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Abstract 

This paper deals with a new transformation, so-called two-sided normalized (TSN), of 

continuous unimodal asymmetric probability distributions into possibility distributions. Many 

properties are derived and interpretations are discussed. A comparison with the optimal 

transformation is provided. In particular, the respective positions of right or left branches 

relative to the resulting optimal and TSN possibility distributions are given. It is also shown 

that the TSN transformation is the optimal transformation for the particular family of two-

piece skewed distributions. The preservation of the asymmetry property is then analyzed and 

illustrated for several conventional asymmetric distributions and counter-examples of 

asymmetry preservation are provided. A multilinear approximation of the TSN transformation 

is finally proposed. 
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1. Introduction 

The connection between probability theory and possibility theory has been considered since 

the beginning of possibility theory [40] [8], and then a long standing controversial debate took 

place in the literature [11] [22]. The issue of the transformation of a probability distribution 

into a possibility distribution is a key point of probability possibility relationships [26]. It has 

its roots in the consistency principle stated by Zadeh [40] and it was then developed according 

to two main different approaches founded on different opposing principles [30] [36]. 

On the one hand, Klir and coworkers [20] [15] [21] [18] [19] proposed a probability 

possibility transformation based on the so-called information invariance principle. This 

principle requires that the numbers expressing uncertainty in one theory should be 

transformed into corresponding ones in the other theory by an appropriate scale, and that the 

amount of uncertainty (the entropy ( )H p  of the probability density p and the non-specificity 

( )NS π for the possibility distribution π ) should also be preserved in the transformation. One 

problem with this approach is the assumed equality ( ) ( )H p NS π= between uncertainty 

quantities with debatable commensurability. Furthermore, the scaling assumption leads to 

presuppose that ( )xπ is a function of ( )p x . This point-wise relationship may conflict with 

the consistency principle that requires ( ) ( )A P AΠ ≥ , where ( )AΠ  and ( )P A  are respectively 

the possibility and probability measures of the event A , which has to be true for any event 

and not only for singletons. Therefore, casting possibility measures into upper and lower 

probabilities [12] is no longer feasible. 

On the other hand, Dubois-Prade and coworkers [9] [28] [10] [2] founded their transformation 

on a probability possibility consistency principle that can be summarized as: "the possibility 

of an event A  is always greater than or equal to the probability of the event A", i.e. 

( ) ( )A P AΠ ≥ for each A . Satisfying this inequality by a number of possibility distributions, 

they proposed to select the most informative one (in the sense of the possibility specificity) 

that, in addition, preserves the "shape", i.e. it preserves the order derived on the support, thus 

leading to the so-called optimal transformation. Note that when transforming probabilistic 

representation into a possibilistic one, some information is lost because point-value 

probabilities are transformed into interval valued ones. For the continuous case, which is the 

concern of this paper, the optimal possibility distribution can be achieved by deriving the 

level sets of the density f  by computing the probability of this level sets: 

/ ( ) ( )

( ) ( )opt

y p y p x

x p y dyπ
≤

= ∫ . The optimal possibility is thus the staking up of the shortest 

coverage intervals of the probability distribution coinciding with the alpha-cuts of the 

possibility distribution. For symmetric unimodal distributions, the alpha-cuts of the optimal 

possibility distribution bracket the narrowest coverage interval and the transformation takes 

the following simple form: ( ) 2min( ( ),1 ( ))opt
x F x F xπ = −  with F the cumulative distribution 

function associated to f . 

The optimal possibility distribution for the unimodal symmetric case has been widely used in 

applications [26] [14] unlike the asymmetric case that, until now, has only been considered by 

a few authors [2] [25]. While the optimal transformation is applicable to the asymmetric case, 
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it raises two main issues: the expression is not so simple and the resulting possibility 

distribution is not guaranteed to be convex on each side in all the cases, hence the alpha cuts 

of the possibility distribution do not necessarily bracket the coverage intervals. A few 

contributions have been made in the literature in deriving a simple approximation [25] and in 

considering convex/concave probability density [2], but the whole issue of the asymmetric 

case has not been solved, and this is the main object of this paper.  

In this paper, by adopting the Dubois-Prade and coworkers line of thought and basing 

developments on a new probability possibility transformation proposed in the discrete context 

[27], we propose a new transformation of continuous asymmetric probability distributions 

into possibility distribution satisfying consistency, maximum specificity and dominance of 

coverage intervals. The paper is organized as follows: section 2 gives fundamental elements 

about coverage intervals and the optimal probability possibility transformation. Section 3 

exposes the new so-called Two-Sided Normalized Transformation (TSN), its interpretation 

and properties. Section 4 focuses on the concept of asymmetry, its expression and 

applications to conventional asymmetric distributions used in applications as well as counter-

examples of asymmetry preservation. Finally, section 5 presents a multi-linear approximation 

of the TSN transformation. 

2. Building possibility distributions from coverage intervals 

2.1. Coverage intervals 

If : [0,1]F →�  is the cumulative distribution function of a random variable, the quantile 

function ( )Q p  for all [0,1]p ∈  for this random variable is 

 ( ) inf{ : ( )}Q p x p F x= ∈ ≤� .  (1) 

A coverage interval of level of confidence 1 α− , [0,1]α ∈  is any interval 

[ ( ), ( 1 )]Q Qβ β α+ −  with 0 β α≤ ≤  (see sections 3.12 to 3.16 in [17] for definitions of the 

terms and [4] [23] for estimations of coverage intervals). 

When the cumulative distribution function is continuous and strictly increasing, its quantile 

function is simply 
1

Q F
−= . Coverage intervals of level of confidence 1 α−  are thus the 

intervals 1 1

1
[ ( ) , ( 1 )]U F Fα β β α− −

− = + − . In other words, a coverage interval of level of 

confidence 1 α−  is any interval of �  where the random variable takes its value with a 

probability 1 α− . 

A coverage interval of level of confidence 1 α−  is said to be symmetric (or central or equal 

tailed) if 
2

αβ = .  

A coverage interval of level of confidence 1 α−  is said to be optimal if its length is the 

shortest among all coverage intervals of level of confidence 1 α− . In the case of a unimodal 

symmetric distribution, the optimal coverage interval is the symmetric coverage interval [17]. 

This property will be recovered, as a particular case, in section 2.3. 
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2.2.  From coverage intervals to possibility distributions 

Let m be the mode of a unimodal continuous probability density function :f X
+⊆ →� �  

with a cumulative distribution function F . Let L
X  and  R

X  be two subsets of X  such that 

{ }
L

X x X x m= ∈ ≤  and { }
R

X y X y m= ∈ > . Let ρ  be a function from [0,1]  to [0,1] . We 

consider coverage intervals 1U α−  such that ( )β ρ α= , i.e.,  

 1 1 1 1

1
[ ( ) , ( 1 )] [ ( ( ) ) , ( ( ) 1 )] [ ( ) , ( ) ]U F F F F u vα β β α ρ α ρ α α α α− − − −

− = + − = + − = .  (2) 

It was shown in [10] that coverage intervals provide a means to build the transformation t  of 

a probability density function f  into a possibility distribution t fπ = o . The transformation 

t  is obtained by considering possibility distributions π  such that their cuts of level α , for all 

[0,1]∈α , are coverage intervals of level of confidence 1 α− , that is 

 ( ( )) ( ( ))u v= =π α π α α .  (3) 

For unimodal continuous probability density functions considered in this paper, we have 

( )
L

u Xα ∈  and ( )
R

v Xα ∈ . For 1α = , the coverage interval is reduced to the point 

(1) (1)m u v= =  and we have ( ) 1mπ = . 

Let : [0,1]ψ → �  be a strictly increasing function such that 0lim ( )α ψ α→ = −∞1 and (1) mψ =

. Assuming that 
1( ) ( ( ))Fψ α ρ α−= , if ( ( )) 1F ψ α α+ −  is strictly decreasing from 1 to ( )F m  

then coverage intervals defined by (2) provides a means to build possibility distributions. 

Indeed, using ( ) ( )u =α ψ α and 
1( ) ( ( ( )) 1 )v F F

−= + −α ψ α α  we have for all [0,1]∈α  

 ( ( )) ( ( ))u v= =π α π α α .  (4) 

For all L
x X∈ , solving ( ) ( )x u= =α ψ α  with respect to α  gives the left hand side (LHS) 

part of the possibility distribution, i.e., 
1( ) ( )L x xπ ψ−= . The right hand side (RHS) part of the 

possibility distribution has an analytic expression ( )
R

yπ  for all R
y X∈  if the equation 

1( ) ( ( ( )) 1 )F y F F ψ α α−= + −  can be solved analytically with respect to α . 

For example, taking 1( ) ( )
2

F −= αψ α  for all [0,1]∈α leads to symmetric coverage intervals 

1 [ ( ), ( )]U u v− =α α α such that 

                                                 
1 If the cumulative distribution function is such that : [ , [F k +∞ → +�  the condition on ψ  in 0 becomes 

(0) kψ = .  
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1

1

( ) ( ),
2

( ) (1 ).
2

u F

v F

−

−

 =

 = −


αα

αα
  (5) 

Since 
1(1) (1/2)m Fψ −= =  the mode m is also the median of the distribution f . These 

coverage intervals are the shortest ones if the probability distribution is unimodal and 

symmetric. Solving each part of (5) with respect to α  leads to the well-known optimal 

transformation of unimodal symmetric probability density functions proposed by Dubois, 

Prade and co-workers [9] [3] [10] 

 
( ) 2 ( ), ,

( ) 2(1 ( )), .

DPco

L L

DPco

R R

x F x x X

y F y y X

 = ∀ ∈
 = − ∀ ∈

π
π

  (6) 

Because ( )F x  is defined and increasing for all x X∈ , the two parts of (6) can be merged into 

a unique equation which defines the transformation DPco
t  

 ( ) ( )( ) ( ( )) 2min( ( ),1 ( ))DPco

Dco Dcox t f x t f x F x F x= = = −oπ .  (7) 

For a given level of confidence, coverage intervals are not unique, thus an infinite number of 

non optimal possibility distributions can possibly be generated. For example, Fig. 1 shows the 

possibility distributions generated from the standard normal distribution (0,1)N  for 

1

1( ) ( )
2

F
αψ α −=  and 2( ) ln( )ψ α α= . 

 

Fig. 1. Generation of possibility distributions from the standard normal distribution 
(0,1)N  

2.3.  Optimal transformation of unimodal continuous probability distributions 

Let [ , ]
L R

x X y X∈ ∈ be a coverage interval with a level of confidence 1 α− , i.e., 

( ) ( ) 1F y F x α− = − . The optimal transformation Optt of the density function f  gives the 

possibility distribution 
Opt

Opt
t fπ = o . It is obtained by minimizing the length of coverage 

interval [ , ]x y  for the given level of confidence 1 α− . Using (2) we have 
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1 1( 1 ) ( )y x F F

− −− = + − −β α β . (8) 

The derivative of the length of the coverage interval with respect to β  is 

 1 1

1 1 1 1
( )

( ( 1 )) ( ( )) ( ) ( )

d
y x

d f F f F f y f x
− −− = − = −

+ −β β α β . (9) 

The length is minimal, i.e., the possibility distribution is optimal, when ( ) ( )f x f y=  which 

corresponds to an horizontal cut of the probability density function f . Since the probability 

density function is unimodal and continuous, the condition ( ) ( )f x f y= defines R
y X∈  as a 

function of L
x X∈ . Let ϕ be this function. The function ϕ is decreasing and such that 

( )m mϕ = . 

Let L
f  and R

f  be the restrictions of the probability density function to the sets L
X  and R

X . 

Fig. 2 illustrates the restrictions for the probability density function for (0.5,1.5)Weibull . 

 

Fig. 2. Restrictions of the probability density function for (0.5,1.5)Weibull . 

For all L
x X∈ , the interval [ , ( )]x xϕ  represented in Fig. 3, where 

1( ) ( ( ))R Lx f f xϕ −= , is a 

coverage interval with the level of confidence 

 ( ) ( ( )) ( )
L

x F x F x= −β ϕ . (10) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

1.5
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Fig. 3. Coverage interval for a given L
x X∈ . 

According to (3) the LHS of the optimal possibility distribution ( )Opt

L xπ for all L
x X∈  is 

 ( ) 1 ( )Opt

L Lx x= −π β .  (11) 

The same approach can be applied to build the RHS of the possibility distribution. In this 

case, for all R
y X∈  the interval 

1[ ( ), ]y yϕ−
, where 

1 1( ) ( ( ))L Ry f f yϕ− −= , is a coverage interval 

with the level of confidence 

 
1( ) ( ) ( ( ))R y F y F y

−= −β ϕ .  (12) 

Thus, the RHS of the optimal possibility distribution is 

 ( ) 1 ( ),Opt

R R Ry y y X= − ∀ ∈π β .  (13) 

In the general case, the inverse of the restrictions L
f  and R

f  have no analytic expression and 

must be numerically computed as shown in Fig. 4 for the Weibull distribution. 

 

Fig. 4. Optimal possibility distribution for (0.5,1.5)Weibull . 
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Remark. When f  is a symmetric probability density function, we have ( ) 2x m xϕ = − . 

Since the cumulative distribution function is symmetric with respect to the point ( ,1 / 2)m , it 

leads to ( ( )) 1 ( )F x F xϕ = −  and, using (10), ( ) ( ( )) ( ) 1 2 ( )
L

x F x F x F xβ ϕ= − = − . Finally, 

using (11) the LHS of the possibility distribution is 

 ( ) 2 ( )Opt

L x F x=π .  (14) 

Using (4) we have 2 ( )F x α= , thus the function ψ  is such that 1[0,1], ( ) ( )
2

F
αα ψ α −∀ ∈ =  

leading to the transformation DPco
t  given in (7). It shows that the shortest coverage intervals 

are the symmetric coverage intervals for symmetric distributions as stated in [17]. 

3. The two-sided normalized transformation 

Let f  be a density function and F  the cumulative distribution function, the transformation 

TSN
t  introduced in [27] and defined by 

 
( ) 1 ( )

( ) ( ( )) min( , ), ,
( ) 1 ( )

TSN

TSN

F x F x
x t f x x X

F m F m

−= = ∀ ∈
−

π  (15) 

is called Two-Sided Normalized (TSN) transformation. 

This transformation was originally motivated by considerations on the preservation of the 

asymmetry in the transformation of the probability density function. Indeed, the 

transformation given by (7), when applied to an asymmetric distribution with a mode different 

from the median, modifies the position of the mode for the possibility distribution since 

( ) 1DPco
xπ =  for x  such that 

1
( )

2
F x = . The weighting introduced in TSN

t  for ( )F x  and 

1 ( )F x− , i.e., ( )F m  and 1 ( )F m− , ensures to keep the same mode for f  and TSNπ .  

The next sub-sections give an interpretation and a justification of (15) in terms of coverage 

intervals while section 4 emphasizes the issue of asymmetry preservation. 

3.1.Interpretation of the TSN transformation 

The first family of asymmetric probability distributions was introduced by Fechner in 1897 

and further developed under the name two-piece skewed distribution (see [38] for historical 

landmarks and analysis). Recent developments have been made by Fernandez et al. [13]. The 

two-piece name is justified by the fact that the two-piece skewed distribution mixes the LHS 

and the RHS of a unimodal symmetric probability density function denoted by g to obtain the 

skewed probability density function 

 
( )( ) ( )sign x

sf x A g xγ −=  with 
2

1
A

γ
γ

=
+

 . (16) 

As explained in [38], the initial idea relies on a probability density function f  composed by 

two half of normal distributions around the mode m , i.e.,  
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2

2

1

2

2
2

( )

2

1

( )

2

2

1
( ) , ,

2
( )

1
( ) , .

2

x m

L

y m

R

f x e if x m

f x

f y e if y m

−−

−−


 = ≤
= 


= ≥


σ

σ

πσ

πσ

  (17) 

Then L
f  and R

f  are respectively scaled by 
1

1 2

2σ
σ σ+

 and 
2

1 2

2σ
σ σ+

to generate the skewed 

continuous distribution s
f , such that 

1 2

2
( )

2 ( )
sf m A

π σ σ
= =

+
. The effect of this 

transformation is to move the median value of f  away from the mode as it can be seen on 

the cumulative distribution functions in Fig. 5. 

 

Fig. 5. Probability and cumulative distribution functions of a two-piece skewed 

normal distribution. 

The TSN transformation can be interpreted as the reverse process. Starting from an 

asymmetric probability density function, its cumulative distribution function is modified such 

that the mode becomes the median. By doing so, the resulting probability density function 

becomes discontinuous at the mode, which is also the case for f  in (17). This process is 

shown in Fig. 6 for the distribution (0.5,1.5)Weibull .  
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Fig. 6. Moving the mode towards the median for (0.5,1.5)Weibull . 

The simplest solution to move the mode towards the median is to scale the LHS of the 

cumulative distribution function by 
1

2 ( )F m
, i.e., 

1
( ) ( ),

2 ( )

TSN

LF x F x x m
F m

= ∀ ≤ , but other 

transformations could be considered. From the inverse of the composition of two functions we 

have ( ) 1
1( ) (2 ( )), [0,1]TSN

LF F F m
− −= ∀ ∈α α α . Using (5) with 1( ) ( ) ( )

2

TSN

L
F

αψ α −=  gives 

 

1 1

1

( ) ( ) ( ) ( ( )),
2

( ) ( ( ( ) 1) 1).

TSN

L
u F F F m

v F F m

− −

−

 = =

 = − +

αα α

α α
  (18) 

Solving each part of (18) with respect to α  leads to 

 

( )
( ) , ,

( )

1 ( )
( ) , .

1 ( )

TSN

L L

TSN

R R

F x
x x X

F m

F y
y y X

F m

 = ∀ ∈
 − = ∀ ∈
 −

π

π
  (19) 

Finally, 
TSN

Lπ  is increasing and 
TSN

Rπ  is decreasing, they can be merged into the unique 

equation given in (15) which defines the TSN transformation (another proof is given in [26]). 

Remark. The TSN transformation can also be interpreted in terms of truncated distributions 

[35] [37]. Indeed, the probability distribution f  can be split into its left and right truncated 

distributions ( )Tr

Lf x  and ( )Tr

Rf x  such that 

 

( )
( ) , if and 0 otherwise,

( )

( )
( ) , if and 0 otherwise.

1 ( )

Tr

L

Tr

R

f x
f x x m

F m

f x
f x x m

F m

 = ≤

 = ≥
 −

  (20) 

The coverage intervals for 
Tr

Lf are [ ( ), ( )]u vα α , with ( )v mα =  for each α . Using (4) it gives 

 ( ) 1 ( )
( ( )) 1 1 ( ) ( ) ( ) ( )

( )

Tr Tr Tr Tr

L L L L

F x
F x F x F x

F m

−
+ − = ⇔ = = ⇔ = =ψ α α ψ α α π .  (21) 

The coverage intervals for 
Tr

Rf are [ ( ), ( )]u vα α , with ( )u mα =  for each α . Using (4) we 

have ( ) mψ α =  and ( ) 1

( ) (1 )Tr

Ry v Fα α
−

= = −  since ( ) 0Tr

RF m = . Thus, it leads to 

 
( ) ( ) 1 ( )

( ) 1 ( ) 1
1 ( ) 1 ( )

Tr Tr

R R

F y F m F y
y F y

F m F m

− −= − = − =
− −

π . (22) 

Therefore, roughly speaking, the TSN transformation consists in splitting the probability 

distribution f  into the left and right truncated distributions relative to its mode (note that the 
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TSN can be applied in the same way to other points than the mode, e.g. the mean). Then, the 

truncated distributions are respectively transformed into left and right possibility distributions. 

Finally, these possibility distributions are merged to give (15). 

3.2.Properties of the TSN transformation 

Four properties of the TSN transformation are given in this section: 

• Proposition 1 is a straightforward property showing that the TSN transformation is the 

same as the transformation DPco
t  when the probability density function is symmetric. 

• The convexity of the LHS and RHS parts of TSNπ is shown in Proposition 2. 

• The position of the LHS and RHS parts of TSNπ relative to Optπ is given by Proposition 

3. 

• Proposition 4 shows that the link between the TSN transformation and the two-piece 

skewed distributions explained in Section 3.1 is stronger than the proposed 

interpretation. Indeed, it shows that the TSN transformation is the optimal 

transformation for this particular family of skewed distributions. 

Proposition 1. When the continuous unimodal probability density function f  is symmetric, 

( ( )) ( ( )) ( ( ))TSN DPco Optt f x t f x t f x= =  for all x X∈ . 

Proof. In the case of a symmetric probability density function we have
1

( )
2

F m =  which gives 

the proposition. 

∎ 

Proposition 2. The LHS and RHS parts of the result of the TSN transformation are always 

strictly convex. 

Proof. Since it is assumed that the probability density function f  is continuous and 

unimodal, it is strictly increasing on L
X  and decreasing on R

X . Therefore its cumulative 

distribution function F  is convex on L
X and concave on R

X . The LHS and RHS parts of 

the possibility distribution TSNπ  are obtained by the composition of increasing affine functions 

by, respectively, ( )F x  and ( )F x−  which are both convex functions. Affine functions are 

convex and the composition of increasing convex functions by convex functions is also 

convex. 

∎ 

In Fig. 4, the LHS part of the optimal transformation for (0.5,1.5)Weibull  is concave. As 

shown in Fig. 7, it is convex for the TSN transformation. 
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Fig. 7. Transformations Optt  and TSN
t  for (0.5,1.5)Weibull  

Proposition 3. If a continuous unimodal probability density function ( )f x  with a mode m is 

differentiable for all x X∈ , the LHS (resp. RHS) part of the two-sided normalized 

transformation is lower (resp. greater) than the LHS (resp. RHS) part of the optimal 

transformation if 
1

( )
2

F m < . 

 

Proof. See Appendix A. 

∎ 

Remark. Proposition 3  provides information about the relative positions of TSNπ  and 
Optπ  but the optimal transformation Optπ remains the most specific one, i.e., it has the 

shortest coverage intervals for all levels of confidence. Fig. 8 illustrates Proposition 3 with 

two sets of parameters for the Beta distribution.  
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Fig. 8. Possibility distributions for the Beta distribution with two different sets of 

parameters 

Proposition 4. The two-sided normalized transformation is the optimal transformation for the 

family of two-piece skewed distributions defined by  

 
( )( ) ( )sign x

sf x A g xγ −=  with 
2

1
A

γ
γ

=
+

  (23) 

where g is a unimodal symmetric probability density function. 

Proof. See Appendix B. 

∎ 

Remark. Proof of Proposition 4 in Appendix B provides two ways of expressing TSNπ . The 

first one is given by (73) where TSNπ is defined from the cumulative distribution function s
F  

of the skewed distribution. The other one, based on the cumulative distribution function G  of 

the symmetric distribution, is obtained, for all x X∈ , by merging (64) and (69) which leads to 

 ( ) ( ) 2min( ( ),1 ( ))TSN Opt x
x x G x G= = −π π γ

γ .  (24) 

 

4. Asymmetry and the two-sided normalized transformation 

4.1. Definitions and properties 

The measure of the asymmetry of a probability distribution goes back to Pearson and his 

moment coefficient of skewness [33]. Since then, besides the standardized third central 

moment, several coefficients have been proposed, see for example [7] [29] [16] [24] [39] [35] 

[5] [31]. In this section, function definitions based on the departure from symmetry (e.g. [6] 

[31]) are respectively used for the asymmetry of the probability density functions and for 

possibility distributions. 

Definition 1. A continuous probability density function f  is said to be right asymmetric 

about m  if ( ) ( ) (2 ) 0,fasym x f x f m x x m= − − < ∀ < . 

Definition 2. A possibility distribution t fπ = o , obtained from the transformation t  of a 

probability density function f , is said to be right asymmetric about m  if 

( ) ( ) (2 ) 0,asym x x m x x m= − − < ∀ <π π π . 

Definition 3. A probability-possibility transformation t  preserves the asymmetry if 

( ) 0 ( ) 0,fasym x asym x x m< ⇒ < ∀ <π . 

If the TSN transformation is used to transform a continuous unimodal probability density 

function f with a mode m  to a possibility distribution TSNπ  then the four possibilities are: 
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• f  is right asymmetric about mand TSNπ  is right asymmetric about m , 

• f  is not right asymmetric about mand TSNπ  is right asymmetric about m , 

• f  is not right asymmetric about m  and TSNπ  is not right asymmetric about m , 

• f  is right asymmetric about m  and TSNπ  is not right asymmetric about m . 

From a quick glance at Fig. 7 or Fig. 8, it may seem like the TSN transformation always 

preserves the asymmetry about the mode. The next two propositions provide sufficient 

conditions for the preservation of the asymmetry, i.e., the first of the above possibilities holds 

true: 

• Proposition 5 shows that the strict monotonicity of the function h, such that

( )
( ) ,

(2 )

f x
h x x m

f m x
= ∀ <

−
, is related to the preservation of the asymmetry by the TSN 

transformation. 

• Proposition 6 provides a means to check the monotonicity of h from the convexity of 

the function ω , such that 
1 ( )

( ) ,
( )

df x
x x m

f x dx
= ∀ <ω . Since ω  depends on the 

probability density function and its derivative, it gives analytic expressions often 

simpler than that of h.  

Proposition 5. Let f  be a unimodal continuous probability density function with a mode m . 

Let h be the function such that 
( )

( ) ,
(2 )

f x
h x x m

f m x
= ∀ <

−
. If h is strictly increasing  from L 

to 1, where 0L = if f is defined on a left-bounded interval or 
( )

lim ( )
1 ( )x

F m
L h x

F m→−∞
= <

−
 if f  

is defined on � , then the asymmetry about m is preserved by the TSN transformation. 

Proof. See Appendix C. 

∎ 

The functions h for the distribution (0,5;1,5)Weibull  and the skewed normal distribution 

(0,1, 3) 2 ( ) (3 )SKN x xφ= Φ , where φ  is the probability density function of the standard normal 

distribution (0,1)N , are given in Fig. 9 as illustrations of Proposition 5. According to 

Proposition 12 and Proposition 13, 0L =  for these distributions. It is formally shown in 

section 4.2 that h is strictly increasing for these distributions. 
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Fig. 9. Functions h for (0.5,1.5)Weibull  and (0,1, 3)SKN  

Proposition 6. If a unimodal continuous probability density function f  with a mode m  is 

twice differentiable for all x X∈  and the function 
1 ( )

( )
( )

df x
x

f x dx
ω =  is strictly convex for all 

x m<  then the asymmetry about m is preserved by the TSN transformation. 

Proof. For all x m<  we have  

 

( )
( ) ,

( )

1 (2 ) (2 )
(2 ) .

(2 ) (2 )

f x
x

f x

df m x f m x
m x

f m x dx f m x

′ =
 ′− − − = = −
 − −

ω

ω
  (25) 

Thus, if ( )xω  is strictly convex then (2 )m xω −  is strictly concave. The twice differentiability 

of ω  gives lim ( ) lim (2 ) 0
x m x m

x m xω ω
→ →

= − =  and [ ] ( )
lim ( ) lim (2 ) ' 0

( )x m x m

f m
x m x

f m
ω ω

→ →

′′′ = − = < . 

Therefore, ( )xω  and (2 )m xω − are decreasing functions with respect to x  and are such that 

for all x m< , ( ) (2 ) ( ) (2 ) ( ) (2 ) 0x m x f x f m x f x f m x′ ′> − ⇔ − + − >ω ω . 

Thus, 2

( ) (2 ) ( ) (2 )
( ) 0,

(2 )

f x f m x f x f m x
h x x m

f m x

′ ′− + −′ = > ∀ <
−

. Since h is strictly increasing,  

Proposition 5 holds true which completes the proof. 

∎ 

Remark. The function ω  can also be written as 
log( ( ))

( ) ,
d f x

x x m
dx

= ∀ <ω . Since ω  is a 

decreasing function when it is convex, it means that f  is a log-concave density function. 

This property is useful to identify distributions which are candidates for testing the convexity 

of ω but it only provides candidate distributions since f  can be log-concave while ω  being 

not convex. 

4.2. Examples of right asymmetry preservation 
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In this sub-section, five conventional examples are given of unimodal continuous asymmetric 

distributions for which the TSN transformation preserves the asymmetry about the mode. 

They all verify Proposition 6, i.e., the function ω  is strictly convex (four other examples are 

given in Appendix D). The sixth example concerns Pearson type IV distributions which 

provides a case where ω  is not convex but h is a strictly increasing function and, therefore, 

the TSN transformation preserves the asymmetry. The last example of two-piece skewed 

distributions illustrates that the condition in Proposition 5, though sufficient, is not necessary 

for preserving asymmetry. 

4.2.1. Weibull distribution 

The Weibull distribution is a particular case of the Generalized Extreme Value distribution 

family and is defined by 

 
1

( ) , 0,

k
k x

k x
f x e x

−  − 
  = ∀ ≥ 

 

λ

λ λ
  (26) 

with 1k >  in order to have a mode 

1

1 kk
m

k
λ − =  
 

.  

It leads to 

1
( 1)

( )

k
k x k

x
x

ω
λ λ

− − = − + 
 

and 
3

(2 ) 2

( ) ( 1)

k
x

k k

x k
x

λω

 − + 
 ′′ = − . For 1 2k< ≤ , ω  

is strictly convex because ( ) 0xω ′′ > . When 2k > , ( ) 0xω ′′ =  for 

1

1

2

( 2)

k

x
k k

λ  =  − 
. If 

1m x<  then x m∀ <  the function ω  is strictly convex which leads to 

 1

1 2
3

( 2)

k
m x k

k k k

−< ⇔ < ⇔ <
−

. (27) 

For 3k ≥  the function h is not strictly increasing which means that at least one x  exists such 

that (2 ) ( )f m x f x− ≥ .  

Whatever the parameter λ, the TSN transformation preserves the asymmetry of the Weibull 

distribution for ]1,3[k ∈ . 

4.2.2. Beta distribution 

The beta distribution is defined, for all [0,1]x ∈ , by 

 

1 1(1 )
( )

( , )

x x
f x

B

α β

α β

− −−=   (28) 

with 
1

1 1

0

( , ) (1 )B u u duα βα β − −= −∫ . 
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We will consider , 1α β >  in order to have a mode 
1

2
m

α
α β

−=
+ −

. 

We have 
( 2) 1

( )
( 1)

x
x

x x

α β αω + − + −=
−

 and its second derivative is given by 

 

3 2

3 3

2( 2) 6( 1) 6( 1) 2( 1) ( )
( )

( 1) ( )

x x x n x
x

x x d x

α β α α αω + − − − + − − −′′ = =
−

.  (29) 

For all [0,1], ( ) 0x d x∈ < . The first derivate of n  with respect to x  is 

 
2( ) 6( 2) 12( 1) 6( 1)n x x xα β α α′ = + − − − + − .  (30) 

The discriminant of 'n  is negative, therefore '( ) 0n x >  since , 1α β > . For all [0, ]x m∈  the 

function n  is strictly increasing from (0) ( 1)n α= − −  to 2

( )( 1)( 1)
( )

( 2)
n m

α β α β
α β

− − −=
+ −

. Since for 

all [0,1], ( ) 0x d x∈ < , we can conclude that if ( ) 0n x < , for all x m< , then ( ) 0xω ′′ >  and ω  

is strictly convex.  

The TSN transformation preserves the asymmetry of the beta distribution for all parameters 

such that 1 α β< < . 

4.2.3. Gamma distribution 

The gamma distribution is defined by 

 
1

( ) , 0
( )

x

k

k

x e
f x x

k

−−

= ∀ >
Γ

θ

θ
. (31) 

The gamma function is defined by 1

0

( ) z uz u e du

∞
− −Γ = ∫  with z  a complex number with a 

positive real part. With a shape parameter 1k >  and a scale parameter 0θ >  the mode of the 

probability density function is ( 1)m k θ= − . 

The gamma distribution leads to 
( 1)

( )
x k

x
x

θω
θ

− −= −  and 
3

2( 1)
( )

k
x

x
ω −′′ = . The function ω  

is strictly convex if 1.k >   

The TSN transformation preserves the asymmetry of the gamma distribution for all 

parameters such that 1k >  and 0.θ >  

4.2.4. Log-norm al distribution 

The log-normal distribution is defined by 

 

2

2

(ln( ) )

2
1

( ) , 0,
2

x

f x e x
x

−−
= ∀ >

µ
σ

σ π
 with 0>σ .  (32) 
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It leads to 

2

2

ln( )
( )

x
x

x

σ µω
σ

− += −  and 

2

2 3

2( ) 2ln( ) 3
( )

x
x

x

µ σω
σ

− − +′′ = . 

The mode of the log-normal distribution is 
2

m e
µ σ−=  and we have 

22ln( ) 2ln( ) 2( )x m µ σ− >− =− − . Thus, 
22( ) 2ln( ) 3 3xµ σ− − + > and since 0x > , ω  is 

strictly convex. 

Whatever the parameters µ  and σ , the TSN transformation preserves the asymmetry of the 

log-normal distribution. 

4.2.5. Skewed normal distribution 

Let φ  be the probability density function of the standard normal distribution and Φ  its 

cumulative distribution function. The skewed normal distribution [1] is defined by 

 ( ) 2 ( ) ( ), ,f x x x x= Φ ∀ ∈ �φ α   (33) 

where α  is a skewing parameter. 

For this distribution, we have 
( )

( )
( )

x
x x

x

φ αω α
α

= − +
Φ

 and 
( )

( )
( )

x
x

x

φ αω α
α

′′ ′′ =  Φ 
. 

Let r  be the inverse Mill’s ratio defined for all x  by 
( )

( )
1 ( )

x
r x

x

φ=
−Φ

. The function r  is 

strictly convex [34], i.e. "( ) 0r xα > , if 0α > . Since 1 ( ) ( )x x− Φ = Φ − , we have 

( ) ( ) ( )x x r xω α ω α α′′ ′′ ′′− = =  therefore ω  is convex if 0α > .  

The TSN transformation preserves the asymmetry of the skew normal distribution when the 

skewing parameter α  is positive. 

4.2.6. Pearson type IV distribution as a non convex case 

In 1895, Pearson analyzed asymmetrical frequency curves and introduced a classification into 

five types [33], then extended into twelve distribution types [32], as the solution of the 

differential equation  

 
2

0 1 2

2 3

0 1 2 3

1 ( )
( )

( )

a a x a xdf x
x

f x dx c c x c x c x

+ += =
+ + +

ω .  (34) 

The probability density function of the distributions known as Pearson type IV distributions is  

 

arctan( )

0 2

2

( ) , ,

(1 )

x

ae
f x y x

x

a

−

= ∀ ∈
+

�

ν

µ
 with 0a > . (35) 

The normalizing factor 0y  exists only if 1 / 2µ > . The function ω  is 
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2 2

2
( ) ,

a x
x x

a x

− −= ∀ ∈
+

�
ν µω .  (36) 

The mode m  of f  is such that ( ) 0mω = , i.e. 
2

a
m

ν
µ

= − . Since ω  has two extrema, 

respectively in 
2 24

2

a a
x

ν µ ν
µ

− + +
=  and 

2 24

2

a a
x

ν µ ν
µ

− − +
= , it cannot be convex for all 

x m< . 

The function his 

 ( )
arctan arctan ( )

2

2

2

( ) ( ) 1 , ,

1

x
k x

a
e

h x k x x
x

a

  − +  
  

= + ∀ ∈
 

+ 
 

�

ν
µ

µ
   (37) 

with ( )
x a

k x
a

+= µ ν
µ and its derivative is 

 
( ) ( )

( ) ( )( )

arctan arctan ( )
22

2
2 2 2 2 2 2 2

2

( ) 1 2
( ) ,

1 2

x
k x

a
a k x a x e

h x x
x

a x a a x x
a

  − +  
  − + +

′ = ∀ ∈
 

+ + + + + 
 

�

νµ

µ

ν ν µ

µ ν µν µ
.  (38) 

It can be easily shown that ( )2 2 2 2 2 2 22a a x x aµ ν µν µ µ+ + + ≥ . Therefore, if 0ν < , ( )h x′  is 

strictly positive and ( )h x  is strictly increasing for all x m< . 

The TSN transformation preserves the asymmetry of the distribution defined by (35) when 

0ν < . 

4.2.7. Two-piece skewed distributions 

Given the two-piece skewed distribution s
f , without loss of generality, it is assumed that the 

mode of the symmetric probability density function g is 0m = . Using the symmetry of g, 

from (23) we have ( ) ( )
s

f x Ag xγ=  and (2 ) ( ) ( )s

x x
f m x Ag Ag

γ γ
−− = =  for all 0x < . 

Therefore, s
f  is right asymmetric if 1γ > . For the same reason, from (24) we have 

( ) 2 ( )TSN
x G xπ γ=  and (2 ) 2(1 ( )) 2 ( )TSN x x

m x G Gπ
γ γ
−− = − =  for all 0x < . Therefore, TSNπ  is 

right asymmetric if 1γ > . Thus, the TSN transformation preserves the asymmetry for the 

family of two-piece skewed distributions if 1γ >  or, equivalently, 
1

( ) (0)
2

F m F= < . 
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The asymmetry preservation is not related to the monotonicity of the function h, but it can be 

verified that many symmetric probability functions g lead to monotonically increasing 

functions h. Let us informally explain this observation by a counter-example. In order to have 

the function h non-monotonic, we can consider a probability density function gwith a 

sinusoidal term such that its cumulative distribution function G  is convex for all 0x ≤ , e.g.,  

 
2

2

2

cos( )
2( 1)

( ) , if 0,
sin( )( )

2 ( 1)

( ) ( ), if 0.

L

R L

x
x

g x x
xg x

x

g x g x x

 − −
= − ≤

=   − −   


= − ≥

π
π
π

π
  (39) 

Then, the function g is skewed according to (23). Even with such a specific distribution, the 

skewing parameter γ has to be tuned in order to obtain a non-monotonic function h as shown 

in Fig. 10. Therefore, it emphasizes, in an informal way, that it is much easier to obtain 

monotonic functions h than non-monotonic ones. 

 

Fig. 10. Function g given by (39) skewed by 1.3γ =   

4.3. Counter-examples of asymmetry preservation 

This sub-section illustrates the three cases, presented in section 4.1, where the asymmetry is 

not preserved. Many conventional probability distributions have been tried but none of them 

could fit the three cases where asymmetry is not preserved. Therefore, special probability 

density functions have been built for this purpose using the following principle: 

• Define two convex functions ( )TSN

L xπ  for all x m≤  and ( )TSN

R xπ  for all x m≥ . 

According to Proposition 10 to keep the possibility for f  to be right asymmetric we 

must have 
1

( )
2

F m < . This condition is obtained if the derivatives of the convex 
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functions are such that ' ( ) ' ( )TSN TSN

L Rm mπ π> − . Indeed, since 
( )

' ( )
( )

TSN

L

f x
x

F m
π =  and 

( )
' ( )

1 ( )

TSN

R

f x
x

F m
π = −

−
 it leads to 

1
( )

2
F m < . 

• Compute ( )F m  from the derivatives ' ( )TSN

L mπ  and ' ( )TSN

R mπ . 

• Generate ( ) ( ) ( )TSN

L Lf x F m xπ′=  for all x m≤  and ( ) (1 ( )) ( )TSN

R Rf x F m xπ′= − −  for all 

x m≥ . 

4.3.1. f  not right asymmetric and TSNπ  right asymmetric 

Let TSNπ  be the possibility distribution such that 

 

2( ) , if 0 1,

( ) 1
( ) , if 1.

TSN

L
TSN

TSN

R

x x x

x
x x

x

 = ≤ ≤
= 

= ≥


π
π

π
  (40) 

It gives the probability density function  

 

2

( ) 2 ( ), if 0 1,

( ) 1 ( )
( ) , if 1,

L

R

f x xF m x

f x F m
f x x

x

= ≤ ≤
= − = − ≥

  (41) 

with a modal value of 1m =  and ( ) 1/3F m = . 

The convex functions ( ) ( )TSN TSN

Lx xπ π=  and (2 ) (2 )TSN TSN

Rm x xπ π− = −  have no intersecting 

point for 0 1x≤ <  , therefore TSNπ  is right asymmetric and there is only one point where 

( )
( )

1 ( )

F m
h x

F m
=

−
. From Proposition 12 we know that (0) 0h = , thus the asymmetry of f  can 

be checked from the monotonicity of 
2( )

( ) (2 )
(2 )

f x
h x x x

f m x
= = −

−
 for all 0 1.x≤ <  It can be 

easily verified that ( ) 0h x′ =  for 2 / 3x =  and (2 / 3) 32 / 27 1h = >  which means that f  is not 

right asymmetric. 
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Fig. 11. f  not right asymmetric and TSNπ  right asymmetric 

4.3.2. f  not right asymmetric and TSNπ  not right asymmetric 

Let  TSNπ  be the possibility distribution defined by 

 

1
( ) , if 0,

( ) 5 1

( ) , if 0.

TSN

LTSN

TSN x

R

x x
x x

x e x−

− = ≤= −
 = ≥

π
π

π
  (42) 

It defines the probability density function   

 
2

5
( ) ( ) , if 0,

(5 1)( )

( ) (1 ( )) ,if 0.

L

x

R

f x F m x
xf x

f x F m e x
−

 = ≤ −= 
 = − ≥

   (43) 

with a modal value of 0m =  and ( ) 0.1667F m = . 

For 0x <  the convex functions ( ) ( )TSN TSN

Lx xπ π=  and (2 ) ( )TSN TSN

Rm x xπ π− = −  have one 

intersecting point, therefore TSNπ  is not right asymmetric. 

One intersecting point means that ( )TSNasym xπ  has two extrema or, equivalently, two values 

exist such that 
( )

( )
1 ( )

F m
h x

F m
=

−
. Since 

( )
lim ( ) 1

1 ( )x m

F m
h x

F m→
= >

−
, the function h cannot be 

strictly increasing, thus f  is right asymmetric if 
( )

( ) 1
(2 )

L

R

f x
h x

f m x
= <

−
, for all 0x < . Since 

x
e  decreases faster than 

1

x
 when x → − ∞  we have lim ( )

x
h x

→−∞
= +∞  and therefore f  is not 

right asymmetric. 

 

Fig. 12. f  not right asymmetric and TSNπ  not right asymmetric 

4.3.3. f  right asymmetric and TSNπ  not right asymmetric 
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For this counter-example, the possibility distribution TSNπ  is chosen such that for all x m<  the 

convex functions ( ) ( )TSN TSN

Lx xπ π=  and (2 ) (2 )TSN TSN

Rm x m xπ π− = −  have an infinite number 

of intersecting points, therefore TSNπ  is not right asymmetric, e.g., 

 
2

2

2

1
( ) , if 0,

sin( )
( 1)

( )

1
( ) , if 0.

( 1)

TSN

L

TSN

TSN

R

x x
x

x
x

x x
x

 = ≤
− −

= 


= ≥ +

π π
π π

π

  (44) 

It defines the probability density function 

 

2

2

2

3

cos( )
2( 1)

( ) ( ) , if 0,
sin( )

( 1)( )

2
( ) (1 ( )) , if 0,

( 1)

L

R

x
x

f x F m x
x

xf x

f x F m x
x

 − −
= − ≤

  − −=  
 

 = − ≥ +

π
π
π

π   (45) 

with a modal value of 0m =  and ( ) 0.4631F m = .  

As in the previous counter-example, f  is right asymmetric if 
( )

( ) 1, 0,
(2 )

L

R

f x
h x x

f m x
= < ∀ <

−
 

but now, we have 
( )

lim ( )
1 ( )x

F m
h x

F m→−∞
=

−
. Indeed, when x → − ∞  the periodic term are bounded 

and the limit is given by the ratio of the terms of highest degree in x  of ( )
L

f x  and (2 ).
R

f m x−
Because TSNasymπ  is periodic, so is the functionh. Extrema of ( )h x  are decreasing starting 

from x m=  where 
( )

lim ( ) 1
( )

L

x m
R

f m
h x

f m→
= = . Thus, ( ) 1, 0,h x x< ∀ < which leads f  to be right 

asymmetric. 

 

Fig. 13. f  right asymmetric and TSNπ  not right asymmetric 



23 

 

5. Multilinear approximation of the two-sided normalized transformation 

The aim of this section is to provide approximations of the TSN transformation of any 

distribution for practical use in applications. For the sake of clarity, the RHS of the possibility 

distribution is considered and the same approach can be developed for the LHS part. Let 

( , ( ))TSN
u uπ  and ( , ( ))TSN

v vπ  be two points on the RHS of the possibility distribution. The 

bilinear approximation of the possibility distribution for y between u  and v  is shown in Fig. 

14.  

 

Fig. 14. Bilinear approximation of the RHS part of the two-sided normalized 

transformation for (0.5,1.5)Weibull  

The surface S under the RHS approximation is a function of y, that is 

 
( ( ) ( ))( ) ( ( ) ( ))( )

( )
2 2

TSN TSN TSN TSN
u y y u y v v y

S y
+ − + −= +π π π π

.  (46) 

Its second derivative with respect to y is 

 ( ) ( )
2

TSNv u
S y y

−′′ ′′= π .  (47) 

According to Proposition 2, TSNπ  is strictly convex on R
X , that is ( ) 0,TSN

Ry y X′′ > ∀ ∈π  and, 

therefore, ( ) 0S y′′ > . Thus S is a strictly convex function. Since ( ) ( )S u S v=  the function S 

has a minimum. The value miny  for which the minimum is reached provides the best bilinear 

approximation in the sense of the maximum of specificity.  

This property is used to build the algorithm provided in Fig. 15. Given the interval [ ],u v  the 

difference e  between surface below the linear approximation of TSNπ and the surface below the 

distribution itself can be computed. Due to the convexity of TSNπ this difference is always 

positive. If this difference is lower than a given threshold ε , the vector 1

0

a

a

 
 
 

 of the linear 

interpolation 1 0a y a+  is returned. Otherwise, miny  is computed and the process is recursively 
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called on the intervals [ ]min,u y  and [ ]min ,y v . The algorithm returns the list of vectors ,1

,0

i

i

a

a

 
 
 

to be used in the linear interpolations ,1 ,0( )i i ip y a y a= + .  
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Fig. 15. Recursive approximation of TSNπ   

Because 
TSN

Rπ  (resp. 
TSN

Lπ ) is decreasing (resp. increasing) the slopes of the linear 

interpolations are ordered, i.e. ,1 1,1i ia a +< . Thus, the multilinear interpolation TSNπ% of TSNπ  is  

 
,1 ,0

,1 ,0

( ) max (0, ( )) max (0, ), ,

( ) max (0, ( )) max (0, ), .

TSN l L L

L i i i i i L

TSN R R R

R i i i i i R

x p x a x a if x X

y p y a y a if y X

 = = + ∈
 = = + ∈

%

%

π
π   (48) 

Finally, since ,1 0L

i
a >  and ,1 0R

i
a <  both parts of (48) can be merged into the single equation 

 ( ) min( ( ), ( )),TSN TSN TSN

L Rx x x x X= ∀ ∈% % %π π π .  (49) 

Fig. 16 shows multilinear approximations of the two-sided normalized transformation for 

(0.5,1.5)Weibull  and 0.01ε =  and 0.001ε = . 

 

Fig. 16. Multilinear approximations of the two-sided normalized transformation for 
(0.5,1.5)Weibull   
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Function approximate(
TSNπ , u, v, ε ) 

 
( ( ) ( ))( )

( )
2

vTSN TSN
TSN

u

u v v u
e t dt

π π π+ −= − ∫   

 min [ , ]

( ( ) ( ))( ) ( ( ) ( ))( )
min

2 2

TSN TSN TSN TSN

y u v

u y y u y v v u
y

π π π π
∈

+ − + −= +   

 if e ε<  then 

  return 

( ) ( )

( ) ( )
( )

TSN TSN

TSN TSN
TSN

v u

v u

v u
u u

v u

π π

π ππ

 −
 − 

− − − 

 

 else 

  return [approximate(
TSNπ ,u, ymin, ε ), approximate(

TSNπ ,ymin, v, ε )] 
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Conclusion 

In this paper the links between coverage intervals and possibility distributions were 

highlighted. A new transformation of asymmetric probability density functions, called Two-

Sided Normalized (TSN) transformation, was investigated. This transformation generalizes 

the transformation proposed by Dubois-Prade and co-workers in the sense that it keeps its 

simplicity and gives the same result when considering symmetric distributions.  

Among the results presented in this paper, it was shown that the TSN transformation is the 

optimal transformation for the family of two-piece skewed distributions. Moreover, for this 

later family the asymmetry of the original probability distribution is preserved by the TSN. 

For other skewed distributions, an interesting result is that the monotonicity of the function 

( )
( )

(2 )

f x
h x

f m x
=

−
 with x m<  is a sufficient condition for preserving asymmetry. It was also 

shown that this condition is satisfied when the derivative of the logarithm of the density is 

convex.  

Surprisingly many well-known distributions satisfy the convexity condition. Further analysis 

will be necessary to investigate if this sufficient condition can be turned into a necessary one. 

Another interesting question concerns the links between the transformation and the 

cumulative distribution function. Considering more complex functions than affine functions, 

as in the TSN transformation, will lead to new transformations. Finally, probability-possibility 

transformations of asymmetric distributions open new questions about the meaning of 

asymmetry and more generally on the meaning of the "shape" preservation in the 

transformation. More specifically, possible connections between the proposed transformation 

and preservation of asymmetry/symmetry might be provided by looking deeper in the 

relationships between the expression of the transformation and the skewness orderings 

considered in the literature. Connections with quantitative measures of skewness might also 

worth to be explored. 
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  Proof of Proposition 3 

Proposition 3. If a continuous unimodal probability density function ( )f x with a mode m is 

differentiable for all x X∈ , the LHS (resp. RHS) part of the two-sided normalized 

transformation is lower (resp. greater) than the LHS (resp. RHS) part of the optimal 

transformation if 
1

( )
2

F m < . 

Intermediate results are necessary and the appendix is organized as follows: 

• Proposition 7 and Proposition 8 give a limit for the derivative of the lower bound of 

the α  cut of the optimal possibility distribution respectively when the probability 

density function is differentiable in all x X∈  except in x m=  or in all x X∈ . 

• Proposition 9 establishes the respective position of the LHS and RHS of the TSN and 

optimal possibility distribution with respect to the previous limit. 

• Finally, the proof of Proposition 3 is given as a corollary of Proposition 9. 

Proposition 7. If [ ]( ), ( )u vα α  is the α -cut of the optimal possibility distribution and ( )f x  is 

differentiable for all x X∈  except in x m=  where it has left and right derivatives, respectively 

denoted by ( )
L

f m′  and ( )
R

f m′ , then 
1

( )

( )( ( ) ( ))

R

R L

f mdu

d f m f m f mαα =

′
=

′ ′−
. 

Proof. Since the probability density function is unimodal, there exists 0β ≥  such that 

( ( )) ( ( ))f u f vβ α α= = . It defines ( )v α  as a function of ( )u α . Let ϕ be this function, i.e. 

( ) ( ( ))v uα ϕ α= . The function ϕ is decreasing and such that ( )m mϕ = . Thus, 

( ( )) ( ( ( )))f u f uα ϕ α= . Differentiating ( ( )) ( ( )) 1F v F uα α α− = −  with respect to α  gives  

 ( ( )) ( ( )) 1
dv du

f v f u
d d

− = −α α
α α

.  (50) 

Since ( ( )) ( ( ))f v f uα α=  and '( ( ))
dv du

u
d d

ϕ α
α α

= , (50) can be written as  

 ( ( ))(1 '( ( ))) 1
du

f u u
d

− =α ϕ α
α

.  (51) 

Differentiating f  with respect to ( )x u α=  gives 

 , ( ) '( ( )) ( )x m f x f x xϕ ϕ′ ′∀ ≠ = .  (52) 

In m we have 

 ( ) ( ) '( )
L R

f m f m m′ ′= ϕ .  (53) 

Replacing (53) in (51) for 1α = , i.e. ( )u mα = , leads to 
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1

( )

( )( ( ) ( ))

R

R L

f mdu

d f m f m f m=

′
=

′ ′−αα
.  (54) 

∎ 

Proposition 8. If [ ]( ), ( )u vα α  is the α -cut of the optimal possibility distribution and ( )f x  is 

twice differentiable x X∀ ∈  then 
1

1

2 ( )

du

d f mαα =

= . 

Proof. Let f ′′  be the second derivative of f  with respect to ( )x u α= , i.e., 

 
2"( ) "( ( ))( ( )) '( ( )) ( )f x f x x f x x′ ′′= +ϕ ϕ ϕ ϕ .  (55) 

Since ( )m mϕ = , f is unimodal and differentiable in all x , ( ) 0f m′ = . Therefore, the second 

equation in (55) gives 

 
2( ) ( )( ( ))f m f m m′′ ′′ ′= ϕ .  (56) 

Since ϕ is decreasing, ( ) 1mϕ ′ = − . From (53) it comes ( ) ( )
L R

f m f m′ ′=−  and replacing in (54) 

completes the proof.  

∎ 

Proposition 9. When
1

( )

( )

F m du

f m d αα =

<  the LHS (resp. RHS) part of the two-sided normalized 

transformation is lower (resp. greater) than the LHS (resp. RHS) part of the optimal 

transformation. The property holds also when 
1

( )

( )

F m du

f m d αα =

>  by replacing LHS by RHS. 

Proof. Let ( ), ( )Opt Optu vα α    and ( ), ( )TSN TSNu vα α   be respectively the α -cut of the optimal 

possibility distribution Optπ  and the α -cut of the two-sided normalized possibility 

distribution TSNπ . The α -cuts of TSNπ  and Optπ  provide two coverage intervals with the same 

level of confidence. Since ( ( )) ( ( )) ( ( )) ( ( ))TSN TSN Opt Opt
F v F u F v F uα α α α− = −  and F  is an 

increasing function, the respective position of the intervals are 

( ) ( ) ( ) ( )TSN Opt TSN Opt
u u v vα α α α≤ ≤ ≤  or ( ) ( ) ( ) ( )Opt TSN Opt TSN

u u v vα α α α≤ ≤ ≤ .  

Let us consider the case where ( ) ( ) ( ) ( )Opt TSN Opt TSN
u u v vα α α α≤ ≤ ≤  and define 

( ) ( ( )) ( ( ))TSN Opt
F u F uα α α∆ = − . For 0α =  and 1α =  we have respectively 

( (0)) ( (0)) 0TSN Opt
F u F u= =  and ( (1)) ( (1)) ( )TSN Opt

F u F u F m= = . Since F  is a strictly 

increasing function, ( )α∆  has a maximum or a minimum. If the derivative of ( )α∆  with 

respect to α , evaluated for 1α = , is negative, then ( ) ( ) ( ) ( )Opt TSN Opt TSN
u u v vα α α α≤ ≤ ≤  
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otherwise ( ) ( ) ( ) ( )TSN Opt TSN Opt
u u v vα α α α≤ ≤ ≤ . According to the definition of TSNπ , 

( ( )) ( )TSN
F u F mα α=  and therefore the derivative of ( )α∆  with respect to α  is 

 
( )

( ) ( ( ))
d dx

F m F x
d d

∆ ′= −α α
α α

.  (57) 

Now, since '( ) ( )F m f m= , evaluating (57) for 1α =  leads to 

 
1

( ) ( )
0

( )

d F m dx

d f m d =

∆ < ⇔ <
α

α
α α

.  (58) 

∎ 

Proof of Proposition 3: It is a corollary of Proposition 9 using Proposition 8 in (58). 

  Proof of Proposition 4 

Proposition4. The two-sided normalized transformation is the optimal transformation for the 

family of two-piece skewed distributions defined by 

( )( ) ( )sign x

sf x A g xγ −=  with 
2

1
A

γ
γ

=
+

 

where g is a unimodal symmetric probability density function. 

For the sake of simplicity and without loss of generally, the symmetric probability density 

function g is supposed to be zero-centered. Let sL
f  and sR

f  be the LHS and RHS parts of s
f , 

i.e., 

 

( ) ( ), ,

( ) ( ), .

sL L

sR r

f x Ag x x X

y
f y Ag y X

= ∀ ∈

 = ∀ ∈


γ

γ
  (59) 

The LHS and RHS parts of the cumulative distribution function s
F  of s

f  are  

 

0

( ) ( ) ( ), ,

( ) (0) ( ) (0) ( ) (0), ,

x

sL L

y

sR sL r

A
F x Ag t dt G x x X

t A y
F y F Ag dt G A G A G y X

−∞

 = = ∀ ∈

 = + = + − ∀ ∈


∫

∫

γ γ
γ

γ γ
γ γ γ

  (60) 

where G  is the cumulative distribution function of the symmetric law. 

The functions sL
f  and sR

f  have inverse, therefore ( )xϕ  reduces to the simple expression 

 
1 2( ) ( ( ))sR sLx f f x x

−= − = −ϕ γ .  (61) 
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Thus, the LHS part of the optimal transformation is given by 

 
2( ) 1 ( ) ( ),Opt

L s s Lx F x F x x X= − − + ∀ ∈π γ .  (62) 

Using (60) in (62) leads to 

 
1

( ) 1 ( ) (0) ( ) ( ),Opt

L L

A
x A G A G x G x x X= + − − − + ∀ ∈π γ γ γ γ

γ γ .  (63) 

Since G  is symmetric, ( ) 1 ( ), ,
L

G x G x x X− = − ∀ ∈γ γ  and 
1

(0)
2

G = , (63) can be written as 

 ( ) 2 ( ),Opt

L Lx G x x X= ∀ ∈π γ .  (64) 

Extracting ( )G xγ from the first equation of (60) gives 

 

2

2

2
2 ( ) ( ) ( ),

1
sL sL L

G x F x F x x X
A

= = ∀ ∈
+

γ γγ
γ

.  (65) 

Since 

2

2
(0) (0)

2 1
sL

A
F A G

γ γγ
γ

= = =
+

, (64) leads to 

 
( )

( ) 2 ( ) ,
(0)

Opt sL
L L

sL

F x
x G x x X

F
= = ∀ ∈π γ . (66) 

The same approach can be developed for the RHS, i.e. R
y X∈ , of the possibility distribution 

by considering now (13) with 
1 1

2
( ) ( ( ))sL sR

y
y f f yϕ

γ
− −= − = − . It leads to 

 2
( ) 1 ( ) ( ),R s s R

y
y F y F y X= − + − ∀ ∈π

γ .  (67) 

Using (60) in (67) gives 

 
1

( ) 1 ( ) (0) ( ) ( ),R R

y A y
y A G A G G y X= + − − + − ∀ ∈π γ γ

γ γ γ γ .  (68) 

Since G  is symmetric, ( ) 1 ( ), ,R

y y
G G y X− = − ∀ ∈

γ γ  and (68) becomes 

 ( ) 2(1 ( )),Opt

R R

y
y G y X= − ∀ ∈π

γ .  (69) 

Extracting ( )
y

G
γ  from the second equation of (60) gives 
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1 1

( ) ( ( ) ( ) (0)),sR R

y
G F y A G y X

A
= + − ∀ ∈γ

γ γ γ .  (70) 

Replacing 
1

(0)
2

G =  in (70) leads to 

 

2

2

2 1
2(1 ( )) (1 ( )) (1 ( )),

sR sR R

y
G F y F y y X

A

+− = − = − ∀ ∈γ
γ γ γ

.  (71) 

Since 

2

2
1 (0) 1 (0) 1

2 1
sR

A A
F G

γ
γ γ γ

− = − = − =
+

, (69) can be written as 

 
1 ( )

( ) 2(1 ( )) ,
1 (0)

Opt sR
R R

sR

F yy
y G y X

F

−= − = ∀ ∈
−

π
γ

.  (72) 

Finally, merging (66) and (72) completes the proof, that is 

 
( ) 1 ( )

( ) min( , ) ( ),
(0) 1 (0)

Opt TSNs s

s s

F x F x
x x x X

F F

−= = ∀ ∈
−

π π .  (73) 

∎ 

 Proof of Proposition 5 

Proposition 5. Let f  be a unimodal continuous probability density function with a mode m . 

Let h be the function such that 
( )

, ( )
(2 )

f x
x m h x

f m x
∀ < =

−
. If h is strictly increasing from L to 

1, where 0L = if f is defined on a left-bounded interval or 
( )

lim ( )
1 ( )x

F m
L h x

F m→−∞
= <

−
 if f  is 

defined on � , then the asymmetry about m  is preserved by the TSN transformation. 

Intermediate results are necessary and this appendix is organized as follows: 

• Proposition 10 provides a relation between f  and ( )F m  when f  is right 

asymmetric. 

• Proposition 11 gives a sufficient condition for f  to be right asymmetric. 

• Proposition 12 and Proposition 13 provide the lower bounds for h in the case of 

probability density functions defined on a left-bounded interval or in the case of 

skewed right-asymmetric probability density functions. 

• Proposition 14 gives results about the extrema of TSNasymπ . 

• Finally, the proof of Proposition 5 is given. 

Proposition 10. If f is right asymmetric about m  then 
1

( )
2

F m < . 
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Proof. If f  is right asymmetric about m , we have ( ) 1 (2 )F x F m x< − −  with F  increasing. 

Thus, in m  we have ( ) 1 ( )F m F m< − . 

∎ 

Proposition 11. If for all ,x m h<  is strictly increasing, then f  is right asymmetric about 

m . 

Proof: Since f  is continuous lim ( ) lim (2 ) ( )
x m x m

f x f m x f m
→ →

= − = , thus lim ( ) 1
x m

h x
→

= . If h is 

strictly increasing x m∀ <  then ( ) 1h x <  which leads to ( ) (2 ) 0f x f m x− − < . 

∎ 

Proposition 12. If f is defined on a bounded interval whose left bound is b and h is strictly 

increasing  for all x m<  then lim ( ) 0
x b

L h x
→

= = .  

Proof. We already know that ( ) (2 )f x f m x< − from Proposition 11. The left bound gives 

lim ( ) 0 lim (2 ) (2 )
x b x b

f x f m x f m b
→ →

= < − = − , thus 
( )

lim ( ) lim 0
(2 )x b x b

f x
L h x

f m x→ →
= = =

−
.  

∎ 

Proposition 13. If f is a skewed probability density function defined for all x∈�  by 

( ) 2 ( ) ( )f x x xφ α= Φ , with φ  a symmetric density function defined on � , and h is strictly 

increasing  for all  x m<  then lim ( ) 0
x

L h x
→−∞

= = .  

Proof. We have 
( ) ( )

lim ( ) lim
( ) ( )x x

x x
h x

x x

φ α
φ α→−∞ →−∞

Φ=
− Φ −

. Since φ  is symmetric, ( ) ( )x xφ φ= −  and 

( )
lim ( ) lim 0

1 ( )x x

x
L h x

x

α
α→−∞ →−∞

Φ= = =
−Φ

.  

∎ 

Remark. For other distributions defined on � , no general answer can be provided since

lim ( )
x

L h x
→−∞

=  is under the indeterminate form 0/ 0 . 

Proposition 14. If f  is right asymmetric about m  and TSNasymπ  has only one extremum, 

then the asymmetry about m  is preserved. 

Proof. Without loss of generality, the probability density function is assumed to be defined on 

�  and we have the two properties 

 
lim ( ) 0,

lim ( ) 0.

TSN

TSN

x

x m

asym x

asym x

→−∞

→

=
 =

π

π

  (74) 
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The derivative of TSNasymπ for all x m<  is 

 
( ) (2 )

( )
( ) 1 ( )

TSN

f x f m x
asym x

F m F m

−′ = −
−π .  (75) 

Its limits are 

 

lim ( ) 0,

( )(1 2 ( ))
lim ( ) .

( )(1 ( ))

TSN

TSN

x

x m

asym x

f m F m
asym x

F m F m

→−∞

→

′ =

 −′ = −

π

π

  (76) 

If f  is defined on a bounded interval whose left bound is denoted by b, since we consider 

probability density functions such that lim ( ) 0
x b

f x
→

= , we have lim ( ) 0TSN
x

asym xπ→−∞
′ < . 

If f  is right asymmetric then 
( )(1 2 ( ))

0
( )(1 ( ))

f m F m

F m F m

− >
−

 because 
1

( )
2

F m <  according to 

Proposition 10. 

According to the limits of TSNasymπ  and the limits of TSNasymπ
′ , the function TSNasymπ has at 

least one extremum. If this extremum is unique, since the limit of TSNasymπ
′  in m is positive, 

this extremum is the minimum and TSNasymπ  is negative. 

∎ 

Proof of Proposition 5. Extrema of the function TSNasymπ are reached at the points where 

( ) 0TSNasym xπ
′ =  or equivalently at the points where 

( )
( )

1 ( )

F m
h x

F m
=

−
. 

If h is strictly increasing, f  is right asymmetric according to Proposition 11. Then, 

according to Proposition 10, 
1

( )
2

F m <  and therefore 
( )

1
1 ( )

F m

F m
<

−
. 

We have lim ( ) 1
x m

h x
→

=  and 0h >  since f  is a density function. Thus if h is strictly increasing, 

only one point exists where 
( )

( )
1 ( )

F m
h x

F m
=

−
. The function TSNasymπ  is minimum in this point. 

Then, using Proposition 14 completes the proof.  

∎ 

 Other examples of asymmetry preservation 

This section provides four other examples of distributions for which the TSN transformation 

preserves the asymmetry because the function ω  is strictly convex. 
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1. Gumbel distribution 

The Gumbel distribution is also a particular case of the Generalized Extreme Value 

distribution family and is defined by 

 ( ) , ,
z

ze
f x x

−

= ∀ ∈�
β

 with 

x

z e

−−
=

µ
β

. (77) 

It leads to 
1

( )

x

e
x

µ
β

ω
β

−−
−=  and 

3
( ) 0

x

e
x

µ
β

ω
β

−−

′′ = > . 

Whatever the parameters µ  and β , the TSN transformation preserves the asymmetry of the 

Gumbel distribution. 
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2. Fréchet distribution 

The Fréchet distribution is another case of the Generalized Extreme Value distribution 

defined by 

 

1

( ) , ,

x m

sx m
f x e x m

s s

−− −− −− −   − 
 −= ∀ > 
 

α
α

α
  (78) 

with 0α >  and m
− the lower bound of X . 

The function ω  and its second derivative are respectively 

( )1

( )

( )

x m

s
x

x m
x m

s

α

α

α α
ω

−

−
−

 −+ − 
 = −
 −−  
 

 

and 

( )3

( 2) 2

( ) ( 1)

x m

s
x

x m
x m

s

α

α

α α
ω α

−

−
−

 −+ −  
 ′′ = +
 −−  
 

. 

The denominator of ω′′  if always positive since x m
−> . Let 1x  be the point where the 

numerator is equal to 0, i.e., 

 

1

1
1

( 2)
( 2) 2 0

2

x m
x m s

s

α
αα αα α

−
− − + + − = ⇔ = +   

  
 . (79) 

The mode of the Fréchet distribution is 

1

1
m m s

αα
α

−  = +  + 
. Thus, the function ω  is strictly 

convex if 1m x< , that is 

 
( )

1

( 2) 1( 2)
1

1 2 2
m x

α αα α α
α

+ ++< ⇔ < ⇔ <
+

.  (80) 

Since 0α > , (80) is always true.  

Whatever the parameters α  and m
− , the TSN transformation preserves the asymmetry of the 

Fréchet distribution. 

3. Rayleigh distribution 

The  probability density function of the Rayleigh distribution is defined by  

 

2

2
2

2
( ) , 0,

x
x

f x e x
−

= ∀ ≥σ

σ
 with 0>σ . (81) 
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For this distribution, we have 

2 2

2
( )

x
x

x

σω
σ

−=  and 
3

2
( )x

x
ω ′′ = . Thus, ω  is strictly convex. 

The TSN transformation preserves the asymmetry of the Rayleigh distribution whatever the 

value of the parameter σ . 

4. Inverse Gaussian distribution 

The inverse Gaussian distribution is defined by 

 

2

2

1
( )

2
2

3
( ) , 0,

2

x

xf x e x
x

−− = ∀ > 
 

λ µ
µλ

π
 with 0µ >  and 0>λ . (82) 

It leads to 

2 2 2

2 2

3
( )

2

x x
x

x

λ µ λµω
µ

+ −= −  and 
4

3( )
( )

x
x

x

λω −′′ = . The mode of the probability 

density function is 

2

2

9 3
1

4 2
m

µ µµ
λ λ

 
= + − 

 
 

. For all x m<  the function ω  is strictly convex if 

m λ< .  

Let a
µ
λ

= , then 
2 2 29 3

1 1 0 1 2
4 2

m a a a aλ< ⇔ + < + ⇔ < +  which is always true. 

The TSN transformation preserves the asymmetry of the inverse Gaussian distribution 

whatever the parameters 0λ >  and 0µ > . 
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