
HAL Id: hal-03265797
https://hal.science/hal-03265797v1

Submitted on 25 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning and analysis of sensors behavior in IoT systems
using statistical model checking

Salim Chehida, Abdelhakim Baouya, Saddek Bensalem, Marius Bozga

To cite this version:
Salim Chehida, Abdelhakim Baouya, Saddek Bensalem, Marius Bozga. Learning and analysis of
sensors behavior in IoT systems using statistical model checking. Software Quality Journal, 2021,
�10.1007/s11219-021-09559-w�. �hal-03265797�

https://hal.science/hal-03265797v1
https://hal.archives-ouvertes.fr

Vol.:(0123456789)

Software Quality Journal
https://doi.org/10.1007/s11219-021-09559-w

1 3

Learning and analysis of sensors behavior in IoT systems
using statistical model checking

Salim Chehida1 · Abdelhakim Baouya1 · Saddek Bensalem1 · Marius Bozga1

Accepted: 28 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Analyzing the behavior of sensors is becoming one of the key challenges due to their
increasing use for decision making in IoT systems. The paper proposes an approach for a
formal specification and analysis of such behavior starting from existing sensor traces. A
model that embodies the sensor measurements over time in the form of stochastic autom-
ata is built, then temporal properties are fed to Statistical Model Checker to simulate the
learned model and to perform analysis. LTL properties are employed to predict sensors’
readings in time and to check the conformity of sensed data with the sensor traces in order
to detect any abnormal behavior. We also use LTL properties to analyze the collective
behavior of a set of sensors and build a formal model that checks the conformity of a com-
bination of sensors’ readings in time.

Keywords IoT · Sensor Behavior · Stochastic Automata · Statistical Model Checking ·
LTL · BIP

1 Introduction

Internet of Things (IoT) has become one of recent technology mostly used in various
domains such as health and environmental monitoring (Tao, 2020), construction and
energy management (Park et al., 2018), smart vehicles (Al-Turjman & Malekloo, 2019)
and buildings (Daissaoui et al., 2020). It consists of a collection of entities that interacts
with users to fulfill a common goal. The sensor is a critical device in the IoT ecosystem
that allows to measure the state information over time and monitor physical components.
Data gathered from different sensors are used to make a decision and promote automation
in IoT systems by providing efficient and intelligent services, whereas corrupted data dur-
ing transmission or malfunction of sensors, due to natural events or other causes can influ-
ence the correct operation of the entire system. Indeed, the massive increase of these issues
with the growing number of deployed sensors pushes toward the sensors’ behavior analysis
by checking their sensed data.

 * Salim Chehida
 Salim.Chehida@univ-grenoble-alpes.fr

1 University of Grenoble Alpes, CNRS, VERIMAG, Grenoble F-38000, France

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Software Quality Journal

1 3

The analysis of sensors’ behavior and detecting the erroneous readings have attracted
great attention. Many approaches have been proposed based on several methods such
as statistical methods (Yu et al., 2014), probabilistic methods (Hill et al., 2009; Xie
& Shun-Zheng, 2009), clustering-based methods (He et al., 2003) and prediction-based
methods (Shahid et al., 2015). Governed by the standard learning requirements, the
approaches rely on the metadata and structure of the sensed data. In this paper, we pro-
pose a model-based approach involving formal specification for sensors’ behavior analy-
sis. Our approach aims to make the analysis process rigorous, automatic, scalable and
meaningful. In our approach, we start by collecting sensors traces and data preprocessed
required to build an approximate model of the sensors’ behavior, then we apply formal
verification techniques to analyze the learned models and check if new measurements
are compliant with these models. Although our approach cannot be used to detect the
causes of abnormal behavior of sensors, it can however help to predict sensors’ readings
and identify possible abnormal readings based on past observations.

Model checkers allow checking the conformity of a system model expressed in for-
mal notation to a set of properties expressed in a logical language. In this study, we
apply a type of model checkers called Statistical Model Checkers (SMC) to verify
whether a sensor model expressed in Stochastic Automata (SA) satisfies a given logical
property up to some probability, based on model simulations. We use quantitative prop-
erties expressed by Linear-time Temporal Logic (LTL) to predict the sensor readings
in time and qualitative LTL properties to check the confidence of sensed data and their
compliance with the provided traces. Several SMC tools have been proposed such as
PRISM-SMC (Kwiatkowska et al., 2011) and UPPAAL-SMC (David et al., 2015a). The
BIP language (Basu et al., 2011) and SBIP (Mediouni et al., 2018) are used in this paper
for behavior modeling and SMC analysis. BIP allows the rigorous design of component-
based systems. The choice of BIP is also motivated by its capability for specifying sto-
chastic behaviors and their analysis based on SMC using the SBIP tool.

We apply our approach to the industrial case study of the Cecebre dam in Spain,
which is equipped with wireless sensors that measure the water contributions to the
dam. There are three types of sensors that are used to measure the Water Height (WH),
the Rain Precipitation (RP) and the Water output Flow (WF). As shown in Fig. 1, the
data collected from sensors are used to control the opening of the spillgate in order
to ensure that the water does not reach a maximum level in the dam. The anomalous
behavior of these sensors can influence the correct operation of the dam system. Our
objective is to build formal models that specify and analyze the behavior of the sen-
sors by checking the flow of data produced by these sensors. A trace of time series data
recorded by each sensor per day from 1989 to 2016 has been collected. We reorganized
the original trace by creating a separate CSV file per sensor. Each file contains one sen-
sor readings per day for 28 years. The collected data will be used to build the sensor
behavior model.

This paper enhances and extends the approach presented in (Chehida et al., 2020) by
assembling the behavior models of a set of sensors and expressing LTL properties for the
analysis of their collective behavior. Analyzing the collective behavior of sensors can give
a more complete image of the phenomenon under observation and reveals interesting con-
sistency between sensors’ behaviors.

The paper is organized as follows: we give an overview of our approach with the tools
that support it in Section 2. We build the sensors’ behavior models in Section 3. The analy-
sis results per sensor and of the collective behavior will be presented in Sections 4 and 5.
Finally, we present related works in Section 6 and draw our conclusions in Section 7.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Software Quality Journal

1 3

2 Overall Approach

Figure 2 shows the main steps of our approach that combines data-driven and component-
based paradigms. Starting from the trace of sensed data, we build component models
that learn the behavior of sensors, then we analyze these models using statistical model
checking.

Collection and preprocessing of sensor data. In the first step, we start by collecting and
preparing the sensors data described as time series that contain successive measurements
of sensors in time. Data preprocessing is a fundamental activity in numerous computer sci-
ence fields, such as machine learning, data mining and pattern recognition. It consists of
removing errors in original data and preparing the data in a suitable and useable format,
which leads to quality analysis and learning results. As shown in Fig. 3, the main tasks of
sensor data preprocessing in our approach are data cleaning and data discretization.

– The data cleaning searches for and then removes or repairs errors and inconsistencies in
sensors data.

– The data discretization converts continuous (or quantitative) data into discrete (or quali-
tative) ones. It aims to reduce the number of values for continuous time series by divid-
ing sensors’ readings into intervals. Discrete values are easy to use and understand,
which facilitates learning and analysis of sensors’ behavior. (Yang et al., 2010) presents
the several methods proposed for time series data discretization. In this study, we use
the EWD (Equal Width Discretization) method (Dougherty et al., 1995) because of its
simplicity.

Fig. 1 Dam Infrastructure

Fig. 2 Generic Approach for
Sensor Behavior Analysis

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Software Quality Journal

1 3

Specification of sensor behavior model. In the second step of our approach, we use the
BIP language1 for modeling the sensors’ behavior as automata starting from preprocessed
sensors data. BIP (Behavior, Interaction, Priority) is a highly expressive component-based
language for the rigorous design of complex systems. It allows representing the behavior
of systems using a set of components, a set of interactions that defines the possible com-
munications between the components and a set of priorities for defining interaction sched-
ule policies. Figure 4 presents the main concepts of BIP and their relationships. Atomic
components, called Atoms, are the simplest component type (i.e., non-hierarchical) whose
behavior is expressed by finite-state automata (see example of Fig. 7). BIP supports the
formal modeling of stochastic systems based on Discrete and Continuous Time Markov
Chains (DTMC and CTMC) and Generalized Semi-Markov Process (GSMP). Automata
have transitions labelled with ports and states that denote control locations where compo-
nent waits for interactions. Ports are actions that can be associated with data stored in local
variables and used for interactions with other components. Types of variables are either

Fig. 3 Data Preprocessing Steps

Fig. 4 BIP Concepts

1 https:// www- verim ag. imag. fr/ TOOLS/ DCS/ bip/ doc/ latest/ html/ index. html

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Software Quality Journal

1 3

native (Boolean, integer, float or string) or external (to be externally defined such as lists
or files). As for external types, the BIP language allows the declaration of external func-
tion prototypes that are assumed to be externally defined using programming language like
C++. BIP supports the specification of composite, hierarchically structured components
called Compounds starting from the atomic ones. A compound is composed of a set of
components, connectors and priorities (see example of Fig. 16). Connectors relate ports
from components by assigning to them a synchronization attribute, which may be either
trigger or synchronous. Priorities are used to favor the execution of a subset of enabled
interactions. They can be used to resolve the conflict between interactions or to express
particular scheduling policies.

Analysis of sensor behavior. In the final step of our approach, we use SBIP framework2
for the analysis of sensors’ behavior expressed by BIP. SBIP has a graphical user-interface
permitting to edit, compile and simulate models, and automates the different statistical
analysis. As shown in Fig. 5, the input of the tool is a system model S expressed in BIP
language like that of Fig. 7 and a property � expressed in Linear-time Temporal Logic
(LTL) (Pnueli, 1977) and/or Metric Temporal Logic (MTL) (Alur & Henzinger, 1993).
Using SBIP, we can perform two types of analysis:

1. Quantitative: we estimate the probability that the system S satisfies a given property �.
2. Qualitative: we test whether the probability of a given property � being satisfied by the

system S is greater or equal to a certain threshold �.

To decide whether S satisfies � (written S ⊧ �), SBIP refers to simulation-based techniques:
Probability Estimation (PE) (Hérault et al., 2004) for quantitative properties and Hypoth-
esis Testing (HT) (Younes & Simmons, 2002) for qualitative properties. PE computes the
probable values of the parameters based on a given distribution and HT determines the
extent to which the observations meet a given property. In both techniques, the answer
given will be correct up to a certain level of confidence.

3 Modeling sensor behavior

We first start by data preprocessing and extraction of some statistical information needed to
build the behavior models of sensors.

Fig. 5 Analysis of BIP Models
with SBIP Statistical Model
Checker

2 http:// www- verim ag. imag. fr/ BIP- SMC-A- Stati stical- Model- Check ing. html? lang= en

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Software Quality Journal

1 3

3.1 Data preprocessing

As shown in Fig. 6, we define the following steps for data preprocessing of the raw data
collected by the sensors and generating the distribution file (sensorDistribution) for each
sensor :

– Cleaning. The dataset provided by our industrial partner contains the raw data reported
by sensors. In the first step of cleaning, we use a filter to search and remove the errone-
ous sensors data. The filter removes the values outside of the expected range of data
such as NaN, negative values and the values that are outside the boundary of the normal
interval. For example, the normal interval of WH sensor is between 28 m and 36 m .
In the second step, we use a filter to check and eliminate inconsistencies in consecu-
tive sensors data. For instance, the difference between the two values recorded by WH
sensor in two consecutive days could not exceed 1 m . The unique case of violation of
this rule is identified in data collected in 1994: the value reported in January 7 (31, 54)
exceeds the value reported in January 6 (30, 50) by more than one meter and has been
removed. We note that few errors and inconsistencies are found in the initial dataset.

– Discretization. In this step, we use the EWD (Equal Width Discretization) method
(Dougherty et al., 1995) for mapping numerical values into predefined fixed intervals
that have an equal-width. Each bin or level is associated with a distinct discrete value.
In this work, we relied on data visualization using histograms to determine the number
of levels. The discretization of WF, RP and WH sensors data is stated into five levels.
Our approach can be used to build models with arbitrary number of levels (not neces-
sary five). However, for sensors data considered in our case study, this number was
sufficient. There also other methods that can help for determining a suitable number of
bins (Alvarez et al., 2013).

– Generation of distribution. In this step, we extract some statistical information once
data was discretized. We use the classical statistical function called PMF (Probability
Mass Function) (Stewart, 2009) that assigns a probability for specific discrete values.
PMF is often the main way to define a discrete probability distribution for scalar or
multivariate random variables whose domain is discrete. Using PMF, we generate a
sensor distribution file (sensor Distribution) that defines the probabilities of sensor
readings levels by counting the occurrence of each level of sensor readings each day.

The sensor distribution defined using classical statistical methods (EWD and PMF) is the
primary means for specifying the sensor behavior model.

3.2 BIP behavior model

In our method, we build a BIP component for every type of sensor. Figure 7 presents an
example of a behavior model for the water height sensor expressed as Stochastic Automata
(SA) using the BIP language. The stochastic semantics is defined by variables based on
the probability distributions. BIP supports discrete distributions such as sensorDistribution
and also standard distributions, such as Uniform, Normal and Exponential.

Fig. 6 Preprocessing of Sensor
Data

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Software Quality Journal

1 3

In the model of Fig. 7, the port PS_WH selects the day distribution based on sensor
distribution file generated in the previous section. According to this distribution, the water
high level (1, 2, 3, 4, or 5) is defined based on the variable DayDist. The port PE_WH
increments the variable Day and starts a new iteration.

The models that specify the behaviors of the other sensors (RP and WF) are defined
using the same pattern as WH sensor model. Only the sensors’ distributions can change
depending on the trace of sensors data. These distributions will be updated with new sen-
sors’ observations. The modeling approach can be used to represent the flow of data pro-
duced for other time scales. For example, the values generated every hour in the day.

Our component-based approach facilitates the reusability and maintainability of the sys-
tem components. A new BIP components can be defined if the system incorporates new
sensors or replaces existing ones. Also, we can assemble certain sensors components to
analyze their collective behavior (see Fig. 16).

Using the built models, we can simulate and analyze the behavior of each sensor for
any period of the year (Section 4). We can also analyze the collective behavior of sensors
(Section 5).

4 Analysis of sensor behavior

In this work, we use a stochastic bounded variant of LTL to express properties. LTL is the
natural choice in the context of runtime monitoring and runtime verification (i.e., using sta-
tistical model checking), where properties are expressed and evaluated on traces. In LTL,

Fig. 7 BIP Behavior Model of Water Height Sensor

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Software Quality Journal

1 3

path formulas are defined using four bounded temporal operators namely, Next (N�1),
Until (�1 ∪

k �2), Eventually (Fk�1), and Always (Gk�1), where k is an integer
value that specifies the length of the considered system execution trace and �1,�2 are called
state formulas, which is a Boolean predicate evaluated on the system states.

4.1 Quantitative analysis

We present four examples of quantitative properties expressed on the model of Fig. 7. The
properties can be parametrized by the day of the year. Any day or interval of days can be
chosen for evaluation. SBIP allows to check parametric property �(x), where x is a param-
eter ranging over a finite instantiation domain. It also provides a summary of the performed
analysis and generates specific curves and/or plots of results.

Property 1: The probabilities of obtaining each level (L=1..5) from the water height
sensor on April 27.

In LTL:
P=?[F

3000 (WH_L = L && Day = 118)]; L = 1 ∶ 5 ∶ 1;

The results are given in Fig. 8. We find that level 5 is the most likely and levels 4 and 3
are less likely. However, levels 1 and 2 are never observed on this day. These predictions
concerning water height sensor and estimations from other sensors can help the managers
of dam infrastructure to adjust the spillgate level.

Property 2: The probabilities of obtaining each level (L=1..5) from the water height
sensor at the first weeks of January and May.

In LTL:
{

P=?[F
3000 (WH_L = L && Day = T)]; T = 1 ∶ 7 ∶ 1;T = 122 ∶ 128 ∶ 1;

L = 1 ∶ 5 ∶ 1;

Figure 9 shows the SMC verdict of property 2. We see that level 5 is rarely observed in
the first week of January; however, this level is most likely in the first week of May. The
opposite for levels 1 and 2, which are more possible in the first week of January and rare
in the first week of May. With LTL properties, we can predict the evolution of water height
level at any period of the year.

Property 3: The probabilities that each level (L=1..5) obtained from the water height
sensor remains the same at the last week of May.

In LTL:
{

P=?[G
3000 (WH_L = L && Day = 146) ∪3000 (WH_L = L && Day = T)];

T = 147 ∶ 152 ∶ 1; L = 1 ∶ 5 ∶ 1;

Fig. 8 Probabilities of water height levels on April 27

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Software Quality Journal

1 3

As shown in Fig. 10, there is a high possibility that the water height level will remain at
levels 4 or 5 in the last week of May.

Property 4: The probabilities that the water height obtained from the sensor changes
from first level (L=1) on January 16th to other levels (L=2..5) on the next day.

In LTL:
{

P=?[(WH_L = 1 && Day = 16) ∪3000 (WH_L = L && Day = 17)];

L = 2 ∶ 5 ∶ 1;

Figure 11 shows that change to levels 2 and 3 is most likely while there is little chance
of change to levels 4 and 5.

4.2 Qualitative analysis

For qualitative analysis of sensor behavior, we rate sensors’ readings based on their prob-
abilities as follows:

1. Not observed (RED): never seen in 28 years.
2. Rare (ORANGE): observed once or twice within 28 years.

Fig. 9 Probabilities of water height levels at first weeks of January and May

Fig. 10 Results of Property 3

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Software Quality Journal

1 3

3. Possible (YELLOW): observed 3 to 21 times in 28 years.
4. Very possible (GREEN): observed more than 21 times.

Table 1 defines the possible probabilities. Based on these considerations, we express qualita-
tive properties that allow testing the compliance of sensors’ readings with the learned model.

Property 5: Check whether the probabilities that the water height obtained from the
sensor reaches level 5 are higher than 0.75.

In LTL: P>0.75[F
3000 (WH_L = 5 && Day = T)]; T = 1 ∶ 366 ∶ 1;

Figure 12 shows the results provided by SBIP. This property allows calculating the set
DL5vp = {124, .., 202} of days where the level 5 of water height is very possible.

In the same way, we can calculate the sets DL4vp , DL3vp , DL2vp , DL1vp where levels 4,
3, 2 and 1 are very possible. Based on these calculations, we define the function isVeryPos-
sibe as:

We have also defined the functions isPossible, isRare and isNotObserved which allow,
respectively, to check if the data collected by the sensors are possible, rarely observed or
never observed. The defined functions are used to build the model of Figure 13 that allows

Fig. 11 Results of Property 4

Table 1 Sensor State Rate State Not observed Rare Possible Very Possible

Probability 0]0, 0.09]]0.09, 0.75]]0.75, 1]

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Software Quality Journal

1 3

evaluating the conformity or confidence of any water height sensor reading regarding the
provided trace. The model can help to distinguish between anomalous and correct sensor
readings.

The sensor state model can be used to check the confidence of sensed data from the
existing traces. In Fig. 14, we discover very possible readings (Green points), possible
readings (Yellow points) and rare readings (Orange points) in the months April and May
of 2016. As shown in the figure, some rare readings are detected at the beginning of April
and May.

The sensor state model also allows for checking new observations. Figure 15 presents
the test results for April and May of 2017. We see that no unusual observation is found and
that the observations of Avril are possible and the observations of May are highly possible.

As mentioned in Section 1, our approach could help decision-makers of dam manage-
ment to evaluate the confidence of sensor readings and identify the possible abnormal

Fig. 12 Probabilities that water height level 5 is very possible

Fig. 13 Sensor State Model

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Software Quality Journal

1 3

readings (not observed or rare readings) but not to detect the causes which can be related
to sensor malfunction, cyberattacks, change in weather conditions or other reasons. In the
future, we plan to enhance our approach by incorporating solutions to confirm the identi-
fied abnormal sensor readings and check their causes. We intend to correlate data from a
real-time weather reporting system to check if the suspect sensor reading is about chang-
ing weather conditions. Other solutions can be considered by combining our approach
with IDS (Intrusion Detection Systems) and diagnostic tools for WSN (Wireless Sensor
Networks) to check whether the abnormal readings consist of individual sensor faults,
hardware malfunction or security-related anomalies. The learned model could be used to
detect the cause if it is enriched with failures observation and criteria leading to causes
identification.

We note that the sensor behavior models (example of Fig. 7) and the sensor state models
(example of Fig. 13) will be updated with the new sensors observations for the new years.

5 Analysis of the collective behavior of sensors

As indicated in the description of our study in Section 1, the spillgate regularization
depends on the values of the three sensors which measure RP, WH and WF in the dam
infrastructure. So, it is important to have a global forecast on the observations of all the
sensors by analyzing their collective behavior.

To analyze the collective behavior of the three sensors from our case study, we need to
simulate the execution of all the models specifying their behaviors. As mentioned in Sec-
tion 2, the BIP framework supports the specification of composite, hierarchically structured
components from atomic components. So, we create the BIP compound (composite com-
ponent) of Fig. 16 that contains the atomic components for RP, WH and WF sensors and
the component Monitor that scheduler the execution of the sensors’ components.

The behaviors of sensors’ components are given in Section 3.2. We add external
ports to these components in order to interact with the Monitor component. The tran-
sition from the state M0 to the state M1 in the Monitor component is triggered by the
port PS that allows starting the execution of the 3 sensors components. The sensors

Fig. 14 Score of water height sensor data for April and May of 2016

Fig. 15 Score of water height sensor data for April and May of 2017

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Software Quality Journal

1 3

components predict the sensors’ readings levels (RP_L , WH_L and WF_L) for one day
and send these values to the monitor through the ports PE_RP , PE_WH and PE_WF .
Synchronous connectors are used for relating these ports with PE port of Monitor com-
ponent. After receiving RP_L , WH_L , and WF_L values, we calculate the set GSR of the
possible groups (classes or configurations) of these values. Each group C is a unique
combination of RP_L , WH_L , and WF_L represented as a concatenation of these values.
C represents a class of values obtained by the three sensors that gives a general picture
of the water contributions to the dam. Finally, a new iteration will be triggered with the
PS port for the next day.

Fig. 16 Architectural Assembly of Sensors Components

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Software Quality Journal

1 3

We use SBIP to simulate the model of Fig. 16 and to analyze the collective behavior
of sensors by expressing quantitative properties to predict sensors configurations for a
given period and qualitative properties to test the confidence of a combination of sensors’
readings.

5.1 Quantitative analysis

Property 6: The probabilities of obtaining each combination of RP, WH and WF sensors
levels on February 16 and September 30.

In LTL:
{

P=?[F
10000 (C = gr && Day = T)]; gr ∈ GSR; T = 47 ∶ 274 ∶ 227;

Figure 17 presents the results of the property. The abscissa axis shows the forty differ-
ent possible configurations of sensors levels values. In February 16, the combination ′131′
(RP_L = 1 , WH_L = 3 , WF_L = 1) is the most likely with probability more than 0.54. The
combination ′141′ is less likely with a probability equal to 0.21. We also see some rare con-
figurations like: ′231′ , ′121′ , ′132′ , ′342′ , ′142′ . From these results, we can conclude that on
February 16 the possible values of WH_L are between 2 and 4, and the values of RP_L and
WF_L are 1 or 2. On September 30, there are only three possible configurations. The most
likely is ′121′ with a probability of more than 0.5. Configurations ′131′ and ′141′ are less
likely.

Property 7: The probabilities of obtaining each combination of RP, WH and WF sen-
sors levels, where RP is at level 1 and WH is at level 5, in the first half of the year.

In LTL:
{

P=?[F
10000 (C = gr && Day = T)]; T = 1 ∶ 182 ∶ 1;

gr ∈ {151, 152, 153, 154, 155}

The SBIP verdict of property 7 is given in Fig. 18. As shown in Figure, until March
10 the configuration with RP_L = 1 and WH_L = 5 is rarely observed regardless of the
WF_L sensor value. From March 10, configuration ′151′ is possible and even more prob-
able between May 13 and June 30. The other configurations (′152′ , ′153′ , ′154′ and ′155′)
remained very rare.

Property 8: The probabilities that each obtained combination of RP, WH, and WF sen-
sors levels keep the same values in the first week of March and the last week of the same
month.

In LTL for March 1 to 7:
{

P=?[G
10000 (C = gr && Day = 61) ∪10000 (C = gr && Day = T)];

T = 62 ∶ 67 ∶ 1; gr ∈ GSR

Fig. 17 Results of Property 6

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Software Quality Journal

1 3

In Fig. 19, we see that there is a high possibility that RP, WH and WF sensors levels stay
at configuration ′131′ or ′141′ in both the first and last week of March. In the last week of
March, the sensors can also maintain the configurations ′151′ or ′152′.

5.2 Qualitative analysis

In this Section, we express qualitative properties to test whether the probability of a given
configuration of RP, WH and WF corresponds to the ranges given in Table 1.

Property 9: check if the probabilities that the obtained RP, WH and WF sensors levels
equal 1, 4 and 1, respectively, are greater than 0.75.

In LTL: P>0.75[F
10000 (C = 141 && Day = T)]; T = 1 ∶ 366 ∶ 1;

In Fig. 20, the results show that property 9 is only true for the set of days
{115 − 126, .., 206 − 210} . We name this set of days where the configuration ′141′ of RP,
WH and WF is very possible as DC141vp . Other properties have been defined to find the
sets of days where the several configurations shown in Fig. 17 are very possible.

As in Section 4.2, we define the following functions based on the results of the qualita-
tive properties:

– isVeryPossibeConfiguration(C, Day)
– isPossibleConfiguration(C, Day)
– isRareConfiguration(C, Day)
– isNotObservedConfiguration(C, Day)

These functions that check if a combination of RP, WH, and WF levels is very possible,
possible, rarely observed, or never observed are used to specify a model (Configuration
State Model) with the same pattern as that of Fig. 13 (Sensor State Model). We use this

Fig. 18 Results of Property 7

Fig. 19 Results of Property 8

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Software Quality Journal

1 3

new model to test the collective behavior of sensors over time. The results for November
and December of 2017 are given in Fig. 21.

As shown in Figure, most of the configurations observed are possible (Yellow points).
There are some very possible configurations at the end of December (Green points). The
results also show that two configurations are never seen before according to the sensors
traces (Red points). These are configuration ′211′ recorded on November 24, 2017, and
configuration ′411′ recorded on December 10, 2017.

We sought explanations on the red points in the data provided by our industrial part-
ner. After checking the weather readings in these days, we found that these are due to
exceptional levels of rain precipitation not recorded in previous years on November 24 and
December 10. As mentioned in Section 4.2, we plan to improve our approach by correlat-
ing data from a real-time weather reporting system to eliminate these false positives caused
by changing weather conditions.

6 Related work

Time series analysis is one of the active areas of research due to its application in differ-
ent fields, such as in the context of IoT-based systems. For time series data from sensors,
predicting the next measurements and detecting erroneous readings are the relevant tasks.
(Giannoni et al., 2018) presents the several approaches proposed for this purpose:

– Statistical approaches such as the method proposed by (Yu et al., 2014) that builds a
window-based forecasting model from past observations, then it classifies the sensors’
readings as anomalous based on a given prediction confidence interval.

Fig. 20 Results of Property 9

Fig. 21 Score of dam sensors configurations for November and December of 2017

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Software Quality Journal

1 3

– Probabilistic approaches use probabilistic models such as Bayesian Networks (BNs)
(Hill et al., 2009) to measure the probability of sensors’ readings. However, these
approaches do not scale well.

– Proximity-based or clustering-based approaches such as (Breunig et al., 2000; He et al.,
2003) use distances between the sensed data to detect the erroneous readings. For high-
dimensional data, these approaches do not work well.

– Prediction-based approaches such as (Malhotra et al., 2015; Shahid et al., 2015) use
machine learning methods to predict the sensors’ readings based on a model trained
from past observations. However, training is time-intensive.

In this paper, we propose a new approach that allows building a component-based data-
driven models for predicting sensors’ readings and evaluating their conformity with past
observations. The models are built for each type of sensor independently (in isolation)
from existing traces, so the number of sensors does not influence scalability. The length of
traces impacts the accuracy of the model but has limited impact on scalability. Indeed, our
approach is different from all the approaches presented above. It allows to build a behav-
ioral automata-based model from data and analyze this model using formal verification
techniques. Among the works in this direction:

– The authors in (Saives et al., 2015) use Extended Finite Automata and residuals tech-
niques to detect deviations of the behavior of the inhabitant in a smart home from a log
of binary sensor events.

– (Mercaldo et al., 2019) models logs from SCADA systems using timed automata and
applies the UPPAAL model checker to express a set of logic properties for detecting
attacks targeting these systems.

– (Naskos et al., 2016) uses Markov Decision Process for modeling the behavior of elas-
tic cloud applications based on past log and then introduces probabilistic model check-
ing to perform cloud elasticity decision using PCTL.

– (Franco et al., 2016) specifies a stochastic model in Deterministic-Time Markov Chain
from the architecture description of the managed system considering different metrics
related to cloud-infrastructure execution traces. Then, the PRISM model checker is
used to optimize the self-adaptation decisions.

In our approach, we generate stochastic automata expressed by the BIP that specify the sen-
sors’ behavior based on sensors traces. Then, we use the SBIP to simulate the learned mod-
els and express LTL properties that predict the sensors’ readings and analyze the individual
and collective behavior of sensors in time. In the above, we listed the most similar-related
approaches, and we believe that the sensors models could have been obtained and analyzed
using some of these formalisms and their associated tools, with comparable effort and
performance. Among the specificities of our approach :(i) it follows a component-based
approach supported by the BIP framework that facilitates integrating stochastic behaviors,
and also the reutilization and maintenance of components, (ii) Statistical Model Check-
ing (SMC) using SBIP relies on simulation-based techniques known to be less memory
intensive than standard model-checking or probabilistic model-checking techniques. Using
SMC, executions are first sampled, after which statistical techniques are applied to deter-
mine whether a given property holds. SMC techniques have been applied for the analysis
of various case studies such as autonomous driving controllers (Barbier et al., 2019) and
biological systems (David et al., 2015b).

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Software Quality Journal

1 3

Several frameworks exist for modeling and analyzing stochastic systems, espe-
cially, statistical model checking has drawn lot of interest in the research community as
UPPAAL-SMC (David et al., 2015a), PRISM-SMC (Kwiatkowska et al., 2011), MRMC
(MRMC, 2011), Ymer (Younes, 2005) and (COSMOS, 2015). For instance, PRISM imple-
ments SMC techniques such as Probability Estimation techniques (PE) and Hypothesis
Testing, and the model to be checked is constructed before and stored in memory. MRMC
offers SMC with confidence interval computation. However, it always loads Markov chain
representations into memory completely. Ymer considers Generalized Semi Markov Pro-
cesses (GSMP) and Continuous Time Markov Chains (CTMC) using the PRISM dialect
and uses a numeric-symbolic engine from PRISM. COSMOS uses confidence interval
computation and exhibits performance comparable to PRISM on several benchmarks (Bal-
larini et al., 2015). UPPAAL-SMC and Ymer are closer to SBIP, and both of them consider
GSMP. Comparing SBIP to UPPAAL-SMC and other SMC tools, SBIP supports a com-
ponent-based language (BIP) endowed with capabilities to express automata-based and/or
Petri Net behavior. SBIP is also more powerful since it has more capabilities relayed to the
behavior description while constructs are based on C++. Moreover, checking the model
relies on processing the traces resulted from the model execution. SBIP was applied for the
analysis of various systems (Beaulaton et al., 2019; Nouri et al., 2015; Nouri et al., 2018).
For a deeper understanding of the SMC tools, we refer to the survey in (Agha & Palmskog,
2018).

7 Conclusion

We presented a component-based approach for formal modeling and analysis of sensors’
behavior. A formal model expressed as stochastic automata has been derived from sen-
sor time series data then quantitative LTL properties expressed on this model are used to
predict sensor readings. Also, qualitative LTL properties are used for defining an automata-
based model that allows checking if the new measurements are compliant with past obser-
vations. We have applied our approach to analyzing the behavior of three sensors from a
dam infrastructure at different times. In our approach, we have also assembled the behavior
models of different sensors to observe their collective behavior over time which helps to
control the spillgate and detect any inconsistencies between sensors’ behaviors.

Our approach provides several advantages, including:

– We use BIP formalisms that allow the rigorous specification and analysis of sensors’
behavior.

– We use a component-based approach supported by BIP that facilitates portraying sen-
sors behavior with reusability, and maintainability features.

– We developed a prototype that automatically generates sensor behavior and sensor state
models from any existing traces.

– We use statistical model checking that relies on stochastic simulation and therefore is
not impacted by the size of the state space of the model.

In the future, we will work on the integration of machine learning algorithms such as
K-Nearest-Neighbors (K-NN) for the analysis of sensors’ behavior. We plan to use K-NN
to group the data into a set of classes and learn information about timed switching from
one class to others. Then, we can use SMC to check the changes of the sensor data and

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Software Quality Journal

1 3

identify the reason for this variation regarding other sensed data. We also plan to imple-
ment the solutions discussed in Section 4.2 for detecting the causes of the abnormal behav-
ior of sensors.

Acknowledgements The authors would like to thank EMALCSA Company for the data collected from the
dam infrastructure.

Funding Information The research leading to these results has been supported by the European Union
through the BRAIN-IoT project H2020-EU.2.1.1. Grant agreement ID: 780089.

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies involving animals or human participants performed
by any of the authors

References

Agha, G., & Palmskog, K. (2018). A Survey of Statistical Model Checking. ACM Transactions on Modeling
and Computer Simulation, 28(1), 1–39. https:// doi. org/ 10. 1145/ 31586 68

Al-Turjman, F., & Malekloo, A. (2019). Smart parking in IoT-enabled cities: A survey. Sustainable Cities
and Society, 49, 101608.

Alur, R., & Henzinger, T. (1993). Real-Time Logics: Complexity and Expressiveness. Information and
Computation, 104(1), 35–77. https:// doi. org/ 10. 1006/ inco. 1993. 1025

Alvarez Carmona, M. A., Carrasco Ochoa, J. A., & Martinez Trinidad, J. F. (2013). Combining techniques
to find the number of bins for discretization. In: 2013 32nd International Conference of the Chilean
Computer Science Society (SCCC), pp 54–57. https:// doi. org/ 10. 1109/ SCCC. 2013. 11

Ballarini, P., Barbot, B., Duflot, M., Haddad, S., & Pekergin, N. (2015). Hasl: A new approach for perfor-
mance evaluation and model checking from concepts to experimentation. Performance Evaluation, 90,
53–77.

Barbier, M., Renzaglia, A., Quilbeuf, J., Rummelhard, L., Paigwar, A., Laugier, C., Legay, A., Ibanez-
Guzman, J., & Simonin, O. (2019). Validation of perception and decision-making systems for autono-
mous driving via statistical model checking. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp
252–259.

Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T. H., & Sifakis, J. (2011). Rigorous
Component-Based System Design Using the BIP Framework. IEEE Software, 28(3), 41–48.

Beaulaton, D., Said, N. B., Cristescu, I., & Sadou, S. (2019). Security Analysis of IoT Systems Using Attack
Trees. In M. Albanese, R. Horne, & C. W. Probst (Eds.), Graphical Models for Security (Vol. 11720,
pp. 68–94). Cham: Springer International Publishing.

Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outli-
ers. ACM SIGMOD Record, 29(2), 93–104. https:// doi. org/ 10. 1145/ 335191. 335388

Chehida, S., Baouya, A., Bensalem, S., & Bozga, M. (2020). Applied statistical model checking for a sen-
sor behavior analysis. In R. Pérez-Castillo (Ed.), Shepperd M, Brito e Abreu F, Rodrigues da Silva A
(pp. 399–411). Springer International Publishing, Cham: Quality of Information and Communications
Technology.

COSMOS. (2015). Cosmos tool. http:// www. lsv. ens- cachan. fr/ Softw are/ cosmos/
Daissaoui, A., Boulmakoul, A., Karim, L., & Lbath, A. (2020). IoT and Big Data Analytics for Smart Build-

ings: A Survey. Procedia Computer Science, 170, 161–168. https:// doi. org/ 10. 1016/j. procs. 2020. 03.
021

David, A., Larsen, K. G., Legay, A., Mikučionis, M., & Poulsen, D. B. (2015a). Uppaal SMC tutorial. Inter-
national Journal on Software Tools for Technology Transfer 17(4), 397–415. https:// doi. org/ 10. 1007/
s10009- 014- 0361-y

David, A., Larsen, K. G., Legay, A., Mikucionis, M., Poulsen, D. B., & Sedwards, S. (2015b). Statistical
model checking for biological systems. International Journal on Software Tools for Technology Trans-
fer, 17(3), 351–367. https:// doi. org/ 10. 1007/ s10009- 014- 0323-4

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Software Quality Journal

1 3

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous
features. In: Prieditis A, Russell S (eds) Machine Learning Proceedings 1995, Morgan Kaufmann, San
Francisco (CA), pp 194 – 202. https:// doi. org/ 10. 1016/ B978-1- 55860- 377-6. 50032-3

Franco, J. M., Correia, F., Barbosa, R., Zenha-Rela, M., Schmerl, B., & Garlan, D. (2016). Improving self-
adaptation planning through software architecture-based stochastic modeling. Journal of Systems and
Software, 115, 42–60. https:// doi. org/ 10. 1016/j. jss. 2016. 01. 026

Giannoni, F., Mancini, M., & Marinelli, F. (2018). Anomaly Detection Models for IoT Time Series Data.
https:// arxiv. org/ abs/ 1812. 00890

He, Z., Xu, X., & Deng, S. (2003). Discovering cluster-based local outliers. Pattern Recognition Letters,
24(9–10), 1641–1650. https:// doi. org/ 10. 1016/ S0167- 8655(03) 00003-5

Hérault, T., Lassaigne, R., Magniette, F., & Peyronnet, S. (2004). Approximate probabilistic model
checking. Verification, Model Checking, and Abstract Interpretation (pp. 73–84). Berlin Heidel-
berg, Berlin, Heidelberg: Springer.

Hill, D. J, Minsker, B. S., & Amir, E. (2009). Real-time Bayesian anomaly detection in streaming envi-
ronmental data: Real-time bayesia anomaly detection. Water Resources Research 45(4). https:// doi.
org/ 10. 1029/ 2008W R0069 56

Kwiatkowska, M., Norman, G., & Parker, D. (2011). Prism 4.0: Verification of probabilistic real-time
systems. In G. Gopalakrishnan & S. Qadeer (Eds.), Computer Aided Verification (pp. 585–591).
Heidelberg: Springer, Berlin Heidelberg, Berlin.

Malhotra, P., Vig, L., Shroff, G., & Agarwal, P. (2015). Long short term memory networks for anomaly
detection in time series. In: European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning. Bruges, Belgium.

Mediouni, B. L., Nouri, A., Bozga, M., Dellabani, M., Legay, A., & Bensalem, S. (2018). SBIP 2.0:
Statistical Model Checking Stochastic Real-time Systems. In: ATVA 2018 - 16th International Sym-
posium Automated Technology for Verification and Analysis, Springer, Los Angeles, CA, United
States, pp 536–542. https:// doi. org/ 10. 1007/ 978-3- 030- 01090-4_ 33

Mercaldo, F., Martinelli, F., & Santone, A. (2019). Real-Time SCADA Attack Detection by Means of
Formal Methods. In: 2019 IEEE 28th International Conference on Enabling Technologies: Infra-
structure for Collaborative Enterprises (WETICE), IEEE, Napoli, Italy, pp 231–236. https:// doi.
org/ 10. 1109/ WETICE. 2019. 00057

MRMC. (2011). Mrmc tool. http:// www. mrmc- tool. org
Naskos, A., Gounaris, A., Mouratidis, H., & Katsaros, P. (2016). Online Analysis of Security Risks in

Elastic Cloud Applications. IEEE Cloud Computing, 3(5), 26–33. https:// doi. org/ 10. 1109/ MCC.
2016. 108

Nouri, A., Bensalem, S., Bozga, M., Delahaye, B., Jegourel, C., & Legay, A. (2015). Statistical model
checking QoS properties of systems with SBIP. International Journal on Software Tools for Tech-
nology Transfer, 17(2), 171–185.

Nouri, A., Mediouni, B. L., Bozga, M., Combaz, J., Bensalem, S., & Legay, A. (2018). Performance
evaluation of stochastic real-time systems with the SBIP framework. International Journal of Criti-
cal Computer-Based Systems, 8(3/4), 340.

Park, C., Kim, Y., & Jeong, M. (2018). Influencing factors on risk perception of IoT-based home energy
management services. Telematics and Informatics, 35(8), 2355–2365.

Pnueli, A. (1977). The temporal logic of programs. In: 18th Annual Symposium on Foundations of
Computer Science, IEEE Computer Society, USA, pp 46–57. https:// doi. org/ 10. 1109/ SFCS. 1977. 32

Saives, J., Pianon, C., & Faraut, G. (2015). Activity Discovery and Detection of Behavioral Deviations
of an Inhabitant From Binary Sensors. IEEE Transactions on Automation Science and Engineering,
12(4), 1211–1224. https:// doi. org/ 10. 1109/ TASE. 2015. 24718 42

Shahid, N., Naqvi, I. H., & Qaisar, S. B. (2015). One-class support vector machines: analysis of outlier
detection for wireless sensor networks in harsh environments. Artificial Intelligence Review, 43(4),
515–563. https:// doi. org/ 10. 1007/ s10462- 013- 9395-x

Stewart, W. J. (2009). Probability, Markov chains, queues, and simulation: the mathematical basis of
performance modeling. Princeton University Press.

Tao, Z. (2020). Advanced Wavelet Sampling Algorithm for IoT based environmental monitoring and
management. Computer Communications, 150, 547–555. https:// doi. org/ 10. 1016/j. comcom. 2019.
12. 006

Yang, Y., Webb, G. I., & Wu, X. (2010). Discretization Methods (pp. 101–116). US, Boston, MA:
Springer.

Xie, Yi., & Shun-Zheng, Yu. (2009). A Large-Scale Hidden Semi-Markov Model for Anomaly Detection
on User Browsing Behaviors. IEEE/ACM Transactions on Networking, 17(1), 54–65. https:// doi.
org/ 10. 1109/ TNET. 2008. 923716

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

Software Quality Journal

1 3

Younes, H. L. S. (2005). Ymer: A statistical model checker. Computer Aided Verification (pp. 429–433).
Berlin Heidelberg: Springer.

Younes, H. L. S., & Simmons, R. G. (2002). Probabilistic verification of discrete event systems using
acceptance sampling. In E. Brinksma & K. G. Larsen (Eds.), Computer Aided Verification (pp.
223–235). Berlin Heidelberg: Springer.

Yu, Y., Zhu, Y., Li, S., & Wan, D. (2014). Time Series Outlier Detection Based on Sliding Window Pre-
diction. Mathematical Problems in Engineering, 2014, 1–14. https:// doi. org/ 10. 1155/ 2014/ 879736

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Salim Chehida is a PhD in computer science since 2017 from University of Oran 1 in Algeria in collabo-
ration with University of Grenoble Alpes in France. Since March 2018, Salim Chehida is a researcher at
University of Grenoble Alpes (LIG laboratory, VERIMAG laboratory). His research interests include Soft-
ware Engineering, Verification and Validation of Software Systems, Semi-formal and Formal Specification
Methods (UML, B, etc.), Model Driven Engineering, Runtime Verification, Information Systems Security,
IoT, and CPS.

Abdelhakim Baouya is a Ph.D. in Computer engineering. Currently, he is a researcher at Verimag labora-
tory, University of Grenoble Alpes. He is working on Software Architecture specification (UML/MARTE,
SysML, AADL, Autofocus AF3), Formal verification and, Code generation. He is interested in develop-
ing formal methods, techniques, and tools for IoT and Cyber-Physical Systems. Some of his interests are
Model-based Design, Dependability Analysis, Stochastic Component-based Design, Statistical/Probabilistic
Model-checking.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

 Software Quality Journal

1 3

Saddek Bensalem is a Full Professor at the University of Grenoble Alpes, France. He received his PhD in
Computer Science from the INP Grenoble. His area of expertise is modelling and validation of real-time
systems.

Marius Bozga graduated the Faculty of Mathematics and Computer Science, Babes-Bolyai University of
Cluj-Napoca, Romania in 1995. He received his Ph.D. in Computer Science from the Joseph Fourier Uni-
versity of Grenoble in 1999. Since 2000, Marius Bozga is CNRS research engineer and member of the
VERIMAG laboratory in Grenoble. His research interests are focused on component-based design for dis-
tributed real-time systems and include formal models for components, model-based design and implementa-
tion, automatic validation methods and tools.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center
GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers
and authorised users (“Users”), for small-scale personal, non-commercial use provided that all
copyright, trade and service marks and other proprietary notices are maintained. By accessing,
sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of
use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and
students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and
conditions, a relevant site licence or a personal subscription. These Terms will prevail over any
conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to
the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of
the Creative Commons license used will apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may
also use these personal data internally within ResearchGate and Springer Nature and as agreed share
it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise
disclose your personal data outside the ResearchGate or the Springer Nature group of companies
unless we have your permission as detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial
use, it is important to note that Users may not:

use such content for the purpose of providing other users with access on a regular or large scale

basis or as a means to circumvent access control;

use such content where to do so would be considered a criminal or statutory offence in any

jurisdiction, or gives rise to civil liability, or is otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association

unless explicitly agreed to by Springer Nature in writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a

systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a
product or service that creates revenue, royalties, rent or income from our content or its inclusion as
part of a paid for service or for other commercial gain. Springer Nature journal content cannot be
used for inter-library loans and librarians may not upload Springer Nature journal content on a large
scale into their, or any other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not
obligated to publish any information or content on this website and may remove it or features or
functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke
this licence to you at any time and remove access to any copies of the Springer Nature journal content
which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or
guarantees to Users, either express or implied with respect to the Springer nature journal content and
all parties disclaim and waive any implied warranties or warranties imposed by law, including
merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published
by Springer Nature that may be licensed from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a
regular basis or in any other manner not expressly permitted by these Terms, please contact Springer
Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

