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Abstract
Analyzing the behavior of sensors is becoming one of the key challenges due to their 
increasing use for decision making in IoT systems. The paper proposes an approach for a 
formal specification and analysis of such behavior starting from existing sensor traces. A 
model that embodies the sensor measurements over time in the form of stochastic autom-
ata is built, then temporal properties are fed to Statistical Model Checker to simulate the 
learned model and to perform analysis. LTL properties are employed to predict sensors’ 
readings in time and to check the conformity of sensed data with the sensor traces in order 
to detect any abnormal behavior. We also use LTL properties to analyze the collective 
behavior of a set of sensors and build a formal model that checks the conformity of a com-
bination of sensors’ readings in time.

Keywords IoT · Sensor Behavior · Stochastic Automata · Statistical Model Checking · 
LTL · BIP

1 Introduction

Internet of Things (IoT) has become one of recent technology mostly used in various 
domains such as health and environmental monitoring (Tao, 2020), construction and 
energy management (Park et  al., 2018), smart vehicles (Al-Turjman & Malekloo, 2019) 
and buildings (Daissaoui et al., 2020). It consists of a collection of entities that interacts 
with users to fulfill a common goal. The sensor is a critical device in the IoT ecosystem 
that allows to measure the state information over time and monitor physical components. 
Data gathered from different sensors are used to make a decision and promote automation 
in IoT systems by providing efficient and intelligent services, whereas corrupted data dur-
ing transmission or malfunction of sensors, due to natural events or other causes can influ-
ence the correct operation of the entire system. Indeed, the massive increase of these issues 
with the growing number of deployed sensors pushes toward the sensors’ behavior analysis 
by checking their sensed data.
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The analysis of sensors’ behavior and detecting the erroneous readings have attracted 
great attention. Many approaches have been proposed based on several methods such 
as statistical methods  (Yu et  al., 2014),  probabilistic methods  (Hill et  al., 2009; Xie 
& Shun-Zheng, 2009), clustering-based methods (He et al., 2003) and prediction-based 
methods  (Shahid et  al., 2015). Governed by the standard learning requirements, the 
approaches rely on the metadata and structure of the sensed data. In this paper, we pro-
pose a model-based approach involving formal specification for sensors’ behavior analy-
sis. Our approach aims to make the analysis process rigorous, automatic, scalable and 
meaningful. In our approach, we start by collecting sensors traces and data preprocessed 
required to build an approximate model of the sensors’ behavior, then we apply formal 
verification techniques to analyze the learned models and check if new measurements 
are compliant with these models. Although our approach cannot be used to detect the 
causes of abnormal behavior of sensors, it can however help to predict sensors’ readings 
and identify possible abnormal readings based on past observations.

Model checkers allow checking the conformity of a system model expressed in for-
mal notation to a set of properties expressed in a logical language. In this study, we 
apply a type of model checkers called Statistical Model Checkers (SMC) to verify 
whether a sensor model expressed in Stochastic Automata (SA) satisfies a given logical 
property up to some probability, based on model simulations. We use quantitative prop-
erties expressed by Linear-time Temporal Logic (LTL) to predict the sensor readings 
in time and qualitative LTL properties to check the confidence of sensed data and their 
compliance with the provided traces. Several SMC tools have been proposed such as 
PRISM-SMC (Kwiatkowska et al., 2011) and UPPAAL-SMC (David et al., 2015a). The 
BIP language (Basu et al., 2011) and SBIP (Mediouni et al., 2018) are used in this paper 
for behavior modeling and SMC analysis. BIP allows the rigorous design of component-
based systems. The choice of BIP is also motivated by its capability for specifying sto-
chastic behaviors and their analysis based on SMC using the SBIP tool.

We apply our approach to the industrial case study of the Cecebre dam in Spain, 
which is equipped with wireless sensors that measure the water contributions to the 
dam. There are three types of sensors that are used to measure the Water Height (WH), 
the Rain Precipitation (RP) and the Water output Flow (WF). As shown in Fig. 1, the 
data collected from sensors are used to control the opening of the spillgate in order 
to ensure that the water does not reach a maximum level in the dam. The anomalous 
behavior of these sensors can influence the correct operation of the dam system. Our 
objective is to build formal models that specify and analyze the behavior of the sen-
sors by checking the flow of data produced by these sensors. A trace of time series data 
recorded by each sensor per day from 1989 to 2016 has been collected. We reorganized 
the original trace by creating a separate CSV file per sensor. Each file contains one sen-
sor readings per day for 28 years. The collected data will be used to build the sensor 
behavior model.

This paper enhances and extends the approach presented in (Chehida et al., 2020) by 
assembling the behavior models of a set of sensors and expressing LTL properties for the 
analysis of their collective behavior. Analyzing the collective behavior of sensors can give 
a more complete image of the phenomenon under observation and reveals interesting con-
sistency between sensors’ behaviors.

The paper is organized as follows: we give an overview of our approach with the tools 
that support it in Section 2. We build the sensors’ behavior models in Section 3. The analy-
sis results per sensor and of the collective behavior will be presented in Sections 4 and 5. 
Finally, we present related works in Section 6 and draw our conclusions in Section 7.
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2  Overall Approach

Figure 2 shows the main steps of our approach that combines data-driven and component-
based paradigms. Starting from the trace of sensed data, we build component models 
that learn the behavior of sensors, then we analyze these models using statistical model 
checking.

Collection and preprocessing of sensor data. In the first step, we start by collecting and 
preparing the sensors data described as time series that contain successive measurements 
of sensors in time. Data preprocessing is a fundamental activity in numerous computer sci-
ence fields, such as machine learning, data mining and pattern recognition. It consists of 
removing errors in original data and preparing the data in a suitable and useable format, 
which leads to quality analysis and learning results. As shown in Fig. 3, the main tasks of 
sensor data preprocessing in our approach are data cleaning and data discretization.

– The data cleaning searches for and then removes or repairs errors and inconsistencies in 
sensors data.

– The data discretization converts continuous (or quantitative) data into discrete (or quali-
tative) ones. It aims to reduce the number of values for continuous time series by divid-
ing sensors’ readings into intervals. Discrete values are easy to use and understand, 
which facilitates learning and analysis of sensors’ behavior. (Yang et al., 2010) presents 
the several methods proposed for time series data discretization. In this study, we use 
the EWD (Equal Width Discretization) method (Dougherty et al., 1995) because of its 
simplicity.

Fig. 1  Dam Infrastructure

Fig. 2  Generic Approach for 
Sensor Behavior Analysis
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Specification of sensor behavior model. In the second step of our approach, we use the 
BIP language1 for modeling the sensors’ behavior as automata starting from preprocessed 
sensors data. BIP (Behavior, Interaction, Priority) is a highly expressive component-based 
language for the rigorous design of complex systems. It allows representing the behavior 
of systems using a set of components, a set of interactions that defines the possible com-
munications between the components and a set of priorities for defining interaction sched-
ule policies. Figure 4 presents the main concepts of BIP and their relationships. Atomic 
components, called Atoms, are the simplest component type (i.e., non-hierarchical) whose 
behavior is expressed by finite-state automata (see example of Fig.  7). BIP supports the 
formal modeling of stochastic systems based on Discrete and Continuous Time Markov 
Chains (DTMC and CTMC) and Generalized Semi-Markov Process (GSMP). Automata 
have transitions labelled with ports and states that denote control locations where compo-
nent waits for interactions. Ports are actions that can be associated with data stored in local 
variables and used for interactions with other components. Types of variables are either 

Fig. 3  Data Preprocessing Steps

Fig. 4  BIP Concepts

1 https:// www- verim ag. imag. fr/ TOOLS/ DCS/ bip/ doc/ latest/ html/ index. html
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native (Boolean, integer, float or string) or external (to be externally defined such as lists 
or files). As for external types, the BIP language allows the declaration of external func-
tion prototypes that are assumed to be externally defined using programming language like 
C++. BIP supports the specification of composite, hierarchically structured components 
called Compounds starting from the atomic ones. A compound is composed of a set of 
components, connectors and priorities (see example of Fig.  16). Connectors relate ports 
from components by assigning to them a synchronization attribute, which may be either 
trigger or synchronous. Priorities are used to favor the execution of a subset of enabled 
interactions. They can be used to resolve the conflict between interactions or to express 
particular scheduling policies.

Analysis of sensor behavior. In the final step of our approach, we use SBIP framework2 
for the analysis of sensors’ behavior expressed by BIP. SBIP has a graphical user-interface 
permitting to edit, compile and simulate models, and automates the different statistical 
analysis. As shown in Fig. 5, the input of the tool is a system model S expressed in BIP 
language like that of Fig.  7 and a property �  expressed in Linear-time Temporal Logic 
(LTL) (Pnueli, 1977) and/or Metric Temporal Logic (MTL) (Alur & Henzinger, 1993). 
Using SBIP, we can perform two types of analysis: 

1. Quantitative: we estimate the probability that the system S satisfies a given property �.
2. Qualitative: we test whether the probability of a given property � being satisfied by the 

system S is greater or equal to a certain threshold �.

To decide whether S satisfies � (written S ⊧ � ), SBIP refers to simulation-based techniques: 
Probability Estimation (PE) (Hérault et al., 2004) for quantitative properties and Hypoth-
esis Testing (HT) (Younes & Simmons, 2002) for qualitative properties. PE computes the 
probable values of the parameters based on a given distribution and HT determines the 
extent to which the observations meet a given property. In both techniques, the answer 
given will be correct up to a certain level of confidence.

3  Modeling sensor behavior

We first start by data preprocessing and extraction of some statistical information needed to 
build the behavior models of sensors.

Fig. 5  Analysis of BIP Models 
with SBIP Statistical Model 
Checker

2 http:// www- verim ag. imag. fr/ BIP- SMC-A- Stati stical- Model- Check ing. html? lang= en
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3.1  Data preprocessing

As shown in Fig. 6, we define the following steps for data preprocessing of the raw data 
collected by the sensors and generating the distribution file (sensorDistribution) for each 
sensor :

– Cleaning. The dataset provided by our industrial partner contains the raw data reported 
by sensors. In the first step of cleaning, we use a filter to search and remove the errone-
ous sensors data. The filter removes the values outside of the expected range of data 
such as NaN, negative values and the values that are outside the boundary of the normal 
interval. For example, the normal interval of WH sensor is between 28 m and 36 m . 
In the second step, we use a filter to check and eliminate inconsistencies in consecu-
tive sensors data. For instance, the difference between the two values recorded by WH 
sensor in two consecutive days could not exceed 1 m . The unique case of violation of 
this rule is identified in data collected in 1994: the value reported in January 7 (31, 54) 
exceeds the value reported in January 6 (30, 50) by more than one meter and has been 
removed. We note that few errors and inconsistencies are found in the initial dataset.

– Discretization.  In this step, we use the EWD (Equal Width Discretization) method 
(Dougherty et al., 1995) for mapping numerical values into predefined fixed intervals 
that have an equal-width. Each bin or level is associated with a distinct discrete value. 
In this work, we relied on data visualization using histograms to determine the number 
of levels. The discretization of WF, RP and WH sensors data is stated into five levels. 
Our approach can be used to build models with arbitrary number of levels (not neces-
sary five). However, for sensors data considered in our case study, this number was 
sufficient. There also other methods that can help for determining a suitable number of 
bins (Alvarez et al., 2013).

– Generation of distribution.  In this step, we extract some statistical information once 
data was discretized. We use the classical statistical function called PMF (Probability 
Mass Function) (Stewart, 2009) that assigns a probability for specific discrete values. 
PMF is often the main way to define a discrete probability distribution for scalar or 
multivariate random variables whose domain is discrete. Using PMF, we generate a 
sensor distribution file (sensor Distribution) that defines the probabilities of sensor 
readings levels by counting the occurrence of each level of sensor readings each day.

The sensor distribution defined using classical statistical methods (EWD and PMF) is the 
primary means for specifying the sensor behavior model.

3.2  BIP behavior model

In our method, we build a BIP component for every type of sensor. Figure 7 presents an 
example of a behavior model for the water height sensor expressed as Stochastic Automata 
(SA) using the BIP language. The stochastic semantics is defined by variables based on 
the probability distributions. BIP supports discrete distributions such as sensorDistribution 
and also standard distributions, such as Uniform, Normal and Exponential.

Fig. 6  Preprocessing of Sensor 
Data
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In the model of Fig.  7, the port PS_WH selects the day distribution based on sensor 
distribution file generated in the previous section. According to this distribution, the water 
high level (1, 2, 3, 4, or 5) is defined based on the variable DayDist. The port PE_WH 
increments the variable Day and starts a new iteration.

The models that specify the behaviors of the other sensors (RP and WF) are defined 
using the same pattern as WH sensor model. Only the sensors’ distributions can change 
depending on the trace of sensors data. These distributions will be updated with new sen-
sors’ observations. The modeling approach can be used to represent the flow of data pro-
duced for other time scales. For example, the values generated every hour in the day.

Our component-based approach facilitates the reusability and maintainability of the sys-
tem components. A new BIP components can be defined if the system incorporates new 
sensors or replaces existing ones. Also, we can assemble certain sensors components to 
analyze their collective behavior (see Fig. 16).

Using the built models, we can simulate and analyze the behavior of each sensor for 
any period of the year (Section 4). We can also analyze the collective behavior of sensors 
(Section 5).

4  Analysis of sensor behavior

In this work, we use a stochastic bounded variant of LTL to express properties. LTL is the 
natural choice in the context of runtime monitoring and runtime verification (i.e., using sta-
tistical model checking), where properties are expressed and evaluated on traces. In LTL, 

Fig. 7  BIP Behavior Model of Water Height Sensor
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path formulas are defined using four bounded temporal operators namely, Next ( N�1 ), 
Until ( �1 ∪

k �2 ), Eventually ( Fk�1 ), and Always ( Gk�1 ), where k is an integer 
value that specifies the length of the considered system execution trace and �1,�2 are called 
state formulas, which is a Boolean predicate evaluated on the system states.

4.1  Quantitative analysis

We present four examples of quantitative properties expressed on the model of Fig. 7. The 
properties can be parametrized by the day of the year. Any day or interval of days can be 
chosen for evaluation. SBIP allows to check parametric property �(x), where x is a param-
eter ranging over a finite instantiation domain. It also provides a summary of the performed 
analysis and generates specific curves and/or plots of results.

Property 1: The probabilities of obtaining each level (L=1..5) from the water height 
sensor on April 27.

In LTL:
P=?[F

3000 (WH_L = L && Day = 118)]; L = 1 ∶ 5 ∶ 1;

The results are given in Fig. 8. We find that level 5 is the most likely and levels 4 and 3 
are less likely. However, levels 1 and 2 are never observed on this day. These predictions 
concerning water height sensor and estimations from other sensors can help the managers 
of dam infrastructure to adjust the spillgate level.

Property 2: The probabilities of obtaining each level (L=1..5) from the water height 
sensor at the first weeks of January and May.

In LTL:
{

P=?[F
3000 (WH_L = L && Day = T)]; T = 1 ∶ 7 ∶ 1;T = 122 ∶ 128 ∶ 1;

L = 1 ∶ 5 ∶ 1;

Figure 9 shows the SMC verdict of property 2. We see that level 5 is rarely observed in 
the first week of January; however, this level is most likely in the first week of May. The 
opposite for levels 1 and 2, which are more possible in the first week of January and rare 
in the first week of May. With LTL properties, we can predict the evolution of water height 
level at any period of the year.

Property 3: The probabilities that each level (L=1..5) obtained from the water height 
sensor remains the same at the last week of May.

In LTL:
{

P=?[G
3000 (WH_L = L && Day = 146) ∪3000 (WH_L = L && Day = T)];

T = 147 ∶ 152 ∶ 1; L = 1 ∶ 5 ∶ 1;

Fig. 8  Probabilities of water height levels on April 27

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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As shown in Fig. 10, there is a high possibility that the water height level will remain at 
levels 4 or 5 in the last week of May.

Property 4: The probabilities that the water height obtained from the sensor changes 
from first level (L=1) on January 16th to other levels (L=2..5) on the next day.

In LTL:
{

P=?[ (WH_L = 1 && Day = 16) ∪3000 (WH_L = L && Day = 17) ];

L = 2 ∶ 5 ∶ 1;

Figure 11 shows that change to levels 2 and 3 is most likely while there is little chance 
of change to levels 4 and 5.

4.2  Qualitative analysis

For qualitative analysis of sensor behavior, we rate sensors’ readings based on their prob-
abilities as follows: 

1. Not observed (RED): never seen in 28 years.
2. Rare (ORANGE): observed once or twice within 28 years.

Fig. 9  Probabilities of water height levels at first weeks of January and May

Fig. 10  Results of Property 3 
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3. Possible (YELLOW): observed 3 to 21 times in 28 years.
4. Very possible (GREEN): observed more than 21 times.

Table 1 defines the possible probabilities. Based on these considerations, we express qualita-
tive properties that allow testing the compliance of sensors’ readings with the learned model.

Property 5:  Check whether the probabilities that the water height obtained from the 
sensor reaches level 5 are higher than 0.75.

In LTL: P>0.75[F
3000 (WH_L = 5 && Day = T)]; T = 1 ∶ 366 ∶ 1;

Figure 12 shows the results provided by SBIP. This property allows calculating the set 
DL5vp = {124, .., 202} of days where the level 5 of water height is very possible.

In the same way, we can calculate the sets DL4vp , DL3vp , DL2vp , DL1vp where levels 4, 
3, 2 and 1 are very possible. Based on these calculations, we define the function isVeryPos-
sibe as:

We have also defined the functions isPossible, isRare and isNotObserved which allow, 
respectively, to check if the data collected by the sensors are possible, rarely observed or 
never observed. The defined functions are used to build the model of Figure 13 that allows 

Fig. 11  Results of Property 4

Table 1  Sensor State Rate State Not observed Rare Possible Very Possible

Probability 0 ]0, 0.09] ]0.09, 0.75] ]0.75, 1]

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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evaluating the conformity or confidence of any water height sensor reading regarding the 
provided trace. The model can help to distinguish between anomalous and correct sensor 
readings.

The sensor state model can be used to check the confidence of sensed data from the 
existing traces. In Fig.  14, we discover very possible readings (Green points), possible 
readings (Yellow points) and rare readings (Orange points) in the months April and May 
of 2016. As shown in the figure, some rare readings are detected at the beginning of April 
and May.

The sensor state model also allows for checking new observations. Figure 15 presents 
the test results for April and May of 2017. We see that no unusual observation is found and 
that the observations of Avril are possible and the observations of May are highly possible.

As mentioned in Section 1, our approach could help decision-makers of dam manage-
ment to evaluate the confidence of sensor readings and identify the possible abnormal 

Fig. 12  Probabilities that water height level 5 is very possible

Fig. 13  Sensor State Model
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readings (not observed or rare readings) but not to detect the causes which can be related 
to sensor malfunction, cyberattacks, change in weather conditions or other reasons. In the 
future, we plan to enhance our approach by incorporating solutions to confirm the identi-
fied abnormal sensor readings and check their causes. We intend to correlate data from a 
real-time weather reporting system to check if the suspect sensor reading is about chang-
ing weather conditions. Other solutions can be considered by combining our approach 
with IDS (Intrusion Detection Systems) and diagnostic tools for WSN (Wireless Sensor 
Networks) to check whether the abnormal readings consist of individual sensor faults, 
hardware malfunction or security-related anomalies. The learned model could be used to 
detect the cause if it is enriched with failures observation and criteria leading to causes 
identification.

We note that the sensor behavior models (example of Fig. 7) and the sensor state models 
(example of Fig. 13) will be updated with the new sensors observations for the new years.

5  Analysis of the collective behavior of sensors

As indicated in the description of our study in Section  1, the spillgate regularization 
depends on the values of the three sensors which measure RP, WH and WF in the dam 
infrastructure. So, it is important to have a global forecast on the observations of all the 
sensors by analyzing their collective behavior.

To analyze the collective behavior of the three sensors from our case study, we need to 
simulate the execution of all the models specifying their behaviors. As mentioned in Sec-
tion 2, the BIP framework supports the specification of composite, hierarchically structured 
components from atomic components. So, we create the BIP compound (composite com-
ponent) of Fig. 16 that contains the atomic components for RP, WH and WF sensors and 
the component Monitor that scheduler the execution of the sensors’ components.

The behaviors of sensors’ components are given in Section  3.2. We add external 
ports to these components in order to interact with the Monitor component. The tran-
sition from the state M0 to the state M1 in the Monitor component is triggered by the 
port PS that allows starting the execution of the 3 sensors components. The sensors 

Fig. 14  Score of water height sensor data for April and May of 2016

Fig. 15  Score of water height sensor data for April and May of 2017
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components predict the sensors’ readings levels ( RP_L , WH_L and WF_L ) for one day 
and send these values to the monitor through the ports PE_RP , PE_WH and PE_WF . 
Synchronous connectors are used for relating these ports with PE port of Monitor com-
ponent. After receiving RP_L , WH_L , and WF_L values, we calculate the set GSR of the 
possible groups (classes or configurations) of these values. Each group C is a unique 
combination of RP_L , WH_L , and WF_L represented as a concatenation of these values. 
C represents a class of values obtained by the three sensors that gives a general picture 
of the water contributions to the dam. Finally, a new iteration will be triggered with the 
PS port for the next day.

Fig. 16  Architectural Assembly of Sensors Components

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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We use SBIP to simulate the model of Fig. 16 and to analyze the collective behavior 
of sensors by expressing quantitative properties to predict sensors configurations for a 
given period and qualitative properties to test the confidence of a combination of sensors’ 
readings.

5.1  Quantitative analysis

Property 6: The probabilities of obtaining each combination of RP, WH and WF sensors 
levels on February 16 and September 30.

In LTL:
{

P=?[F
10000 (C = gr && Day = T)]; gr ∈ GSR; T = 47 ∶ 274 ∶ 227;

Figure 17 presents the results of the property. The abscissa axis shows the forty differ-
ent possible configurations of sensors levels values. In February 16, the combination ′131′ 
( RP_L = 1 , WH_L = 3 , WF_L = 1 ) is the most likely with probability more than 0.54. The 
combination ′141′ is less likely with a probability equal to 0.21. We also see some rare con-
figurations like: ′231′ , ′121′ , ′132′ , ′342′ , ′142′ . From these results, we can conclude that on 
February 16 the possible values of WH_L are between 2 and 4, and the values of RP_L and 
WF_L are 1 or 2. On September 30, there are only three possible configurations. The most 
likely is ′121′ with a probability of more than 0.5. Configurations ′131′ and ′141′ are less 
likely.

Property 7: The probabilities of obtaining each combination of RP, WH and WF sen-
sors levels, where RP is at level 1 and WH is at level 5, in the first half of the year.

In LTL: 
{

P=?[F
10000 (C = gr && Day = T)]; T = 1 ∶ 182 ∶ 1;

gr ∈ {151, 152, 153, 154, 155}

The SBIP verdict of property 7 is given in Fig.  18. As shown in Figure, until March 
10 the configuration with RP_L = 1 and WH_L = 5 is rarely observed regardless of the 
WF_L sensor value. From March 10, configuration ′151′ is possible and even more prob-
able between May 13 and June 30. The other configurations ( ′152′ , ′153′ , ′154′ and ′155′ ) 
remained very rare.

Property 8: The probabilities that each obtained combination of RP, WH, and WF sen-
sors levels keep the same values in the first week of March and the last week of the same 
month.

In LTL for March 1 to 7:
{

P=?[G
10000 (C = gr && Day = 61) ∪10000 (C = gr && Day = T)];

T = 62 ∶ 67 ∶ 1; gr ∈ GSR

Fig. 17  Results of Property 6

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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In Fig. 19, we see that there is a high possibility that RP, WH and WF sensors levels stay 
at configuration ′131′ or ′141′ in both the first and last week of March. In the last week of 
March, the sensors can also maintain the configurations ′151′ or ′152′.

5.2  Qualitative analysis

In this Section, we express qualitative properties to test whether the probability of a given 
configuration of RP, WH and WF corresponds to the ranges given in Table 1.

Property 9: check if the probabilities that the obtained RP, WH and WF sensors levels 
equal 1, 4 and 1, respectively, are greater than 0.75.

In LTL: P>0.75[F
10000 (C = 141 && Day = T)]; T = 1 ∶ 366 ∶ 1;

In Fig.  20, the results show that property 9 is only true for the set of days 
{115 − 126, .., 206 − 210} . We name this set of days where the configuration ′141′ of RP, 
WH and WF is very possible as DC141vp . Other properties have been defined to find the 
sets of days where the several configurations shown in Fig. 17 are very possible.

As in Section 4.2, we define the following functions based on the results of the qualita-
tive properties:

– isVeryPossibeConfiguration(C, Day)
– isPossibleConfiguration(C, Day)
– isRareConfiguration(C, Day)
– isNotObservedConfiguration(C, Day)

These functions that check if a combination of RP, WH, and WF levels is very possible, 
possible, rarely observed, or never observed are used to specify a model (Configuration 
State Model) with the same pattern as that of Fig. 13 (Sensor State Model). We use this 

Fig. 18  Results of Property 7

Fig. 19  Results of Property 8
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new model to test the collective behavior of sensors over time. The results for November 
and December of 2017 are given in Fig. 21.

As shown in Figure, most of the configurations observed are possible (Yellow points). 
There are some very possible configurations at the end of December (Green points). The 
results also show that two configurations are never seen before according to the sensors 
traces (Red points). These are configuration ′211′ recorded on November 24, 2017, and 
configuration ′411′ recorded on December 10, 2017.

We sought explanations on the red points in the data provided by our industrial part-
ner. After checking the weather readings in these days, we found that these are due to 
exceptional levels of rain precipitation not recorded in previous years on November 24 and 
December 10. As mentioned in Section 4.2, we plan to improve our approach by correlat-
ing data from a real-time weather reporting system to eliminate these false positives caused 
by changing weather conditions.

6  Related work

Time series analysis is one of the active areas of research due to its application in differ-
ent fields, such as in the context of IoT-based systems. For time series data from sensors, 
predicting the next measurements and detecting erroneous readings are the relevant tasks. 
(Giannoni et al., 2018) presents the several approaches proposed for this purpose:

– Statistical approaches such as the method proposed by (Yu et al., 2014) that builds a 
window-based forecasting model from past observations, then it classifies the sensors’ 
readings as anomalous based on a given prediction confidence interval.

Fig. 20  Results of Property 9

Fig. 21  Score of dam sensors configurations for November and December of 2017
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– Probabilistic approaches use probabilistic models such as Bayesian Networks (BNs) 
(Hill et  al., 2009) to measure the probability of sensors’ readings. However, these 
approaches do not scale well.

– Proximity-based or clustering-based approaches such as (Breunig et al., 2000; He et al., 
2003) use distances between the sensed data to detect the erroneous readings. For high-
dimensional data, these approaches do not work well.

– Prediction-based approaches such as (Malhotra et  al., 2015; Shahid et  al., 2015) use 
machine learning methods to predict the sensors’ readings based on a model trained 
from past observations. However, training is time-intensive.

In this paper, we propose a new approach that allows building a component-based data-
driven models for predicting sensors’ readings and evaluating their conformity with past 
observations. The models are built for each type of sensor independently (in isolation) 
from existing traces, so the number of sensors does not influence scalability. The length of 
traces impacts the accuracy of the model but has limited impact on scalability. Indeed, our 
approach is different from all the approaches presented above. It allows to build a behav-
ioral automata-based model from data and analyze this model using formal verification 
techniques. Among the works in this direction:

– The authors in (Saives et al., 2015) use Extended Finite Automata and residuals tech-
niques to detect deviations of the behavior of the inhabitant in a smart home from a log 
of binary sensor events.

– (Mercaldo et al., 2019) models logs from SCADA systems using timed automata and 
applies the UPPAAL model checker to express a set of logic properties for detecting 
attacks targeting these systems.

– (Naskos et al., 2016) uses Markov Decision Process for modeling the behavior of elas-
tic cloud applications based on past log and then introduces probabilistic model check-
ing to perform cloud elasticity decision using PCTL.

– (Franco et al., 2016) specifies a stochastic model in Deterministic-Time Markov Chain 
from the architecture description of the managed system considering different metrics 
related to cloud-infrastructure execution traces. Then, the PRISM model checker is 
used to optimize the self-adaptation decisions.

In our approach, we generate stochastic automata expressed by the BIP that specify the sen-
sors’ behavior based on sensors traces. Then, we use the SBIP to simulate the learned mod-
els and express LTL properties that predict the sensors’ readings and analyze the individual 
and collective behavior of sensors in time. In the above, we listed the most similar-related 
approaches, and we believe that the sensors models could have been obtained and analyzed 
using some of these formalisms and their associated tools, with comparable effort and 
performance. Among the specificities of our approach :(i) it follows a component-based 
approach supported by the BIP framework that facilitates integrating stochastic behaviors, 
and also the reutilization and maintenance of components, (ii) Statistical Model Check-
ing (SMC) using SBIP relies on simulation-based techniques known to be less memory 
intensive than standard model-checking or probabilistic model-checking techniques. Using 
SMC, executions are first sampled, after which statistical techniques are applied to deter-
mine whether a given property holds. SMC techniques have been applied for the analysis 
of various case studies such as autonomous driving controllers (Barbier et al., 2019) and 
biological systems (David et al., 2015b).
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Several frameworks exist for modeling and analyzing stochastic systems, espe-
cially, statistical model checking has drawn lot of interest in the research community as 
UPPAAL-SMC (David et al., 2015a), PRISM-SMC (Kwiatkowska et al., 2011), MRMC 
(MRMC, 2011), Ymer (Younes, 2005) and (COSMOS, 2015). For instance, PRISM imple-
ments SMC techniques such as Probability Estimation techniques (PE) and Hypothesis 
Testing, and the model to be checked is constructed before and stored in memory. MRMC 
offers SMC with confidence interval computation. However, it always loads Markov chain 
representations into memory completely. Ymer considers Generalized Semi Markov Pro-
cesses (GSMP) and Continuous Time Markov Chains (CTMC) using the PRISM dialect 
and uses a numeric-symbolic engine from PRISM. COSMOS uses confidence interval 
computation and exhibits performance comparable to PRISM on several benchmarks (Bal-
larini et al., 2015). UPPAAL-SMC and Ymer are closer to SBIP, and both of them consider 
GSMP. Comparing SBIP to UPPAAL-SMC and other SMC tools, SBIP supports a com-
ponent-based language (BIP) endowed with capabilities to express automata-based and/or 
Petri Net behavior. SBIP is also more powerful since it has more capabilities relayed to the 
behavior description while constructs are based on C++. Moreover, checking the model 
relies on processing the traces resulted from the model execution. SBIP was applied for the 
analysis of various systems (Beaulaton et al., 2019; Nouri et al., 2015; Nouri et al., 2018). 
For a deeper understanding of the SMC tools, we refer to the survey in (Agha & Palmskog, 
2018).

7  Conclusion

We presented a component-based approach for formal modeling and analysis of sensors’ 
behavior. A formal model expressed as stochastic automata has been derived from sen-
sor time series data then quantitative LTL properties expressed on this model are used to 
predict sensor readings. Also, qualitative LTL properties are used for defining an automata-
based model that allows checking if the new measurements are compliant with past obser-
vations. We have applied our approach to analyzing the behavior of three sensors from a 
dam infrastructure at different times. In our approach, we have also assembled the behavior 
models of different sensors to observe their collective behavior over time which helps to 
control the spillgate and detect any inconsistencies between sensors’ behaviors.

Our approach provides several advantages, including:

– We use BIP formalisms that allow the rigorous specification and analysis of sensors’ 
behavior.

– We use a component-based approach supported by BIP that facilitates portraying sen-
sors behavior with reusability, and maintainability features.

– We developed a prototype that automatically generates sensor behavior and sensor state 
models from any existing traces.

– We use statistical model checking that relies on stochastic simulation and therefore is 
not impacted by the size of the state space of the model.

In the future, we will work on the integration of machine learning algorithms such as 
K-Nearest-Neighbors (K-NN) for the analysis of sensors’ behavior. We plan to use K-NN 
to group the data into a set of classes and learn information about timed switching from 
one class to others. Then, we can use SMC to check the changes of the sensor data and 
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identify the reason for this variation regarding other sensed data. We also plan to imple-
ment the solutions discussed in Section 4.2 for detecting the causes of the abnormal behav-
ior of sensors.
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