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ABSTRACT

In the list of interfaces used to make virtual reality, hap-
tic interfaces allow users to touch a virtual world with their
hands. Traditionally, the user’s hand touches the end effector
of a robotic arm. When there is no contact, the robotic arm is
passive; when there is contact, the arm suppresses mobility to
the user’s hand in certain directions. Unfortunately, the passive
mode is never completely seamless to the user. Haptic interfaces
with intermittent contacts are interfaces using industrial robots
that move towards the user when contact needs to be made. As
the user is immersed via a virtual reality Head Mounted Display
(HMD), he cannot perceive the danger of a collision when he
changes his area of interest in the virtual environment. The ob-
jective of this article is to describe movement strategies for the
robot to be as fast as possible on the contact zone while guar-
anteeing safety. This work uses the concept of predicting the po-
sition of the user through his gaze direction and the position of
his dominant hand (the one touching the object). A motion gen-
eration algorithm is proposed and then applied to a UR5 robot
with an HTC vive tracker system for an industrial application
involving the analysis of materials in the interior of a car.

∗Address all correspondence to this author.

1 Introduction
The aim of virtual reality is to immerse a human being in

a virtual environment using all his senses. In most collabora-
tive systems, the main senses are sight, then hearing, and finally,
touch [8]. The sense of vision can be rendered by using large
screens that occupy the user’s entire field of vision or by using a
Head Mounted Display (HMD). In the latter case, the user’s vi-
sion becomes completely disconnected from the real world and
all his movements can become dangerous. In some cases, user
may lose his spatial landmarks and have the feeling of falling on
the ground. Sound immersion further increases this immersion
and separation from the real world. By using immersion HMD
and headphone, the user can free himself from his environment.

Haptic interfaces, such as Virtuose 6DOF [23], are used in
product design by engineers [18]. In [12, 5] a five-fingered haptic
interface robot with a 6 degree of freedom arm and a 15 DOF
hand was used to provide multipoint contact between the user
and a virtual environment through force and tactile feeling to the
fingertips of the human hand. These interfaces are safe and well
mastered but if the user can apply force/torque, he cannot really
feel the textures and appreciate the quality of the materials.

Among the main shortcomings of these interfaces are lim-
ited workspace, low stiffness and high cost.

New haptic interfaces using an industrial robot or a cobot
(robots specially designed to work in human-robot environ-
ments) can be used as haptic interfaces with intermittent con-
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tacts [2, 13]. For the application envisaged in this document, the
cobot carries several texture specimens on its end-effector, to al-
low contact between a user’s finger and the robot. They are called
Intermittent Contact Interfaces (ICI) [15].

When the user uses HMD vision interfaces and has to per-
form haptic evaluations, he no longer sees the real scene, but only
a virtual world. His physical reference points quickly disappear
except for objects he touches such as his seat and the floor.

When users reach to grasp objects, they look at the target
first, then bring the hand to the center of gaze to grasp the object.
Eye-hand coordination is a fundamental behavior that humans
use to interact with the world [10, 11, 20]. The head movement
facilitates subsequent gaze shifts toward the future position of
the hand to guide object manipulations, thus leading to a strong
correlation between head and hand movement parameters [21,
26, 27].

Through the user’s gaze and hand movements, as well as the
position of areas to be studied, it is possible to predict the tasks
that the user will perform. The purpose of this study is to en-
sure that the robot end-effector will be available for intermittent
contact in complete safety when the human hand is close to the
surface to touch.

The outline of this article is as follows. First, we present the
context of the study and the material used. Then, an algorithm for
predicting the user’s intention through his gaze and the position
of his dominant hand (the one touching the object) is described
and implemented under the Unity software. Finally, a motion
generation algorithm is proposed and then applied to a UR5 robot
with an HTC vive tracker system for an industrial application
involving the analysis of materials in the interior of a car.

2 Description of the Context
The context of the study is the evaluation of the perceived

quality of a virtual car interior during the first design phases. In
a given scenario, the user sits in the real world for a visual virtual
reality experience inside the car. The user wears a HMD and can-
not see the robot, which explains the safety problem (Figure 1).
While the user is trying to interact with the virtual object of the
environment, the robot must come and position a sample of the
material associated with the local surface, to provide a tactical
sense of touching the object [19, 25]. A motion capture system
based on HTC vive trackers is used to know the position of the
body and especially the hand used for interaction as well as the
position of the chair and the robot [28] (Figure 2). Currently,
the prop can carry six different materials. The robot is fixed on
a 75 cm high table and the user sits on a seat 60 cm above the
floor. The placement of the robot in the scene has been chosen to
be able to reach all the places where the user’s hand will want to
have haptic interaction with the robot’s probe[9].

A virtual model under the Unity 18.4 LTS software repre-
sents the fixed objects in the environment, as well as the moving

FIGURE 1. Conceptual scheme of the experimental platform

FIGURE 2. The complete system setup for human robot interaction

objects, which are the robot thanks to the encoders of the motors
and the user thanks to HTC trackers located on the hands and on
its seat. The industry partner provided the virtual model of the
car design.

An industrial robot can perform powerful and fast move-
ments that can be dangerous for the humans around it. Invol-
untary contact between the robot and humans is a threat. This
is particularly important in a virtual reality context where hu-
mans equipped with an HMD will not be able to anticipate the
robot’s movements. Today more than ever, men work closely
with robots. In the case of intermittent contact interface ICI,
contact is inevitable between humans and robots. Cobots are
best suited to such a scenario, but in terms of human safety,
accident prevention can always be improved [4]. These robots
are designed to work at limited speeds during potential contacts.
Moreover, it must be ensured that the desired contact with the
robot during interaction will not result in a necessary restart of
the robot after a safety stop [16].

Modulation of the robot’s speed according to the robot’s lo-
cation in relation to man is now our main objective.

3 Human Intention Prediction
3.1 Sensors used

To ensure the safety of the user it is necessary to model the
user in the virtual world. Depth cameras allow a faithful recon-
struction of the environment but their acquisition frequency is
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low with latency. Moreover, camera placement is difficult be-
cause the robot can hide the user.

The Figure 3 shows all the sensors used to reconstruct the
position of the user’s hands and arms with HTC vive trackers
using a mannequin model. Two vive trackers are used to recon-
struct a single arm. The joints of the arm are selected similar to
software like Delmia. For this application, only the arms and the
trunk can move because the user remains seated in his chair. This
point is not developed further in the paper.

The HTC vive tracker placed on the hand of the human are
also used to control the robot end effector. The hand motion
defined the the desired location of the end effector as shown in
Fig. 4.

3.2 Detection of the Target of Human Motion
Robots need to anticipate human’s future actions and act ac-

cordingly while performing collaborative tasks. In most human-
robot collaboration systems, the motion of robots is based on
some predefined programs, which are task-based. However, most
tasks are highly complex and it is difficult to redefine a complete
set of instructions for such situations. In such tasks, the roles of
the robot should be changed from purely automated machines to
autonomous companions. Previous works relied on supervised
learning methods to build models of human motion, which relied
on understanding the environment, offline training or manual la-
beling, adaptation to new people, and motion styles.

An expectation-maximization (E-M) algorithm and a neu-
ral network to infer human intentions in a 3-dimensional (3D)
space were used in [24]. They modeled a function with inten-
tions as parameters and developed a neural network to learn hu-
man arm dynamics. In [22] time series analysis for the motion
of the human arm based on demonstrations of human arm reach-
ing motion, which synthesized anticipatory knowledge of human
motions and subsequent action steps to predict was used. A com-
bination of a two-layer framework of Gaussian mixture models
and unsupervised learning to predict a remainder of the trajectory
from a prior observed human arm motion in reaching tasks was
used in [17]. In [14] a Markov decision process to anticipate a
belief about possible future human actions was used by modeling
the human’s and robot’s behavior and then constructed a graph to
represent the human motion and interaction with objects.

Human intention is mainly expressed through the behavior
of humans and the objects they interact with. Most of the current
research on human intention prediction just focuses on action
classification, in which the human action is classified into sev-
eral categories, such as running, walking, jumping [6] which is
inadequate for accurate inference of human intention in human-
robot collaboration.

We propose an HRI framework that combines hand motion
with gaze direction to build models on the fly which predict hu-
man intention in virtual reality and move the robot to the required

position in a virtual space without offline training.

3.3 Proposed Model
We proposed a k-d tree-based model that defines the rela-

tionship between human hand and scene interaction taking into
account the gaze direction of the user. The main advantage of this
approach is that it can build models on the fly and with no offline
training. We further examine the limitations of the plain k-d tree
based only on the hand and scene objects interaction and the how
gaze direction improves the predictions and performance.

3.3.1 Scene Information
From the FBX model of the car in unity3D Virtual reality soft-
ware, we defined the Regions of Interest (ROI) the user is to in-
teract with. Each ROI is represented as a cube paced at the center
of the surface. We have defined 17 regions to be studied inside
the car (Figure 5). They are located as follows:

• 4 point on the door,
• 4 points on the chair,
• 4 points on the dash board,
• 1 point on steering wheel,
• 1 point on touch pad,
• 2 points on glove compartment,
• 1 point on speedometer.

3.3.2 Robot Motion
To move the robot to a specific position and orientation, the posi-
tion and orientation of the cube is sent through a UDP connection
to a robot controller at a frequency of 50 Hz. This controller runs
on a thread library that consists of two threads, which read data
from Unity VR software and write data to the real-time data in-
terface of the UR5 at a frequency of 100 Hz.

3.4 Methodology
We used a proximity search, which is an optimization prob-

lem of finding a point in a closed set that is closest to a given
point. Closeness is defined by a dissimilarity function such that
the dissimilar the objects, the larger the function values.

3.4.1 Problem Definition
Given a set P of our interest points in a 3D space D, and a query
point q which represents the user’s dominant hand, we find the
closest point in P to q. This problem can be generalized as a k-
nearest neighbor (kNN) query where we have to find the k closest
points where k∈ Z+. Implementing the kNN is normally done by
computing the distances from q to all elements in P. However,
this method is computationally intensive for a large number of
data points. We used a k-d tree for the nearest neighbor search
proposed by [3, 7]
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FIGURE 3. Localization of the HTC vive trackers to reconstruct static and dynamic objects in the environment

FIGURE 4. Human with HMD and hand tracker to control the move-
ment of a UR 5 robot

Formally a k-d tree is a balanced binary tree for a set of data
points p1, p2, ..., pn ∈ P. where the root corresponds to all points
and its two children represent almost equal-sized subsets of P.
Every leaf corresponds to a k-dimensional point and every non-
leaf node is a splitting point generating a hyper plane that splits
points into subsets in a level-wise manner. Points to the left of
this hyper plane are represented by the left sub-tree of the node
and points to the right are represented by the right sub-tree. For
a given node p at level i, the points associated with p are split
into two halves by resorting to the median in dimension i mod
k. Such that the point inserted in the tree at each step is the one,
which has the median coordinate in the direction considered [3].
However, splitting rules may vary. The recursive construction
ends as soon as a node p corresponds to a singleton or to a set of
predefined sizes.

FIGURE 5. Location of points of interest in the interior of the car

3.4.2 Nearest Neighbor Search using the k-d
tree
Given a point q, find the point p in the data set P that is closest
to q. This can be done by the 3 following steps :
Step 1: We defined the cubes representing the position and ori-
entation of the surface for each of the ROI in the car model.
Step 2: Build a k-d tree to store the positions for all the cubes.
Step 3: Using the hand position as a query, we find the closest
point to the hand from the k-d tree.
The algorithm 1 describes precisely the step 3.

Algorithm 1. Nearest Neighbor Search

Input: k-d tree root node, query point q
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FIGURE 6. k-d tree (a) k-d tree decomposition for point set and (b)
The resulting k-d tree.

Output: Nearest node p

1. Start from the root node.
2. Move down the tree recursively following the same proce-

dure as it would be for the insertion of point q in the tree.
3. Once a leaf node is reached, save the leaf as the current best

point p.
4. Rewind the recursion tree, and
5. For each node v, If d(q, p)> d(q,v), then current node v= p,

where d is a distance metric.
6. Check if there could be yet better points on the other side

of the subtree by checking if neighboring boxes potentially
contain points that are closer to q as the current best candi-
date (using the median values).

7. In case a point might be closer, recurse to the sub-tree that
has not yet been visited.

8. If there could be, move down again on the other side of the
sub-tree. Otherwise, go up another level.

3.4.3 Drawbacks of the Above Approach
The above approach has the following shortfalls:

1. The accuracy decreases when the hand is close to the mid-
point of any two points. In this case, the difference in the
distance between each point and the hand is very small and
such that a slight displacement of the hand results to inap-
propriate motion of the robot to any of the nearest points.

2. Unnecessary and Involuntary hand movements. Due to hu-
man nature, the user can move their hands involuntarily
without intention to interact with any objects in the space.
In this case, the algorithm would still move the robot to the
best point according to the minimum distance.

To overcome the above shortfalls, we decided to include the
head gaze in the model such that a predicted point is considered
valid and intentional. If the user was gazing in the direction of
the object the hand interacts with. This is because when humans
reach to grasp an object, they look at the target first, then bring

FIGURE 7. Proposed schematic diagram

the hand to the center of gaze as the object [19, 25, 21, 26].

3.4.4 Proposed Model
The proposed intention inference model from the regions of
interest is summarized in Figure 7 as a 4 step process explained
in algorithm 2.
Step 1: We defined the cubes representing the position and
orientation of the surface for each of the ROI in the car model.
Step 2: Build a k-d tree to store the positions for all the cubes.
Step 3: Using the hand position as a query, we find the np points
closest to the hand from the k-d tree. Contrary to section 3.4.2,
we do not define directly the closest point but we select np
candidate points. Depending on experiments np can be two or
four.
Step 4 : From the np candidate points, we select only the npg
points. belonging to the view frustum of the HMD.
Step 5: Among these npg points, the closest to the gaze direction
is selected as predicted contact point between the user and the
robot end effector. This selection is based on a distance from
a point to a line. A detailed explanation is given in Section
Appendix.

Theses steps are commented in the Algorithm 2.

Algorithm 2: Predictions with head gaze

Input: Scene information, head gaze direction
Output: position and orientation of desired point.
Method:

1. Cubes representing the surface and orientation of regions of
interest.

2. Build a k-d tree for all points in the scene.
3. Using the hand pose as a query point q, return the nearest
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FIGURE 8. Hand Tracker Motion

Robotpose1.png

FIGURE 9. Robot TCP motion without head gaze

np-points from the k-d tree.
4. For each of the np points, we select only the npg points which

lie within the view frustum of the HMD.
5. find the gaze direction as a unit vector from the central point

of the eyes and draw a ray in the gaze direction.
6. calculate the distance of each point in npg from the ray and

return the position of the nearest point. The equation of cal-
culating the distance between a point and a line is equation
(8) defined in the appendix section.

3.4.5 Experimentation
We conducted experiments to analyze the motion of the robot in
response to hand motion in two approaches by moving the hand
between the two points, with the following objectives:

1. Midpoint test: To show the response and error in robot mo-
tion when the hand is close to the midpoint. For this, we
consider two points, which are 1.3 meters apart. Placing the
hand tracker at the midpoint and displacing it by 2 cm results
in the robot going to extreme points

2. Involuntary and Unintended Hand Motion Test: To verify
that the robot moves only when the hand and head gaze are
in the same direction. A hand motion to areas outside human
vision is not sufficient to move the robot.

3.4.6 Results
In the first approach, we used the model without data from
VR HMD, we observed that by moving the hand approximately
1.5 mm from the midpoint, the robot responds by moving to the
other closer point. Figure 8 shows the displacement of the hand.
The corresponding motion of the robot is shown in Figure 9. It
can be seen that Robot TCP moves to the extreme points ever-
time there is a small displacement in the hand tracker. To avoid
this noise motion we introduce Head Gaze.

FIGURE 10. Hand Tracker Motion

FIGURE 11. Robot TCP motion with head gaze

In the second approach, by including head gaze in the model,
it is observed that the robot only moves in the direction of the
object where head is currently facing. While Figure 10 shows
displacement of the hand tracker about the mid point, it can be
noticed that there is no significant change in the displacement of
the tracker. However, for the robot TCP, it changes only when
the gaze shifts. Figure 11 shows motion of the robot TCP, and
when comparing it with Figure 9, we can see a reduced noise on
displacement of robot.

From Figures 11 and 10, it was observed the movement of
the hand does not affect motion of the robot as long as the head
is not facing in the direction of the hand movement. The robot
only changes direction of motion at instances corresponding to
the rotation of the head.

The fact that gaze direction is taken into account limits the
inappropriate variations of the target point and allows a smoother
movement of the robot. This is based on the assumption that the
operator looks in the direction where he wants to go [6-8].

4 Different Velocity Zones

The robot must be moved closer to the target point to prepare
for the interaction. The movement must be fast so that the robot
has arrived before the human and thus avoid unpleasant waiting
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FIGURE 12. Interior of Car and User Workspace

but the maximum speed of the robot must be limited for safety
reasons. Fig. 12 shows the scene of the VR environment, it con-
sists of car interior and user model. Based on this, we distinguish
three zones:

• WH: The human workspace, defined as 2 spheres whose ra-
dius is the size of the arm centered on the shoulders of the
mannequin. This workspace will evolve according to the
movements of the human. We could also consider a con-
stant space if we limit the realistic movements of the torso.
This space is represents by blue circles in Fig 13.
• IC: The inside of the car: this space delimits the area where

we know the human must move. Even if the unity model is
complex, this zone can be approximate by a larger simple
region that includes the real interior of the car. The gray
rectangle, in general, represents the entire Unity Model and
we define a plane, depicted by the red line in Fig 13, that
separates the region that can be reached by the user.
• EL: free space, which corresponds to what is neither in WH

nor in IC. We can have a certain safety margin to define this
zone. In our example, this zone is simply limited by a plane
represented in red in Fig 13.

The limit on the robot velocity is chosen according to space:

• When the robot moves in EL, it can do so at maximum speed
Vm (all parts of the robot are in EL) ,
• When the robot moves outside of EL, it must move at re-

duced speed Vr,

The speeds are chosen such as Vm ≥ Vr ≥ 0. The different
spaces are shown in Figure 13. The blue hollow circle is the
robot workspace, two blue-filled circles are the workspace of the
user’s hands. The grey rectangle is the complete interior model
of the car and the red line is the plane that we use to differentiate
the reachable and unreachable parts of the car by the user.

The robot is moving in the Cartesian space in a straight line
to manage more easily the changes of space. We use a temporary

FIGURE 13. The different spaces defining the robot velocity

evolution defined by a trapezoidal shape to have the best com-
promise between travel time and maximum speed.

We do not discuss the choice of the correct max accelera-
tions and the maximum speeds in Cartesian space, because we
assume that the safety constraints are the strongest.

5 Velocity Profiles Based on Zones

The speed of cobot motion defined in the ISO standard for
human-robot collaboration is 0.3 m/s. But such a low speed af-
fects the response time for the robot to position itself to interact
with the user.

So to consider safety and also have better response time we
defined two velocity profiles of 0.3 m/s and 0.6 m/s. These are
the Vm and Vr based on the zones defined above.

For this analysis, we devise the scene as shown in Fig 14.
We define six points:

• 2 green points A and D are outside the plane boundary, these
are 2 start/ home positions for the robot. Multiple home/start
points are defined to have better access to points closer to
each home pose and reduce the response time.
• 2 grey points B and C are inside the plane boundary, one

point on the steering wheel and another on the tablet screen.
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FIGURE 14. The Definition of Points in Interior of Car in Unity

• 2 blue points b’ and c’ on the plane boundary, these points
are defined by calculating the intersection of the line with
the plane for the robot’s Cartesian trajectory from A to B
and D to C respectively.

We analyze three different scenarios based on different velocity
combinations.

• Scenario 1: A constant velocity of 0.25 m/s is used to define
the motion throughout the zones. No velocity profiles are
used based on zones. Motion is performed between points
A, B, C, and D. In this scene the intersection points b’ and
c’ are not considered.
• Scenario 2: Two velocities 0.25 m/s and 0.6 m/s are cho-

sen based on the zones. If the robot travels from outside to
the inside of the plane or vice-versa, we choose the low ve-
locity (0.25 m/s). If the robot is moving outside the plane,
we choose high velocity (0.6 m/s). Motion is performed be-
tween points A, B, C, and D. In this scene also the intersec-
tion points b’ and c’ is not considered.
• Scenario 3: In this scene, we have the same velocity profile

as in scenario 2, but in this scene, the intersection points b’
and c’ are considered. This changes the motion points for
moving from A to B, to A to b’, and from b’ to B. It is the
same for the trajectories that have to cross the plane. Moving
from C to D, using intermediate point c’.

Each scenario has the same five motions:

• From A to B, moving from outside to inside the plane
• From B to C, moving inside the plane
• From C to D, moving from inside to outside the plane
• From D to A, moving outside the plane.
• From A to C, moving from outside to inside.

Table 1 presents velocities of motions in all three scenarios.
Figure 15 shows the motion plot of TCP for all the selected mo-
tions. A comparison between scenario 1 and scenario 2 can give
us that robot moves faster when it is outside the plane. However,

Motion Scenario 1 Scenario 2 Scenario 3

From A to B 0.25 0.25 A to b’ 0.25

b’ to B 0.6

From B to C 0.25 0.25 0.25

From C to D 0.25 0.25 C to c’ 0.25

c’ to D 0.6

From D to A 0.25 0.6 0.6

From A to C 0.25 0.25 A to b’ 0.6

b’ to C 0.25

TABLE 1. Different velocities based on motion in the three scenarios

FIGURE 15. All Motions Together

there is no significant change in velocity when the robot is mov-
ing towards or inside the plane. This is where scenario 3 comes
to light. When the robot moves from an outside point to an inner
point, scenarios 1 and 2 have the same speeds, but in scenario 3,
due to the intersection points, a high speed is used partially in the
movement.

A comparison of all three scenarios for Motion from A to
B is shown in Figure 16. It can be seen that for scenario 1 and
scenario 2 there is no significant change in time. But in scenario
3 due to high velocity till the intersection point, we can see, the
robot reaches its position 0.1 s earlier than in previous scenarios.
These tests done are experimental, thus in some cases, the desired
velocity was not reached because the duration of the phase is too
short.

6 Trajectory Planning of Robot

So far, for the velocity analysis, we have performed the trajectory
in the Cartesian plane. This implies the robot moves in a straight
line. To define the path from the current robot posture to the
target posture, two strategies are compared:
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FIGURE 16. A Comparison of Motion 1 for all 3 scenarios

FIGURE 17. The Test points used for Trajectory Planning

• the shortest way: Knowing the target point, the robot moves
towards it, and adapts its speed according to the spaces it
crosses,

• via points: use of intermediate points to keep the robot’s
speed high. We define intermediate points to minimize the
distance traveled in the area with the lowest speed, or we
can define intermediate points on a global time minimization
criterion (approximate criterion assuming constant speed per
section for example).

Figure 17 shows the interior of the car. Three points A, B
and C are defined in the steering wheel, tablet screen, and glove
compartment respectively. A plane can also be seen as discussed
in the previous section to separate the user workspace in the in-
terior of the car. There are also three points a’, b’, and c’ which
are the projection of desired points onto the plane.

In the previous scenarios, we had performed motion inside
the car with reduced velocities. Nevertheless, in some cases
when the desired point is in far exteriors of user space and it

FIGURE 18. The path is a straight line between the initial and target
pose

FIGURE 19. Using via points to maximize the path at fast velocity.

FIGURE 20. Comparison of using via points
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takes more time to reach it due to low velocity. For such situ-
ations, we use the projection points to move the robot in high
velocity to reach the target.

Therefore, if the robot has to move from A (steering wheel)
to C (glove compartment), there are two possible trajectories.

• Option 1: To go from A to C with reduced velocity. As both
the points are inside the plane and user workspace.
• Option 2: Start from A to a’ with reduced velocity. Go from

a’ to c’ with high velocity since this point is on the plane and
the robot is moving outside the plane. Finally from c’ to C
move in reduced velocity to reach the destination.

In the plot shown in Figure 18, the robot moves from point
A to C and going back to A, inside the plane with low velocity.
It takes 3.1 s to move from A to C. This results in a reduced
velocity profile and a long time to travel between the points.

Figure 19 shows the TCP pose for the same points A and C
but using the Via-points a’ and c’. Motion is from A to a’, a’ to
c’ and c’ to C. Stop for 4 s and start from C to A via c’ and a’.
By using higher velocity to move between projection points the
travel time is reduced.

A comparison of a trajectory between two points A to C lo-
cated inside the car, with or without via points shows that when
using via points a’ and c’, the duration of the trajectory is shorter.
Figure 20 shows the time analysis for reaching the same points
but with a different trajectory.

It is clear that in the case when not using via-points the time
taken is 3.1 s. When considering the via-points it takes about
2.5 s to reach the destination.

7 Conclusions

In this article, a collaborative robot is used as a haptic interface
with intermittent contact. A motion prediction algorithm is used
to select the areas with which the user intends to interact and to
move the robot as fast as possible while ensuring user safety.

We introduce two speed profiles for the user’s safety. The
robot moves at a higher speed when it is outside the user’s
workspace. In situations where there is a large distance between
two points within the workspace, we introduce via points to re-
duce travel time. The time needed to add via points is less than
the time needed to go directly inside the car while being much
safer.

In future work, the aim is to add more zones to have multiple
velocity profiles. To limit the reduced velocity Vr to the user
workspace rather than inside the plane. So to introduce a new
velocity Vi, such that Vm ≥Vi ≥Vr ≥ 0. This new velocity would
be in the region, which is inside the plane not covered by the
workspace of the user.
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Appendix

The distance from a point to a line is the shortest distance from
a given point to any point on an infinite straight line. It is the
perpendicular distance of the point to the line.

Formally, a line in three dimensions is specified by two
points p1 = (x1,y1,z1) and p2 = (x2,y2,z2) through which it
passes. A vector v along the line is given by

v =

x1 +(x2− x1)t
y1 +(y2− y1)t
z1 +(z2− z1)t

 (1)

The squared distance d between a point on the line and our
point of interest pi = (xi,yi,zi) is given by

d2 = [(x1− xi)+(x2− x1)t]2 +[(y1− yi)+(y2− y1)t]2

+[(z1− zi)+(z2− z1)t]2 (2)

Our objective is to minimize d, we set d(d2)/dt = 0 and
solve for t to get

t =− (p1− pi) · (p2− p1)

|p2− p1|2
(3)

where · denotes the dot product.
Substituting t into equation (2), we obtain

d2 = [(x1− xi)
2 +(y1− yi)

2 +(z1− zi)
2

+2t[(x2− x1)(x1− xi)+(y2− y1)(y1− yi)+(z2− z1)(z1− zi)]

+ t2[(x2− x1)
2 +(y2− y1)

2 +(z2− z1)
2] (4)

which simplifies to

d2 = |p1− pi|2−2
[(p1− pi) · (p2− p1)]

2

|(p2−P1)|2
+
[(p1− pi) · (p2− p1)]

2

|(p2− p1)|2
(5)
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d2 =
|p1− pi|2|p2− p1|2−[(p1− pi) · (p2− p1)]

2

|(p2− p1)|2
(6)

d2 =
|(p2− p1)× (p1− pi)|2

|p2− p1|2
(7)

where × denotes the cross product.
The value of d is obtained by taking the square root in (7)

d =
|(p2− p1)× (p1− pi)|

|p2− p1|
(8)
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