 100: termination by
different approaches in ASBSM and calculation number of CP

Predefined
Rel. Subopt.

Total # returned Ave. # of CP
Calculated

DAk y∗Ak y∗ ysub

10−4 51* 24** 899 26 0.039
10−3 210 193 379 218 0.270
10−2 109 126 68 697 0.972
10−1 27 31 49 893 2.079

* DAk means that the ε primal solution returned is y∗
Ak , which is

found by (29).
** y∗

Ak means that the ε primal solution returned is y∗
Ak , which is

found by Step 5 in ASBSM.
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Fig. 2: Ratio of ASBSM to POASIM on computation time of 1000 rondom
tests with ny = 100 (Sample value less, greater than or equals to 1 (green
horizontal line) means that ASBSM spends less, more or the same computation
time as POASIM in the same test. The lower value, the better performance
of ASBSM.)

6 Conclusion
In this paper, combining the primal-dual gradient method and the KKT con-
ditions, we have proposed a proactive method (POASIM) to solve QP by
checking whether the dynamically updated active set is optimal during the
iterative process. The proactive method can find the optimal solution once
the optimal active set is identified, making the iteration number needed fewer
than the conventional primal-dual gradient method. Aiming at even fewer
iterations required and less computation time consumed, we have turned to
search for feasible solutions with guaranteed suboptimality and have then
proposed a suboptimal method (ASBSM) based on cone programming. The
suboptimal method can be considerably beneficial when the optimal active
set is prohibitive to identify during the iterative process. In addition, we have
demonstrated the lower bound of suboptimality for ASBSM to be terminated
with finite iterations.

Through random numerical experiments, the ε-suboptimality and feasibil-
ity have been verified for the suboptimal method, which has moreover revealed
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statistical improvement of computation time and iteration number compared
to the proactive method.
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