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This paper deals with a new transformation, so-called two-sided normalized (TSN), of continuous unimodal asymmetric probability distributions into possibility distributions. Many properties are derived and interpretations are discussed. A comparison with the optimal transformation is provided. In particular, the respective positions of right or left branches relative to the resulting optimal and TSN possibility distributions are given. It is also shown that the TSN transformation is the optimal transformation for the particular family of twopiece skewed distributions. The preservation of the asymmetry property is then analyzed and illustrated for several conventional asymmetric distributions and counter-examples of asymmetry preservation are provided. A multilinear approximation of the TSN transformation is finally proposed.
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Introduction

The connection between probability theory and possibility theory has been considered since the beginning of possibility theory [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] [START_REF] Dubois | Fuzzy sets and systems : theory and applications[END_REF], and then a long standing controversial debate took place in the literature [START_REF] Dubois | Possibility theory, probability and fuzzy sets: misunderstandings, bridges and gaps[END_REF] [START_REF] Laviolette | The efficacy of fuzzy representations of uncertainty[END_REF]. The issue of the transformation of a probability distribution into a possibility distribution is a key point of probability possibility relationships [START_REF]A review of relationships between possibility and probability representations of uncertainty in measurement[END_REF]. It has its roots in the consistency principle stated by Zadeh [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF] and it was then developed according to two main different approaches founded on different opposing principles [START_REF] Oussalah | On the probability/possibility transformations: a comparative analysis[END_REF] [START_REF] Sudkamp | On probability-possibility transformations[END_REF].

On the one hand, Klir and coworkers [START_REF] Klir | Probability-possibility transformations: a comparison[END_REF] [START_REF] Geer | A mathematical analysis of information-preserving transformation between probabilistic and possibilistic formulation of uncertainty[END_REF] [21] [START_REF] Jumarie | Possibility-Probability Transformation: a New Result via Information theory of Deterministic Functions[END_REF] [START_REF]Further Results on Possibility-Probability Conversion via relative Information and Informational Invariance[END_REF] proposed a probability possibility transformation based on the so-called information invariance principle. This principle requires that the numbers expressing uncertainty in one theory should be transformed into corresponding ones in the other theory by an appropriate scale, and that the amount of uncertainty (the entropy ( ) H p of the probability density p and the non-specificity ( ) NS π for the possibility distribution π ) should also be preserved in the transformation. One problem with this approach is the assumed equality ( ) ( ) H p NS π = between uncertainty quantities with debatable commensurability. Furthermore, the scaling assumption leads to presuppose that ( )

x π
is a function of ( ) p x . This point-wise relationship may conflict with the consistency principle that requires ( )

( ) A P A Π ≥
, where ( )

A Π

and ( )

P A are respectively the possibility and probability measures of the event A , which has to be true for any event and not only for singletons. Therefore, casting possibility measures into upper and lower probabilities [START_REF] Dubois | When upper probabilities are possibility measures[END_REF] is no longer feasible.

On the other hand, Dubois-Prade and coworkers [START_REF] Dubois | On possibility/probability transformation[END_REF] [28] [10] [START_REF] Baudrit | Practical representations of incomplete probabilistic knowledge[END_REF] founded their transformation on a probability possibility consistency principle that can be summarized as: "the possibility of an event A is always greater than or equal to the probability of the event A", i.e.

( ) ( )

A P A Π ≥
for each A . Satisfying this inequality by a number of possibility distributions, they proposed to select the most informative one (in the sense of the possibility specificity) that, in addition, preserves the "shape", i.e. it preserves the order derived on the support, thus leading to the so-called optimal transformation. Note that when transforming probabilistic representation into a possibilistic one, some information is lost because point-value probabilities are transformed into interval valued ones. For the continuous case, which is the concern of this paper, the optimal possibility distribution can be achieved by deriving the level sets of the density f by computing the probability of this level sets: . The optimal possibility is thus the staking up of the shortest coverage intervals of the probability distribution coinciding with the alpha-cuts of the possibility distribution. For symmetric unimodal distributions, the alpha-cuts of the optimal possibility distribution bracket the narrowest coverage interval and the transformation takes the following simple form:

( ) 2min( ( ),1 ( ))

opt x F x F x π = -
with F the cumulative distribution function associated to f . The optimal possibility distribution for the unimodal symmetric case has been widely used in applications [START_REF]A review of relationships between possibility and probability representations of uncertainty in measurement[END_REF] [START_REF] Ferrero | Possibility and probability: application examples and comparison of two different approaches to uncertainty evaluation[END_REF] unlike the asymmetric case that, until now, has only been considered by a few authors [START_REF] Baudrit | Practical representations of incomplete probabilistic knowledge[END_REF] [START_REF] Mauris | Representing and approximating symmetric and asymmetric probability coverage intervals by possibility distributions[END_REF]. While the optimal transformation is applicable to the asymmetric case, it raises two main issues: the expression is not so simple and the resulting possibility distribution is not guaranteed to be convex on each side in all the cases, hence the alpha cuts of the possibility distribution do not necessarily bracket the coverage intervals. A few contributions have been made in the literature in deriving a simple approximation [START_REF] Mauris | Representing and approximating symmetric and asymmetric probability coverage intervals by possibility distributions[END_REF] and in considering convex/concave probability density [START_REF] Baudrit | Practical representations of incomplete probabilistic knowledge[END_REF], but the whole issue of the asymmetric case has not been solved, and this is the main object of this paper.

In this paper, by adopting the Dubois-Prade and coworkers line of thought and basing developments on a new probability possibility transformation proposed in the discrete context [START_REF]A possibilistic view of binomial estimation[END_REF], we propose a new transformation of continuous asymmetric probability distributions into possibility distribution satisfying consistency, maximum specificity and dominance of coverage intervals. The paper is organized as follows: section 2 gives fundamental elements about coverage intervals and the optimal probability possibility transformation. Section 3 exposes the new so-called Two-Sided Normalized Transformation (TSN), its interpretation and properties. Section 4 focuses on the concept of asymmetry, its expression and applications to conventional asymmetric distributions used in applications as well as counterexamples of asymmetry preservation. Finally, section 5 presents a multi-linear approximation of the TSN transformation.

Building possibility distributions from coverage intervals 2.1. Coverage intervals

If : [0,1] F →
is the cumulative distribution function of a random variable, the quantile function ( )

Q p for all [0,1] p ∈ for this random variable is ( ) inf{ : ( )} Q p x p F x = ∈ ≤ . (1) 
A coverage interval of level of confidence 1 α -,

[0,1] α ∈ is any interval [ ( ), ( 1 
)] Q Q β β α + - with 0 β α ≤ ≤
(see sections 3.12 to 3.16 in [START_REF] Gum | Evaluation of measurement data -Supplement 1 to the guide to the expression of uncertainty in measurement -Propagation of distributions using a Monte Carlo method[END_REF] for definitions of the terms and [START_REF] Chen | Parametric coverage interval[END_REF] [START_REF] Lin | A non-parametric coverage interval[END_REF] for estimations of coverage intervals).

When the cumulative distribution function is continuous and strictly increasing, its quantile function is simply

1 Q F - = . Coverage intervals of level of confidence 1 α - are thus the intervals 1 1 1 [ ( ) , ( 1 
) ] U F F α β β α - - - = + -
. In other words, a coverage interval of level of confidence 1 α is any interval of where the random variable takes its value with a probability 1 α -.

A coverage interval of level of confidence 1 α is said to be symmetric (or central or equal

tailed) if 2 α β = .
A coverage interval of level of confidence 1 α is said to be optimal if its length is the shortest among all coverage intervals of level of confidence 1 α -. In the case of a unimodal symmetric distribution, the optimal coverage interval is the symmetric coverage interval [START_REF] Gum | Evaluation of measurement data -Supplement 1 to the guide to the expression of uncertainty in measurement -Propagation of distributions using a Monte Carlo method[END_REF]. This property will be recovered, as a particular case, in section 2.3.

From coverage intervals to possibility distributions

Let m be the mode of a unimodal continuous probability density function :

f X + ⊆ → with a cumulative distribution function F . Let L X and R X be two subsets of X such that { } L X x X x m = ∈ ≤ and { } R X y X y m = ∈ > . Let ρ be a function from [0,1] to [0,1] . We consider coverage intervals 1 U α -such that ( ) β ρ α = , i.e., 1 1 1 1 1 [ ( ) , ( 1 ) ] 
[ ( ( ) ) , ( ( ) 1 ) ] [ ( ) , ( ) ] U F F F F u v α β β α ρ α ρ α α α α - - - - - = + - = + - = . ( 2 
)
It was shown in [START_REF] Dubois | Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities[END_REF] that coverage intervals provide a means to build the transformation t of a probability density function f into a possibility distribution

t f π = o . The transformation
t is obtained by considering possibility distributions π such that their cuts of level α , for all

[0,1] ∈ α , are coverage intervals of level of confidence 1 α -, that is ( ( )) ( ( )) u v = = π α π α α . (3) 
For unimodal continuous probability density functions considered in this paper, we have

( ) L u X α ∈ and ( ) R v X α ∈ . For 1 α = , the coverage interval is reduced to the point (1) (1) m u v = =
and we have ( ) 1 m π = .

Let : [0,1] ψ → be a strictly increasing function such that 0 lim ( )

α ψ α → = -∞ 1 and (1) m ψ = . Assuming that 1 ( ) ( ( )) F ψ α ρ α - = , if ( ( )) 1 F ψ α α + -is strictly decreasing from 1 to ( ) F m
then coverage intervals defined by (2) provides a means to build possibility distributions. Indeed, using ( ) F y F F ψ α α -= +can be solved analytically with respect to α .

( ) u = α ψ α and 1 ( ) ( ( ( )) 1 ) v F F - = + - α ψ α α we have for all [0,1] ∈ α ( ( )) ( ( )) u v = = π α π α α . ( 4 
For example, taking

1 ( ) ( ) 2 F - = α ψ α for all [0,1] ∈ α leads to symmetric coverage intervals 1 [ ( ), ( )] U u v -= α α α such that 1 If the cumulative distribution function is such that : [ , [ F k +∞ → + the condition on ψ in 0 becomes (0) k ψ = . 1 1 ( ) ( ), 2 ( ) (1 ). 2 u F v F - -  =     = -   α α α α (5) Since 1 (1) (1/ 2) m F ψ - = =
the mode m is also the median of the distribution f . These coverage intervals are the shortest ones if the probability distribution is unimodal and symmetric. Solving each part of (5) with respect to α leads to the well-known optimal transformation of unimodal symmetric probability density functions proposed by Dubois, Prade and co-workers [START_REF] Dubois | On possibility/probability transformation[END_REF] 

[3] [10] ( ) 2 ( ), , ( ) 2(1 ( )), . DPco L L DPco R R x F x x X y F y y X  = ∀ ∈  = - ∀ ∈  π π (6) 
Because ( ) F x is defined and increasing for all x X ∈ , the two parts of ( 6) can be merged into a unique equation which defines the transformation DPco t

( ) ( )( ) ( ( )) 2min( ( ),1 ( )) DPco Dco Dco x t f x t f x F x F x = = = - o π . ( 7 
)
For a given level of confidence, coverage intervals are not unique, thus an infinite number of non optimal possibility distributions can possibly be generated. For example, Fig. 1 shows the possibility distributions generated from the standard normal distribution x y for the given level of confidence 1 α -. Using (2) we have ( 1 ) ( )

y x F F - - -= + -- β α β . ( 8 
)
The derivative of the length of the coverage interval with respect to β is

1 1 1 1 1 1 ( ) ( ( 1 )) ( ( )) ( ) ( ) d y x d f F f F f y f x - - -= - = - + - β β α β . ( 9 
)
The length is minimal, i.e., the possibility distribution is optimal, when ( ) ( ) f x f y = which corresponds to an horizontal cut of the probability density function f . Since the probability density function is unimodal and continuous, the condition ( ) Let L f and R f be the restrictions of the probability density function to the sets L X and R X . x x ϕ represented in Fig. 3, where According to (3) the LHS of the optimal possibility distribution ( )

( ) f x f y = defines R y X ∈ as a function of L x X ∈ . Let
1 ( ) ( ( )) R L x f f x ϕ - = , is a coverage interval with the level of confidence ( ) ( ( )) ( ) L x F x F x = - β ϕ . ( 10 
)
Opt L x π for all L x X ∈ is ( ) 1 ( ) Opt L L x x = - π β . ( 11 
)
The same approach can be applied to build the RHS of the possibility distribution. In this case, for all

R y X ∈ the interval 1 [ ( ), ] y y ϕ -
, where

) L R y f f y ϕ - - = , is a coverage interval with the level of confidence 1 ( ) ( ) ( ( )) R y F y F y - = - β ϕ . ( 1 1 ( ) ( ( ) 
) 12 
Thus, the RHS of the optimal possibility distribution is

( ) 1 ( ), Opt R R R y y y X = - ∀ ∈ π β . ( 13 
)
In the general case, the inverse of the restrictions L f and R f have no analytic expression and must be numerically computed as shown in Fig. 4 for the Weibull distribution. and, using [START_REF] Dubois | Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities[END_REF],

( ) ( ( )) ( ) 1 2 ( ) L x F x F x F x β ϕ = - = -
. Finally, using [START_REF] Dubois | Possibility theory, probability and fuzzy sets: misunderstandings, bridges and gaps[END_REF] the LHS of the possibility distribution is ( ) 2 ( )

Opt L x F x = π . ( 14 
)
Using (4) we have 2 ( )

F x α = , thus the function ψ is such that 1 [0,1], ( ) ( ) 2 F α α ψ α - ∀ ∈ =
leading to the transformation DPco t given in [START_REF] Doksum | Measures of location and asymmetry[END_REF]. It shows that the shortest coverage intervals are the symmetric coverage intervals for symmetric distributions as stated in [START_REF] Gum | Evaluation of measurement data -Supplement 1 to the guide to the expression of uncertainty in measurement -Propagation of distributions using a Monte Carlo method[END_REF].

The two-sided normalized transformation

Let f be a density function and F the cumulative distribution function, the transformation TSN t introduced in [START_REF]A possibilistic view of binomial estimation[END_REF] and defined by

( ) 1 ( ) ( ) ( ( )) min( , ), , ( ) 1 ( 
)

TSN TSN F x F x x t f x x X F m F m - = = ∀ ∈ - π (15)
is called Two-Sided Normalized (TSN) transformation.

This transformation was originally motivated by considerations on the preservation of the asymmetry in the transformation of the probability density function. Indeed, the transformation given by [START_REF] Doksum | Measures of location and asymmetry[END_REF], when applied to an asymmetric distribution with a mode different from the median, modifies the position of the mode for the possibility distribution since ( ) 1 DPco x π = for x such that The next sub-sections give an interpretation and a justification of [START_REF] Geer | A mathematical analysis of information-preserving transformation between probabilistic and possibilistic formulation of uncertainty[END_REF] in terms of coverage intervals while section 4 emphasizes the issue of asymmetry preservation.

3.1.Interpretation of the TSN transformation

The first family of asymmetric probability distributions was introduced by Fechner in 1897 and further developed under the name two-piece skewed distribution (see [START_REF] Wallis | The Two-Piece Normal, Binormal, or Double Gaussian Distribution: Its Origin and Rediscoveries[END_REF] for historical landmarks and analysis). Recent developments have been made by Fernandez et al. [START_REF] Fernandez | On Bayesian Modeling of Fat Tails and Skewness[END_REF]. The two-piece name is justified by the fact that the two-piece skewed distribution mixes the LHS and the RHS of a unimodal symmetric probability density function denoted by g to obtain the skewed probability density function

( ) ( ) ( ) sign x s f x A g xγ - = with 2 1 A γ γ = + . ( 16 
)
As explained in [START_REF] Wallis | The Two-Piece Normal, Binormal, or Double Gaussian Distribution: Its Origin and Rediscoveries[END_REF], the initial idea relies on a probability density function f composed by two half of normal distributions around the mode m , i.e.,

) The TSN transformation can be interpreted as the reverse process. Starting from an asymmetric probability density function, its cumulative distribution function is modified such that the mode becomes the median. By doing so, the resulting probability density function becomes discontinuous at the mode, which is also the case for f in [START_REF] Gum | Evaluation of measurement data -Supplement 1 to the guide to the expression of uncertainty in measurement -Propagation of distributions using a Monte Carlo method[END_REF]. This process is shown in Fig. 6 for the distribution The simplest solution to move the mode towards the median is to scale the LHS of the cumulative distribution function by

2 2 1 ( ) , , 2 ( ) 1 ( ) , . 2 x m L y m R f x e if x m f x f y e if y m - - - -   = ≤   =   = ≥   
1 2 ( ) F m , i.e., 1 ( ) ( ), 2 ( ) TSN L F x F x x m F m = ∀ ≤ , but other
transformations could be considered. From the inverse of the composition of two functions we have ( )

1 1 ( ) (2 ( )), [0,1] TSN L F F F m - - = ∀ ∈ α α α . Using (5) with 1 ( ) ( ) ( ) 2 TSN L F α ψ α - = gives 1 1 1 ( ) ( ) ( ) ( ( )), 2 ( ) ( ( ( ) 1) 1). TSN L u F F F m v F F m - - -  = =    = -+  α α α α α (18) 
Solving each part of ( 18) with respect to α leads to

( ) ( ) , , ( ) 1 ( ) ( ) , . 1 
( )

TSN L L TSN R R F x x x X F m F y y y X F m  = ∀ ∈    -  = ∀ ∈  -  π π (19) Finally, TSN L
π is increasing and TSN R π is decreasing, they can be merged into the unique equation given in [START_REF] Geer | A mathematical analysis of information-preserving transformation between probabilistic and possibilistic formulation of uncertainty[END_REF] which defines the TSN transformation (another proof is given in [START_REF]A review of relationships between possibility and probability representations of uncertainty in measurement[END_REF]).

Remark. The TSN transformation can also be interpreted in terms of truncated distributions [START_REF] Stuart | Kendall's Advanced Theory of Statitics -Volume I -Distribution Theory[END_REF] [START_REF] Tokmachev | Modeling of truncated probability distributions[END_REF]. Indeed, the probability distribution f can be split into its left and right truncated distributions ( )

Tr L f x and ( ) Tr R f x such that ( ) ( )
, if and 0 otherwise, ( ) ( ) ( ) , if and 0 otherwise. 1 ( )

Tr L Tr R f x f x x m F m f x f x x m F m  = ≤     = ≥  -  (20) 
The coverage intervals for

Tr L f are [ ( ), ( )] u v α α , with ( ) v m α = for each α . Using (4) it gives ( ) 1 ( ) ( ( )) 1 1 ( ) ( ) ( ) ( ) ( ) Tr Tr Tr Tr L L L L F x F x F x F x F m - + -= ⇔ = = ⇔ = = ψ α α ψ α α π . ( 21 
)
The coverage intervals for

Tr R f are [ ( ), ( )] u v α α , with ( ) u m α = for each α . Using (4) we have ( ) m ψ α = and ( ) 1 ( ) (1 ) Tr R y v F α α - = = - since ( ) 0 Tr R F m = . Thus, it leads to ( ) ( ) 1 ( ) ( ) 1 ( ) 1 1 ( ) 1 ( ) Tr Tr R R F y F m F y y F y F m F m - - = - = - = - - π . ( 22 
)
Therefore, roughly speaking, the TSN transformation consists in splitting the probability distribution f into the left and right truncated distributions relative to its mode (note that the TSN can be applied in the same way to other points than the mode, e.g. the mean). Then, the truncated distributions are respectively transformed into left and right possibility distributions. Finally, these possibility distributions are merged to give (15).

3.2.Properties of the TSN transformation

Four properties of the TSN transformation are given in this section:

• Proposition 1 is a straightforward property showing that the TSN transformation is the same as the transformation DPco t when the probability density function is symmetric.

• The convexity of the LHS and RHS parts of TSN π is shown in Proposition 2. • The position of the LHS and RHS parts of TSN π relative to Opt π is given by Proposition 3.

• Proposition 4 shows that the link between the TSN transformation and the two-piece skewed distributions explained in Section 3.1 is stronger than the proposed interpretation. Indeed, it shows that the TSN transformation is the optimal transformation for this particular family of skewed distributions.

Proposition 1. When the continuous unimodal probability density function

f is symmetric, ( ( )) ( ( )) ( ( )) TSN DPco Opt t f x t f x t f x = = for all x X ∈ .
Proof. In the case of a symmetric probability density function we have F x which are both convex functions. Affine functions are convex and the composition of increasing convex functions by convex functions is also convex.

∎

In Fig. 4, the LHS part of the optimal transformation for (0.5,1.5) Weibull is concave. As shown in Fig. 7, it is convex for the TSN transformation. Fig. 7.

Transformations The two-sided normalized transformation is the optimal transformation for the family of two-piece skewed distributions defined by

( ) ( ) ( ) sign x s f x A g xγ - = with 2 1 A γ γ = + ( 23 
)
where g is a unimodal symmetric probability density function.

Proof 

( ) ( ) 2min( ( ),1 ( )) TSN Opt x x x G x G = = - π π γ γ . ( 24 
)

Asymmetry and the two-sided normalized transformation 4.1. Definitions and properties

The measure of the asymmetry of a probability distribution goes back to Pearson and his moment coefficient of skewness [START_REF] Pearson | X. Contributions to the mathematical theory of evolution. -II. Skew variation in homogeneous material[END_REF]. Since then, besides the standardized third central moment, several coefficients have been proposed, see for example [START_REF] Doksum | Measures of location and asymmetry[END_REF] [29] [16] [START_REF] Macgillivray | Skewness and asymmetry: Measures and orderings[END_REF] [39] [START_REF] Stuart | Kendall's Advanced Theory of Statitics -Volume I -Distribution Theory[END_REF] [5] [START_REF] Patil | A measure of asymmetry[END_REF]. In this section, function definitions based on the departure from symmetry (e.g. [START_REF] Das | On homogeneous skewness of unimodal distributions[END_REF] [31]) are respectively used for the asymmetry of the probability density functions and for possibility distributions. 

Definition 1. A continuous probability density function f is said to be right asymmetric

about m if ( ) ( ) (2 ) 0, f asym x f x f m x x m = - -< ∀ < . Definition 2. A possibility distribution t f π = o , obtained
( ) 0 ( ) 0, f asym x asym x x m < ⇒ < ∀ < π .
If the TSN transformation is used to transform a continuous unimodal probability density function f with a mode m to a possibility distribution TSN π then the four possibilities are:

• f is right asymmetric about mand TSN π is right asymmetric about m, • f is not right asymmetric about mand TSN π is right asymmetric about m, • f is not right asymmetric about m and TSN π is not right asymmetric about m, • f is right asymmetric about m and TSN π is not right asymmetric about m.

From a quick glance at Fig. 7 or Fig. 8, it may seem like the TSN transformation always preserves the asymmetry about the mode. The next two propositions provide sufficient conditions for the preservation of the asymmetry, i.e., the first of the above possibilities holds true:

• Proposition 5 shows that the strict monotonicity of the function h, such that ( ) ( ) , ( 2)

f x h x x m f m x = ∀ < -
, is related to the preservation of the asymmetry by the TSN transformation.

• Proposition 6 provides a means to check the monotonicity of h from the convexity of the function ω , such that 1 ( ) ( ) , ( )

df x x x m f x dx = ∀ < ω .
Since ω depends on the probability density function and its derivative, it gives analytic expressions often simpler than that of h.

Proposition 5. Let f be a unimodal continuous probability density function with a mode m.

Let h be the function such that ( ) ( ) , ( 2)

f x h x x m f m x = ∀ < - . If h is strictly increasing from L to 1, where 0 L = if f is defined on a left-bounded interval or ( ) lim ( ) 1 ( ) x F m L h x F m →-∞ = < - if f
is defined on , then the asymmetry about mis preserved by the TSN transformation.

Proof. See Appendix C.

∎

The functions h for the distribution (0, 5;1, 5) Weibull and the skewed normal distribution

(0,1, 3) 2 ( ) (3 ) SKN x x φ = Φ
, where φ is the probability density function of the standard normal distribution (0,1) N , are given in Fig. 9 as illustrations of Proposition 5. According to Proposition 12 and Proposition 13, 0 L = for these distributions. It is formally shown in section 4.2 that h is strictly increasing for these distributions. Proof. For all x m < we have

( ) ( ) , ( ) 1 (2 ) (2 ) (2 ) . ( 2 
) (2 ) f x x f x df m x f m x m x f m x dx f m x ′  =    ′ - -  -= = -  - -  ω ω (25) Thus, if ( ) x ω
is strictly convex then ( 2) m x ω is strictly concave. The twice differentiability of ω gives lim ( ) lim ( 2) 0

x m x m x m x ω ω → → = -= and [ ] ( ) lim ( ) lim (2 ) ' 0 ( ) x m x m f m x m x f m ω ω → → ′′ ′ = - = < .
Therefore, ( )

x ω and (2 
) m x ω -are decreasing functions with respect to x and are such that for all x m < , ( ) (2

) ( ) (2 ) ( ) (2 ) 0 x m x f x f m x f x f m x ′ ′ > -⇔ -+ -> ω ω . Thus, 2 ( ) (2 ) ( ) (2 ) ( ) 0, (2 
)

f x f m x f x f m x h x x m f m x ′ ′ -+ - ′ = > ∀ < -
. Since h is strictly increasing, Proposition 5 holds true which completes the proof.

∎

Remark. The function ω can also be written as

log( ( )) ( ) , d f x x x m dx = ∀ < ω .
Since ω is a decreasing function when it is convex, it means that f is a log-concave density function. This property is useful to identify distributions which are candidates for testing the convexity of ω but it only provides candidate distributions since f can be log-concave while ω being not convex. In this sub-section, five conventional examples are given of unimodal continuous asymmetric distributions for which the TSN transformation preserves the asymmetry about the mode. They all verify Proposition 6, i.e., the function ω is strictly convex (four other examples are given in Appendix D). The sixth example concerns Pearson type IV distributions which provides a case where ω is not convex but h is a strictly increasing function and, therefore, the TSN transformation preserves the asymmetry. The last example of two-piece skewed distributions illustrates that the condition in Proposition 5, though sufficient, is not necessary for preserving asymmetry.

Examples of right asymmetry preservation

Weibull distribution

The Weibull distribution is a particular case of the Generalized Extreme Value distribution family and is defined by

1 ( ) , 0, k k x k x f x e x -   -      = ∀ ≥     λ λ λ (26) 
with 1 k > in order to have a mode

1 1 k k m k λ -   =     . It leads to 1 ( 1) ( ) k k x k x x ω λ λ - -   = - +     and 3 (2 ) 2 ( ) ( 1) k x k k x k x λ ω   - +     ′′ = - . For 1 2 k < ≤ , ω is strictly convex because ( ) 0 x ω ′′ > . When 2 k > , ( ) 0 x ω ′′ = for 1 1 2 ( 2) k x k k λ   =   -   . If 1 m x < then x m
∀ < the function ω is strictly convex which leads to

1 1 2 3 ( 2) k m x k k k k - < ⇔ < ⇔ < - . ( 27 
)
For 3 k ≥ the function h is not strictly increasing which means that at least one x exists such that (2

) ( ) f m x f x -≥ .
Whatever the parameter λ, the TSN transformation preserves the asymmetry of the Weibull

distribution for ]1, 3[ k ∈ .

Beta distribution

The beta distribution is defined, for all

[0,1] x ∈ , by 1 1 
(1 ) ( ) ( , )

x x f x B α β α β - - - = (28) 
with (

1 1 1 0 ( , ) (1 ) 
2) 1 ( )

( 1)

x x x x α β α ω + -+ - = -
and its second derivative is given by

3 2 3 3 2( 2) 6( 1) 6( 1) 2( 1) ( ) ( ) ( 1) ( ) x x x n x x x x d x α β α α α ω + - - - + -- - ′′ = = - . (29) 
For all

[0,1], ( ) 0 x d x ∈ < . The first derivate of n with respect to x is 2 ( ) 6( 2) 12( 1) 6( 1) n x x x α β α α ′ = + - - -+ -. ( 30 
)
The discriminant of ' n is negative, therefore '( ) 0

n x > since , 1 α β > . For all [0, ] x m ∈ the function n is strictly increasing from (0) ( 1) n α = --to 2 ( )( 1)( 1) ( ) ( 2) n m α β α β α β - - - = + -
. Since for all [0,1], ( ) 0 x d x ∈ < , we can conclude that if ( ) 0 n x < , for all x m < , then ( ) 0

x ω ′′ > and ω is strictly convex.

The TSN transformation preserves the asymmetry of the beta distribution for all parameters such that 1 α β < < .

Gamma distribution

The gamma distribution is defined by 1 ( ) , 0 ( )

x k k x e f x x k - - = ∀ > Γ θ θ . ( 31 
)
The gamma function is defined by The TSN transformation preserves the asymmetry of the gamma distribution for all parameters such that 1 k > and 0.

θ >

Log-norm al distribution

The log-normal distribution is defined by Whatever the parameters µ and σ , the TSN transformation preserves the asymmetry of the log-normal distribution.

Skewed normal distribution

Let φ be the probability density function of the standard normal distribution and Φ its cumulative distribution function. The skewed normal distribution [START_REF] Azzalini | A Class of Distributions Which Includes the Normal Ones[END_REF] is defined by

( ) 2 ( ) ( ), , f x x x x = Φ ∀ ∈ φ α ( 33 
)
where α is a skewing parameter.

For this distribution, we have ( ) ( ) ( )

x x x x φ α ω α α = -+ Φ and ( ) ( ) ( ) x x x φ α ω α α ′′   ′′ =   Φ   .
Let r be the inverse Mill's ratio defined for all x by ( ) ( ) 1 ( )

x r x x φ = -Φ
. The function r is strictly convex [START_REF] Sampford | Some Inequalities on Mill's Ratio and Related Functions[END_REF], i.e.

"( ) 0

r x α > , if 0 α > . Since 1 ( ) ( ) x x -Φ = Φ -, we have ( ) ( ) ( ) x x r x ω α ω α α ′′ ′′ ′′ - = = therefore ω is convex if 0 α > .
The TSN transformation preserves the asymmetry of the skew normal distribution when the skewing parameter α is positive.

Pearson type IV distribution as a non convex case

In 1895, Pearson analyzed asymmetrical frequency curves and introduced a classification into five types [START_REF] Pearson | X. Contributions to the mathematical theory of evolution. -II. Skew variation in homogeneous material[END_REF], then extended into twelve distribution types [START_REF] Pearson | IX. Mathematical Contributions to the Theory of Evolution. -XIX. Second Supplement to a Memoir on Skew Variation[END_REF], as the solution of the differential equation

2 0 1 2 2 3 0 1 2 3 1 ( ) ( ) ( ) a a x a x df x x f x dx c c x c x c x + + = = + + + ω . ( 34 
)
The probability density function of the distributions known as Pearson type IV distributions is arctan( )

0 2 2 ( ) , , (1 ) 
x a e f x y x x a

- = ∀ ∈ + ν µ with 0 a > . ( 35 
)
The normalizing factor 0

y exists only if 1 / 2 µ > . The function ω is 2 2 2 ( ) , a x x x a x -- = ∀ ∈ + ν µ ω . ( 36 
)
The mode m of f is such that ( ) 0 ( ) ( ) 1 , ,

m ω = , i.e.
1 x k x a e h x k x x x a     - +         = + ∀ ∈   +     ν µ µ (37) 
with ( )

x a k x a + = µ ν µ
and its derivative is

( ) ( ) ( ) ( ) ) arctan arctan ( ) 2 2 2 2 2 2 2 2 2 2 2 ( ) 1 2 ( ) , 1 2 x k x a a k x a x e h x x x a x a a x x a     - +         - + + ′ = ∀ ∈   + + + + +     ν µ µ ν ν µ µ ν µν µ . ( 38 
)
It can be easily shown that ( ) The TSN transformation preserves the asymmetry of the distribution defined by [START_REF] Stuart | Kendall's Advanced Theory of Statitics -Volume I -Distribution Theory[END_REF] when 0 ν < .

2

Two-piece skewed distributions

Given the two-piece skewed distribution s f , without loss of generality, it is assumed that the mode of the symmetric probability density function g is 0 m = . Using the symmetry of g, 

γ > or, equivalently, 1 ( ) (0) 2 F m F = < .
The asymmetry preservation is not related to the monotonicity of the function h, but it can be verified that many symmetric probability functions g lead to monotonically increasing functions h. Let us informally explain this observation by a counter-example. In order to have the function h non-monotonic, we can consider a probability density function gwith a sinusoidal term such that its cumulative distribution function G is convex for all 0 x ≤ , e.g.,

2 2 2 cos( ) 2( 1) ( ) ,if 0, sin( ) ( ) 2 ( 1) ( ) ( ), if 0. L R L x x g x x x g x x g x g x x  --  = - ≤  =    --       = - ≥  π π π π (39)
Then, the function g is skewed according to [START_REF] Lin | A non-parametric coverage interval[END_REF]. Even with such a specific distribution, the skewing parameter γ has to be tuned in order to obtain a non-monotonic function h as shown in Fig. 10. Therefore, it emphasizes, in an informal way, that it is much easier to obtain monotonic functions h than non-monotonic ones. 

Counter-examples of asymmetry preservation

This sub-section illustrates the three cases, presented in section 4.1, where the asymmetry is not preserved. Many conventional probability distributions have been tried but none of them could fit the three cases where asymmetry is not preserved. Therefore, special probability density functions have been built for this purpose using the following principle: F m < . This condition is obtained if the derivatives of the convex functions are such that ' ( ) ' ( )

TSN TSN L R m m π π > - . Indeed, since ( ) ' ( ) ( ) TSN L f x x F m π = and ( ) ' ( ) 1 ( ) TSN R f x x F m π = -- it leads to 1 ( ) 2 F m < .
• Compute ( ) F m from the derivatives ' ( )

TSN L m π and ' ( ) TSN R m π . • Generate ( ) ( ) ( ) TSN L L f x F m x π′ = for all x m ≤ and ( ) (1 ( )) ( ) TSN R R f x F m x π′ = -- for all
x m ≥ .

f not right asymmetric and TSN

π right asymmetric

Let TSN π be the possibility distribution such that 2 ( ) , if 0 1, ( ) 1 ( ) , if 1. TSN L TSN TSN R x x x x x x x  = ≤ ≤  =  = ≥   π π π (40) 
It gives the probability density function 

2 ( ) 2 ( ), if 0 1, ( ) 1 ( ) ( ) , if 1, L R f x xF m x f x F m f x x x = ≤ ≤   = -  = - ≥   (41)
TSN L TSN TSN x R x x x x x e x - -  = ≤  = -   = ≥  π π π (42)
It defines the probability density function 

2 5 ( ) ( ) , if 0, (5 1) ( ) ( ) (1 ( )) ,if 0. L x R f x F m x x f x f x F m e x -  = ≤  - =   = - ≥  (43)
F m h x F m = - . Since ( ) lim ( ) 1 1 ( ) x m F m h x F m → = > -
, the function h cannot be strictly increasing, thus f is right asymmetric if

( ) ( ) 1 (2 ) L R f x h x f m x = < -
, for all 0 x < . Since 

TSN L TSN TSN R x x x x x x x x  = ≤  - -  =   = ≥  +  π π π π π 2 2 2 1 ( ) , if 0, sin( ) ( 1) ( ) 1 ( ) , if 0. ( 1) 
It defines the probability density function

2 2 2 3 cos( ) 2( 1) ( ) ( ) , if 0, sin( ) ( 1) ( ) 2 ( ) (1 ( )) , if 0, ( 1) L R x x f x F m x x x f x f x F m x x  --  = - ≤     -- =        = - ≥  +  π π π π (45) 
with a modal value of 0 m = and ( ) 0.4631

F m = .
As in the previous counter-example, f is right asymmetric if

L R f x h x x f m x = < ∀ < - but now, we have ( ) lim ( ) 1 ( ) x F m h x F m →-∞ = - ( ) ( ) 1, 0, (2 ) 
. Indeed, when x → -∞ the periodic term are bounded and the limit is given by the ratio of the terms of highest degree in x of ( ) L f x and (2 ).

R f m x -

Because TSN asym π is periodic, so is the function h. Extrema of ( ) 

h

Multilinear approximation of the two-sided normalized transformation

The aim of this section is to provide approximations of the TSN transformation of any distribution for practical use in applications. For the sake of clarity, the RHS of the possibility distribution is considered and the same approach can be developed for the LHS part. Let 

Its second derivative with respect to y is . Thus, the multilinear interpolation TSN π% of TSN π is ,

( ) ( ) 2 TSN v u S y y - ′′ ′′ = π . ( 47 
) According to Proposition 2, TSN π is strictly convex on R X , that is ( ) 0, TSN R y y X ′′ > ∀ ∈
(0, ( )) max (0, ), .

TSN l L L L i i i i i L TSN R R R R i i i i i R x p x a x a if x X y p y a y a if y X  = = + ∈   = = + ∈   % % π π (48)
Finally, since ,1 0 L i a > and ,1 0 R i a < both parts of (48) can be merged into the single equation ( ) min( ( ), ( )), 

TSN TSN TSN L R x x x x X = ∀ ∈ % % % π π π . ( 49 
TSN TSN TSN TSN TSN v u v u v u u u v u π π π π π   -   -   -   -   -   else return [approximate( TSN π ,u, ymin, ε ), approximate( TSN π ,ymin, v, ε )]

Conclusion

In this paper the links between coverage intervals and possibility distributions were highlighted. A new transformation of asymmetric probability density functions, called Two-Sided Normalized (TSN) transformation, was investigated. This transformation generalizes the transformation proposed by Dubois-Prade and co-workers in the sense that it keeps its simplicity and gives the same result when considering symmetric distributions.

Among the results presented in this paper, it was shown that the TSN transformation is the optimal transformation for the family of two-piece skewed distributions. Moreover, for this later family the asymmetry of the original probability distribution is preserved by the TSN. For other skewed distributions, an interesting result is that the monotonicity of the function ( ) ( )

(2 )

f x h x f m x = - with x m
< is a sufficient condition for preserving asymmetry. It was also shown that this condition is satisfied when the derivative of the logarithm of the density is convex.

Surprisingly many well-known distributions satisfy the convexity condition. Further analysis will be necessary to investigate if this sufficient condition can be turned into a necessary one. Another interesting question concerns the links between the transformation and the cumulative distribution function. Considering more complex functions than affine functions, as in the TSN transformation, will lead to new transformations. Finally, probability-possibility transformations of asymmetric distributions open new questions about the meaning of asymmetry and more generally on the meaning of the "shape" preservation in the transformation. More specifically, possible connections between the proposed transformation and preservation of asymmetry/symmetry might be provided by looking deeper in the relationships between the expression of the transformation and the skewness orderings considered in the literature. Connections with quantitative measures of skewness might also worth to be explored. 

( ) ( )( ( ) ( )) R R L f m du d f m f m f m = ′ = ′ ′ - α α . (54) ∎ Proposition 8. If [ ] ( ), ( ) u v
α α is the α -cut of the optimal possibility distribution and ( )

f x is twice differentiable x X ∀ ∈ then 1 1 2 ( ) du d f m α α = = .
Proof. Let f ′′ be the second derivative of f with respect to ( ) 

x u α = , i.e., 2 "( ) "( ( ))( ( )) '( ( )) ( ) f x f x x f x x ′ ′′ = + ϕ ϕ ϕ ϕ . ( 55 
TSN Opt TSN Opt u u v v α α α α ≤ ≤ ≤ or ( ) ( ) ( ) ( ) Opt TSN Opt TSN u u v v α α α α ≤ ≤ ≤ .
Let us consider the case where ( ) ( ) ( ) ( ) 

Opt TSN Opt TSN u u v v α α α α ≤ ≤ ≤
α = , is negative, then ( ) ( ) ( ) ( ) Opt TSN Opt TSN u u v v α α α α ≤ ≤ ≤
Thus, the LHS part of the optimal transformation is given by 2

( ) 1 ( ) ( ), Opt L s s L x F x F x x X = -- + ∀ ∈ π γ . ( 62 
) Using (60) in (62) leads to 1 ( ) 1 ( ) (0) ( ) ( ), Opt L L A x A G A G x G x x X = + - - -+ ∀ ∈ π γ γ γ γ γ γ . ( 63 
) Since G is symmetric, ( ) 1 ( ), , L G x G x x X -= - ∀ ∈ γ γ and 1 (0) 2 G
= , (63) can be written as ( ) 2 ( ),

Opt L L x G x x X = ∀ ∈ π γ . ( 64 
)
Extracting ( )

G x
γ from the first equation of (60) gives

2 2 2 2 ( ) ( ) ( ), 1 sL sL L G x F x F x x X A = = ∀ ∈ + γ γ γ γ . ( 65 
) Since 2 2 (0) (0) 2 1 sL A F A G γ γ γ γ = = = + , (64) leads to ( ) ( ) 2 ( ) , (0) Opt sL L L sL F x x G x x X F = = ∀ ∈ π γ . ( 66 
)
The same approach can be developed for the RHS, i.e. 

( ) 1 ( ) ( ), R s s R y y F y F y X = - + - ∀ ∈ π γ . ( 67 
) Using (60) in (67) gives 1 ( ) 1 ( ) (0) ( ) ( ), R R y A y y A G A G G y X = + - - + -∀ ∈ π γ γ γ γ γ γ . ( 68 
) Since G is symmetric, ( ) 1 ( ), , R y y G G y X -= - ∀ ∈ γ γ and (68) becomes ( ) 2(1 ( )), Opt R R y y G y X = - ∀ ∈ π γ . ( 69 
)
Extracting ( ) y G γ from the second equation of (60) gives 

1 ( ) ( ( ) ( ) (0)), sR R y G F y A G y X A = + - ∀ ∈ γ γ γ γ . ( 70 
) Replacing 1 (0) 2 G = in (70) leads to 2 2 2 1 2(1 ( )) (1 ( )) (1 ( )), sR sR R y G F y F y y X A + - = - = - ∀ ∈ γ γ γ γ . ( 71 
) Since 2 2 1 (0) 1 (0) 1 2 1 sR A A F G γ γ γ γ - = - = - = + , (69) can be written as 1 ( ) ( ) 2(1 ( )) , 1 (0) Opt sR R R sR F y y y G y X F - = - = ∀ ∈ - π γ . ( 72 
)
Finally, merging (66) and (72) completes the proof, that is 

( ) 1 ( ) ( ) min( , ) ( ), (0) 1 (0) Opt TSN s s s s F x F x x x x X F F - = = ∀ ∈ - π π . ( 73 
f x x m h x f m x ∀ < = - . If h is strictly increasing from L to 1, where 0 L = if f is defined on a left-bounded interval or ( ) lim ( ) 1 ( ) x F m L h x F m →-∞ = < - if f is (2 ) 
defined on , then the asymmetry about m is preserved by the TSN transformation.

Intermediate results are necessary and this appendix is organized as follows:

• Proposition 10 provides a relation between f and ( ) F m when f is right asymmetric.

• Proposition 11 gives a sufficient condition for f to be right asymmetric.

• Proposition 12 and Proposition 13 provide the lower bounds for h in the case of probability density functions defined on a left-bounded interval or in the case of skewed right-asymmetric probability density functions.

• Proposition 14 gives results about the extrema of TSN asym π .

• Finally, the proof of Proposition 5 is given.

Proposition 10. If f is right asymmetric about m then 1 ( ) 2 
F m < . Proof. If f is right asymmetric about m, we have ( ) 1 (2 ) F x F m x < - - with F increasing.
Thus, in m we have ( ) 1

( ) F m F m < - . ∎ Proposition 11. If for all , x m h < is strictly increasing, then f is right asymmetric about m. Proof: Since f is continuous lim ( ) lim (2 ) ( ) x m x m f x f m x f m → → = -= , thus lim ( ) 1 x m h x → = . If h is strictly increasing x m ∀ < then ( ) 1 h x < which leads to ( ) (2 ) 0 f x f m x - -< .

∎ Proposition 12. If f is defined on a bounded interval whose left bound is b and h is strictly increasing for all x m

< then lim ( ) 0

x b L h x → = = .
Proof. We already know that ( )

(2 ) f x f m x < -from Proposition 11. The left bound gives lim ( ) 0 lim (2 ) (2 ) x b x b f x f m x f m b → → = < -= -, thus ( ) lim ( ) lim 0 (2 ) x b x b f x L h x f m x → → = = = - . ∎ Proposition 13. If f is a skewed probability density function defined for all x ∈ by ( ) 2 ( ) ( ) f x x x φ α = Φ
, with φ a symmetric density function defined on , and h is strictly increasing for all x m < then lim ( ) 0

x L h x →-∞ = = .
Proof. We have ( ) ( ) lim ( ) lim ( ) ( )

x x x x h x x x φ α φ α →-∞ →-∞ Φ = -Φ - . Since φ is symmetric, ( ) ( ) x x φ φ = - and ( ) lim ( ) lim 0 1 ( ) x x x L h x x α α →-∞ →-∞ Φ = = = -Φ . ∎

Remark. For other distributions defined on

, no general answer can be provided since lim ( ) 

∎

Other examples of asymmetry preservation

This section provides four other examples of distributions for which the TSN transformation preserves the asymmetry because the function ω is strictly convex.

Gumbel distribution

The Gumbel distribution is also a particular case of the Generalized Extreme Value distribution family and is defined by ( ) , , Whatever the parameters µ and β , the TSN transformation preserves the asymmetry of the Gumbel distribution.

Fréchet distribution

The Fréchet distribution is another case of the Generalized Extreme Value distribution defined by x be the point where the numerator is equal to 0, i.e., Whatever the parameters α and m -, the TSN transformation preserves the asymmetry of the Fréchet distribution.

Rayleigh distribution

The probability density function of the Rayleigh distribution is defined by The TSN transformation preserves the asymmetry of the Rayleigh distribution whatever the value of the parameter σ .

Inverse Gaussian distribution

The inverse Gaussian distribution is defined by 

.

  with respect to α gives the left hand side (LHS) part of the possibility distribution, i.e., The right hand side (RHS) part of the possibility distribution has an analytic expression

  Fig. 1.Generation of possibility distributions from the standard normal distribution (0,1) N2.3. Optimal transformation of unimodal continuous probability distributionsLet [ , ]L Rx X y X ∈ ∈ be a coverage interval with a level of confidence 1 α -, i.e.,
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 8 Fig. 8. Possibility distributions for the Beta distribution with two different sets of parameters Proposition 4. The two-sided normalized transformation is the optimal transformation for the family of two-piece skewed distributions defined by

Fig. 9 .Proposition 6 .

 96 Fig. 9. Functions h for (0.5,1.5) Weibull and (0,1, 3) SKN Proposition 6. If a unimodal continuous probability density function f with a mode m is twice differentiable for all x X ∈ and the function 1 ( ) ( ) ( ) df x x f x dx ω =

  with z a complex number with a positive real part. With a shape parameter 1 k > and a scale parameter 0 θ > the mode of the probability density function is

  Thus, the TSN transformation preserves the asymmetry for the family of two-piece skewed distributions if 1

Fig. 10 .

 10 Fig. 10. Function g given by (39) skewed by

•

  Define 10 to keep the possibility for f to be right asymmetric

.

  Fig. 11. f not right asymmetric and TSN π right asymmetric

x e decreases faster than 1 x

 1 when x → -∞ we have lim ( ) and therefore f is not right asymmetric.

Fig. 12 .not right asymmetric 22 For

 1222 Fig. 12.f not right asymmetric and TSN π not right asymmetric

  Fig. 13. f right asymmetric and TSN π not right asymmetric

Fig. 14 .

 14 Fig. 14. Bilinear approximation of the RHS part of the two-sided normalized transformation for (0.5,1.5) Weibull The surface S under the RHS approximation is a function of y, that is ( ( ) ( ))( ) ( ( ) ( ))( ) ( ) 2 2 TSN TSN TSN TSN u y y u y v v y S y + -+ -= + π π π π

Fig. 15 .π

 15 Fig. 15. Recursive approximation of TSN π

)Fig. 16 Fig. 16 .

 1616 Fig. 16 shows multilinear approximations of the two-sided normalized transformation for (0.5,1.5) Weibull and 0.01 ε =
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 1 

  is unimodal and differentiable in all x , resp. RHS) part of the two-sided normalized transformation is lower (resp. greater) than the LHS (resp. RHS) part of the optimal transformation. The property holds also when the α -cut of the optimal possibility distribution Opt π and the α -cut of the two-sided normalized possibility distribution TSN π . The α -cuts of TSN π and Opt π provide two coverage intervals with the same level of confidence. Since ( ( )) ( ( )) ( ( )) ( ( ))

  or a minimum. If the derivative of ( ) α ∆ with respect to α , evaluated for 1

1

 1 

) ∎ Proof of Proposition 5 Proposition 5 .

 55 Let f be a unimodal continuous probability density function with a mode m.Let h be the function such that ( ) ,( ) 

Proposition 14 .∎Proof of Proposition 5 ..

 145 If f is right asymmetric about m and TSN asym π has only one extremum, then the asymmetry about m is preserved.Proof. Without loss of generality, the probability density function is assumed to be defined on and we have the two properties lim ( f is defined on a bounded interval whose left bound is denoted by b, since we consider probability density functions such that lim ( ) 0 limits of TSN asym π and the limits of TSN asym π ′ , the function TSN asym π has at least one extremum. If this extremum is unique, since the limit of TSN asym π ′ in m is positive, this extremum is the minimum and TSN asym π is negative. Extrema of the function TSN asym π are reached at the points where If h is strictly increasing, f is right asymmetric according to Proposition 11. Then, since f is a density function. Thus if h is strictly increasing, TSN asym π is minimum in this point.Then, using Proposition 14 completes the proof.

  and m -the lower bound of X .The function ω and its second derivative are respectively ω′′ if always positive since x m - > . Let 1

  ω is strictly convex.

  . See Appendix B.

∎ Remark. Proof of Proposition 4 in Appendix B provides two ways of expressing TSN π . The first one is given by (73) where TSN π is defined from the cumulative distribution function s F of the skewed distribution. The other one, based on the cumulative distribution function G of the symmetric distribution, is obtained, for all x X ∈ , by merging (64) and (69) which leads to
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Proof of Proposition 3 Proposition 3. If a continuous unimodal probability density function ( )

f x with a mode m is differentiable for all x X ∈ , the LHS (resp. RHS) part of the two-sided normalized transformation is lower (resp. greater) than the LHS (resp. RHS) part of the optimal transformation if

Intermediate results are necessary and the appendix is organized as follows:

• Proposition 7 and Proposition 8 give a limit for the derivative of the lower bound of the α cut of the optimal possibility distribution respectively when the probability density function is differentiable in all x X ∈ except in x m = or in all x X ∈ . • Proposition 9 establishes the respective position of the LHS and RHS of the TSN and optimal possibility distribution with respect to the previous limit.

• Finally, the proof of Proposition 3 is given as a corollary of Proposition 9.

α α is the α -cut of the optimal possibility distribution and ( )

where it has left and right derivatives, respectively denoted by ( )

Proof. Since the probability density function is unimodal, there exists

. It defines ( ) v α as a function of ( )

The function ϕ is decreasing and such that ( )

with respect to α gives

can be written as

Differentiating f with respect to ( )

In m we have 

Now, since '( )

, evaluating (57) for 1

∎ Proof of Proposition 3: It is a corollary of Proposition 9 using Proposition 8 in (58).

Proof of Proposition 4

Proposition4. The two-sided normalized transformation is the optimal transformation for the family of two-piece skewed distributions defined by

where g is a unimodal symmetric probability density function.

For the sake of simplicity and without loss of generally, the symmetric probability density function g is supposed to be zero-centered. Let sL f and sR f be the LHS and RHS parts of s f , i.e.,

.

The LHS and RHS parts of the cumulative distribution function s

where G is the cumulative distribution function of the symmetric law.

The functions sL f and sR f have inverse, therefore ( ) x ϕ reduces to the simple expression (61)