
HAL Id: hal-03265788
https://hal.science/hal-03265788

Submitted on 21 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Event-B Based Generic Framework for Hybrid
Systems Formal Modelling

Guillaume Dupont, Yamine Aït-Ameur, Marc Pantel, Neeraj Kumar Singh

To cite this version:
Guillaume Dupont, Yamine Aït-Ameur, Marc Pantel, Neeraj Kumar Singh. An Event-B Based Generic
Framework for Hybrid Systems Formal Modelling. 16th International Conference on Integrated Formal
Methods (IFM 2020), Nov 2020, Lugano (virtual), Switzerland. pp.82-102, �10.1007/978-3-030-63461-
2_5�. �hal-03265788�

https://hal.science/hal-03265788
https://hal.archives-ouvertes.fr

An Event-B Based Generic Framework

for Hybrid Systems Formal Modelling

Guillaume Dupont(B), Yamine Aı̈t-Ameur, Marc Pantel, and Neeraj K. Singh

INPT-ENSEEIHT/IRIT, University of Toulouse, Toulouse, France
{guillaume.dupont,yamine,marc.pantel,nsingh}@enseeiht.fr

Abstract. Designing hybrid systems requires the handling of discrete
and continuous behaviours. The formal verification of such systems
revolves around the use of heavy mathematical features, and related
proofs. This paper presents a generic and reusable framework with dif-
ferent patterns, aimed at easing the design and verification of hybrid
systems. It relies on refinement and proofs using Event-B, and defines
an easily extensible set of generic patterns in the form of theories and
models that are proved once and for all. The model of any specific hybrid
system is then produced by instantiating the corresponding patterns.
The paper illustrates the use of this framework by proposing to realise a
well-known case study of the inverted pendulum, which design uses the
approximation pattern formally defined and verified in Event-B.

1 Introduction

Formal modelling of hybrid systems requires means to describe both continu-
ous and discrete behaviours in a single setting. Several approaches have been
proposed to address this specificity, in general via the integration of theories of
continuous functions and differential equations on the one hand, and logic-based
reasoning on state-transitions systems on the other hand. The most common
methods use hybrid automata [3] to model such systems and hybrid model check-
ing [4,14,15,18] to verify their properties. In addition, some other approaches
such as hybrid CSP [9,19], hybrid programs [20,21], continuous action systems
[5], refinement and proof based methods with Event-B [11–13,22] and Hybrid
Event-B [6], have been developed as well.

In previous work, we extended Event-B modelling language via the develop-
ment of various theories to design hybrid systems using a correct-by-construction
approach [11–13,22]. Theories for continuous mathematics, an approximate
refinement relation for approximation following the retrenchment principle [7]
and different hybrid systems architectures have been formally modelled.

The objective of this paper is two-fold. First, it presents a generic and reusable
framework, relying on Event-B, to support and ease the design of hybrid sys-
tems. It is built from the generalisation of the models we defined in our previous
work and on their instantiation to model specific hybrid systems. This frame-
work defines a set of formalised and reusable patterns, verified once and for all.

_https://doi.org/10.1007/978-3-030-63461-2 5

Second, it demonstrates the application of this framework, and in particular the
approximation pattern, with the development of the inverted pendulum case
study, where approximate refinement is used to linearise non-linear dynamics.

The organisation of this paper is as follows. Next section presents the designed
generic framework. Section 3 describes the case study of the inverted pendulum
and Sect. 4 gives an overview of Event-B. Section 5 presents the generic models
and theories composing the framework and Sect. 6 is dedicated to the develop-
ment of the case study. Finally, Sect. 7 concludes the paper.

2 The Designed Framework

The generic framework for formal modelling and verification of hybrid sys-
tems relies on the various developments we have conducted to model and ver-
ify different types of hybrid systems [10–13]. These developments revealed sev-
eral reusable building blocks seen as formal development patterns formalised in
Event-B. Figure 1 depicts the framework and its different components, split in
two categories: reusable and specific.

Generic Model

Approximated Generic
 Pattern (Linearisation)

Instantiated
 model

Theory of Differential
Equations

Theory of Continuous
Mathematics

Theory of Approximation

Domain Theory

Importation

Importation

Based on

Instantiation

Extension

Extension

Extension

Generic setting

System specific setting

Importation

Patterns Theories

Single2Many
Pattern

Based on

Many2Many
Pattern

(3)
(4)

(1)

(2)

(5)

Single2Single
Pattern

Generic
 model

Instantiated
 model

Instantiated
 model

Uses Uses Uses

(a)

(b)

(c)

(6)

Fig. 1. Our framework: the big picture

2.1 Reusable Components

These components are the theories and the Event-B generic model and patterns
to be instantiated for specific hybrid systems.

Relevant Theories (1 on Fig. 1). Event-B is based on set theory and first order
logic; this low mathematical level is very expressive, but makes it difficult to

handle continuous features, essential in hybrid system modelling. These required
mathematical concepts, not available in core Event-B, are defined within mathe-
matical theories, referenced by the models. They make available reals, continuous
functions, differential equations and associated properties. In addition, they also
formalise approximation and define an approximate refinement operator, which
is not available in native Event-B. These theories are defined incrementally, as
denoted by the Extends operator.

Generic Model and Patterns for Hybrid Systems (3 and 4 on Fig. 1). They are
parameterised Event-B models proved once and for all.

Generic Model (6 on Fig. 1). It formalises the generic pattern of Fig. 6. It is
the root model from which all the other models are derived, using Event-B
refinement. Plant and controller behaviours, together with sensing and actuation
actions are meddled at a higher abstract level.

Architecture Patterns (4 on Fig. 1). These specific patterns introduce either cen-
tralised or distributed control and one or many controlled plants. Three Event-B
models refining the generic model define three architecture patterns as Single-
ToSingle [12], SingleToMany [11] and ManyToMany [13].

Approximation Pattern (3 on Fig. 1). It consists of another Event-B model, refin-
ing the generic model and formalising a commonly used approximation operation
realised by designers. In Event-B, this pattern encodes an approximate refine-
ment operation following the principle of retrenchment. Linearisation is an exam-
ple of such an approximation: a non-linear differential equation is approximately
refined by a linear one.

The above introduced components represent a library of patterns deployed
to model specific hybrid systems. They are proved once and for all.

2.2 Specific Components

These components are both theories and models developed for particular hybrid
systems. They are obtained either by theories extensions or pattern instantiation.

Domain Theories (2 on Fig. 1). These specific theories describe the character-
istics of the plant involved in the developed hybrid system, e.g.: kinematics of
a car, robot motion, inverted pendulum, etc. In many cases, more than one
theory may be needed, in particular when it involves different domains (signal
processing, kinematics, etc.).

Instantiation Models (5 on Fig. 1). They are formal models for specific hybrid
systems. They are obtained by applying the different patterns sequentially, start-
ing with the generic model. Event-B refinement is used to instantiate those pat-
terns, and witnesses are provided for the parameters of the generic model and
patterns. These models refer to the domain theories to access the relevant char-
acteristics of the considered system.

In the remainder of this paper, we show how the defined approximation
pattern is deployed. It encodes an Event-B approximate refinement relationship.
The case of the inverted pendulum is considered.

3 Case Study: The Inverted Pendulum

We consider the well-known case study of the inverted pendulum. This problem
is particularly relevant as it imposes the use of linearisation in order to be
correctly implemented. The case study is then realised in the Event-B based
defined framework using Rodin.

3.1 Description

O

l

M

gθ

u

Fig. 2. Inverted pen-
dulum

An object M is attached to a rigid rod of length l, that is
itself attached to a step motor at point O. This point is
also the origin of the coordinate system. The angle between
the rod and the vertical axis is denoted θ, and the motor
is capable of providing a torque, denoted u. The system is
subject to standard G-force, of intensity g. The goal of the
controller is to stabilise the rod in its vertical position by
instrumenting the motor (and its torque u). From physics
laws, we obtain the system’s equation in θ (Fig. 2):

θ̈ −
g

l
sin(θ) = u cos(θ) (1)

Equation 2 is derived from Eq. 1, as an ODE η̇ = fNonLin(η, u) where η =
[θ θ̇]⊤ and u is some control command:

fNonLin((x1, x2), u) = (x2, u cos(x1) +
g

l
) (2)

The factor ω2
0 = g

l is generally constant and ω0 is the angular frequency
(pulsatance) of the system, linked to the period of the pendulum’s oscillations.
This system is controllable when θ < θmax , where θmax is fixed by ω0.

Due to the terms sin(θ) and cos(θ), the system’s ODE is non-linear, meaning
that it does not have an explicit solution, and the reachability is undecidable.
However, when θ is small enough, it is possible to approximate sin(θ) and cos(θ);
more precisely, given θbound, there exists δ such that, for any θ with |θ| < θbound ,
then | sin(θ) − θ| < δ and |1 − cos(θ)| < δ.

Assuming this condition holds, it is possible to approximate Eq. 1 to a simpler
form, so-called linearised :

θ̈ −
g

l
θ = v, (3)

with v an adequate linear control command linked to u after linearisation. It can
be expressed as the ODE η̇ = fLin(η, v) where:

fLin((x1, x2), v) = (x2, v +
g

l
x1). (4)

This ODE is linear, making it much easier to handle.

3.2 Requirements

Fig. 3. System mode
automaton

The requirements of the system can be summarised as fol-
lows:

FUN1 The controller senses the angle (θ) of the pendulum
(:sense angle)

FUN2 If the value of the sensed angle is not 0, the con-
troller sends a command to stabilise the pendulum at
θ = 0 (:calculate control)

SAF1 For |θ| < θmax , the system is always controllable
ENV1 The system is subject to perturbations that may

cause its angle to vary
ENV2 There exists θbound such that |θ| < θbound ; there-

fore, the non-linear system and the linearised system
are always close up to δ > 0

4 Event-B

Event-B [1] is a correct-by-construction method based on set theory and first
order logic. It relies on a powerful state-based modelling language where a set
of events allows for state changes1 (see Table 1). A set of proof obligations (see
Tables 2a and 2b) is automatically generated for each model. Event-B is associ-
ated with a proof system which contains a set of proof rules for formal reasoning.
The design process of the system model consists of an abstract model leading to
the final concrete model. Each refinement gradually introduces additional system
design decisions.

Context (Table 1.a). A Context component describes the static properties. It
introduces all the definitions, axioms and theorems needed to describe the
required concepts using elementary components such as Carrier sets s, constants
c, axioms A and theorems Tctx .

Machines (Table 1.b). Machine describes the model behaviour as a transition sys-
tem. A set of guarded events is used to modify a set of states using Before-After
Predicates (BAP) to record variable changes. They use variables x, invariants
I(x), theorems Tmch(x), variants V (x) and events evt (possibly guarded by G

and/or parameterized by α) as core elementary components.

Refinements (Table 1c). Refinement introduces different characteristics such as
functionality, safety, reachability at different abstraction levels. It decomposes a
machine, a state-transition system, into a less abstract one, with more design
decisions (refined states and events) moving from an abstract level to a less
abstract one (simulation relationship). Gluing invariants relating to abstract
and concrete variables ensures property preservation.

1 Notation. The superscripts A and C denote abstract and concrete features.

Table 1. Model structure

Context Machine Refinement

CONTEXT Ctx MACHINEMA MACHINEMC

SETSs SEES Ctx REFINESMA

CONSTANTSc VARIABLESxA VARIABLESxC

AXIOMSA INVARIANTSIA(xA) INVARIANTSJ(xA, xC) ∧ IC(xC)

THEOREMSTctx THEOREMSTmch(xA) ...

END VARIANTV (xA) EVENTS

EVENTS EVENTevt
C

EVENTevt
A REFINESevt

A

ANYαA ANYαC

WHEREGA(xA, αA) WHEREGC(xC , αC)

THEN WITH

xA :| BAP
A(αA, xA, xA) xA′, αA:W (αA, αC , xA, xA′, xC , xC)

END THEN

... xC :| BAP
C(αC , xC , xC)

END

...

(a) (b) (c)

Table 2. Proof Obligations

(1) Theorems A ⇒ Tctx

A ∧ IA(xA) ⇒ Tmac(x
A)

(2) Invariant A ∧ IA(xA) ∧ GA(xA, αA)

preservation ∧BAP
A(xA, αA, xA′

)

(INV) ⇒ IA(xA′)

(3) Event A ∧ IA(xA) ∧ GA(xA, αA)

feasibility (FIS) ⇒ ∃αA · BAP
A(xA, αA, xA′)

(4) Variant A ∧ IA(xA) ∧ GA(xA, αA)

progress ∧BAP
A(xA, αA, xA′)

⇒ V (xA′) < V (xA)

(a) Machine Proof obligations

(5) Event A ∧ IA(xA) ∧ J(xA, xC)

Simulation ∧GC(xC , αC)

(SIM) ∧W (αA, αC , xA, xA′, xC , xC′)

∧BAP
C (xC , αC , xC ′

)

⇒ BAP
A (xA , αA , xA ′

)

(6) Guard A ∧ IA(xA) ∧ J(xA, xC)

Strengthening ∧W (αA, αC , xA, xA′, xC , xC′)

(GS) ∧GC (xC , αC) ⇒ GA (xA , αA)

(7) Invariant A ∧ IA(xA)

preservation ∧GC(xC , αC)

(INV) ∧W (αA, αC , xA, xA′, xC , xC′)

∧BAP
C(xC , αC , xC′

)

∧J (xA , xC) ⇒ J (xA ′

, xC ′

)

(b) Refinement Proof obligations

Proof Obligations (PO) and Property Verification. Tables 2a and 2b provide a set
of proof obligations to guarantee Event-B model consistency, including refine-
ments. These PO are automatically generated. They must be proven in order to
establish the correctness of the defined model.

Extensions with Mathematical Theories. An extension of Event-B is defined [2]
to support externally defined mathematical theories. It offers the introduction of
new data types by defining new types, sets operators, theorems and associated
rewrite and inference rules, all bundled in so-called theories.

Rodin. It is an Eclipse based IDE for Event-B project management, model edi-
tion, refinement and proof, automatic PO generation, model checking, model
animation and code generation. It is equipped with standard provers, including
support for external provers such as SMT solvers. A plug-in [8] is also available
to support the development of mathematical theories.

5 Modelling the Generic Model and Patterns in Event-B

Modelling hybrid systems requires to handle continuous behaviours. We thus
need to access specific mathematical objects and properties, which are not
natively available in Event-B. These concepts such as differential equations and
their associated properties have been modelled through an intensive use of Event-
B theories and have been used to model various case studies found in [10–12].

This section describes the generic resources used by the defined framework.
They correspond to the upper parts (1), (3), (4) and (6) of Fig. 1.

5.1 Theories for Continuous Mathematics and Differential
Equations (1a and 1b on Fig. 1)

In order to deal with continuous objects, theories have been defined for contin-
uous functions, (ordinary) differential equations as well as for their properties.
They are used throughout the defined models. Their complete definitions are
available at https://irit.fr/∼Guillaume.Dupont/models.php. Some of these con-
cepts as they are used in this paper are recalled below.

Hybrid Modelling Features. Modelling hybrid systems requires to introduce mul-
tiple basic operators and primitives defined below.

Fig. 4. Differential equation theory snip-
pet

– DE(S) type for differential equa-
tions which solutions evolve over set
S

– ode(f, η0, t0) is the ODE (Ordi-
nary Differential Equation) η̇(t) =
f(η(t), t) with initial condition
η(t0) = η0

– solutionOf(D, η, E) is the predi-
cate stating that function η is a
solution of equation E on subset D

– Solvable(D, E , I) predicate states
that equation E has a solution
defined on subset D that satisfies
the constraint I

– Feasible(xs, xp, D,P, I), the feasi-
ble predicate states that, given xs and xp, there exists x′

p ∈ D → S such
that P(xs, xp, x

′
p) holds and ∀t∗ ∈ D,x′

p(t
∗) ∈ I. In state xs, the predicate

P holds for xp and its next value x′
p on time interval D fulfils the constraint

I. It defines the feasibility condition of a continuous variable (e.g. a state in
a model) change. This operator is used to define the continuous before-after
predicate (CBAP).

These features are encoded in a theory from which we show a snippet on
Fig. 4 (the theory accumulates more than 150 operators and 350 properties).

5.2 A Theory of Approximation (1c on Fig. 1)

In addition to the continuous mathematical objects of Sect. 5.1, a theory of
approximation is required to implement approximate refinement in Event-B.
In the following, we introduce the necessary concepts and operators related to
approximation and used throughout this paper. Let us assume (E, d) to be a
metric space with distance d.

Approximation (≈δ). Let x, y ∈ E and δ ∈ R
+. We say that x approximately

equals to y by δ (or x is a δ-approximation of y) iff x≈δ y ≡ d(x, y) ≤ δ.

δ-expansion. Let S ⊆ E and δ ∈ R
+. The δ-expansion of S, noted Eδ(S), is

defined as Eδ(S) = {y ∈ E | ∃x ∈ S, x≈δ y} = {y ∈ E | ∃x ∈ S, d(x, y) ≤ δ}.

δ-membership (∈δ). Let δ ∈ R
+, S ⊆ E and x ∈ E. x belongs to S up to δ,

denoted x∈δ S, iff x belongs to the δ-expansion of S. We write x∈δ S ≡ x ∈
Eδ(S) ≡ ∃y ∈ S, d(x, y) ≤ δ.

Extended δ-membership Operators. δ-membership is extended as follows.

– Let f ∈ F → E and X ⊆ F , then f ∈δ
X S ≡ ∀x ∈ X, f(x)∈δ S

– Let Σ ∈ F → P(E) (multivalued function), then f ∈δ
X Σ ≡ ∀x ∈ X,

f(x)∈δ Σ(x)

When X is omitted, the operator is applied on the function’s domain of definition
(i.e., X = dom(f)).

Fig. 5. Approximation theory excerpt

Note: δ-approximation (≈δ) (resp. δ-membership (∈δ)) is a weak version of
equality (resp. set membership). Indeed, when δ = 0, by the separation property

of distance d, we obtain x≈0 y ≡ d(x, y) ≤ 0 ≡ x = y. It follows that for any
S ⊆ E, E0(S) = S and thus x∈0 S ≡ x ∈ S.

Implementation Using Theories. The above defined operators and concepts have
been implemented in two Event-B theories (ApproximationBase and Approxi-
mation) from which an excerpt is given in Fig. 5. Typically, approximation (≈δ)
is expressed algebraically through the DeltaApproximation operator, while its
extension to functions is implemented as the FDeltaApproximation operator.

5.3 The Generic Model (6 on Fig. 1)

As mentioned previously, the core Event-B does not support continuous
behaviours. To handle such behaviours, we have introduced a generic model,
acting as a meta-model encoding a hybrid automaton corresponding to the
generic hybrid system structure depicted in Fig. 6. The notions of time, continu-
ous states, continuous gluing invariants, continuous assignment and continuous
events are introduced. The obtained model interleaves continuous events (with
duration) and discrete events (instantaneous) as defined in [10–13].

Fig. 6. Generic hybrid system
pattern

The generic model is the entry point of the
framework on which every pattern is based.
It takes the form of an Event-B model that
summarises and abstracts any hybrid system
conforming to Fig. 6. Refinement is then used
to derive any specific hybrid system from it.

Time. A notion of time is needed to define con-
tinuous behaviours. We thus introduce dense

time t ∈ R
+, modelled as a continuously evolving variable.

System State. According to the architecture of hybrid systems, we have identified
two types of states:

– Discrete state xs ∈ STATES is a variable that represents the controller’s
internal state. It evolves in a point-wise manner with instantaneous changes.

– Continuous state xp ∈ R
+ → S represents the plant’s state and evolves

continuously. It is modelled as a function of time with values in space S.
In the following, we use x to denote the union of discrete and continuous state
variables.

Continuous Assignment. Continuous variables are essentially functions of time
and are at least defined on [0, t] (where t is the current time). Updating such
variables, thus, requires to (1) make the time progress from t to t′ > t, and
(2) to append to the already existing function a new piece corresponding to its
extended behaviour (on [t, t′]) while ensuring its”past” (i.e. whatever happened
on [0, t]) remains unchanged.

Similarly to the classic Event-B’s before-after predicate (BAP), we define a
continuous before-after predicate (CBAP) operator, denoted :|t→t′ , as follows2:

xp :|t→t′ P(xs, xp, x
′
p) & I ≡ [0, t] ⊳ x′ = [0, t] ⊳ x (PP)

∧ P(xs, [t, t
′] ⊳ xp, [t, t

′] ⊳ x′
p) (PR)

∧ ∀t∗ ∈ [t, t′], x′
p(t

∗) ∈ I (LI)

The operator consists of three parts: past preservation and coherence at
assignment point (PP), before-after predicate on the added section (PR), and
local invariant preservation (LI). The discrete state variables xs do not change
in the interval [t, t′] but the predicate P may use it for control purposes. We
note CBAP(xs, xp, x

′
p) ≡ PP (xp, x

′
p) ∧ PR(xs, xp, x

′
p) ∧ LI(xp, x

′
p).

From the above definition, shortcuts are introduced for readability purposes:

– Continuous assignment: x :=t→t′ f & I ≡ x :|t→t′ x′ = f & I
– Continuous evolution along a solvable differential equation E ∈ DE(S):

x :∼t→t′ E & I ≡ x :|t→t′ solutionOf([t, t′], x′, E) & I

The Generic Model in Event-B. Once all the features have been defined, we can
describe the Event-B model.

Fig. 7. Generic model Event-B machine header

The model handles three variables, time t, the continuous state xp and the
discrete state xs constrained using invariants (inv1-4). They are initialised with
0 for t and using non-deterministic assignment for xp and xs. Further refinements
provide more detailed value(s) (Fig. 7).

The events of the generic model follow the arrows of Fig. 6. Figure 8 shows
the Transition and the Sense events modelling discrete state changes. Such
change can arise following the detection of a change in the plant (sensing) or can
be induced by the controller itself (Transition) after a calculation, at the end
of a timer, and so on. This difference is captured by guards 2 and 3 of Sense,
referencing the continuous state. Transition and Sense are so-called discrete
events: they are timeless and instantaneous.

Figure 9 shows the other two types of events Behave and Actuate to model a
change in the plant, induced either by a change in the controller (actuation) or by

2 The ⊳ operator denotes the domain restriction operator.

Fig. 8. Transition and sense events

Fig. 9. Transition and sense events

the environment (behave). Both events rely on a continuous assignment operator
described above. The link between the controller and actuation is modelled by
grd3-4 in Actuate (absent from Behave). Also, the behaviour set in actuation
is constrained by an evolution domain (grd5-6).

Behave and Actuate are continuous events: unlike discrete events, they have
a duration. Discrete events are instantaneous and they preempt continuous ones.

Continuous Gluing Invariant. It is defined with the generic form xA
p ∈ O ◦ xC

p

where O ∈ SC ↔ SA is a relation linking abstract and continuous state-spaces.
This invariant glues the abstract xA

p and concrete xC
p continuous variables. It is

qualified as exact since it maps concrete values in SC to abstract values in SA

using the ∈ operator. Definition of an approximate gluing invariant, extending
exact one, using the ∈δ operator is presented in next section.

5.4 The Approximation Pattern (3 on Fig. 1)

As mentioned in Sect. 2, we have chosen to illustrate the application of the
generic framework using the approximation pattern. The choice of this pattern
is motivated by the fact that 1) it uses an externally defined theory (see Sect. 5.2)
not available in native Event-B and 2) it requires a specific refinement relation-
ship, weakening classical refinement following the principle of retrenchment [7],
and formalising the approximation of a continuous behaviour by another one.
We particularly study the case of linearisation, when moving from a behaviour
characterised by a non-linear differential equation to a behaviour characterised
by a linear differential equation. The definition of this approximate refinement
operation follows the approach of [16,17] where approximation is embedded in
a simulation relationship. In addition, our definition offers an inductive process.

In this section, we present the approximation pattern as a refinement between
an abstract machine (which elements are super-scripted with A) and a concrete
machine (with superscript C). Figure 10 shows the respective headers of the

machines. Approximation deals with continuous variables (x
A/C
p).

Fig. 10. Machine header

The approximation pattern is applied at the refinement level using approxi-
mated relations instead, and built using the operators defined in Sect. 5.2, e.g.
≈δ or ∈δ (see Fig. 10). It is formalised by inv6 whee the ∈ operator is replaced
by its approximated version (∈δ).

Fig. 11. Sense event

Sensing events (Fig. 11) remain relatively
unchanged compared to normal refinement.
Guard GC must be defined carefully: GC shall
be stronger than GA, taking into account
the error allowed by approximate refinement
(guard strengthening PO).

Actuation (Fig. 12) is almost unchanged.
The provided witness (WITH clause) shall
ensure preservation of approximation after
occurrence of the Actuate event. This wit-

ness leads to a feasibility proof obligation to guarantee that the property
xA′

p ∈δ O ◦ xC′
p holds (i.e. approximation holds).

Fig. 12. Actuate event

Table 3. Refinement POs for the generic model: case of approximate refinement

(5) Event A ∧ xA
p ∈ R �→ SA ∧ [0, t] ⊆ dom(xA

p) ∧ xC
p ∈ R �→ SC ∧ [0, t] ⊆ dom(xC

p)

Simulation ∧xA
p ∈ IA ∧ xC

p ∈ IC ∧ xC
p (t) ∈ GC

(SIM) ∧xA
p ∈δ O ◦ xC

p ∧ xA′

p ∈δ O ◦ xC′

p

∧PP(xC , xC′

) ∧PR(xC , xC′

) ∧LI (xC , xC′

)

⇒ PR(xA, xA′

) ∧ LI (xA, xA′

)

(6) Guard A ∧ xA
p ∈ R �→ SA ∧ [0, t] ⊆ dom(xA

p) ∧ xC
p ∈ R �→ SC ∧ [0, t] ⊆ dom(xC

p)

Strengthening ∧xA
p ∈ IA ∧ xC

p ∈ IC

(GS) ∧xA
p ∈δ O ◦ xC

p ∧ xA′

p ∈δ O ◦ xC′

p

∧xC
p (t) ∈ GC ⇒ xA

p (t) ∈ GA

(7) Invariant A ∧ xA
p ∈ R �→ SA ∧ [0, t] ⊆ dom(xA

p) ∧ xC
p ∈ R �→ SC ∧ [0, t] ⊆ dom(xC

p)

Preservation ∧xA
p ∈ IA ∧ xC

p ∈ IC ∧ xC
p (t) ∈ GC ∧ xA

p ∈δ O ◦ xC
p

(INV) ∧PP(xC , xC′

) ∧PR(xC , xC′

) ∧LI (xC , xC′

)

⇒ xC ′

p ∈ R �→ SC ∧ [0, t′] ⊆ dom(xC ′

p) ∧ xC ′

p ∈ IC ∧ xA ′

p ∈δ O ◦ xC ′

p

Revisited Proof Obligations. Approximation, similar to the concedes relation of
retrenchment, extends the standard refinement operation which proof obligations
are given in Table 2b. The use of well-definedness and witnesses in approximate
refinement leads to an updated set of proof obligations (highlighted in bold) in
Table 3.

Exact Refinement as a Particular Case of Approximate Refinement. We note
that, when δ = 0 in the operators defined in Sect. 5.1, we actually find back
standard exact operators: ≈0 ≡=, ∈0 ≡∈, etc. By restriction/strengthening,
this means that, for δ = 0, defined approximate refinement looks like exact
refinement.

5.5 The Architecture Patterns (4 on Fig. 1)

Architecture patterns have been introduced in order to model the different types
of structures hybrid systems may have: one controller controlling one plant (sim-
ple control, Single2Single), one controller and several plants (centralised control,
Single2Many) and several controllers with several plants (distributed control,
Many2Many). These patterns have been thoroughly studied, formalised and
implemented in [11–13] respectively.

6 Modelling Hybrid Systems

Modelling specific hybrid systems follows the bottom part of Fig. 1. Two steps are
identified: the first step introduces definitions relevant to the system (Fig. 1(2)),
completing the generic theories of Fig. 1(1) with the relevant types, axioms and
theorems for modelling the specific features of the system to design. The second
step (Fig. 1(5)) is performed by refining and instantiating patterns to obtain the
desired system (used patterns of Fig. 1). This process is exemplified below with
the inverted pendulum case study.

6.1 Application to the Case Study

Our framework is used to address the case study introduced in Sect. 3. The exact
use of the framework is depicted on Fig. 13, and follows the two steps discussed
before: first, a theory for the physics of the inverted pendulum is defined (Fig. 13
(2)); second, the Single2Single pattern is applied to the generic model in order
to derive a non-linear pendulum model. Finally, the approximation pattern is
used to derive a linearised pendulum model from the non-linear one.

Approximated Generic
 Pattern(Linearisation)

Pendulum Domain Theory

Instantiation

Importation

Generic model

Uses

Non Linear Pendulum
 model

Linearised pendulum
 model

Uses

Single2Single
Pattern

Used patterns

(3) (4)

(2)

(1)

(5)

Fig. 13. Framework application to the case study

Step 1: A Theory for Simple Inverted Pendulums (2 in Fig. 13). Before
modelling the actual system, we need to develop a domain theory of pendulums,
that holds every important concepts needed to model this kind of system: dif-
ferential equations (both non-linear and linearised) and adequate controls for
the systems, as well as various physical and mathematical properties that will
help in establishing the system’s correctness. The definitions of such a theory
correspond to (2) in Fig. 13.

Fig. 14. Pendulum theory excerpt

Listing of Fig. 14 gives an extract of the pendulum defined domain the-
ory. It mainly defines the differential equations associated with both the non-
linear (PendulumNonLin) and linearised (PendulumLin) pendulum systems. It
also proposes control functions for both systems (PendulumControlNonLin and
PendulumControlLin resp.) which are algebraically defined together with useful
properties used in proofs.

Step 2: Non-Linear Inverted Pendulum Model (5 in Fig. 13). The Sin-
gle2Single architecture pattern is used to derive, by refinement of the generic
model, a first model of the inverted pendulum, which features the non-linear
differential equation. This step correspond to (4) in Fig. 13.

CONTEXT PendulumCtx EXTENDS GenericCtx
CONSTANTS ω0 ,θmax ,θ0 , c on t r o l
AXIOMS

axm1−2 : ω0 ∈ R ,ω0 �= 0
axm3−5 : θmax = theta max(ω0) ,θ0 ∈ R , |θ0| < θmax

axm6 : partition(STATES , {control})
END

The context for this model
defines the system’s pulsa-
tance (ω0 in axm1-2) and its
associated maximum control-
lable angle (θmax in axm3-5).
Last, the only state of the
system’s mode automaton is
declared in control (axm6).

Fig. 15. Machine header and initialisation

Listings of Fig. 15 give the machine header and the initialisation of the sys-
tem. The continuous state is the vector [θ̇ θ]⊤ defined in inv1-4. inv5 glues this
continuous state to the generic one (xp). It is constrained by inv6. The mode
automaton of the system defines the control (inv7) state and the discrete state
of the machine comprises variables to store the observation of the system when
sensing (sense variables super-scripted of inv8-10). At initialisation θ is set to
an arbitrary value θ0 and the control function control fun (inv11-12) is assigned
to the non-linear differential equation modelling the behaviour of the pendulum
borrowed from the InvertedPendulum theory.

Fig. 16. Sensing and transition

Fig. 17. System actuation

Following the hybrid automaton of Fig. 3, the system defines two discrete
events: the sensing event sense angle reads and stores the continuous state in
the sense variables, and the transition event transition calculate control

uses the stored continuous state to set up an adequate control function, stored
in control fun. An actuation event updates the plant’s behaviour with the
PendulumNonLin differential equation, associated with control fun’s new value
(Fig. 17).

Step 3: Linearised Inverted Pendulum Model (5 in Fig. 13). The approx-
imation pattern ((3) in Fig. 13) is used to refine the non-linear pendulum model
into a linearised one. The theory of approximation of Sect. 5.2 as well as the
domain theory of pendulums given in Sect. 6.1 allow us to set up an approxi-
mate refinement relationship between the two linear and non-linear models.

CONTEXT PendulumLinCtx EXTENDS
PendulumCtx

CONSTANTS δ , δctrl , θbound

AXIOMS
axm1−2 : δ ∈ R ,0 < δ
axm3 : δctrl = PendulumControlDelta(ω0, δ)
axm4−7 : θbound ∈ R ,0 < θbound ,

θbound < θmax ,δ < θbound

END

The context of this system extends
the one for the non-linear pendulum. It
introduces a fixed δ (axm1-2), to model
the maximum difference between the
state of both system models as well
as a stricter bound for θ (θbound in
axm4-7). Using the pendulum theory,

it is possible to synthesise δctrl , the maximum difference between the controls of
each system model (axm3) (Fig. 18).

Fig. 18. Machine header and initialisation

The machine header, presented in Fig. 18 is close to the abstract non-linear
model with a new state [θLin θ̇Lin] (inv1-4). It is glued with the non-linear
abstract state via the approximate gluing invariant, inv5. Both abstract
and concrete states have strengthened constraints (inv6) to ensure the existence
of the approximation relationship. The control function control fun is refined by
control lin fun (inv7). It is linked to the abstract control using the approximated
refinement gluing invariant of inv8. Refined versions of the sensing variables are
introduced. θsense

Lin
and θ̇sense

Lin
are defined in inv9-10 and constrained in inv11.

They are linked to the abstract sensing variables using inv12 gluing invariant.
Last, Initialisation on the right-hand side of Fig. 18 updates the state vari-
ables. Simple witnesses (WITH clause) are provided for the refined (disappearing)
variables.

Fig. 19. Linear refined sense and transition with approximation

The sense and transition events (Fig. 19) update system variables. Wit-
nesses are provided to link the state variables of the abstract and refined models.

Fig. 20. Linear refined actuation with approximation

Last, the actuation event of Fig. 20 updates the state variables by providing
a witness using the WITH clause for the abstract continuous state using the defined
approximation. It is central to maintain the approximated gluing invariant.

6.2 Assessment

The main advantage of the defined framework is proof reuse. Indeed, proofs are
realised at the generic level and do not need to be discharged again. The only
remaining proofs relate to the instantiation of the pattern (under the form of
refinement POs) and the specific features of the model, namely invariants.

The first refinement generated 100 POs. 34% of them relate to refinement,
while the vast majority of the others are about well-definedness (33%) of the
operators and invariants (37%), most of which are typing invariants. The second
one generated 63 POs. 19% of them come from refinement, and more specifically
when using the approximation pattern. Again, a significant number of POs relate
to well-definedness (33%) and invariants (44%) are mainly typing invariants. The
interactive proofs have been carried out using rewriting rules, deductive rules
application, and external automatic provers calls, combined in tactics.

The theory plug-in is still in the early stage of development, it hinders proof
automation. For this reason and because our models extensively rely on it, proofs
had to be done interactively. All the models shown in this paper can be accessed
at https://irit.fr/∼Guillaume.Dupont/models.php.

7 Conclusion

The definition of the proposed framework results from the different experiments
and models that we defined in previous work. Some of the patterns are identi-
fied from our Event-B developments for a simple controlled system [10,12], cen-
tralised control of many plants [11] and distributed control of many controllers
[13].

In this paper, we have shown how the defined framework of Fig. 1 is put into
practice to model the inverted pendulum case study. First, we applied the Sin-
gle2Single architecture pattern and then the Approximation pattern as depicted
in Fig. 13 to obtain a verified linearised model of the inverted pendulum.

The Event-B method together with its IDE Rodin proved powerful to sup-
port the formalisation of such generic patterns as parameterised Event-B models.
These patterns and the necessary theories are proved to be correct once and for
all. Specific hybrid systems models are obtained by instantiation i.e. by provid-
ing witnesses for the parameters of the generic models satisfying the properties
(invariants) expressed at the generic models level. Only this instantiation step
requires to be checked, the other proofs are reused, they are not re-proved again.

The defined framework is open and can be enriched, at the generic level, with
new patterns and other theories. The added patterns may be connected through
refinement to existing ones or may use new other theories. Each time a pattern is
added, it needs to be formally verified. Examples of patterns that can be added
are: discretisation pattern, PID3 controller pattern, introduction of theories for
partial differential equations or delayed differential equations, etc. In addition,
other theories axiomatising different domains from physics should be defined in
order to broaden the use of the defined framework.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., Voisin, L.: Pro-
posals for mathematical extensions for Event-B. Technical report (2009). http://
deploy-eprints.ecs.soton.ac.uk/216/

3. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57318-6 30

3 Proportional, Integral, and Derivative.

4. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 30

5. Back, R.-J., Petre, L., Porres, I.: Generalizing action systems to hybrid systems.
In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 202–213. Springer, Hei-
delberg (2000). https://doi.org/10.1007/3-540-45352-0 17

6. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core hybrid Event-B I: single
hybrid Event-B machines. Sci. Comput. Program. 105, 92–123 (2015)

7. Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Engineering and theoretical
underpinnings of retrenchment. Sci. Comput. Program. 67(2–3), 301–329 (2007)

8. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. Lecture
Notes in Computer Science, vol. 8051, pp. 67–81. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39698-4 5. Essays Dedicated to Jifeng He on
the Occasion of his 70th Birthday

9. Chaochen, Z., Ji, W., Ravn, A.P.: A formal description of hybrid systems. In: Alur,
R., Henzinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 511–530.
Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0020972

10. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Hybrid systems and Event-B:
a formal approach to signalised left-turn assist. In: Abdelwahed, E.H., et al. (eds.)
MEDI 2018. CCIS, vol. 929, pp. 153–158. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-02852-7 14

11. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Handling refinement of con-
tinuous behaviors: a refinement and proof based approach with Event-B. In: 13th
International Symposium TASE, pp. 9–16. IEEE Computer Society Press (2019)

12. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Proof-based approach to
hybrid systems development: dynamic logic and Event-B. In: Butler, M., Raschke,
A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 155–170.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 11

13. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Formally verified architecture
patterns of hybrid systems using proof and refinement with Event-B. In: Raschke,
A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 169–185. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-48077-6 12

14. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int.
J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008)

15. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

16. Girard, A., Pappas, G.J.: Approximate bisimulation relations for constrained linear
systems. Automatica 43(8), 1307–1317 (2007)

17. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. IEEE Trans. Automat. Contr. 52(5), 782–798 (2007)

18. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series, vol. 170, pp.
265–292. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59615-
5 13

19. Jifeng, H.: From CSP to hybrid systems. In: Roscoe, A.W. (ed.) A Classical Mind,
pp. 171–189. Prentice Hall International (UK) Ltd. (1994)

20. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2),
143–189 (2008)

21. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 15

22. Su, W., Abrial, J.R., Zhu, H.: Formalizing hybrid systems with Event-B and the
Rodin platform. Sci. Comput. Program. 94, 164–202 (2014)

