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Abstract

Federated learning becomes a prominent approach
when different entities want to learn collaboratively
a common model without sharing their training
data. However, Federated learning has two main
drawbacks. First, it is quite bandwidth inefficient
as it involves a lot of message exchanges between
the aggregating server and the participating enti-
ties. This bandwidth and corresponding processing
costs could be prohibitive if the participating enti-
ties are, for example, mobile devices. Furthermore,
although federated learning improves privacy by
not sharing data, recent attacks have shown that it
still leaks information about the training data.
This paper presents a novel privacy-preserving fed-
erated learning scheme. The proposed scheme pro-
vides theoretical privacy guarantees, as it is based
on Differential Privacy. Furthermore, it optimizes
the model accuracy by constraining the model
learning phase on few selected weights. Finally, as
shown experimentally, it reduces the upstream and
downstream bandwidth by up to 99.9% compared
to standard federated learning, making it practical
for mobile systems.

1 INTRODUCTION

In Machine Learning, different entities may want to col-
laborate in order to improve their local model accuracy. In
traditional machine learning, such collaboration requires to
first store all entities’ data on a centralized server and then
to train a model on it. Such data centralization might be
problematic when the data are sensitive and data privacy is
required. In order to mitigate this problem, Federated learn-
ing, which allows different entities to learn collaboratively a
common model without sharing their data, was introduced
[Shokri and Shmatikov, 2015, McMahan et al., 2016]. In-

stead of sharing the training data, Federated Learning shares
the model parameters between a server, which plays the
role of aggregator, and the participating entities. Although
Federated Learning improves privacy, model parameters can
leak information about the training data. Indeed, Zhu et al.
[2019], Zhao et al. [2020], Geiping et al. [2020] presented
some attacks that allow an adversary to reconstruct pieces
of the training data of some entities. Nasr et al. [2019] de-
fine a membership attack that allows to infer if a particular
record is included in the data of a specific entity. Similarly,
Melis et al. [2018] define an attack which aims at inferring
if a subgroup of people with a specific property, like for
example skin color or ethnicity, is included in the dataset of
a particular participating entity. A solution to prevent these
attacks and provide theoretical guarantees in to use a privacy
model called Differential Privacy [Dwork and Roth, 2014].
Differential Privacy has been applied to federated learning
in order to protect either each record included in the dataset
of any entity (record-level guarantee), or the whole dataset
of any entity (client-level guarantee). Unfortunately, it is
well-known that Differential Privacy drastically degrades
the accuracy of the global model as it requires to add ran-
dom noise to the gradients (record-level) or to the updates
(client-level) of each client. Recent work by Kerkouche et al.
[2020] shows that this accuracy penalty can be reduced if the
model is compressed, as compression reduces the required
amount of noise. Furthermore, Kerkouche et al. [2020] show
that accuracy can be further improved by adding noise only
to the largest update’s values as adding noise on values close
to 0 is likely to lead to random update values.

Following up on these results, we propose a novel differen-
tially private federated learning solution that improves the
model accuracy (1) by updating only a fixed subset of the
model weights, and (2) by maintaining the other weights
constant. The proposed scheme provides theoretical privacy
guarantees, as it is based on Differential Privacy. Further-
more, it optimizes the model accuracy by constraining the
model learning phase on a few selected weights. As all par-
ticipants always update the same set of weights and transfer
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them to the server for aggregation, the proposal can be easily
integrated with secure aggregation [Bonawitz et al., 2016],
which allows parties to add less noise than other decentral-
ized perturbation approaches such as randomized response
[Erlingsson et al., 2014] used in local differential privacy.
Moreover, it also reduces the upstream and downstream
bandwidth by a factor of 1000 compared to standard feder-
ated learning, making it practical for mobile systems. The
paper is structured as follows: In Section 2 we introduce
the necessary background to understand the proposal, in
Section 3 we define our solution called FL-TOP and in
Section 3.2 its private extension called FL-TOP-DP.

2 BACKGROUND

2.1 FEDERATED LEARNING (FL-STD)

In federated learning [Shokri and Shmatikov, 2015, McMa-
han et al., 2016], multiple parties (clients) build a common
machine learning model from union of their training data
without sharing them with each other. At each round of the
training, a selected set of clients retrieve the global model
from the parameter server, update the global model based on
their own training data, and send back their updated model
to the server. The server aggregates the updated models of
all clients to obtain a global model that is re-distributed to
some selected parties in the next round.

In particular, a subset K of all N clients are randomly
selected at each round to update the global model, and
C = |K|/N denotes the fraction of selected clients. At round
t, a selected client k ∈K executes Tgd local gradient descent
iterations on the common model wt−1 using its own training
data Dk (D = ∪k∈KDk), and obtains the updated model wk

t ,
where the number of weights is denoted by n (i.e., |wk

t |=
|∆wk

t | = n for all k and t). Each client k submits the up-
date ∆wk

t = wk
t −wk

t−1 to the server, which then updates the
common model as follows: wt = wt−1 +∑k∈K

|Dk|
∑ j |D j |∆wk

t ,
where |Dk| is known to the server for all k (a client’s update
is weighted with the size of its training data). The server
stops training after a fixed number of rounds Tcl, or when
the performance of the common model does not improve on
a held-out data.

Note that each Dk may be generated from different distribu-
tions (i.e., Non-IID case), that is, any client’s local dataset
may not be representative of the population distribution
[McMahan et al., 2016]. This can happen, for example,
when not all output classes are represented in every client’s
training data. The federated learning of neural networks is
summarized in Alg. 4. In the sequel, each client is assumed
to use the same model architecture.

The motivation of federated learning is three-fold: first, it
aims to provide confidentiality of each participant’s training
data by sharing only model updates instead of potentially

sensitive training data. Second, in order to decrease com-
munication costs, clients can perform multiple local SGD
iterations before sending their update back to the server.
Third, in each round, only a few clients are required to per-
form local training of the common model, which further
diminishes communication costs and makes the approach
especially appealing with large number of clients.

However, several prior works have demonstrated that model
updates do leak potentially sensitive information [Nasr et al.,
2019, Melis et al., 2018]. Hence, simply not sharing training
data per se is not enough to guarantee their confidentiality.

2.2 DIFFERENTIAL PRIVACY

Differential privacy allows a party to privately release in-
formation about a dataset: a function of an input dataset is
perturbed, so that any information which can differentiate
a record from the rest of the dataset is bounded Dwork and
Roth [2014].

Definition 1 (Privacy loss). Let A be a privacy mech-
anism which assigns a value Range(A ) to a dataset D.
The privacy loss of A with datasets D and D′ at output
O ∈ Range(A ) is a random variable P(A ,D,D′,O) =

log Pr[A (D)=O]
Pr[A (D′)=O] where the probability is taken on the ran-

domness of A .

Definition 2 ((ε,δ )-Differential Privacy [Dwork and
Roth, 2014]). A privacy mechanism A guarantees (ε,δ )-
differential privacy if for any database D and D′, differing
on at most one record, PrO∼A (D)[P(A ,D,D′,O)> ε]≤ δ .

Intuitively, this guarantees that an adversary, provided with
the output of A , can draw almost the same conclusions (up
to ε with probability larger than 1−δ ) about any record no
matter if it is included in the input of A or not. That is, for
any record owner, a privacy breach is unlikely to be due to
its participation in the dataset.

Moments Accountant. Differential privacy maintains compo-
sition; the privacy guarantee of the k-fold adaptive compo-
sition of A1:k = A1, . . . ,Ak can be computed using the mo-
ments accountant method Abadi et al. [2016]. In particular, it
follows from Markov’s inequality that Pr[P(A ,D,D′,O)≥
ε] ≤ E[exp(λP(A ,D,D′,O))]/exp(λε) for any out-
put O ∈ Range(A ) and λ > 0. A is (ε,δ )-DP
with δ = minλ exp(αA (λ ) − λε), where αA (λ ) =
maxD,D′ logEO∼A (D)[exp(λP(A ,D,D′,O))] is the log of
the moment generating function of the privacy loss. The
privacy guarantee of the composite mechanism A1:k can be
computed using that αA1:k(λ ) ≤ ∑

k
i=1 αAi(λ ) Abadi et al.

[2016].

Gaussian Mechanism. A fundamental concept of all DP
sanitization techniques is the global sensitivity of a func-
tion [Dwork and Roth, 2014].



Definition 3 (Global Lp-sensitivity). For any function f :
D → Rn, the Lp-sensitivity of f is ∆p f = maxD,D′ || f (D)−
f (D′)||p, for all D,D′ differing in at most one record, where
|| · ||p denotes the Lp-norm.

The Gaussian Mechanism [Dwork and Roth, 2014] consists
of adding Gaussian noise to the true output of a function. In
particular, for any function f : D →Rn, the Gaussian mech-
anism is defined as adding i.i.d Gaussian noise with variance
(∆2 f ·σ)2 and zero mean to each coordinate value of f (D).
Recall that the pdf of the Gaussian distribution with mean
µ and variance ξ 2 is pdfG (µ,ξ )(x) =

1√
2πξ

exp
(
− (x−µ)2

2ξ 2

)
.

In fact, the Gaussian mechanism draws vector values from
a multivariate spherical (or isotropic) Gaussian distribution
which is described by random variable G ( f (D),∆2 f ·σIn),
where n is omitted if its unambiguous in the given context.

3 FEDERATED PRUNING

In the standard federated learning scheme (FL-STD, in Sec-
tion 2), the server sends the latest updated model to a ran-
domly selected set of clients (downstream), and each client
sends back its complete model update after local training to
the server (upstream) at each round. Knowing that a model
has on average millions of parameters (each is a floating
point value represented on 32 bits), the network can suffer
from large traffic both upstream and downstream.

Our solution, called FL-TOP, aims to reduce the large
amount of network traffic by reducing both downstream
and upstream traffic. Moreover, a privacy-preserving exten-
sion of this scheme, called FL-TOP-DP, is also proposed,
which provides Differential Privacy for the whole training
data of every client.

In what follows, we first describe the non-private scheme
FL-TOP and then the privacy-preserving FL-TOP-DP.

3.1 FL-TOP: FEDERATED PRUNING FOR
COMPRESSION

FL-TOP is inspired by the pruning techniques proposed in
Han et al. [2016] (see Section 5 for more details), and it aims
to reduce the amount of parameters exchanged downstream
(from the server to the participating entities) and upstream
(from the participating entities to the server). In our scheme,
each client updates only a small subset, Top-K, of the model
parameters (weights) at each round. Only the K weight val-
ues of these Top-K parameters are updated during training,
and neither the clients nor the server need to transfer the
values of the remaining n−K parameters, where n is the
total number of parameters. The set of Top-K parameters do
not change over the whole training and are identical for all
clients. We experimentally show in Section 4 that, if these K
parameters are chosen carefully, the performance penalty is

negligible even if K = 0.005 ·n, that is, 99.5% of the model
parameters are pruned. Note that unlike standard pruning
techniques, where the set of pruned weights are re-selected
after each SGD iteration [Han et al., 2016], our scheme
always updates the same K parameters.

These Top-K parameters are selected by the server at the
beginning of the protocol. More specifically, the server ini-
tializes the model and trains that with some public data that
have a similar distribution as the clients’ training data. After
a few SGD iterations, the server selects the K parameters
which values changed the most.

FL-TOP is described in Alg. 1. First, the server uses public
data to identify the set T of the Top-K parameters (K = |T|),
before starting federated learning. In particular, starting
from a public model w0, it accumulates the absolute value of
gradients per parameter over Tinit SGD iterations, and selects
the K parameters with the largest accumulated gradients.
After that, the values/updates1 of these parameters are the
only ones exchanged during the rest of the training between
the server and the clients.

At each round, each selected client k uses the K updated
weights ŵt−1 received from the server to create a new weight
vector wk

t−1 of size n, such that wk
t−1 is composed from the

compressed vector ŵk
t−1 of size K ≤ n (with coordinates in

T) and n−K weights from the initialization vector w0. w0
is identical for all participants and can be generated from
a shared seed. Note that when K = |T|= n, the scheme is
equivalent to FL-STD. The weight vector wk

t−1 is used to
train the client’s model. However, only the weights in T
are updated while the remaining ones are kept fixed. To do
that, the weights not in T are reinitialized after each SGD
iteration to w0. The server receives only the values from
wk

t −wk
t−1 at coordinates T, denoted by C (wk

t −wk
t−1) for

short, from every client k, and updates the common model
wt with the average of these compressed updates (in Line
12).

3.2 FL-TOP-DP: DIFFERENTIALLY PRIVATE
FEDERATED PRUNING

3.2.1 Privacy Model

We consider an adversary, or a set of colluding adversaries,
who can access any update vector sent by the server or any
clients at each round of the protocol. A plausible adversary
is a participating entity, i.e. a malicious client or server, that
wants to infer the training data used by other participants.
The adversary is passive (i.e., honest-but-curious), that is, it
follows the learning protocol faithfully.

Different privacy requirements can be considered depending

1weight values for downstream and update/gradients for up-
stream traffic



on what information the adversary aims to infer. In general,
private information can be inferred about:

• any record (user) in any dataset of any client (record-
level privacy),

• any client/party (client-level privacy).

To illustrate the above requirements, suppose that several
banks build a common model to predict the creditworthiness
of their customers. A bank certainly does not want other
banks to learn the financial status of any of their customers
(record privacy) and perhaps not even the average income
of all their customers (client privacy).

Record-level privacy is a standard requirement used in the
privacy literature and is usually weaker than client-level
privacy. Indeed, client-level privacy requires to hide any
information which is unique to a client including perhaps
all its training data.

We aim at developing a solution that provides client-level
privacy and is also bandwidth efficient. For example, in the
scenario of collaborating banks, we aim at protecting any
information that is unique to each single bank’s training
data. The adversary should not be able to learn from the
received model or its updates whether any client’s data is
involved in the federated run (up to ε and δ ). We believe
that this adversarial model is reasonable in many practical
applications when the confidential information spans over
multiple samples in the training data of a single client (e.g.,
the presence of a group a samples, such as people from
a certain race). Differential Privacy guarantees plausible
deniability not only to any groups of samples of a client
but also to any client in the federated run. Therefore, any
negative privacy impact on a party (or its training samples)
cannot be attributed to their involvement in the protocol run.

3.2.2 Operation

FL-TOP-DP is described in Alg. 3 is very similar to FL-
TOP except that each client adds Gaussian noise to its Top-
K model updates to guarantee client-level DP, and applies
secure aggregation allowing the server to learn only the
aggregated (and noisy) model update. More specifically,
each client first calculates its compressed model update
∆wk

t = C (wk
t −wk

t−1) (in Line 25) which is then clipped (in
Line 26) to obtain ∆ŵk

t with L2-norm at most S. After that,
random noise zk ∼ G (0,SσI/

√
K) is added to ∆ŵk

t such
that the sum ∑k∈K(∆ŵk

t + zk) = ∑k∈K ∆ŵk
t +G (0,SσI) as

the sum of Gaussian random variables also follows Gaussian
distribution2 and then differential privacy is satisfied where
ε and δ can be computed using the moments accountant
described in Section 2.2. Recall that the Top-K coordinates

2More precisely, ∑i G (νi,ξi) = G (∑i νi,
√

∑i ξ 2
i )

in T are selected and distributed by the server, which is
honest-but-curious by assumption.

However, as the noise is inversely proportional to
√
K, zk is

likely to be small if |K| is too large. Therefore, the adversary
accessing an individual update ∆ŵk

t + zk can almost learn a
non-noisy update since zk is small. Hence, each client uses
secure aggregation to encrypt its individual update before
sending it to the server. Upon reception, the server sums the
encrypted updates as:

∑
k∈K

ck
t = ∑

k∈K
EncKk(∆ŵk

t + zk) = ∑
k∈K

∆ŵk
t + ∑

k∈K
zk

= ∑
k∈K

∆ŵk
t +G (0,SσI) (1)

where EncKk(∆ŵk
t + zk) = ∆ŵk

t + zk + Kk mod p and
∑k Kk = 0 (see Ács and Castelluccia [2011], Bonawitz
et al. [2016] for details). Here the modulo is taken
element-wise and p = 2dlog2(maxk ||∆ŵk

t +zk||∞|K|)e. Let γk
t =

1/max
(

1, ||∆wk
t ||2

S

)
. Then,

∑
k∈K

∆ŵk
t = ∑

k∈K
γ

k
t ∆wk

t = ∑
k∈K

γ
k
t C (wk

t −wk
t−1,T)

= C (∑
k∈K

γ
k
t (w

k
t −wk

t−1),T) (2)

where the last equality comes from the linearity of the com-
pression operation. Indeed, recall that each client selects
the values of the same Top-K coordinates from T. Plugging
Eq. (2) into Eq. (1). we get that

∑
k∈K

ck
t = C (∑

k∈K
γ

k
t (w

k
t −wk

t−1),T)+G (0,SσI)

Privacy analysis: The server can only access the noisy ag-
gregate which is sufficiently perturbed to ensure differential
privacy; any client-specific information that could be in-
ferred from the noisy aggregate is tracked and quantified
by the moments accountant, described in Section 2.2, as
follows.

Let η0(x|ξ ) = pdfG (0,ξ )(x) and η1(x|ξ ) =
(1 − C)pdfG (0,ξ )(x) + CpdfG (1,ξ )(x) where C is the
sampling probability of a single client in a single
round. Let α(λ |C) = logmax(E1(λ ,ξ ,C),E2(λ ,ξ ,C))

where E1(λ ,ξ ,C) =
∫
R η0(x|ξ ,C) ·

(
η0(x|ξ ,C)
η1(x|ξ ,C)

)λ

dx and

E2(λ ,ξ ,C) =
∫
R η1(x|ξ ,C) ·

(
η1(x|ξ ,C)
η0(x|ξ ,C)

)λ

dx.

Theorem 1 (Privacy of FL-TOP-DP). FL-TOP-DP is
(minλ (Tcl ·α(λ |C)− logδ )/λ ,δ )-DP.

Given a fixed value of δ , ε is computed numerically as in
Abadi et al. [2016], Mironov et al. [2019].



Algorithm 1: FL-TOP: Federated Learning

1 Server:
2 Initialize common model w0
3 Select set T of Top-K updated weights’ coordinates via

public dataset
4 for t = 1 to Tcl do
5 Select K clients uniformly at random
6 for each client k in K do
7 ck

t = Clientk(C (wt−1,T))
8 end
9 wt = w0

10 j = 1
11 for each coordinate i in T do
12 wt [i] = wt−1[i]+∑k

ck
t [ j]
|K|

13 j = j+1
14 end
15 end

Output: Global model wt
16

17 Clientk(ŵk
t−1):

18 wk
t−1 = w0

19 j = 1
20 for each coordinate i in T do
21 wk

t−1[i] = ŵk
t−1[ j]

22 j = j+1
23 end
24 wk

t = TopkSGD(Dk,wk
t−1,w0,Tgd,T)

Output: Model update C (wk
t −wk

t−1,T)

3.2.3 Remarks

The magnitude of the added Gaussian noise is proportional
to the clipping threshold S, which is in turn calibrated to
the norm of the model update. However, the norm of the
model update increases if the model size increases [Zhu
et al., 2020], and hence S should be chosen sufficiently large
to guarantee fast convergence with large accuracy. On the
other hand, too large S also increases the perturbation error
caused by the added noise.

FL-TOP aims to diminish this perturbation error by reduc-
ing S via compression which also increases the L2-norm of
the compressed update vector. This is illustrated in Figure 1,
which shows that the norm of the Top-K coordinates with
FL-TOP tend to be larger than with FL-STD (i.e., when all
coordinates get updated not only the Top-K). Therefore, be-
sides decreasing the magnitude of the added noise, FL-TOP
also decreases the relative error on the retained parameters.
These together decrease the perturbation error caused by the
added noise.

Notice that there exist other alternatives to identify the Top-
K coordinates in a privacy-preserving manner than using
a public dataset. For example, every client can select the
Top-K parameters with the largest magnitude during the first

Algorithm 2: Topk-Stochastic Gradient Descent
Input: D : training data, Tgd : local epochs, w : weights, w0 :

first weights’ initialization, T : set of Top-K values
coordinates .

1 for t = 1 to Tgd do
2 Select batch B from D randomly
3 u =−η∇ f (B;w)
4 for each coordinate i in T do
5 w[i] = w[i]+u[i]
6 end
7 end

Output: Model w

rounds locally, and send them to the server for aggregation.
More specifically, each client creates a parameter vector
with size n, where the Top-K coordinates are set to 1 while
the rest are kept 0. Then, these binary vectors are noised and
aggregated by the server like in Section 3.2.2. In the rest
of the training, all participants exchange only the updates
and weights of the these Top-K parameters like in FL-TOP.
However, aside from consuming more privacy budget, this
approach also has lower accuracy than our proposal accord-
ing to our tests. Moreover, it has larger communication cost
in the initialization phase when the Top-K parameters are
identified and the whole binarized parameter vector is sent
for aggregation.

4 EXPERIMENTAL RESULTS

The goal of this section is to evaluate the performance of
our proposed schemes FL-TOP and FL-TOP-DP on a bench-
mark dataset and a realistic in-hospital mortality prediction
scenario. We aim at evaluating their performance with dif-
ferent levels of compression and comparing them with the
performance of the following learning protocols3:

• FL-STD: The Standard Federated Learning scheme as
described in Section 2.1 (see Alg. 4).

• FL-BASIC: A Federated Learning scheme that updates
a random subset of parameters instead of the Top-K
parameters at each SGD iteration. This subset is re-
selected at the beginning of each new round. The n− k
non-selected parameters are still reinitialized after each
SGD update as in FL-TOP.

• FL-CS: A Federated Learning scheme that uses Com-
pressive sensing (CS) to compress model updates from
Kerkouche et al. [2020]. See Section 5 for more details.

Note that all compression operators in the baselines are
linear (just like FL-TOP-DP), and hence they can also be
used with secure aggregation. Similarly to FL-TOP-DP, the

3More baselines are considered but due to the lack of space,
we have decided to present only those which return the best results.
All other results can be found in the appendix( Section D).



Algorithm 3: FL-TOP-DP: Federated Learning

1 Server:
2 Initialize common model w0
3 Select set T of Top-K updated weights’ coordinates via

public dataset
4 for t = 1 to Tcl do
5 Select K clients uniformly at random
6 for each client k in K do
7 ck

t = Clientk(C (wt−1,T))
8 end
9 wt = w0

10 j = 1
11 for each coordinate i in T do
12 wt [i] = wt−1[i]+∑k

ck
t [ j]
|K|

13 j = j+1
14 end
15 end

Output: Global model wt
16

17 Clientk(ŵk
t−1):

18 wk
t−1 = w0

19 j = 1
20 for each coordinate i in T do
21 wk

t−1[i] = ŵk
t−1[ j]

22 j = j+1
23 end
24 wk

t = TopkSGD(Dk,wk
t−1,w0,Tgd,T)

25 ∆wk
t = C (wk

t −wk
t−1,T)

26 ∆ŵk
t = ∆wk

t /max
(

1, ||∆wk
t ||2

S

)
Output: EncKk (G (∆ŵk

t ,SIσ/
√
|K|))

private extensions (i.e., FL-STD-DP, FL-BASIC-DP and FL-
CS-DP) also clip and then noise the compressed updates.

We evaluate the above learning algorithms on the well-
known Fashion-MNIST dataset [Xiao et al., 2017] and on
the Premier Healthcare Database, which is a real-world med-
ical dataset of 1.2 millions of US hospital patients 4. More
details can be found in Appendix A.1 and Appendix B.1.

Recall that the Top-K weights are selected before start-
ing the federated learning process using public data. For
Fashion-MNIST, we randomly select a batch with size 10
from MNIST dataset [LeCun and Cortes, 2010] described
in Appendix B.2. For the medical dataset, we did not find
any public dataset with the same features as ours, and for
this reason, we selected randomly from the dataset a batch
of 356 patients5. This set is used only by the server and
never by any client. Afterwards, the server performs Tinit
SGD iterations starting from the model parameters w0 on
the same batch to identify the Top-K weights. We experi-

4https://www.premierinc.com/newsroom/education/premier-
healthcare-database-whitepaper

5Reduced to 24 patients when we train via downsampling with
12 patients for each class

mentally show later that even these small batches are enough
for the server to find a good set of Top-K weights.

In order to select the clipping threshold S, the server exe-
cutes a single training round locally, which is composed of
Tgd SGD iterations starting from the model parameters w0,
using the batch from the public data. The clipping threshold
S is set to the L2-norm of the Top-K weight update obtained
for this single training round. For FL-BASIC-DP, the same
steps are repeated for 100 times, where a new random set
of trainable weights with size K are selected each time,
which yields 100 L2-norm values. S is set to the median of
these L2-norm values. We think that this approach is more
fair, because the set of trainable weights is re-selected at
each round in FL-BASIC-DP. The computed values of S can
be found in Table 6 and Table 7 for Fashion-MNIST and
Medical dataset, respectively. More information about the
model architectures and the hyper-parameter selection can
be found in Appendix A.

4.1 RESULTS

Figure 1 displays the distribution of the Top-K updated
weights for FL-TOP and FL-STD at the end of the train-
ing. We select the weights when each scheme reached the
best accuracy over 200 and best balanced accuracy6 over
100 rounds for fashion-MNIST and the medical dataset,
respectively. We choose the smallest compression ratio r
that leads to the best accuracy for the FL-TOP-DP scheme.
Table 1 shows that FL-TOP-DP reaches the best accuracy,
0.81, when r = 0.5% on fashion-MNIST and reaches the
best accuracy, 0.69, when r = 0.1% on the medical dataset.
Both figures validate the intuition that by constraining the
model to update only a small set K of the total weights,
these Top-K become more important and reach larger val-
ues. This result is important when differential privacy is
used as it leads to larger value-to-noise level and therefore
better performance.

Table 1 represents the best accuracy over 200 rounds for
each scheme on the Fashion-MNIST dataset. Round cor-
responds to the round when the best accuracy is reached
and Cost is the average bandwidth consumption calculated
as: r×n×32×Round×C, where 32 is the number of bits
necessary to represent a float value, n is the uncompressed
model size, r = |T|

n , |T| is the compressed model size, C is
the sampling probability of a client, and Round is the round
when we get the the best accuracy.

Table 2 represents the best balanced accuracy over 100
rounds for each scheme on the Medical dataset. AUROC
(area under the receiver operating characteristic curve - see
Appendix A.4) corresponds to the AUROC value when the
best balanced accuracy is reached.

6See Appendix A.4 for more details.
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Figure 1: Distributions of the Top-K weight values (after convergence) for both FL-TOP and FL-STD schemes with the Fashion-MNIST
dataset (left) and the medical dataset (right).

r Algorithms

Performance

Accuracy Round
Downstream Upstream

εCost Cost
(Kilobyte) (Kilobyte)

0.5%

FL-BASIC 0.65 193 21402.03 107 N/A
FL-CS 0.57 185 20514.9 102.56 N/A

FL-TOP 0.82 200 110.88 110.88 N/A
FL-BASIC-DP 0.59 200 22178.27 110.88 1

FL-CS-DP 0.53 200 22178.27 110.88 1
FL-TOP-DP 0.81 200 110.88 110.88 1

5%

FL-BASIC 0.78 196 21734.70 1086.73 N/A
FL-CS 0.82 200 22178.27 1108.91 N/A

FL-TOP 0.84 200 1108.91 1108.91 N/A
FL-BASIC-DP 0.76 195 21623.81 1081.18 0.99

FL-CS-DP 0.78 160 17742.61 887.13 0.94
FL-TOP-DP 0.81 152 842.77 842.77 0.92

10%

FL-BASIC 0.81 196 21734.70 2173.47 N/A
FL-CS 0.85 182 20182.22 2018.22 N/A

FL-TOP 0.85 199 2206.74 2206.74 N/A
FL-BASIC-DP 0.79 189 20958.46 2095.85 0.98

FL-CS-DP 0.72 167 18518.85 1851.89 0.95
FL-TOP-DP 0.80 157 1740.99 1740.99 0.93

100% FL-STD 0.86 200 22178.27 22178.27 N/A
FL-STD-DP 0.56 60 6653.48 6653.48 0.76

Table 1: Summary of results on Fashion-MNIST dataset.

r Algorithms

Performance

Bal_Acc AUROC Round
Downstream Upstream

εCost Cost
(Kilobyte) (Kilobyte)

0.1%

FL-BASIC 0.51 0.51 99 11829.42 11.82 N/A
FL-CS 0.53 0.55 100 11948.91 11.94 N/A

FL-TOP 0.69 0.76 68 8.12 8.12 N/A
FL-BASIC-DP 0.50 0.49 100 11948.91 11.94 1

FL-CS-DP 0.51 0.51 99 11829.42 11.82 1
FL-TOP-DP 0.69 0.76 85 10.15 10.15 0.97

5%

FL-BASIC 0.72 0.80 100 11948.91 597.45 N/A
FL-CS 0.73 0.81 98 11709.93 585.5 N/A

FL-TOP 0.72 0.80 95 567.57 567.57 N/A
FL-BASIC-DP 0.69 0.76 100 11948.91 597.45 1

FL-CS-DP 0.69 0.76 100 11948.91 597.45 1
FL-TOP-DP 0.68 0.75 23 137.41 137.41 0.79

10%

FL-BASIC 0.74 0.81 100 11948.91 1194.89 N/A
FL-CS 0.74 0.82 100 11948.91 1194.89 N/A

FL-TOP 0.74 0.82 90 1075.40 1075.40 N/A
FL-BASIC-DP 0.69 0.76 99 11829.42 1182.94 1

FL-CS-DP 0.69 0.76 96 11470.95 1147.09 0.99
FL-TOP-DP 0.68 0.74 23 274.82 274.82 0.79

100% FL-STD 0.74 0.82 99 11829.42 11829.42 N/A
FL-STD-DP 0.66 0.72 62 7408.32 7408.32 0.91

Table 2: Summary of results on Medical dataset.

These tables show that the proposed non-private scheme
FL-TOP has similar accuracy than the standard scheme
FL-STD but reduces the bandwidth cost significantly. For
example, with the Fashion-MNIST dataset, the FL-TOP ac-
curacy reaches 0.85 when the compression ratio r = 10%.
In comparison, the standard FL-STD scheme reaches an
accuracy of 0.86% but consumes 10 times more bandwidth.
Furthermore, although FL-CS reaches the same accuracy
than FL-TOP and consumes slightly less bandwidth up-
stream (9% less), its required downstream bandwidth is
about 10 times larger (See Table 1 for more details). The
results on the medical dataset are quite similar. In fact, FL-
TOP achieves its best balanced accuracy (0.74) and AUROC
(0.82) when r = 10% while the FL-STD scheme obtains sim-
ilar performance but required about 11 times more upsteam
and downstream bandwidth cost. FL-CS achieves similarly
accuracy at r = 10% as FL-TOP but its downstream required
bandwidth is about 11 times larger (see Table 2 for more
details).

The results also show that not only our privacy-preserving
solution FL-TOP-DP provides strong privacy guarantee
(with ε values smaller than 1) but that it outperforms the

other schemes in term of accuracy and bandwidth, for both
datasets. For example, with Fashion-MNIST, our scheme
achieves an accuracy of 0.81 when r = 0.5% while the base-
line scheme, FL-BASIC-DP, achieves an accuracy of 0.79
when r = 10% and requires 189 times more downstream
bandwidth and 18 times more upstream bandwidth. With
the medical dataset, FL-TOP-DP reaches the best balanced
accuracy 0.69 and best AUROC 0.76 for a compression ratio
of r = 0.1% while FL-BASIC-DP and FL-CS-DP achieves
the same performance at r = 5%. Note that FL-STD-DP per-
forms very poorly as noise has to be added to the all weights
of the model and the sensitivity is large (see Table 2).

5 RELATED WORK

Privacy of Federated Learning: The concept of Client-
based Differential Privacy has been introduced in McMahan
et al. [2018] and Geyer et al. [2017], where the goal is
to hide any information that is specific to a single client’s
training data. These algorithms noise the contribution of a
single client instead of a single record in the client’s dataset.
The noise is added by the server, hence, unlike our solution,



these works assume that the server is trusted.

Recently, Liu et al. [2020] also proposed to add noise only
to the update of the Top-K model parameters a la local-DP.
In local-DP, each client adds larger noise that what is nec-
essary to guarantee DP for the aggregated model update
without using secure aggregation. Therefore, the common
model is less accurate than with our scheme. In addition,
Liu et al. [2020] uses two epsilon budgets; one for selecting
Top-K parameters per client, and the second for perturbing
these selected Top-K parameters. By contrast, we select the
Top-K parameters via public data without sacrificing any
privacy budget. Finally, their solution is also less bandwidth
efficient than ours: as the Top-K parameters differ for each
client and at each round, the client cannot send only the Top-
K parameters values because the server will not be able to
identify which value corresponds to which Top-K parameter.
For this reason, the client has to send a sparse vector with
only Top-K perturbed values and all remaining parameters
set to 0. Therefore, the quantization of the non-Top-K pa-
rameters is performed only during the upstream (from client
to server) without compressing any downstream traffic. As
opposed to this, in our solution, only the weights/updates of
the Top-K parameters are transferred downstream/upstream.

Recently, Kerkouche et al. [2020] proposed to use Com-
pressive sensing (CS) in the context of federated learning
in order to compress model updates meanwhile providing
client-level DP. Assuming that the model update is already
sparse in the time domain, the noise is added to its largest
Fourier coefficients in a distributed manner, and the noisy
aggregate is reconstructed with standard optimization tech-
niques. Likewise our solution, this work also uses secure
aggregation by exploiting the linearity of CS. However, the
reconstruction process can be slow for large models, and
therefore our solution is more scalable. Moreover, it can
only compress the upstream traffic.

Bandwidth Optimization in Federated Learning: Differ-
ent quantization methods have been proposed to save the
bandwidth and reduce the communication costs in feder-
ated learning. They can be divided into two main groups:
unbiased and biased methods. The unbiased approximation
techniques use probabilistic quantization schemes to com-
press the stochastic gradient and attempt to approximate the
true gradient value as much as possible [Alistarh et al., 2016,
Wen and al., 2017, Wang et al., 2018, Konecný et al., 2016].
However, biased approximations of the stochastic gradient
can still guarantee convergence both in theory and practice
[Bernstein et al., 2018, Lin et al., 2018, Seide et al., 2014].
SignSGD Bernstein et al. [2018] a quantization protocol
allows to compress during downstream and upstream traffic
but requires the use of all the clients at each round which
is not realistic in the context of federated settings because
each client is available only during few rounds Kairouz et al.
[2019].

A different line of works exploit the sparsity of model up-
dates to compress them. Amiri and Gündüz [2019a,b] pro-
posed to use a compressive sensing for federated learning
in order to compress model updates without privacy guar-
antees. However, they assume that all clients participate in
each round (as they maintain an error accumulation vector
at each client due to the compression scheme), but as dis-
cussed in Kairouz et al. [2019] this assumption is not always
realistic. Sketching was adapted to federated learning for
the purpose of compressing model updates in Ivkin et al.
[2019] and Rothchild et al. [2020]. The authors proposed
to use Count-Sketch from Charikar et al. [2002] to retrieve
the largest weights in the update vector on the server side.
However, it is unclear how these works can be extended
with privacy guarantees. Moreover, unlike our technique,
they do not compress downstream traffic.

Constraining the weights to have a specific distribution has
already been studied. In Han et al. [2016], for example, the
authors use pruning techniques to create a sparse model at
the end of the training. After each SGD iteration, the authors
zero-out all the weights with an absolute value smaller than a
threshold. Iterating the process leads to a sparse model with
only some absolute weight values larger than 0. Similarly,
Courbariaux et al. [2016] aim to create a model with binary
weights such that at the end of the training all the weights are
close to 1 or −1. After each SGD update, the authors take
the sign of the weights before the next update. After some
iterations, the weight values become close to the interval
limits −1 and 1.

In Frankle and Carbin [2018], a new hypothesis claims that
there exists a sub-network which, if trained separately, can
achieve similar performance as the complete network model
which contains that. To find such a sub-network, one has
to follow a simple iterative procedure: train the complete
network, prune the smallest weights, and then reinitialize
the remaining weights to their original values. These steps
are repeated iteratively. This approach was extended to fed-
erated learning in Li et al. [2020].

6 CONCLUSION

This paper presents a novel privacy-preserving federated
learning scheme that reduces bandwidth, latency and there-
fore power consumption. The proposed scheme is based
on Differential Privacy and therefore provides theoretical
privacy guarantees. Furthermore, it optimizes the model
accuracy by constraining the model learning phase on few
selected weights. We show experimentally, using a public
dataset called Fashion-MNIST and a real world medical
dataset of 1.2 millions of US hospital patients, that it re-
duces the upstream and downstream bandwidth by up to
99.9% compared to standard federated learning, making it
practical for constrained and mobile devices.
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A MEDICAL DATA: DATA
PRE-PROCESSING &
EXPERIMENTAL SETUP DETAILS

This section describes our medical dataset and the experi-
mental setting which is used to evaluate the accuracy and
the privacy of our proposals.

A.1 MEDICAL DATASET

A.1.1 The In-hospital Mortality Prediction Scenario

The ability to accurately predict the risks in the patient’s
perspectives of evolution is a crucial prerequisite in order
to adapt the care that certain patients receive [Fejza et al.,
2018].

We consider the scenario where several hospitals are collab-
orating to train models for in-hospital mortality prediction
using our Federated Learning schemes. This well-studied
real-world problem consists in trying to precisely identify
the patients who are at risk of dying from complications
during their hospital stay [Avati et al., 2018, Rajkomar and
al., 2018, Fejza et al., 2018]. As commonly found in the
literature [Fejza et al., 2018], for such predictions, we focus
on hospital admissions of adults hospitalized for at least 3
days, excluding elective admissions.

A.1.2 The Premier Healthcare Database

We used EHR data from the Premier healthcare database7

which is one of the largest clinical databases in the United
States, collecting information from millions of patients over
a period of 12 months from 415 hospitals in the USA [Fejza
et al., 2018]. These hospitals are supposedly representative
of the United States hospital experience [Fejza et al., 2018].
Each hospital in the database provides discharge files that
are dated records of all billable items (including therapeu-
tic and diagnostic procedures, medication, and laboratory
usage) which are all linked to a given patient’s admission
[Fejza et al., 2018, Makadia and Ryan, 2014].

The initial snapshot of the database used in our work (before
pre-processing step) comprises the EHR data of 1,271,733
hospital admissions. Electronic Health Record (EHR) is a
digital version of a patient’s paper chart readily available
in hospitals. For developing supervised learning and specif-
ically deep learning models, we focus on a specific set of
features from EHR data. The features of interest that capture
the patients information are summarized in Table 3. There
is a total of 24,428 features per patient, mainly due to the
variety of drugs possibly served. As in Avati et al. [2018],
we also removed all the features which appear on less than

7https://www.premierinc.com/newsroom/education/premier-
healthcare-database-whitepaper

100 patients’ records, hence, the number of features was
reduced to 7,280 features.

The Medication regimen complexity index (MRCI) [Mcdon-
ald et al., 2012] is an aggregate score computed from a total
of 65 items, whose purpose is to indicate the complexity
of the patient’s situation. The minimum MRCI score for a
patient is 1.5, which represents a single tablet or capsule
taken once a day as needed (single medication). However
the maximum is not defined since the number of medica-
tions increases the score [Mcdonald et al., 2012]. In our
case, after statistical analysis of our dataset, we consider the
MRCI score as ranging from 2 to 60.

Most real datasets like ours are generally imbalanced with
a skewed distribution between the classes. In our case, the
positive cases (patients who die during their hospital stay)
represent only 3% of all patients. Table 4 gives more details
about this distribution after the pre-processing step which
is discussed in A.2. To deal with this well-known problem,
we have decided to use downsampling technique [More,
2016, He and Garcia, 2009], a standard solution used for
this purpose, as used in Kerkouche et al. [2020].

A.2 PREPROCESSING

1. Features normalization: we extract from the dataset
the values of each feature represented in Table 3. For
gender, we use one-hot encoding: Male, Female and
Unknown. Similarly, for admission type we use 4 fea-
tures: Emergency, Urgent, Trauma Center, and Un-
known 8. For drugs, we extract 24,419 features which
correspond to the different drugs (name and dosage). A
given patient receives only a few of the possible drugs
served, resulting in a very sparse patient’s record. We
use a MinMax normalization for age and MRCI in or-
der to rescale the values of these features between 0
and 1 (using MinMaxScaler class of scikit-learn9). The
labels that we consider are boolean: true means that the
patient died during his hospital stay while false means
she survived.

2. Patients filtering: We consider patient and drug infor-
mation of the first day at the hospital so that we can
make predictions 24 hours after admission (as com-
monly found in the literature [Rajkomar and al., 2018,
Fejza et al., 2018]). We filter out the pregnant and
new-born patients because the medication types and
admission services are not the same for theses two
categories of patients. Our model prediction is built
without patients’ historical medical data. This has the

8https://www.resdac.org/cms-data/
variables/claim-inpatient-admission-type-
code-ffs

9https://scikit-learn.org/
stable/modules/generated/
sklearn.preprocessing.MinMaxScaler.html
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https://www.premierinc.com/newsroom/education/premier-healthcare-database-whitepaper
https://www.resdac.org/cms-data/variables/claim-inpatient-admission-type-code-ffs
https://www.resdac.org/cms-data/variables/claim-inpatient-admission-type-code-ffs
https://www.resdac.org/cms-data/variables/claim-inpatient-admission-type-code-ffs
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html


advantage to require minimum patient’s information
and to work for new patients.

3. Hospitals filtering: The dataset contains 415 hospitals
for a total size of 1,271,733 records. We split randomly
the dataset into disjoint training and testing data (80%
and 20% respectively). The final dataset for testing
contains 254,347 patients, with 7,882 deceased patients
and 246,465 non-deceased patients (see Table 4).
Using Client-Level differential privacy requires to add
more noise than Record-Level differential privacy, be-
cause the privacy purposes are not the same as detailled
in Section 2. To reduce the noise (when ε is fixed)
and then improve the utility, we have to reduce the
number of iterations or to reduce the sampling prob-
ability which are the parameters used to compute ε .
We therefore have two options to reduce the sampling
probability:

- Reducing the number of clients selected at each
round |K|. However this option also decreases
the amount of data, and hence have a negative
impact on the utility. We therefore preferred to
use the next option.

- Increasing the total number of clients N: we cre-
ated more hospitals by splitting randomly the
training data over 5010 "virtual" hospitals. We
also, took care to have at least one in-hospital
dead patient per hospital. Each hospital contains
203 patients. 356 patients are used as public
dataset to define the Top-K updated weights. We
created 5010 hospitals in order to have approxi-
mately the same number of patients per hospital,
each of them with some in-hospital dead patients.
In practise, Client-Level differential privacy is
more adapted to an environment with a large set
of clients as explained in McMahan et al. [2018],
Geyer et al. [2017].

A.3 IMBALANCED DATA

The dataset of each hospital is imbalanced because the pro-
portion of patients that leave the hospital alive is, fortunately,
much larger than in-hospital dead patients. To deal with this
well-known problem, we have decided to use downsampling
technique [More, 2016, He and Garcia, 2009], a standard
solution used for this purpose. 10

A.4 PERFORMANCE METRICS

We use the following metrics:

10We have also tested weighted loss function and oversampling
techniques. But, we noticed experimentally that downsampling
technique outperforms the other techniques for all the schemes.

• Balanced accuracy [Brodersen et al., 2010, Bekkar
et al., 2013] is computed as 1/2 · (TP

P + TN
N ) =

TPR +TNR
2 and is mainly used with imbalanced data.

True Positive Rate (TPR ) and True Negative Rate
(TNR ): TPR = TP

P and TNR = TN
N , where P and N

are the number of positive and negative instances, re-
spectively, and TP and TN are the number of true posi-
tive and true negative instances. We note that traditional
(“non-balanced”) accuracy metrics such as TP +TN

P +N can
be misleading for very imbalanced data Akosa [2017]:
in our dataset, the minority class has only 3% of all the
training samples (see Table 4), which means that a bi-
ased (and totally useless) model always predicting the
majority class would have a (non-balanced) accuracy
of 97%.

• The area under the ROC curve (AUROC ) is also a
frequently used accuracy metric. The ROC curve is
calculated by varying the prediction threshold from 1
to 0, when TPR and FPR are calculated at each thresh-
old. The area under this curve is then used to measure
the quality of the predictions. A random guess has an
AUROC value of 0.5, whereas a perfect prediction has
the largest AUROC value of 1.

A.5 EVALUATION METHOD.

First, we split randomly the dataset of each hospital into dis-
joint training and testing data (80% and 20% respectively).
An entire federated run is executed with this split, and all
the metrics are evaluated in every round on the union of all
clients’ testing data. All metric values of the round with the
best balanced metric are recorded.

A.5.1 Model architecture

As in Avati et al. [2018], Kerkouche et al. [2020], we use a
fully connected neural network model with the following
architecture: two hidden layers of 200 units, which use a
Relu activation function followed by an output layer of 1
unit with sigmoid activation function and a binary cross
entropy loss function. This results in 1,496,601 parameters
in total. We tune η from 0.01 to 0.5 with an increment
value of 0.005. As in Kerkouche et al. [2020], we fix the
momentum parameter ρ to 0.9 and the global learning rate
ηG to 1.0. The number of chunks is set to P = 100 (refers to
Kerkouche et al. [2020] for details). The hyperparameters
used by each of the considered schemes are summarized in
Table 5.



B FASHION-MNIST DATA: DATA
PRE-PROCESSING &
EXPERIMENTAL SETUP DETAILS

B.1 DATA DESCRIPTION

Fashion-MNIST database of fashion articles consists of
60,000 28x28 grayscale images of 10 fashion categories,
along with a test set of 10,000 images Xiao et al. [2017]
Chollet et al. [2015b].

B.2 PUBLIC DATA DESCRIPTION

The MNIST database of handwritten digits. It consists of
28 x 28 grayscale images of digit items and has 10 output
classes. The training set contains 60,000 data samples while
the test/validation set has 10,000 samples LeCun and Cortes
[2010] Chollet et al. [2015b].

B.3 PREPROCESSING

The pixel of each image is an unsigned integer in the range
between 0 and 255. We rescale them to the range [0,1]
instead.

B.4 MODEL ARCHITECTURE

For Fashion-MNIST, we use a model McMahan et al. [2016],
Kerkouche et al. [2020] with the following architecture: a
convolutional neural network (CNN) with two 5x5 convolu-
tion layers (the first with 32 filters, the second with 64, each
followed with 2x2 max pooling), a fully connected layer
with 512 units and ReLu activation, and a final softmax out-
put layer. This results in 1,663,370 parameters in total. We
tune η from 0.01 to 0.5 with an increment value of 0.005. As
in Kerkouche et al. [2020], we fix the momentum parameter
ρ to 0.9 and the global learning rate ηG to 0.35. Same for
the number of chunks used P = 200 (refers to Kerkouche
et al. [2020] for more details). The hyperparameters used by
each of the considered schemes are summarized in Table 5.

C COMPUTATIONAL ENVIRONMENT

Our experiments were performed on a server running
Ubuntu 18.04 LTS equipped with a Intel(R) Xeon(R) Silver
4114 CPU @ 2.20GHz, 192GB RAM, and two NVIDIA
Quadro P5000 GPU card of 16 Go each. We use Keras 2.2.0
Chollet et al. [2015a] with a TensorFlow backend 1.12.0
Abadi et al. [2015] and Numpy 1.14.3 Oliphant [2006] to
implement our models and experiments. We use Python
3.6.5 and our code runs on a Docker container to simplify
reproducibility.

D FURTHER EXPERIMENTS

The goal of this section is to compare the performance of our
proposed schemes FL-TOP and FL-TOP-DP with several
baselines according to different compression ratios. More
specifically, we consider the following additional baselines:

• FL-BAS-2: As in FL-BASIC, only a randomly selected
set of parameters are selected and sent to the server at
each round. Importantly, none of the parameters are
reinitialized during training.

• FL-BAS-3: This baseline is the same as FL-BASIC,
except that the set of random parameters is fixed over
all the rounds.

• FL-BAS-4: Same as FL-BAS-2, except that the set of
random parameters is the same over all the rounds.

• FL-TOP-BIS: Similarly to FL-TOP, it uses the same
Top-K parameters over the whole training. The only
difference is that the n−K non-Top-K parameters are
not re-initialized after each SGD iteration. As in FL-
TOP, after Tgd SGD iterations, clients send the update
of the Top-K parameters to the server.

Note that all compression operators in the new baselines
are still linear (just like FL-TOP-DP), and hence they can
also be used with secure aggregation. Their private exten-
sions (i.e., FL-BAS-2-DP, FL-BAS-3-DP, FL-BAS-4-DP
and FL-TOP-BIS-DP) also clip and then noise the com-
pressed updates as in FL-TOP-DP. The selection of sensitiv-
ity S happens similarly to FL-TOP-DP and FL-BASIC-DP
using the public data as described in Section 4.

D.1 RESULTS

Table 8 shows the best accuracy over 200 rounds for each
scheme on the Fashion-MNIST dataset. Round corresponds
to the round when the best accuracy is achieved and Cost is
the average bandwidth consumption calculated as: r×n×
32×Round×C, where 32 is the number of bits necessary
to represent a float value, n is the uncompressed model size,
r = |T|

n , |T| is the compressed model size, C is the sampling
probability of a client, and Round is the round when we get
the the best accuracy.

Table 9 and Table 10 display the best balanced accuracy over
100 rounds for each scheme on the Medical dataset. AUROC
corresponds to the AUROC value when the best balanced
accuracy is reached, Round is the round when we get the
best balanced accuracy, and finally, Cost is the average band-
width consumption calculated as for the Fashion-MNIST
dataset described above.

On the medical data (see Table 9 and 10), our schemes
FL-TOP and FL-TOP-DP reach 0.64 of balanced accuracy
and 0.70 of AUROC for r = 0.01%, while FL-TOP-Bis and



FL-TOP-Bis-DP, which are the best baselines, have 8% less
of balanced accuracy and 10% less of AUROC for identical
compression ratios. Furthermore, for larger compression
ratios, FL-TOP and FL-TOP-DP have similar results to
that of FL-TOP-Bis and FL-TOP-Bis-DP. However, above
r = 1%, FL-TOP outperforms FL-TOP-BIS. The same holds
for FL-TOP-DP, which outperforms FL-TOP-Bis-DP when
r is more than 0.05%.

On Fashion-MNIST, FL-TOP performs better than other
schemes below r = 10%. For r = 10%, FL-CS and FL-TOP
have the same accuracy of 0.85. FL-TOP-DP is the best DP
scheme independently of the compression ratio r.

Notice the the larger the compression ratio r is the smaller
the performance gap between our schemes and the base-
lines FL-BAS-1, FL-BAS-3. The same holds for their DP
counterparts. This is mainly due to the fact that the larger r
is the more likely that all schemes update the same Top-K
parameters.

FL-CS and FL-CS-DP fail to improve their model accuracy
when r = 0.01% on the medical dataset. The same holds
for FL-BAS-3-DP when r = 0.1% on the Fashion-MNIST
dataset.

On Fashion-MNIST, there is a decrease of accuracy for
each of FL-TOP-DP, FL-TOP-BIS-DP and FL-CS-DP from
r = 5% to r = 10%. Indeed, as suggested in Kerkouche et al.
[2020], it may be due to the increase of sensitivity S which
will also increase the noise and therefore its negative impact
on convergence.

Algorithm 4: FL-STD: Federated Learning

1 Server:
2 Initialize common model w0
3 for t = 1 to Tcl do
4 Select K clients uniformly at random
5 for each client k in K do
6 ∆wk

t = Clientk(wt−1)
7 end
8 wt = wt−1 +∑k

|Dk |
∑ j |D j |∆wk

t

9 end
Output: Global model wt

10

11 Clientk(wk
t−1):

12 wk
t = SGD(Dk,wk

t−1,Tgd)
Output: Model update (wk

t −wk
t−1)

Algorithm 5: Stochastic Gradient Descent
Input: D : training data, Tgd : local epochs, w : weights

1 for t = 1 to Tgd do
2 Select batch B from D randomly
3 w = w−η∇ f (B;w)

4 end
Output: Model w

Algorithm 6: FL-STD-DP: Federated Learning with Client
Privacy

1 Server:
2 Initialize common model w0
3 for t = 1 to Tcl do
4 Select K clients randomly
5 for each client k in K do
6 ∆w̃k

t = Clientk(wt−1)
7 end
8 wt = wt−1 +

1
|K| ∑k ∆w̃k

t

9 end
10 Clientk(wk

t−1):
11 ∆wk

t = SGD(Dk,wk
t−1,Tgd)−wk

t−1

12 ∆ŵk
t = ∆wk

t /max
(

1, ||∆wk
t ||2

S

)
Output: EncKk (G (∆ŵk

t ,SIσ/
√
|K|))



Table 3: Descriptions of features

Features Descriptions
Age Value in the range of 15 and 89

Gender Male, Female or Unknown
Admission type Emergency, Urgent, Trauma Center: visits to a trauma center/hospital or Unknown

MRCI Medication regimen complexity index score (ranging from 2 to 60)

Drugs and ICD9 codes

Drugs given to the patient on the 1st day of hospitalization. The ICD9 codes are composed
of procedures and diagnosis codes, the first gives details about the medical procedures performed
on the patient and the second about the doctor’s diagnosis of the patient. There is a total of 24,419
possible drugs and ICD9 codes [CUADRADO, 2019].

Table 4: Number of instances for our case study. The Medical
dataset contains in total 1,271,733 records.

Data Positive cases Negative cases Ratio Total
Train 32,106 985,280 3.16% 1,017,386
Test 7,882 246,465 3.10% 254,347

Datasets Common Parameters

Fashion-MNIST dataset

C = 1/60; N = 6000; Tcl = 200;
Tgd = 5; |B|= 10; |Dk|= 10; n = 1,663,370;

δ = 10−5; SGD(η = 0.215); ηG = 0.35;
ρ = 0.9; P = 200; σ = 1.54; Tinit = 5

Medical dataset
C = 100/5010; N = 5010; Tcl = 100; Tgd = 40;

n = 1,496,601; δ = 10−5; SGD(η = 0.1); ηG = 1.0;
ρ = 0.9; P = 100; σ = 1.49; Tinit = 40

Table 5: Common environment between the schemes. ρ , ηG and P
are only used with FL-CS and FL-CS-DP.

Algorithms Compression ratio (r)
0.1% 0.5% 1% 5% 10%

FL-BASIC-DP 0.05 0.12 0.16 0.34 0.45
FL-BAS-2-DP 0.07 0.16 0.23 0.52 0.75
FL-BAS-3-DP 0.05 0.11 0.16 0.33 0.44
FL-BAS-4-DP 0.06 0.15 0.21 0.51 0.74

FL-CS-DP 0.21 0.26 0.32 0.57 0.79
FL-TOP-BIS-DP 1.25 1.59 1.79 2.18 2.34

FL-TOP-DP 0.50 0.61 0.64 0.87 1.0

Table 6: Sensitivity S used for each scheme and for different com-
pression ratio r on Fashion-MNIST. For FL-STD-DP, S is set to
2.40.

Algorithms Compression ratio (r)
0.01% 0.05% 0.1% 0.5% 1% 5% 10%

FL-BASIC-DP 0.01 0.03 0.05 0.11 0.16 0.34 0.46
FL-BAS-2-DP 0.01 0.03 0.04 0.09 0.14 0.31 0.44
FL-BAS-3-DP 0.01 0.04 0.06 0.12 0.18 0.35 0.49
FL-BAS-4-DP 0.02 0.03 0.05 0.12 0.15 0.31 0.44

FL-CS-DP 0.002 0.005 0.006 0.01 0.02 0.04 0.06
FL-TOP-BIS-DP 0.60 0.73 0.81 1.03 1.13 1.31 1.32

FL-TOP-DP 0.23 0.46 0.59 1.03 1.18 1.31 1.32

Table 7: Sensitivity S used for each scheme and for different com-
pression ratio r on the medical dataset. For FL-STD-DP, S is set to
1.40.



Compression ratio (r) Algorithms Performance
Accuracy Round Downstream Cost (Kilobyte) Upstream Cost (Kilobyte) ε

0.1%

FL-BASIC 0.14 111 12308.94 12.31 N/A
FL-BAS-2 0.16 185 20514.9 20.51 N/A
FL-BAS-3 0.27 200 22.17 22.17 N/A
FL-BAS-4 0.17 200 22.17 22.17 N/A

FL-CS 0.37 200 22178.27 22.17 N/A
FL-TOPK-BIS 0.59 198 21.95 21.95 N/A

FL-TOP 0.78 199 22.06 22.06 N/A
FL-BASIC-DP 0.14 167 18518.85 18.51 0.95
FL-BAS-2-DP 0.14 124 13750.53 13.75 0.88
FL-BAS-3-DP - - - - -
FL-BAS-4-DP 0.15 137 15.19 15.19 0.90

FL-CS-DP 0.36 197 21845.59 21.84 1
FL-TOPK-BIS-DP 0.59 196 21.73 21.73 0.99

FL-TOP-DP 0.76 199 22.06 22.06 1

0.5%

FL-BASIC 0.65 193 21402.03 107 N/A
FL-BAS-2 0.46 196 21734.70 108.66 N/A
FL-BAS-3 0.73 200 110.88 110.88 N/A
FL-BAS-4 0.41 197 109.22 109.22 N/A

FL-CS 0.57 185 20514.9 102.56 N/A
FL-TOPK-BIS 0.76 200 110.88 110.88 N/A

FL-TOP 0.82 200 110.88 110.88 N/A
FL-BASIC-DP 0.59 200 22178.27 110.88 1
FL-BAS-2-DP 0.38 200 22178.27 110.88 1
FL-BAS-3-DP 0.56 200 110.88 110.88 1
FL-BAS-4-DP 0.33 200 110.88 110.88 1

FL-CS-DP 0.53 200 22178.27 110.88 1
FL-TOPK-BIS-DP 0.68 184 102.01 102.01 0.97

FL-TOP-DP 0.81 200 110.88 110.88 1

1%

FL-BASIC 0.71 194 21512.92 215.12 N/A
FL-BAS-2 0.59 200 22178.27 221.77 N/A
FL-BAS-3 0.76 200 221.77 221.77 N/A
FL-BAS-4 0.56 195 216.23 216.23 N/A

FL-CS 0.69 200 22178.27 221.77 N/A
FL-TOPK-BIS 0.79 197 218.45 218.45 N/A

FL-TOP 0.83 200 221.77 221.77 N/A
FL-BASIC-DP 0.65 197 21845.59 218.45 1
FL-BAS-2-DP 0.62 198 21956.48 219.56 1
FL-BAS-3-DP 0.66 198 219.56 219.56 1
FL-BAS-4-DP 0.52 198 219.56 219.56 1

FL-CS-DP 0.66 189 20958.46 209.58 0.98
FL-TOPK-BIS-DP 0.70 174 192.94 192.94 0.96

FL-TOP-DP 0.81 183 202.92 202.92 0.97

5%

FL-BASIC 0.78 196 21734.70 1086.73 N/A
FL-BAS-2 0.72 199 22067.38 1103.36 N/A
FL-BAS-3 0.81 199 1103.36 1103.36 N/A
FL-BAS-4 0.76 196 1086.73 1086.73 N/A

FL-CS 0.82 200 22178.27 1108.91 N/A
FL-TOPK-BIS 0.83 196 1086.73 1086.73 N/A

FL-TOP 0.84 200 1108.91 1108.91 N/A
FL-BASIC-DP 0.76 195 21623.81 1081.18 0.99
FL-BAS-2-DP 0.72 195 21623.81 1081.18 0.99
FL-BAS-3-DP 0.76 199 1103.36 1103.36 1
FL-BAS-4-DP 0.75 191 1059.01 1059.01 0.99

FL-CS-DP 0.78 160 17742.61 887.13 0.94
FL-TOPK-BIS-DP 0.71 152 842.77 842.77 0.92

FL-TOP-DP 0.81 152 842.77 842.77 0.92

10%

FL-BASIC 0.81 196 21734.70 2173.47 N/A
FL-BAS-2 0.78 199 22067.38 2206.74 N/A
FL-BAS-3 0.82 195 2162.38 2162.38 N/A
FL-BAS-4 0.79 200 2217.83 2217.83 N/A

FL-CS 0.85 182 20182.22 2018.22 N/A
FL-TOPK-BIS 0.84 196 2173.47 2173.47 N/A

FL-TOP 0.85 199 2206.74 2206.74 N/A
FL-BASIC-DP 0.79 189 20958.46 2095.85 0.98
FL-BAS-2-DP 0.77 189 20958.46 2095.85 0.98
FL-BAS-3-DP 0.79 183 2029.31 2029.31 0.97
FL-BAS-4-DP 0.78 195 2162.38 2162.38 0.99

FL-CS-DP 0.72 167 18518.85 1851.89 0.95
FL-TOPK-BIS-DP 0.69 138 1530.30 1530.30 0.90

FL-TOP-DP 0.80 157 1740.99 1740.99 0.93

100% FL-STD 0.86 200 22178.27 22178.27 N/A
FL-STD-DP 0.56 60 6653.48 6653.48 0.76

Table 8: Summary of results on Fashion-MNIST dataset.



Compression ratio (r) Algorithms Performance
Bal_Acc AUROC Round Downstream Cost (Kilobyte) Upstream Cost (Kilobyte) ε

0.01%

FL-BASIC 0.49 0.45 100 11948.91 1.19 N/A
FL-BAS-2 0.49 0.45 94 11231.98 1.12 N/A
FL-BAS-3 0.49 0.45 81 0.96 0.96 N/A
FL-BAS-4 0.49 0.49 100 1.19 1.19 N/A

FL-CS - - - - - N/A
FL-TOP-Bis 0.59 0.63 100 1.19 1.19 N/A

FL-TOP 0.64 0.70 60 0.71 0.71 N/A
FL-BASIC-DP 0.49 0.45 6 716.93 0.07 0.74
FL-BAS-2-DP 0.49 0.45 100 11948.91 1.19 1
FL-BAS-3-DP 0.49 0.45 95 1.13 1.13 0.99
FL-BAS-4-DP 0.49 0.47 96 1.14 1.14 0.99

FL-CS-DP - - - - - -
FL-TOP-Bis-DP 0.59 0.63 94 1.12 1.12 0.99

FL-TOP-DP 0.64 0.70 100 1.19 1.19 1

0.05%

FL-BASIC 0.50 0.48 100 11948.91 5.97 N/A
FL-BAS-2 0.49 0.46 100 11948.91 5.97 N/A
FL-BAS-3 0.51 0.49 100 5.97 5.97 N/A
FL-BAS-4 0.51 0.52 57 3.40 3.40 N/A

FL-CS 0.51 0.50 100 11948.91 5.97 N/A
FL-TOP-Bis 0.68 0.75 92 5.49 5.49 N/A

FL-TOP 0.68 0.75 54 3.22 3.22 N/A
FL-BASIC-DP 0.49 0.46 84 10037.08 5.02 0.96
FL-BAS-2-DP 0.49 0.46 100 11948.91 5.97 1
FL-BAS-3-DP 0.50 0.48 99 5.91 5.91 1
FL-BAS-4-DP 0.52 0.51 100 5.97 5.97 1

FL-CS-DP 0.49 0.48 100 11948.91 5.97 1
FL-TOP-Bis-DP 0.68 0.75 92 5.49 5.49 0.98

FL-TOP-DP 0.68 0.75 99 5.91 5.91 1

0.1%

FL-BASIC 0.51 0.51 99 11829.42 11.82 N/A
FL-BAS-2 0.50 0.47 100 11948.91 11.94 N/A
FL-BAS-3 0.53 0.53 100 11.94 11.94 N/A
FL-BAS-4 0.50 0.53 94 11.23 11.23 N/A

FL-CS 0.53 0.55 100 11948.91 11.94 N/A
FL-TOP-Bis 0.69 0.76 100 11.94 11.94 N/A

FL-TOP 0.69 0.76 68 8.12 8.12 N/A
FL-BASIC-DP 0.50 0.49 100 11948.91 11.94 1
FL-BAS-2-DP 0.50 0.47 100 11948.91 11.94 1
FL-BAS-3-DP 0.55 0.56 100 11.94 11.94 1
FL-BAS-4-DP 0.51 0.52 100 11.94 11.94 1

FL-CS-DP 0.51 0.51 99 11829.42 11.82 1
FL-TOP-Bis-DP 0.68 0.75 89 10.63 10.63 0.98

FL-TOP-DP 0.69 0.76 85 10.15 10.15 0.97

0.5%

FL-BASIC 0.58 0.68 100 11948.91 59.74 N/A
FL-BAS-2 0.56 0.58 99 11829.42 59.15 N/A
FL-BAS-3 0.61 0.68 100 59.74 59.74 N/A
FL-BAS-4 0.56 0.59 100 59.74 59.74 N/A

FL-CS 0.66 0.71 100 11948.91 59.74 N/A
FL-TOP-Bis 0.71 0.78 100 59.74 59.74 N/A

FL-TOP 0.71 0.79 95 56.76 56.76 N/A
FL-BASIC-DP 0.57 0.64 100 11948.91 59.74 1
FL-BAS-2-DP 0.57 0.59 100 11948.91 59.74 1
FL-BAS-3-DP 0.58 0.67 100 59.74 59.74 1
FL-BAS-4-DP 0.54 0.57 34 20.31 20.31 0.83

FL-CS-DP 0.61 0.68 100 11948.91 59.74 1
FL-TOP-Bis-DP 0.68 0.75 55 32.86 32.86 0.89

FL-TOP-DP 0.69 0.76 24 14.34 14.34 0.80

Table 9: Summary of results on Medical dataset (Part 1).



Compression ratio (r) Algorithms Performance
Bal_Acc AUROC Round Downstream Cost (Kilobyte) Upstream Cost (Kilobyte) ε

1%

FL-BASIC 0.64 0.72 100 11948.91 119.49 N/A
FL-BAS-2 0.62 0.66 100 11948.91 119.49 N/A
FL-BAS-3 0.62 0.66 85 101.57 101.57 N/A
FL-BAS-4 0.56 0.59 100 119.49 119.49 N/A

FL-CS 0.68 0.75 100 11948.91 119.49 N/A
FL-TOP-Bis 0.72 0.79 100 119.49 119.49 N/A

FL-TOP 0.72 0.79 58 69.30 69.30 N/A
FL-BASIC-DP 0.64 0.70 100 11948.91 119.49 1
FL-BAS-2-DP 0.62 0.67 100 11948.91 119.49 1
FL-BAS-3-DP 0.61 0.71 100 119.49 119.49 1
FL-BAS-4-DP 0.57 0.66 100 119.49 119.49 1

FL-CS-DP 0.66 0.72 100 11948.91 119.49 1
FL-TOP-Bis-DP 0.68 0.74 53 63.33 63.33 0.89

FL-TOP-DP 0.69 0.76 22 26.29 26.29 0.79

5%

FL-BASIC 0.72 0.80 100 11948.91 597.45 N/A
FL-BAS-2 0.68 0.75 100 11948.91 597.45 N/A
FL-BAS-3 0.69 0.76 98 585.5 585.5 N/A
FL-BAS-4 0.66 0.72 100 597.45 597.45 N/A

FL-CS 0.73 0.81 98 11709.93 585.5 N/A
FL-TOP-Bis 0.72 0.79 100 597.45 597.45 N/A

FL-TOP 0.72 0.80 95 567.57 567.57 N/A
FL-BASIC-DP 0.69 0.76 100 11948.91 597.45 1
FL-BAS-2-DP 0.68 0.75 98 11709.93 585.5 1
FL-BAS-3-DP 0.65 0.71 90 537.70 537.70 0.98
FL-BAS-4-DP 0.67 0.74 98 585.5 585.5 1

FL-CS-DP 0.69 0.76 100 11948.91 597.45 1
FL-TOP-Bis-DP 0.67 0.74 38 227.03 227.03 0.84

FL-TOP-DP 0.68 0.75 23 137.41 137.41 0.79

10%

FL-BASIC 0.74 0.81 100 11948.91 1194.89 N/A
FL-BAS-2 0.70 0.77 100 11948.91 1194.89 N/A
FL-BAS-3 0.72 0.80 98 1170.99 1170.99 N/A
FL-BAS-4 0.70 0.77 99 1182.94 1182.94 N/A

FL-CS 0.74 0.82 100 11948.91 1194.89 N/A
FL-TOP-Bis 0.72 0.80 100 1194.89 1194.89 N/A

FL-TOP 0.74 0.82 90 1075.40 1075.40 N/A
FL-BASIC-DP 0.69 0.76 99 11829.42 1182.94 1
FL-BAS-2-DP 0.69 0.76 95 11351.46 1135.15 0.99
FL-BAS-3-DP 0.69 0.76 95 1135.15 1135.15 0.99
FL-BAS-4-DP 0.69 0.76 100 1194.89 1194.89 1

FL-CS-DP 0.69 0.76 96 11470.95 1147.09 0.99
FL-TOP-Bis-DP 0.67 0.73 37 442.11 442.11 0.84

FL-TOP-DP 0.68 0.74 23 274.82 274.82 0.79

100% FL-STD 0.74 0.82 99 11829.42 11829.42 N/A
FL-STD-DP 0.66 0.72 62 7408.32 7408.32 0.91

Table 10: Summary of results on Medical dataset (Part 2).
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