
HAL Id: hal-03265608
https://hal.science/hal-03265608

Submitted on 21 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logical Encoding of Argumentation Frameworks with
Higher-order Attacks and Evidential Supports: Taking

into account the Collective Interactions
Marie-Christine Lagasquie-Schiex

To cite this version:
Marie-Christine Lagasquie-Schiex. Logical Encoding of Argumentation Frameworks with Higher-order
Attacks and Evidential Supports: Taking into account the Collective Interactions. [Research Report]
IRIT/RR- -2021–05–FR, IRIT : Institut de Recherche en Informatique de Toulouse. 2021. �hal-
03265608�

https://hal.science/hal-03265608
https://hal.archives-ouvertes.fr

Logical Encoding of Argumentation Frameworks with
Higher-order Attacks and Evidential Supports:
Taking into account the Collective Interactions

M-Christine Lagasquie-Schiex

Université de Toulouse, IRIT,
118 route de Narbonne, 31062 Toulouse, France

{lagasq}@irit.fr

Tech. Report
IRIT/RR- -2021- -05- -FR

Juin 2021

Abstract

In [11], we have proposed a logical encoding of argumentation frameworks with higher-order interactions
(i.e. attacks/supports whose targets are arguments or other attacks/supports) with an evidential meaning
for supports (such frameworks are called REBAF). Then this encoding has been used for giving a char-
acterization of REBAF semantics. In this work, two constraints have been given: first the source of an
interaction must be a single argument, second no support cycle is authorized in the REBAF.
In [20], a first improvement of this work has been done in order to relax the second constraint, correct-
ing the first attempt done in [11] and allowing to take into account REBAF with any kind of support cycles.

In this new work, we propose a second improvement of our previous works in order to relax the first
constraint and so to be able to take into account collective interactions, i.e. those whose source can be a
set of arguments and not only one single argument.

Contents
1 Introduction 1

2 Background on argumentation frameworks 2
2.1 The Standard Abstract Framework . 2
2.2 A Framework with Higher-Order Evidential Supports and Attacks 3

3 Background on the Logical Description of a REBAF 8
3.1 Vocabulary . 9
3.2 Logical theory for describing REBAF . 9
3.3 Logical Formalization of REBAF semantics . 12

3.3.1 Conflict-freeness . 12
3.3.2 Self-supporting . 12
3.3.3 Defence . 13
3.3.4 Reinstatement . 13
3.3.5 Stability . 14

3.4 Characterizing Semantics of a REBAF . 15

4 Collective interactions in a REBAF: a new proposition 16
4.1 Vocabulary . 16
4.2 Formulae . 16
4.3 Some examples . 18
4.4 New definitions . 19
4.5 Characterization: a new proposition . 23

5 Conclusion 25

A Proofs 26

i

1 Introduction
Formal argumentation has become an essential paradigm in Artificial Intelligence, e.g. for reasoning from incomplete
and/or contradictory information or for modelling the interactions between agents [26]. Formal abstract frameworks
have greatly eased the modelling and study of argumentation. The original Dung’s argumentation framework (AF) [16]
consists of a collection of arguments interacting with each other through a relation reflecting conflicts between them,
called attack, and enables to determine acceptable sets of arguments called extensions.

AF have been extended along different lines, e.g. by enriching them with positive interactions between argu-
ments (usually expressed by a support relation), or higher-order interactions (i.e. interactions whose targets are other
interactions).

Positive interactions between arguments. They have been first introduced in [19,27]. In [9], the support relation is
left general so that the bipolar framework keeps a high level of abstraction. The associated semantics are based on the
combination of the attack relation with the support relation which results in new complex attack relations. However,
there is no single interpretation of the support, and a number of researchers proposed specialized variants of the support
relation (deductive support [4], necessary support [22, 23], evidential support [24, 25]). Each specialization can be
associated with an appropriate modelling using an appropriate complex attack. These proposals have been developed
quite independently, based on different intuitions and with different formalizations. [10] presents a comparative study
in order to restate these proposals in a common setting, the bipolar argumentation framework (see also [12] for another
survey).

Higher-order interactions. The idea of encompassing attacks to attacks in abstract argumentation frameworks has
been first considered in [3] in the context of an extended framework handling argument strengths and their propaga-
tion. Then, higher-order attacks have been considered for representing preferences between arguments (second-order
attacks in [21]), or for modelling situations where an attack might be defeated by an argument, without contesting the
acceptability of the source of the attack [2]. Attacks to attacks and supports have been first considered in [17] with
higher level networks, then in [28]; and more generally, [13] proposes an Attack-Support Argumentation Framework
which allows for nested attacks and supports, i.e. attacks and supports whose targets can be other attacks or supports,
at any level.

Here are examples of higher-order interactions in the legal field. The first example considers only higher-order
attacks (this example is borrowed from [1]).

Example 1 The lawyer says that the defendant did not have intention to kill the victim (argument b). The prosecutor
says that the defendant threw a sharp knife towards the victim (argument a). So, there is an attack from a to b. And the
intention to kill should be inferred. Then the lawyer says that the defendant was in a habit of throwing the knife at his
wife’s foot once drunk. This latter argument (argument c) is better considered attacking the attack from a to b, than
argument a itself. Now the prosecutor’s argumentation seems no longer sufficient for proving the intention to kill. �

The second example is a variant of the first one and considers higher-order attacks and evidential supports.

Example 2 The prosecutor says that the defendant had intention to kill the victim (argument b). A witness says that
she saw the defendant throwing a sharp knife towards the victim (argument a). Argument a can be considered as a
support for argument b. The lawyer argues back that the defendant was in a habit of throwing the knife at his wife’s foot
once drunk. This latter argument (argument c) is better considered attacking the support from a to b, than arguments
a or b themselves. Once again, the prosecutor’s argumentation seems no longer sufficient for proving the intention to
kill. �

We follow here an evidential understanding of the support relation [24] that allows to distinguish between two
different kinds of arguments: prima-facie and standard arguments. Prima-facie arguments were already present
in [27] as those that are justified whenever they are not defeated. On the other hand, standard arguments are not
directly assumed to be justified and must inherit support from prima-facie arguments through a “chain” of supports.
For instance, in Example 2, arguments a and c could be considered as prima-facie arguments while bwould be regarded

1

as a standard argument. Hence, while a and c can be accepted as in Dung’s argumentation, b must inherit support from
a: this holds if c is not accepted, but does not otherwise. Indeed, in the latter, the support from a to b is defeated by c.

A natural idea that has proven useful to define semantics for these extended frameworks, known as “flattening
technique”, consists in turning the original extended framework into an AF, by introducing meta-arguments and a new
simple (first-order) attack relation involving these meta-arguments [2, 5, 6, 13], or by reducing higher-order attacks to
first-order joint attacks [18]. More recently, alternative acceptability semantics have been defined in a direct way for
argumentation frameworks with higher-order attacks [7] or for higher-order attacks and supports (necessary supports:
[14], evidential supports: [8]). The idea is to specify the conditions under which the arguments (resp. the interactions)
are considered as accepted directly on the extended framework, without translating the original framework into an AF.

Morever, in [11] then in [20], a logical encoding of argumentation frameworks with higher-order attacks and evi-
dential supports (REBAF) has been proposed. This encoding is able to take into account REBAF. A strong constraint
exists in these works: the source of an interaction must be a single argument. So the aim of the current work is to relax
this constraint and to propose a new logical encoding of REBAF in which interactions are not binary ones (this kind
of interactions is called “collective interactions”).

The paper is organized as follows: the necessary background about argumentation frameworks is given in Sec-
tion 2; the logical encoding for frameworks with higher-order attacks and evidential supports (REBAF) is recalled in
Section 3; the new proposition that can handle collective interactions is given in Section 4; Section 5 concludes the
paper. The proofs are given in Appendix A.

2 Background on argumentation frameworks
Note that the text (definitions, propositions and examples) of this section is extracted from [11].

2.1 The Standard Abstract Framework
The standard case handles only one kind of interaction: attacks between arguments.

Definition 1 [15] A Dung’s argumentation framework (AF) is a tuple AF = 〈A,R〉, where A is a finite and non-
empty set of arguments and R ⊆ A ×A is a binary attack relation on the arguments, with (a, b) ∈ R indicates that
a attacks b.

A graphical representation can be used for an AF.

Example 3 An attack (a, b) ∈ R is represented by two nodes a, b (in a circle) and a simple edge from a to b:

a b

�

We recall the definitions1 of some well-known extension-based semantics. Such a semantics specifies the require-
ments that a set of arguments should satisfy. The basic requirements are the following ones:

An extension can “stand together”. This corresponds to the conflict-freeness principle.

An extension can “stand on its own”, namely is able to counter all the attacks it receives. This corresponds to
the defence principle.

Reinstatement is a kind of dual principle. An attacked argument which is defended by an extension is reinstated
by the extension and should belong to it.

Stability: an argument that does not belong to an extension must be attacked by this extension.
1Where “iff” (resp. “w.r.t.”) stands for “if and only if” (resp. “with respect to”).

2

Definition 2 [15] Let AF = 〈A,R〉 and S ⊆ A.

S is conflict-free iff (a, b) 6∈ R for all a, b ∈ S.

a ∈ A is acceptable w.r.t. S (or equivalently S defends a) iff for each b ∈ A with (b, a) ∈ R, there is c ∈ S
with (c, b) ∈ R.

The characteristic function F of AF is defined by: F(S) = {a ∈ A such that a is acceptable w.r.t. S}.

S is admissible iff S is conflict-free and S ⊆ F(S).

S is a complete extension of AF iff it is conflict-free and a fixed point of F .

S is the grounded extension of AF iff it is the minimal (w.r.t. ⊆) fixed point2 of F .

S is a preferred extension of AF iff it is a maximal (w.r.t. ⊆) complete extension.

S is a stable extension of AF iff it is conflict-free and for each a 6∈ S, there is b ∈ S with (b, a) ∈ R.

Note that the complete (resp. grounded, preferred, stable) semantics satisfies the conflict-freeness, defence and
reinstatement principles.

2.2 A Framework with Higher-Order Evidential Supports and Attacks
In this section, we recall the extension of [7] proposed in [8] for handling recursive attacks and evidence-based sup-
ports.

Definition 3 [8] An evidence-based recursive argumentation framework (REBAF) is a sextuple 〈A,Ra,Re, s, t,P〉
where A, Ra and Re are three (possible infinite) pairwise disjunct sets respectively representing arguments, attacks
and supports names, and where P ⊆ A ∪Ra ∪Re is a set representing the prima-facie elements that do not need to
be supported. Functions s : (Ra ∪Re) −→ 2A \ ∅ and t : (Ra ∪Re) −→ (A ∪Ra ∪Re) respectively map each
attack and support to its source and its target.

Note that the source of attacks and supports is a set of arguments, the set P may contain several prima-facie
elements (arguments, attacks and supports) and no constraint on the prima-facie elements is assumed (they can be
attacked or supported).
Example 2 (cont’d): The argumentation framework corresponding to the second example given in the introduction
can be represented as follows (argument names are given in circular nodes, interaction names in square nodes, prima-
facie elements are in grey nodes and non prima-facie element in white nodes; supports are represented by double
edges):

a α b

β

c

�

Semantics of REBAF are defined in [8] using the extension of the notion of structure introduced in [7]. The idea is
to characterize which arguments are regarded as “acceptable”, and which attacks and supports are regarded as “valid”,
with respect to some structure.

Consider a given framework REBAF= 〈A,Ra,Re,s,t,P〉.
2It can be proved that the minimal fixed point of F is conflict-free.

3

Definition 4 [8] A triple U = (S,Γ,∆) is said to be a structure of REBAF iff it satisfies: S ⊆ A, Γ ⊆ Ra and
∆ ⊆ Re.

Intuitively, the set S represents the set of “acceptable” arguments w.r.t. the structure U , while Γ and ∆ respectively
represent the set of “valid attacks” and “valid supports” w.r.t. U . Any attack3 α ∈ Γ is understood as “non-valid” and,
in this sense, it cannot defeat the element that it is targeting. Similarly, any support β ∈ ∆ is understood as “non-valid”
and it cannot support the element that it is targeting.

The following definitions are extensions of the corresponding ones defined in [7] in order to take into account the
evidential supports.

Definition 5 [8] Given a structure U = (S,Γ,∆),

The sets of defeated elements w.r.t. U are:

Def X(U) def= {x ∈ X|∃α ∈ Γ, s(α) ⊆ S and
t(α) = x}

with X ∈ {A,Ra,Re}
Def (U) def= Def A(U) ∪Def Ra

(U) ∪Def Re
(U)

The set of supported elements Sup(U) is recursively defined as follows:4

Sup(U) def= P∪
{t(α)|∃α ∈ ∆ ∩ Sup(U\{t(α)}),

s(α) ⊆ (S ∩ Sup(U\{t(α)}))}

Note that a standard element is supported if there is a “chain”5 of supported supports leading to it, rooted in prima-
facie arguments. Acceptability is more complex. Intuitively, an element is acceptable if it supported and in addition,
every attack against it can be considered as “non-valid” because either the source or the attack itself is defeated or
cannot be supported.
The elements that cannot be supported w.r.t. a structure U are called unsupportable w.r.t. U . An element is supportable
w.r.t. U if there is a support for it which is non-defeated by U , with its source being non-defeated by U , and the support
and its source being in turn supportable.
The elements that are defeated or unsupportable are called unacceptable.
Then an attack is said unactivable if either some argument in its source or itself is unacceptable.

Formally,

The set of unsupportable elements w.r.t. U is:

UnSupp(U) def= Sup(U ′)

with U ′ = (Def A(U),Ra,Def Re
(U)).

The set of unacceptable elements w.r.t. U is:

UnAcc(U) def= Def (U) ∪UnSupp(U)

The set of unactivable attacks w.r.t. U is:
UnAct(U) def= {α ∈ Ra|α ∈ UnAcc(U) or

s(α) ∩UnAcc(U) 6= ∅}

Definition 6 [8] An element x ∈ A ∪Ra ∪Re is said to be acceptable w.r.t. a structure U iff (i) x ∈ Sup(U) and
(ii) every attack α ∈ Ra with t(α) = x is unactivable, that is, α ∈ UnAct(U).

3By Γ def
= Ra\Γ we denote the set complement of Γ w.r.t. Ra. Similarly, by ∆ def

= Re\∆ we denote the set complement of ∆ w.r.t. Re.
4By abuse of notation, we write U\T instead of (S\T,Γ\T,∆\T) with T ⊆ (A ∪Ra ∪Re).
5In fact, strictly speaking, this chain is in reality a “tree”. That is due to several reasons. The first one is that each support can be in turn

supported. And the second reason is the fact that interactions are collective; so the source of a support can be a set of arguments and in this case all
elements in the source are needed for supporting the target.

4

Acc(U) denotes the set containing all arguments, attacks and supports that are acceptable with respect to U .
The following order relations will help defining preferred structures: for any pair of structures U = (S,Γ,∆) and

U ′ = (S′,Γ′,∆′), we write U ⊆ U ′ iff (S∪Γ∪∆) ⊆ (S′∪Γ′∪∆′). As usual, we say that a structure U is⊆-maximal
(resp. ⊆-minimal) iff every U ′ that satisfies U ⊆ U ′ (resp. U ′ ⊆ U) also satisfies U ′ ⊆ U (resp. U ⊆ U ′).

Definition 7 [8] A structure U = (S,Γ,∆) is:

1. self-supporting iff (S ∪ Γ ∪∆) ⊆ Sup(U),

2. conflict-free iff X∩Def Y (U)=∅ for any (X,Y) ∈ {(S,A), (Γ,Ra), (∆,Re)},

3. admissible iff it is conflict-free and S ∪ Γ ∪∆ ⊆ Acc(U),

4. complete iff it is conflict-free and Acc(U) = S ∪ Γ ∪∆,

5. grounded iff it is a ⊆-minimal complete structure,6

6. preferred iff it is a ⊆-maximal admissible structure,

7. stable7 iff (S ∪ Γ ∪∆) = UnAcc(U).

From the above definitions, it follows that if U is a conflict-free structure, unsupportable elements w.r.t. U are not
supported w.r.t. U , that is UnSupp(U) ⊆ Sup(U).

Note that every admissible structure is also self-supporting. Moreover, the usual relations between extensions also
hold for structures: every complete structure is also admissible, every preferred structure is also complete, and every
stable structure is also preferred and so admissible. Other properties of REBAF are described in [8], which enable to
prove for instance that there is a unique grounded structure.

The previous definitions are illustrated on the following examples.

Example 4 Consider two arguments a and b and a support from a to b. Following the set of prima-facie elements,
different behaviours can be described.

1. The support and its source are assumed to be prima-facie. The target is not prima-facie.

a α b

In this case, as α (resp. a) is prima-facie and not attacked, it is acceptable w.r.t. any structure. In contrast, b is
not prime-facie, so b is supported w.r.t. a structure U implies that U contains the support α and its source a.
As a consequence, the structures ({a},∅, {α}) and ({a, b},∅, {α}) are admissible, whereas the structure
({b},∅, {α}) is not admissible.

2. Only the source of the support is assumed to be prima-facie.

a α b

In this case, for any structure U , α is not supported w.r.t. U . It is the same for b. So the only admissible
structures are U = (∅,∅,∅) and U = ({a},∅,∅).

3. Only the support is assumed to be prima-facie.

a α b

In this case, α is acceptable w.r.t. any structure. However, for any structure U , a is not supported w.r.t. U .
So b cannot be supported. As a consequence, the only admissible structures are U = (∅,∅,∅) and U =
(∅,∅, {α}).

6The definition for the grounded extension is not given in [8] but can be easily proposed following the definition used in the AF case.
7Note that this is also equivalent to U is self-supporting, conflict-free and S ∪ Γ ∪∆ ⊆ UnAcc(U).

5

4. The support and its target are assumed to be prima-facie. The source is not prima-facie.

a α b

In this case, α (resp. b) is acceptable w.r.t. any structure. In contrast, a cannot be supported. So there are 4
admissible structures: U = (∅,∅,∅), U = (∅,∅, {α}), U = ({b},∅,∅) and U = ({b},∅, {α}).

�

In the next example, the support is itself the target of an attack.
Example 2 (cont’d): In this framework, neither β nor its source is attacked and β and its source are prima-facie. So,
for any structure U , it holds that neither β nor its source c is unacceptable w.r.t. U . As a consequence, for any structure
U , α is not acceptable w.r.t. U as α is attacked by β and β is not unactivable w.r.t. U .
As b is not prima-facie, and α is the only support to b, no admissible structure contains b. As a consequence, there is a
unique complete, preferred and stable structure U = ({a, c}, {β},∅). �

Finally, REBAF is a conservative generalization of RAF described in [7] with the addition of supports and joint
attacks. Every RAF can be easily translated into a corresponding REBAF with no support and where every element
(argument or attack) is prima-facie (see [8]).

In [20], some notions related to directed cycles of supports have been defined in order to take into account support
cycles in the logical computation of structures for the REBAF. Nevertheless these definitions are given only for REBAF
without collective interactions (so the source of an interaction is only a singleton).

Definition 8 Let REBAF = 〈A,Ra,Re,s,t,P〉. A directed cycle of supports (DCS) in this REBAF is a sequence
C = (x0, . . . , xn−1, xn) such that:8

n > 0 and n is the size of the DCS,

∀i = 0 . . . n, xi ∈ A ∪Re,

xn = x0

∀i = 0 . . . n− 1, if xi ∈ A then xi+1 ∈ Re and s(xi+1) = xi,

∀i = 0 . . . n− 1, if xi ∈ Re then xi+1 = t(xi).

A simple DCS C = (x0, . . . , xn−1, xn) is a DCS in which ∀i, j = 0 . . . n− 1, if i 6= j then xi 6= xj .
An input support of a DCS C = (x0, . . . , xn−1, xn) is:

either a support y ∈ Re such that y 6∈ C and ∃xi ∈ C and xi = t(y),

or an argument y ∈ A such that y 6∈ C and ∃xi ∈ Re ∩C and y = s(xi).

The set of inputs of the DCS C is denoted by CIn and it is partitioned into CIn
A = CIn ∩A and CIn

Re
= CIn ∩Re.

Example 5 This example illustrates the fact that a support in a cycle can also be the target of another support in
the cycle. Note that the source of the targeted support does not belong to the cycle. Here there exists one DCS
C = (a, α, β, c, γ, d, δ, a) with CIn = {b, π}. Note that the source of π is not considered as an input of the cycle.

8By abuse of language, the set of the elements composing C will be also denoted by C. So C will be used with set operators as ∩ ou ∪ and
will be comparable with other sets.

6

b e

a α β π

c γ d

δ

Another notion will be important in order to compute the logical characterization of REBAF semantics: the impact-
ing support chains for an element of a REBAF. Unformally an impacting support chain for an element x is a sequence
targeting x, originated in a prima-facie argument and composed alternatively by “an argument, a support, an argument,
a support, . . . ”. Moreover no repetition is authorized (so any element appears only one time in the sequence); and x
cannot belong to the sequence. So Formally we have:

Definition 9 Let REBAF = 〈A,Ra,Re,s,t,P〉. Let x be an element of this REBAF. An impacting support chain for x
is a sequence ISC = (x0, . . . , xn) with n > 0 and:

∀xi, i ∈ [0 . . . n], xi ∈ (A ∪Re) \ {x}

x0 ∈ A ∩P and xn ∈ Re such that t(xn) = x

∀i, j ∈ [0 . . . n], if i 6= j, then xi 6= xj

∀i ∈ [1 . . . n], if xi ∈ Re then xi−1 = s(xi)

∀i ∈ [2 . . . n− 1], if xi ∈ A then xi = t(xi−1)

It is obvious to see that if a DCS has some inputs then these inputs may belong to some impacting support chains
of the elements of the DCS, if they are prima-facie or if they have at least one impacting support chain.

Another trivial property is the fact that, in a DCS without input and in which none argument is prima-facie, the
elements of the DCS have no impacting support chains.
Example 5 (cont’d): Considering the impacting support chains of some elements of the DCS, we have for instance:

For argument d, there exist two impacting support chains: (e, π) and (b, β, c, γ).

For argument c, there exists only one impacting support chain: (b, β).

For argument a, there exist two impacting support chains: (e, π, d, δ) and (b, β, c, γ, d, δ).

For support β, there exists only one impacting support chain: (e, π, d, δ, a, α).

�

Example 6 This example extends Example 5 by adding a second cycle including the source of the support targeted in
the first DCS.

7

b e

a α β µ π

c γ d

δ

C = (a, α, β, c, γ, d, δ, a) with CIn = {b, π} and C′ = (b, β, c, γ, d, µ, b) with C′In = {α, π} are the two simple
DCS.

Considering the impacting support chains of some elements of the DCS, we have for instance:

For argument d, there exists only one impacting support chain: (e, π).

For argument c, there exists only one impacting support chain: (e, π, d, µ, b, β).

For argument a, there exists only one impacting support chain: (e, π, d, δ).

For support β, there exists only one impacting support chain: (e, π, d, δ, a, α).

It is worth to notice that DCS can be aggregated:

Definition 10 Let REBAF = 〈A,Ra,Re,s,t,P〉. Let C = (x0, . . . , xn−1, xn) and C′ = (x′0, . . . , x
′
m−1, x

′
m) be two

DCS of this REBAF such that there exist xi ∈ C and x′j ∈ C′ and xi = x′j .
The aggregation of C and C′ is the directed cycle corresponding to the union of the sets {x0, . . . , xn−1} and

{x′0, . . . , x′m−1}. This aggregation will be denoted by abuse of language C ∪C′.

Using this notion of aggregation, a maximal DCS of a REBAF can be defined:

Definition 11 Let REBAF = 〈A,Ra,Re,s,t,P〉. Let C = (x0, . . . , xn−1, xn) be a DCS. C is a maximal DCS iff
there does not exist another DCS that could be aggregated with C.

Example 6 (cont’d): In this example, the two simple DCS can be aggregated since they share several elements (β, c,
γ, d). And this aggregation is the only maximal DCS of this REBAF:

C′′ = (a, α, β, c, γ, d, µ, b, β, c, γ, d, δ, a)
�

3 Background on the Logical Description of a REBAF
Here, we recall the logical description of a REBAF proposed in [11] then improved in [20], that allows an explicit
representation of arguments, attacks, evidential supports and their properties. In [11] a variant of REBAF has been
considered in which interactions are restricted to binary interactions (that is for any interaction α, s(α) is a singleton)
and the support relation is assumed to be acyclic. In [20] the last constraint has been relaxed but not the first one. As
a consequence, the definitions of Def X(U) and Sup(U) given in Definition 5 can be simplified as follows:

Definition 12 Given a structure U = (S,Γ,∆),

Def X(U) def= {x ∈ X|∃α ∈ Γ, s(α) ∈ S and t(α) = x} with X ∈ {A,Ra,Re}.

Sup(U) def= P ∪ {t(α)|∃α ∈ (∆ ∩ Sup(U\{t(α)})), s(α) ∈ (S ∩ Sup(U\{t(α)}))}

8

3.1 Vocabulary
In [11, 20], the following unary predicate symbols and unary functions symbols are used with the following meaning:

Arg(x) means “x is an argument”

Attack(x) means “x is an attack”

ESupport(x) means that “x is an evidential support”

T (x) (resp. S(x)) denotes the target (resp. source) of x, when x denotes an attack ou a support

PrimaFacie(x) means that “x is a prima-facie element”

Acc(x) (resp. NAcc(x)) means “x is accepted” (resp. “x cannot be accepted”), when x denotes an argument

V al(α) means “α is valid” when α denotes an attack or a support

The binary equality predicate is also used. Note that the quantifiers ∃ and ∀ range over some domain D. To restrict
them to subsets of D, bounded quantifiers will be used:
∀x ∈ E (P (x)) means ∀x (x ∈ E → P (x)) or equivalently ∀x(E(x)→ P (x)).
So we will use:

∀x ∈ Attack (Φ(x)) (resp. ∃x ∈ Attack (Φ(x)))

∀x ∈ ESupport (Φ(x)) (resp. ∃x ∈ ESupport (Φ(x)))

and ∀x ∈ Arg (Φ(x)) (resp. ∃x ∈ Arg (Φ(x))).

Note that the meaning of NAcc(x) is not “x is not accepted” but rather “x cannot be accepted” (for instance
because x is the target of a valid attack whose source is accepted). Hence, NAcc(x) is not logically equivalent to
¬Acc(x). However, the logical theory will enable to deduce ¬Acc(x) from NAcc(x), as shown below.

Then we need symbols for denoting acceptability of elements. Let us recall that the purpose of [11] was to obtain
a logical characterization of structures. As explained before, intuitively, a structure of REBAF represents the set of
acceptable arguments (attacks and supports) w.r.t. the structure. And following Definition 6, acceptability w.r.t. a
structure requires two conditions, one of them being a support by the structure, the other one making use of the notion
of unsupportability. So the following unary predicate symbols are introduced in [11]:

Supp for denoting supported elements (argument, attack or support),

UnSupp for denoting unsupportable elements and

eAcc (resp. eV al) for denoting acceptability for arguments (resp. for interactions, attacks or supports).

Note that eAcc(x) (“x is e-accepted”) can be understood as “x is accepted and supported” and similarly eV al(α) (“α
is e-valid”) can be understood as “α is valid and supported”.

3.2 Logical theory for describing REBAF
In [11, 20], the formulae describing a given REBAF have been partitioned in two sets:

The first set, denoted by Π, contains the formulae describing the general behaviour of an attack, possibly recur-
sive, i.e. how an attack interacts with arguments and other attacks related to it, and also the formulae describing
the general behaviour of an evidential support, possibly recursive, i.e. how a support interacts with arguments
and other interactions related to it.

The second set, denoted by Π(REBAF), contains the formulae encoding the specificities of the current frame-
work.

9

The meaning of an attack is described under the form of constraints on its source (an argument) and its target (an
argument or an attack). Moreover, as attacks may be attacked by other attacks, some attacks may not be valid. And
finally supports must be taken into account in order to define this “validity”. So we have:

If an attack from an argument to an attack (or a support) is e-valid, then if its source is e-accepted, its target is
not valid.

If an attack between two arguments is e-valid and if its source is e-accepted, then its target cannot be accepted.
In that case, the target is not accepted.

An evidential support can be described by the following constraints:

If an element (argument or interaction) is prima-facie, it is supported.

If an element is the target of an evidential support, it is supported if the source of the support is e-accepted and
if the support is itself e-valid.

Using the vocabulary defined above,9 these constraints have been expressed in [11] by the following formulae:

(1) ∀x ∈ (Attack ∪ ESupport) ∀y ∈ Attack(
(eV al(y) ∧ (ty = x) ∧ eAcc(sy))
→ ¬V al(x)

)
(2) ∀x ∈ Arg ∀y ∈ Attack(

(eV al(y) ∧ (ty = x) ∧ eAcc(sy))
→ NAcc(x)

)
(3) ∀x ∈ Arg (NAcc(x)→ ¬Acc(x))

(1bis) ∀x ∈ (Attack ∪ ESupport ∪Arg)
 PrimaFacie(x) ∨
∃y ∈ ESupport

(eV al(y) ∧ (ty = x) ∧ eAcc(sy))


→ Supp(x)


The following formulae define the e-acceptability (resp. e-validity). Recall that eAcc(x) (resp. eV al) means “x is

accepted (resp. valid) and supported”:

(2bis) ∀x ∈ Arg ((Acc(x) ∧ Supp(x))↔ eAcc(x))

(3bis) ∀x ∈ (Attack ∪ ESupport)
((V al(x) ∧ Supp(x))↔ eV al(x))

Other formulae limit the domain to arguments, attacks, supports.

(4) ∀x (Attack(x)→ ¬Arg(x))

(4bis) ∀x (Attack(x)→ ¬ESupport(x))

(4ter) ∀x (ESupport(x)→ ¬Arg(x))

9In the remainder of the paper, we will write sα (resp. tα) in place of S(α) (resp. T (α)) for simplicity.

10

(5) ∀x (Arg(x) ∨Attack(x) ∨ ESupport(x))

The logical theory Π consists of all the above formulae.
Then the logical encoding of specificities of a given REBAF leads to the set Π(REBAF) consisting of the following
formulae. Let A = {a1, . . . an}, Ra = {α1, . . . , αk}, Re = {αk+1, . . . , αm} and P = {x1, . . . xl}. 10

(6) (sα = a) ∧ (tα = b) for all α ∈ Ra ∪Re with s(α) = a and t(α) = b

(7) ∀x (Arg(x)↔ (x = a1) ∨ . . . ∨ (x = an))

(8) ∀x (Attack(x)↔ (x = α1) ∨ . . . ∨ (x = αk))

(8bis) ∀x (ESupport(x)↔ (x = αk+1) ∨ . . . ∨ (x = αm))

(8ter) ∀x (PrimaFacie(x)↔ (x = x1) ∨ . . . ∨ (x = xl))

(9) ai 6= aj for all ai, aj ∈ A with i 6= j

(10) αi 6= αj for all αi, αj ∈ Ra ∪Re with i 6= j

Given REBAF a higher-order argumentation framework, Σ(REBAF) will denote the set of first-order logic for-
mulae describing REBAF. And so the logical theory Σ(REBAF) is the union of Π and Π(REBAF). It is obviously
consistent.

In the following examples, using the equality axioms, a simplified version of Σ(REBAF) is given.11

Example 4 (cont’d): Considering the version 1 of this example, we have:
Σ(REBAF) = {Supp(a) (from (1bis), (8ter)),

Supp(α) (from (1bis),(8ter)),
(eAcc(a) ∧ eV al(α))→ Supp(b) (from (1bis)),
(Supp(a) ∧Acc(a))↔ eAcc(a) (from (2bis)),
(Supp(b) ∧Acc(b))↔ eAcc(b) (from (2bis)),
(Supp(α) ∧ V al(α))↔ eV al(α) (from (3bis))}

Considering the version 2 of this example, we have:
Σ(REBAF) = {Supp(a) (from (1bis), (8ter)),

(eAcc(a) ∧ eV al(α))→ Supp(b) (from (1bis)),
(Supp(a) ∧Acc(a))↔ eAcc(a) (from (2bis)),
(Supp(b) ∧Acc(b))↔ eAcc(b) (from (2bis)),
(Supp(α) ∧ V al(α))↔ eV al(α) (from (3bis))}

�

Example 2 (cont’d): Note that this example is a variant of the version 1 of Example 4 in which the attack β targeting
α has been added.
Σ(REBAF) = {(eV al(β) ∧ eAcc(c))→ ¬V al(α) (from (1)),

Supp(a) (from (1bis), (8ter)),
Supp(c) (from (1bis), (8ter)),
Supp(α) (from (1bis),(8ter)),

10We recall that P ⊆ A ∪Ra ∪Re.
11We omit the formulae issued from (4) to (10) and the tautologies.

11

Supp(β) (from (1bis), (8ter)),
(eAcc(a) ∧ eV al(α))→ Supp(b) (from (1bis)),
(Supp(a) ∧Acc(a))↔ eAcc(a) (from (2bis)),
(Supp(b) ∧Acc(b))↔ eAcc(b) (from (2bis)),
(Supp(c) ∧Acc(c))↔ eAcc(c) (from (2bis)),
(Supp(α) ∧ V al(α))↔ eV al(α) (from (3bis)),
(Supp(β) ∧ V al(β))↔ eV al(β) (from (3bis))}

�

3.3 Logical Formalization of REBAF semantics
In presence of higher-order attacks and supports, the conflict-freeness, defence, reinstatement and stability principles
must take into account the fact that acceptability for an argument or an interaction requires that any attack against it is
unactivable. Moreover acceptability requires support.

3.3.1 Conflict-freeness

In [11, 20], the conflict-freeness principle has been formulated as follows:

If there is an e-valid attack between two arguments, these arguments cannot be jointly e-accepted.

If there is an e-valid attack from an e-accepted argument to an interaction (attack or support), this interaction
cannot be e-valid.

Note that these properties are already expressed in Σ(REBAF) (by the formulae (1), (2), (3), (2bis), (3bis)).

3.3.2 Self-supporting

The self-supporting principle states that each supported element must receive evidential support. In [11, 20], it has
been formulated as follows:

If an element is supported then, either it is prima-facie, or it is the target of an e-valid support from an e-accepted
source:

(17)
∀x ∈ (Attack ∪ ESupport ∪Arg)
Supp(x)

→

 PrimaFacie(x)∨
∃y ∈ ESupport

(eV al(y) ∧ (ty = x) ∧ eAcc(sy))




Supportability is a weaker notion, as elements that are not supportable (i.e. unsupportable) cannot be supported.
An element is unsupportable iff it is not prima-facie and for each of its supports, either the support itself or its
source is defeated, or the support or its source is in turn unsupportable:

(18)
∀x ∈ (Attack ∪ ESupport ∪Arg)

UnSupp(x)

↔


¬PrimaFacie(x) ∧
∀y ∈ ESupport(ty = x

→


∃β ∈ Attack(tβ ∈ {sy, y}∧

eV al(β) ∧ eAcc(sβ)))
∨ UnSupp(sy)
∨ UnSupp(y))







12

Formulae (17) and (18) are added to the base Σ(REBAF), thus producing the base Σss(REBAF).

3.3.3 Defence

As stated in Definition 6, an attacked element is acceptable if (i) it is supported and (ii) for each attack against it, either
the source or the attack itself is defeated (by an e-valid attack from an e-accepted argument), or the source or the attack
itself is unsupportable (w.r.t. e-valid elements and e-accepted arguments).
So, in [11,20], the principle corresponding to the previous item (ii) has been expressed by the following formulae that
are associated with formulae (17) and (18):

(11)
∀α ∈ Attack

Acc(tα)

→


∃β ∈ Attack

(tβ ∈ {sα, α} ∧ eV al(β) ∧ eAcc(sβ))
∨ UnSupp(sα)
∨ UnSupp(α)




(12)
∀α ∈ Attack ∀δ ∈ (Attack ∪ ESupport)

((δ = tα) ∧ V al(δ))

→


∃β ∈ Attack

(tβ ∈ {sα, α} ∧ eV al(β) ∧ eAcc(sβ))
∨ UnSupp(sα)
∨ UnSupp(α)




Formulae (11) and (12) are added to the base Σss(REBAF), thus producing the base Σd(REBAF).

3.3.4 Reinstatement

In [11, 20], the reinstatement principle has been expressed by the following formulae that are be associated with
formulae (17) and (18):

(13)
∀c ∈ Arg


∀α ∈ Attack

tα = c→
∃β ∈ Attack(tβ ∈ {sα, α} ∧

eV al(β) ∧ eAcc(sβ))
∨ UnSupp(sα)
∨ UnSupp(α)





→ Acc(c)


(14)
∀δ ∈ (Attack ∪ ESupport)


(∀α ∈ Attack

tα = δ →
∃β ∈ Attack(tβ ∈ {sα, α} ∧

eV al(β) ∧ eAcc(sβ))
∨ UnSupp(sα)
∨ UnSupp(α)





→ V al(δ)



13

Formulae (13) and (14) are added to the base Σss(REBAF), thus producing the base Σr(REBAF).

3.3.5 Stability

In [11,20], the stability principle has been expressed by the three following formulae that are associated with formulae
(17) and (18):12

(15) ∀c ∈ Arg ¬Acc(c)
→
(
∃β ∈ Attack(tβ = c ∧

eV al(β) ∧ eAcc(sβ))

) 
(16) ∀α ∈ (Attack ∪ ESupport) ¬V al(α)

→
(
∃β ∈ Attack(tβ = α ∧

eV al(β) ∧ eAcc(sβ))

) 
(19) ∀x ∈ (Arg ∪Attack ∪ ESupport)

(¬Supp(x)→ UnSupp(x))

Formulae (15), (16) and (19) are added to the base Σss(REBAF), thus producing the base Σs(REBAF).

Example 4 (cont’d): Considering the version 1, Σss(REBAF) is obtained from Σ(REBAF) by adding the following
formulae:

Supp(b)→ (eAcc(a) ∧ eV al(α))
¬UnSupp(a)
¬UnSupp(α)
Unsupp(b)↔ (UnSupp(a) ∨ UnSupp(α))

As there is no attack, Σd(REBAF) contains nothing more than Σss(REBAF).
And finally Σr(REBAF) is obtained from Σss(REBAF) by adding the formulae: Acc(a), Acc(b) and V al(α).
Considering the version 2, Σss(REBAF) is obtained from Σ(REBAF) by adding the following formulae:

Supp(b)→ (eAcc(a) ∧ eV al(α))
¬Supp(α)
¬UnSupp(a)
UnSupp(α)
Unsupp(b)↔ (UnSupp(a) ∨ UnSupp(α))

Once again, Σd(REBAF) contains nothing more than Σss(REBAF).
And Σr(REBAF) is obtained from Σss(REBAF) by adding the formulae: Acc(a), Acc(b) and V al(α). �

Example 2 (cont’d): Σss(REBAF) is obtained from Σ(REBAF) by adding formulae among which:
Supp(b)→ (eAcc(a) ∧ eV al(α))
¬UnSupp(a)
¬UnSupp(c)
¬UnSupp(α)
¬UnSupp(β)

Unsupp(b)↔

 (eV al(β) ∧ eAcc(c))
∨ UnSupp(a)
∨ UnSupp(α)


Then Σd(REBAF) is obtained from Σss(REBAF) by adding formulae among which:

V al(α)→ (UnSupp(β) ∨ UnSupp(c))
12Let us recall that a stable structure U = (S,Γ,∆) satisfies: S ∪ Γ ∪∆ ⊆ UnAcc(U).

14

Σr(REBAF) is obtained from Σss(REBAF) by adding the formulae:
Acc(a)
Acc(b)
Acc(c)
V al(β)
(UnSupp(c) ∨ UnSupp(β))→ V al(α)

Σs(REBAF) is obtained from Σss(REBAF) by adding the formulae:
Acc(a)
Acc(b)
Acc(c)
V al(β)
¬V al(α)→ eV al(β) ∧ eAcc(c)
¬Supp(b)→ UnSupp(b) and also
¬Supp(x)→ UnSupp(x) for x ∈ {a, c, α, β} �

3.4 Characterizing Semantics of a REBAF
[11] proposed characterizations of the REBAF structures under different semantics in terms of models of the bases

Σ(REBAF), Σd(REBAF), Σr(REBAF), Σs(REBAF). The common idea is that a structure gathers the acceptable
elements w.r.t. it.

Let REBAF= 〈A,Ra,Re,s,t,P〉. Given I an interpretation of Σ(REBAF), we define:

SI = {x ∈ A|I(eAcc(x)) = true}

ΓI = {x ∈ Ra|I(eV al(x)) = true}

∆I = {x ∈ Re|I(eV al(x)) = true}

Moreover, let I be a model of Σ(REBAF):

I is a ⊆-maximal model of Σ(REBAF) iff there is no model I ′ of Σ(REBAF) with (SI ∪ ΓI ∪ ∆I) ⊂
(SI′ ∪ ΓI′ ∪∆I′).

I is a ⊆-minimal model of Σ(REBAF) iff there is no model I ′ of Σ(REBAF) with (SI′ ∪ ΓI′ ∪ ∆I′) ⊂
(SI ∪ ΓI ∪∆I).

Let recall that the characterization proposed in [11] applies to a restricted variant of REBAF in which two con-
straints are given: first interactions are assumed to be binary and secondly there is no cycle of supports. This second
restriction has been relaxed in [20] using the notion of impacting support chains and the fact that the existence of
support cycles has an impact on the UnSupp predicate. That leads to the following notion:13

Definition 13 Let REBAF= 〈A,Ra,Re,s,t,P〉. I is a support-founded interpretation iff the two following conditions
hold:

1. for each argument (resp. support) x non prima-facie, belonging to a maximal DCS and such that I(eAcc(x)) =
true (resp. I(eV al(x)) = true), there exists at least one impacting support chain ISC = (x0, . . . , xn) for x
that is satisfied by I, i.e. ∀xi ∈ ISC, if xi ∈ A then I(eAcc(xi)) = true, otherwise I(eV al(xi)) = true;

2. for each element x of REBAF, I(UnSupp(x)) = true iff x ∈ UnSupp(UI) with UI = (SI ,ΓI ,∆I).

Let Σx be a base of formulae built over REBAF. A support-founded model of Σx is a support-founded interpreta-
tion which is a model of Σx.

13This is a correction of the notion of support-founded model proposed initially in [11] that has been proved incorrect in [20].

15

Then using these support-founded models, the following characterization of REBAF semantics is given in [20]:

Proposition 1 Let REBAF= 〈A,Ra,Re,s,t,P〉. Let U = (S,Γ,∆) be a structure on REBAF.

1. U is admissible iff there exists I support-founded model of Σd(REBAF) (in the sense of Definition 13) with
SI = S, ΓI = Γ and ∆I = ∆.

2. U is complete iff there exists I support-founded model of the union (Σd(REBAF) ∪ Σr(REBAF)) (in the sense
of Definition 13) with SI = S, ΓI = Γ and ∆I = ∆.

3. U is a preferred structure iff there exists I ⊆-maximal support-founded model of Σd(REBAF) (in the sense of
Definition 13) with SI = S, ΓI = Γ and ∆I = ∆.

4. U is the grounded structure iff S = SI , ΓI = Γ and ∆I = ∆ where I is a ⊆-minimal support-founded model
of (Σd(REBAF) ∪ Σr(REBAF)) (in the sense of Definition 13).

5. U is stable iff there exists I support-founded model of Σs(REBAF) (in the sense of Definition 13) with SI = S,
ΓI = Γ and ∆I = ∆.

Let us illustrate the above results on the previous examples:
Example 5 (cont’d): Apply Proposition 1 leads to the unique complete, preferred, stable and grounded structure
({a, b, c, d, e},∅, {α, β, δ, γ, π}). �

Example 6 (cont’d): Apply Proposition 1 leads to the unique complete, preferred, stable and grounded structure
({a, b, c, d, e},∅, {α, β, γ, δ, π, µ}). �

4 Collective interactions in a REBAF: a new proposition
Considering the logical translation of a REBAF, it remains a constraint that is relaxed neither in [11], nor in [20]: the
interactions must be binary ones. So in this section we propose a new encoding that relaxes this constraint and allows
collective interactions.

4.1 Vocabulary
The first evolution of the previous encoding is a mandatory modification of the vocabulary in order to take into account
the fact that the source of an interaction can be a set of arguments. So the old unary function S becomes now a binary
predicate:

S(a, α) means that “the argument a belongs to the source of α”

4.2 Formulae
The second evolution concerns the formulae in which sources appear. Three cases occur and each case corresponds to
a particular behaviour:14

The source is used as a parameter in the predicate eAcc; in this case, the idea is that the source of an interaction
is e-accepted iff all the arguments belonging to this source are also e-accepted; so the old formula eAcc(sα)
corresponds to:

∀a ∈ Arg(S(a, α)→ eAcc(a))

The source is used as a parameter in the predicate UnSupp; in this case, the idea is that the source of an
interaction is unsupportable iff at least one argument belonging to this source is also unsupportable; so the old
formula UnSupp(sα) corresponds to:

∃a ∈ Arg(S(a, α) ∧ UnSupp(a))

14Note that a formula as x ∈ {sy , y} is just a shortcut for (x = sy) ∨ (x = y) (see for instance formulae (18) and (11) to (14)).

16

The source is used as a parameter in the equality predicate; here two subcases are possible depending of the
sense of this equality:

– either the old equality sα = a becomes a logical or between all the elements of the source:
(a1 = a) ∨ (a2 = a),∨ . . . ∨ (an = a), for s(α) = {a1, a2, . . . , an}

that is equivalent to:
∃x ∈ Arg(S(x, α) ∧ x = a)

– or the old equality sα = a becomes a logical and between all the elements of the source:
S(a1, α) ∧ S(a2, α),∧ . . . ∧ S(an, α), for s(α) = {a1, a2, . . . , an}

Of course formulae (1) to (19) could be rewritten using the new formalism but the result becomes hard to read.
So, our choice is to keep the old formulae in which the predicates applied to a source are considered as the shortcut
defined as previously.

For instance, for formula (2), we keep:
∀x ∈ Arg ∀y ∈ Attack(

(eV al(y) ∧ (ty = x) ∧ eAcc(sy))
→ NAcc(x)

)
but that means:
∀x ∈ Arg ∀y ∈ Attack(

(eV al(y) ∧ (ty = x) ∧ ∀xi ∈ Arg(S(xi, y)→ eAcc(xi)))
→ NAcc(x)

)
Another example is formula (11), we keep:
∀α ∈ Attack

Acc(tα)

→


∃β ∈ Attack

(tβ ∈ {sα, α} ∧ eV al(β) ∧ eAcc(sβ))
∨ UnSupp(sα)
∨ UnSupp(α)




but that means:
∀α ∈ Attack

Acc(tα)

→


∃β ∈ Attack

(∃x ∈ Arg(S(x, α) ∧ tβ = x) ∨ tβ = α) ∧ eV al(β) ∧ ∀x ∈ Arg(S(x, β)→ eAcc(x))
∨ ∃x ∈ Arg(S(x, α) ∧ UnSupp(x))
∨ UnSupp(α)




The only exception of this use of shortcut is formula (6) that is very specific and must be rewritten; the old formula
(sα = a) ∧ (tα = b) for all α ∈ Ra ∪Re with s(α) = a and t(α) = b

becomes:
S(a1, α) ∧ . . . ∧ S(an, α) ∧ (tα = b) for all α ∈ Ra ∪Re with s(α) = {a1, . . . , an} and t(α) = b

Note that the definition of the bases of formulae remains unchanged.
At this point, it is worth to note that if there is no support cycles in the REBAF then the use of the formulae bases is

enough for characterizing the REBAF semantics since any element could be supported without itself. So the difficulty
comes with the existence of these cycles and implies that we are able to remove the models in which an element is
supported because it is satisfied by these models. The detection of such models was exactly the aim of Definition 13.

Nevertheless, since we now want to take into account collective supports, some questions appear:

“Is Definition 13 enough for characterizing support-founded models when collective supports exist in the RE-
BAF?”

and more generally “How to take into account support cycles when we have collective supports?”.

17

The answer to these questions probably implies new definitions for the notions of DCS, of impacting support
chains and of support-founded interpretations.

4.3 Some examples
First consider some examples that show how the source of a collective interaction that is not reduced to a singleton
can impact the computation of structures (the three first examples have no cycle whereas there are support cycles in
the two last ones).

Example 7 In this example, there are a collective attack and a collective support using the same source (this source
is graphically represented by a “dotted diamond” containing the elements composing the source). And e is the only
element that is not prima-facie.

b

c
β d π f

ε e

In this case, the source of β and ε is composed by supported and not defeated arguments. So β and ε are activable
and there is one preferred structure that is: ({b, c, e, f}, {β, π}, {ε}).

Example 8 This is the same example as Example 7, except that argument c is now not prima-facie.

b

c
β d π f

ε e

Since c is unsupportable, then neither β nor ε can be activable and there is one preferred structure that is:
({b, d}, {β, π}, {ε}).

Example 9 This example is an extension of Example 7 in which we add an attack against one argument of the source
of the collective interactions.

a α
b

c
β d π f

ε e

Here, b is attacked and cannot be defended. So β and ε are unactivable and there is one preferred structure that
is: ({a, c, d}, {α, β, π}, {ε}).

18

Example 10 This is an extension of Example 8 with an additional support from e to c.

b

c
β d π f

ε

ε′ e

Since c cannot be supported without e and e cannot be supported without {b, c}, a support cycle appears. So
neither β nor ε can be activable and there is one preferred structure that is: ({b, d}, {β, π}, {ε, ε′}).

The interesting point is the form of this support cycle that is slightly different that the description given in Def-
inition 8, since the target of ε′ (i.e. c) and the source of ε (i.e. {b, c}) do not coincide whereas ε follows ε′ in the
cycle.

Example 11 This example gives another example of support cycles.

a α1

b

c
β1 d

α2 β2

In this example, none argument is prima-facie. Moreover, they are unsupportable since they cannot be supported
without themselves: a is supported if c is supported; c is supported if d is supported; d is supported if {b, c} is
supported, so if b and c are supported; and finally b is supported if a is supported. Moreover it graphically seems that
there are here several supports cycles that are interconnected.

Here the only one preferred structure that is: (∅,∅, {α1, α2, β1, β2}).

4.4 New definitions
In this section we adapt the previous definitions about support cycles in order to take into account collective interac-
tions.

The first definition that must be adapted is the definition of DCS. Here the important point is the fact that, in a
cycle, the targets and the sources must be clearly identified:

Definition 14 Let REBAF = 〈A,Ra,Re,s,t,P〉. A directed cycle of supports (DCS) in this REBAF is a sequence
C = (x0, . . . , xn−1, xn) such that:15

n > 0 and n is the size of the DCS,

∀i = 0 . . . n, either xi ∈ Re, or xi = (a, S) with S ∈ 2A \∅ and a ∈ A ∩ S (a is called the “target field” of
xi and S is called the “source field” of xi),

xn = x0

15By abuse of language, the set of the elements composing C will be also denoted by C. So C will be used with set operators as ∩ ou ∪ and
will be comparable with other sets.

19

∀i = 0 . . . n− 1, if xi = (a, S) ∈ (A, 2A \∅) then xi+1 ∈ Re and s(xi+1) = S,

∀i = 0 . . . n− 1, if xi ∈ Re then

– if xi+1 ∈ Re then t(xi) = xi+1

– if xi+1 = (a, S) ∈ (A, 2A \∅) then t(xi) = a.

A simple DCS C = (x0, . . . , xn−1, xn) is a DCS in which ∀i, j = 0 . . . n− 1, if i 6= j then xi 6= xj .
An input support of a DCS C = (x0, . . . , xn−1, xn) is:

either a support y ∈ Re \C and ∃xi ∈ C such that:

– if xi ∈ Re then t(y) = xi,

– if xi = (a, S) ∈ (A, 2A \∅) then t(y) = a,

or a set of arguments y ∈ 2A \∅ such that y 6∈ C and ∃xi ∈ Re ∩C and y = s(xi).

The set of inputs of the DCS C is denoted by CIn and it is partitioned into CIn
A = CIn ∩ (A, 2A \ ∅) and CIn

Re
=

CIn ∩Re.

Note that a DCS is now an “hybrid” sequence composed either with interactions, or with pairs (an argument, a no
empty set of arguments). The other definitions (for aggregation and maximal DSC) remain unchanged.
Example 10 (cont’d): In this example, there is only one DCS whose size is 4: ((c, {b, c}), ε, (e, {e}), ε′, (c, {b, c})).

Note that a DCS whose size is n can be represented by n different sequences obtained by a shift to the right or to
the left. For instance, in this example, the DCS can also be written as: ε, (e, {e}), ε′, (c, {b, c}), ε) �

Example 12 This example gives another example of support cycles with an higher-order support. Here β, d and e are
not prima-facie.

b c

a

d

α β

γ e

Here there is one DCS: ((d, {a, d}), α, β, (e, {e}), γ, (d, {a, d})).
Note that the set {b, c} is an input of this DCS; moreover, the only preferred structure is ({a, b, c},∅, {α, γ}).

Example 13 This example gives an example of several support cycles that can be aggregated. Here the only preferred
structure is ({e, d, a},∅, {α1, α2, β1, β2, γ}).

20

β1 α2

e γ d

a

b

c

α1 β2

Here there are three DCS (only the last one is a maximal DCS):

((d, {d}), β1, (a, {a, b}), α1, (d, {d}))

((c, {c}), β2, (b, {a, b}), α2, (c, {c}))

((d, {d}), β1, (a, {a, b}), α2, (c, {c}), β2, (b, {a, b}), α1, (d, {d}))

The interesting point is the fact that the set {a, b} that is the source of α1 and α2 corresponds to two distinct elements
in a DCS: (a, {a, b}) and (b, {a, b}); and each of them can be used as the preceding element of the supports α1 or α2

in the DCS.
Moreover it could be possible to also have (b, {b}) in a DCS since, for instance a support exists in the REBAF

using b as source. Consider for instance the following REBAF:

β1 α2

e γ d

a

b

c

α1 β2

δ

In this case, the maximal DCS is: ((d, {d}), β1, (a, {a, b}), α2, (c, {c}), β2, (b, {b}), δ, (e, {e}), γ, (d, {d}), β1,
(a, {a, b}), α1, (d, {d})).

Consider now the notion of impacting support chain. The following example shows that this notion must also be
improved:

Example 14

21

a0 d0 e0 e′
0

α1 α2 α3 α4

a b
c

d e

β1 β2

x y

γ1 γ2

z

Let consider now the elements that impact the supported status of argument z. Clearly simple chains are not
enough and we must use the notion of “trees”; indeed, any element of the source of a collective support must be
supported if we want the target of this support to be also supported. Here, three “trees” must be taken into account
for computing the supported status of z.

a0

α1

a b

β1

x

γ1

d0 e0

α2 α3

c d e

β2

y

γ2

d0 e′0

α2 α4

c d e

β2

y

γ2

The previous example gives the main ideas for defining the notion of impacting support tree for an element of the
REBAF:

Definition 15 Let REBAF = 〈A,Ra,Re,s,t,P〉. Let x be an element of this REBAF. An impacting support tree for x
is a set IST = {x0, . . . , xn} with n > 0 defined as follows:

∀xi, i ∈ [0 . . . n], xi ∈ (A ∪Re) \ {x} and is called a node of the tree;

Let ISTP = (IST ∩P ∩A). ISTP 6= ∅;

22

!∃xi ∈ IST such that xi ∈ Re and t(xi) = x; this xi is called the root of the tree;

∀i, j ∈ [0 . . . n], if i 6= j, then xi 6= xj;

∀xi ∈ IST ∩A, either ∃xj ∈ IST ∩Re such that xi = t(xj), or xi ∈ ISTP (in this case xi is called a leaf
of the tree);

∀xi ∈ IST ∩Re, ∀xj ∈ s(xi), xj ∈ IST.

Note that, as in Definition 9, an element x cannot belong to its impacting support tree, and by definition non
repetition is authorized.
Example 7 (cont’d): There is no IST for any interaction or argument except for e. And the IST for e is: {b, c, ε},
with ε that is the unique root of IST and b, c that are the leaves of the tree. Note that ISTP = {b, c} and so is not
empty. �

Example 8 (cont’d): In this example, even e has no IST. Indeed the support ε cannot belong to an IST for e since
one argument of its source (c) cannot belong to an IST (it is neither prima-facie, nor targeted by a support). �

Example 9 (cont’d): In this case, we obtain the same result as in Example 7: there is no IST for any interaction or
argument except for e and the IST for e is: {b, c, ε}.

Note that the fact that b is attacked but not defended has no impact on the building of an IST containing b. Indeed
the existence of an IST for an element x is not a guarantee for the supportability of x. It is just a necessary condition.
�

Example 10 (cont’d): In this example, due to the existence of a DCS, there is no IST for e, since, by definition, e
cannot belong to an IST for itself. �

Example 11 (cont’d): Here arguments have no IST (because of the existence of a DCS) and interactions have no
IST (because they are not targeted by a support). �

Example 12 (cont’d): Considering the existence of the DCS and the fact that d in this DCS needs to be supported
without itself, there is no IST for d and so for β, and e. �

Example 14 (cont’d): Considering a, there is one IST = {α1, a0}. Considering d, there is one IST = {α2, d0}.
Considering e, there are two IST, {α3, e0} and {α4, e

′
0}. Considering z, there are three IST:

{γ1, x, β1, a, b, α1, a0} (γ1 being the root, a0 and b being the leaves),

{γ2, y, β2, c, d, e, α2, d0, α3, e0} (γ2 being the root, c, d0 and e0 being the leaves),

{γ2, y, β2, c, d, e, α2, d0, α4, e
′
0} (γ2 being the root, c, d0 and e′0 being the leaves).

The other elements of the REBAF have no IST. �

4.5 Characterization: a new proposition
The previous definition completed by the constraint concerning the unsupportable status of the element16 leads to the
following new definition for support-founded interpretations and models:

Definition 16 Let REBAF= 〈A,Ra,Re,s,t,P〉. I is a support-founded interpretation iff the two following conditions
hold:

1. for each argument (resp. support) x non prima-facie, belonging to a maximal DCS and such that I(eAcc(x)) =
true (resp. I(eV al(x)) = true), there exists at least one impacting support tree IST = (x0, . . . , xn) for x that
is satisfied by I, i.e. ∀xi ∈ IST, if xi ∈ A then I(eAcc(xi)) = true, otherwise I(eV al(xi)) = true;

16See Definition 9.

23

2. for each element x of REBAF, I(UnSupp(x)) = true iff x ∈ UnSupp(UI) with UI = (SI ,ΓI ,∆I).

Let Σx be a base of formulae built over REBAF. A support-founded model of Σx is a support-founded interpreta-
tion which is a model of Σx.

Then using these support-founded models, the following characterization of REBAF semantics is:

Proposition 2 Let REBAF= 〈A,Ra,Re,s,t,P〉. Let U = (S,Γ,∆) be a structure on REBAF.

1. U is admissible iff there exists I support-founded model of Σd(REBAF) (in the sense of Definition 16) with
SI = S, ΓI = Γ and ∆I = ∆.

2. U is complete iff there exists I support-founded model of the union (Σd(REBAF) ∪ Σr(REBAF)) (in the sense
of Definition 16) with SI = S, ΓI = Γ and ∆I = ∆.

3. U is a preferred structure iff there exists I ⊆-maximal support-founded model of Σd(REBAF) (in the sense of
Definition 16) with SI = S, ΓI = Γ and ∆I = ∆.

4. U is the grounded structure iff S = SI , ΓI = Γ and ∆I = ∆ where I is a ⊆-minimal support-founded model
of (Σd(REBAF) ∪ Σr(REBAF)) (in the sense of Definition 16).

5. U is stable iff there exists I support-founded model of Σs(REBAF) (in the sense of Definition 16) with SI = S,
ΓI = Γ and ∆I = ∆.

Using this proposition, the preferred semantics produce the following results on the previous examples.
Example 7 (cont’d): The ⊆-maximal support-founded models I of Σd(REBAF) (in the sense of Definition 16)
correspond to the preferred structure ({b, c, e, f}, {β, π}, {ε}). �

Example 8 (cont’d): The ⊆-maximal support-founded models I of Σd(REBAF) (in the sense of Definition 16)
correspond to the preferred structure ({b, d}, {β, π}, {ε}). �

Example 9 (cont’d): The ⊆-maximal support-founded models I of Σd(REBAF) (in the sense of Definition 16)
correspond to the preferred structure ({a, c, d}, {α, β, π}, {ε}). We see here that the existence of an IST for e was
not enough for having e in the structure since there is no model I satisfying eAcc(b). �

Example 10 (cont’d): The ⊆-maximal support-founded models I of Σd(REBAF) (in the sense of Definition 16)
correspond to the preferred structure ({b, d}, {β, π}, {ε}). The models that satisfy eAcc(e) are not kept since they are
not support-founded (no IST for e that could be satisfied). �

Example 11 (cont’d): The⊆-maximal support-founded models I of Σd(REBAF) (in the sense of Definition 16) cor-
respond to the preferred structure (∅,∅, {α1, α2, β1, β2}). The models that satisfy eAcc(a) (resp. eAcc(b), eAcc(c)
or eAcc(d)) are not kept since they are not support-founded (no IST for these arguments that could be satisfied). �

Example 12 (cont’d): The ⊆-maximal support-founded models I of Σd(REBAF) (in the sense of Definition 16)
correspond to the preferred structure ({a, b, c},∅, {α, γ}). The models that satisfy eAcc(d) (resp. eAcc(e), eV al(β))
are not kept since they are not support-founded (no IST for these arguments or this interaction that could be satisfied).
�

Example 14 (cont’d): The ⊆-maximal support-founded models I of Σd(REBAF) (in the sense of Definition 16)
correspond to the preferred structure (A,Ra,Re). �

24

5 Conclusion
In this work, we have solved a specific issue concerning the handling of collective interactions in the logical translation
of argumentation frameworks with higher-order attacks and evidential supports (REBAF). The resulting encoding is
quite similar to the existing one for REBAF without collective interactions but the impact is much more important
when support cycles exist and implies several new definitions.

Thus the notion of directed cycle of supports (DCS) has been improved. A new notion has also introduced here,
the impacting support trees (IST), in order to improved the notion of support-founded models.

Then using all these elements, we provided a characterization of admissible (resp. complete, preferred, stable and
grounded) structures in the presence of support cycles and collective interactions.

References
[1] R. Arisaka and K. Satoh. Voluntary Manslaughter? A Case Study with Meta-Argumentation with Supports. In

Proc. of JSAI-isAI 2016. LNCS, vol 10247, pages 241–252. Springer, 2017.

[2] P. Baroni, F. Cerutti, M. Giacomin, and G. Guida. AFRA: Argumentation framework with recursive attacks. Intl.
Journal of Approximate Reasoning, 52:19–37, 2011.

[3] H. Barringer, D.M. Gabbay, and J. Woods. Temporal dynamics of support and attack networks : From argu-
mentation to zoology. In D. Hutter and W. Stephan, editors, Mechanizing Mathematical Reasoning. LNAI 2605,
pages 59–98. Springer Verlag, 2005.

[4] G. Boella, D. M. Gabbay, L. van der Torre, and S. Villata. Support in abstract argumentation. In Proc. of
COMMA, pages 111–122. IOS Press, 2010.

[5] G. Boella, L. W. N. van der Torre, and S. Villata. Attack relations among dynamic coalitions. In Proc. of BNAIC,
pages 25–32. Universiteit Twente, Enschede, 2008.

[6] C. Cayrol, A. Cohen, and M-C. Lagasquie-Schiex. Towards a new framework for recursive interactions in abstract
bipolar argumentation. In Proc. of COMMA, pages 191–198. IOS Press, 2016.

[7] C. Cayrol, J. Fandinno, L. Fariñas del Cerro, and M-C. Lagasquie-Schiex. Valid attacks in argumentation frame-
works with recursive attacks. In Proc. of Commonsense Reasoning, volume 2052. CEUR Workshop Proceedings,
2017.

[8] C. Cayrol, J. Fandinno, L. Fariñas del Cerro, and M.-C. Lagasquie-Schiex. Argumentation frameworks with
recursive attacks and evidence-based support. In Proc. of FoIKS, volume LNCS 10833, pages 150–169. Springer-
Verlag, 2018.

[9] C. Cayrol and M-C. Lagasquie-Schiex. Gradual valuation for bipolar argumentation frameworks. In Proc. of
ECSQARU, pages 366–377. Springer, 2005.

[10] C. Cayrol and M-C. Lagasquie-Schiex. Bipolarity in argumentation graphs: towards a better understanding. Intl.
J. of Approximate Reasoning, 54(7):876–899, 2013.

[11] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Logical encoding of argumentation frameworks with
higher-order attacks and evidential supports. International Journal on Artificial Intelligence Tools, 29(3-
4):2060003:1–2060003:50, June 2020.

[12] A. Cohen, S. Gottifredi, A. J. García, and G. R. Simari. A survey of different approaches to support in argumen-
tation systems. The Knowledge Engineering Review, 29:513–550, 2014.

[13] A. Cohen, S. Gottifredi, A. J. García, and G. R. Simari. An approach to abstract argumentation with recursive
attack and support. J. Applied Logic, 13(4):509–533, 2015.

25

[14] A. Cohen, S. Gottifredi, A. J. García, and G. R. Simari. On the acceptability semantics of argumentation frame-
works with recursive attack and support. In Proc. of COMMA, pages 231–242. IOS Press, 2016.

[15] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

[16] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

[17] D. M. Gabbay. Fibring argumentation frames. Studia Logica, 93:231–295, 2009.

[18] D. M. Gabbay. Semantics for higher level attacks in extended argumentation frames. Studia Logica, 93:357–381,
2009.

[19] N. Karacapilidis and D. Papadias. Computer supported argumentation and collaborative decision making: the
HERMES system. Information systems, 26(4):259–277, 2001.

[20] Marie-Christine Lagasquie-Schiex. Handling support cycles in the logical encoding of argumentation frame-
works with higher-order attacks and evidential supports. Rapport de recherche IRIT/RR- -2021- -04- -FR, IRIT,
France, May 2021.

[21] Sanjay Modgil. Reasoning about preferences in argumentation frameworks. Artificial Intelligence, 173:901–934,
2009.

[22] F. Nouioua and V. Risch. Bipolar argumentation frameworks with specialized supports. In Proc. of ICTAI, pages
215–218. IEEE Computer Society, 2010.

[23] F. Nouioua and V. Risch. Argumentation frameworks with necessities. In Proc. of SUM, pages 163–176.
Springer-Verlag, 2011.

[24] N. Oren and T. J. Norman. Semantics for evidence-based argumentation. In Proc. of COMMA, pages 276–284.
IOS Press, 2008.

[25] N. Oren, C. Reed, and M. Luck. Moving between argumentation frameworks. In Proc. of COMMA, pages
379–390. IOS Press, 2010.

[26] I. Rahwan and G. Simari. Argumentation in Artificial Intelligence. Springer, 2009.

[27] B. Verheij. Deflog: on the logical interpretation of prima facie justified assumptions. Journal of Logic in
Computation, 13:319–346, 2003.

[28] S. Villata, G. Boella, D. M. Gabbay, and L. van der Torre. Modelling defeasible and prioritized support in bipolar
argumentation. AMAI, 66(1-4):163–197, 2012.

A Proofs
We recalled here a notation and some lemmas given in [11] that will be useful for our proof.

Notation 1 (Notation Appendix A.1 in [11]) Let U = (S,Γ,∆) be a structure of REBAF, and x ∈ A ∪Ra ∪Re.
x will be said to be defended by U , iff every attack α ∈ Ra with t(α) = x is unactivable w.r.t. U . Defended(U) will
denote the set of elements that are defended by U .
Note that x ∈ Acc(U) iff x ∈ Sup(U) and x ∈ Defended(U).

Lemma 1 (Lemma 7 in [8] and Lemma Appendix A.1 in [11]) Any conflict-free self-supporting structure U satis-
fies:

Acc(U) ⊆ UnAcc(U) ⊆ Def(U).

26

Lemma 2 (Lemma Appendix A.2 in [11]) Any stable structure U satisfies: Sup(U) = UnSupp(U).

The following lemme corresponds to Lemma Appendix A.3, in [11] but for collective interactions.

Lemma 3 Let U = (S,Γ,∆) be a structure and x /∈ P be the target of a support y such that y ∈ ∆ ∩ Sup(U) and
sy ⊆ S∩Sup(U). Then, there exists a support z such that tz = x, z ∈ ∆∩Sup(U \{x}) and sz ⊆ S∩Sup(U \{x})
and so x ∈ Sup(U).

Proof of Lemma 3
Assume that x = ty with y ∈ ∆∩Sup(U) and sy ⊆ S ∩Sup(U). If y ∈ Sup(U \ {x}) and sy ⊆ Sup(U \ {x}), the
result is proved with z = y. In the other case, without loss of generality, it can be assumed that sy 6⊆ Sup(U \ {x})
(the reasoning with y /∈ Sup(U \ {x}) would be similar). So sy ⊆ Sup(U) \ Sup(U \ {x}). As sy ⊆ Sup(U), there
is a tree of supported supports (i.e. the support and its source belong to U ∩ Sup(U)) leading to an element of sy and
rooted in prima-facie elements. As sy 6⊆ Sup(U \ {x}), at least one support in this tree has x as its source. Then let
us consider the shortest sub-tree of this tree that is rooted in prima-facie elements and ends with x. It follows that this
subtree contains supported supports, is rooted in prima-facie elements and does not contain x. Taking z as the support
targeting x in this subtree will end the proof.

Proof of Proposition 1.17

Let REBAF = 〈A,Ra,Re, s, t,P〉.

1. (admissibility)

⇒ Assume that the structure U = (S,Γ,∆) is admissible. Let us define an interpretation I of Σd(REBAF).
The idea is to define I by successively adding constraints that I should satisfy:

For all x ∈ A ∪Ra ∪Re,
I(Arg(x)) = true iff x ∈ A,
I(Attack(x)) = true iff x ∈ Ra and
I(ESupport(x)) = true iff x ∈ Re.

For all x ∈ A ∪Ra ∪Re, I(PrimaFacie(x)) = true iff x ∈ P.
For all x ∈ A ∪Ra ∪Re, I(Supp(x)) = true iff x ∈ Sup(U).
For all x ∈ A ∪Ra ∪Re, I(UnSupp(x)) = true iff x ∈ UnSupp(U).
For all x ∈ A, I(Acc(x)) = true iff x ∈ S or (x /∈ S, x /∈ Sup(U) and x ∈ Defended(U)).
For all x ∈ A, I(NAcc(x)) = true iff I(Acc(x)) = false.
For all x ∈ Ra (resp. ∈ Re), I(V al(x)) = true iff x ∈ Γ (resp. ∆) or (x /∈ Γ (resp. ∆), x /∈ Sup(U)
and x ∈ Defended(U)).
For all x ∈ A, I(eAcc(x)) = true iff

(I(Acc(x)) = true and I(Supp(x)) = true).
For all x ∈ Ra ∪Re, I(eV al(x)) = true iff

(I(V al(x)) = true and I(Supp(x)) = true).
Note that in the current case, Sup(U) refers to Definition 5.
We have to prove that SI = S, ΓI = Γ, ∆I = ∆, and that I is a support-founded model of Σd(REBAF).
And for proving that I is a support-founded model of Σd(REBAF) it is sufficient to prove that I satisfies
the formulae (1), (2), (3), (1bis), (2bis), (3bis) and (17), (18), (11), (12) and that is a support-founded
interpretation.18

F Let x ∈ SI . By definition of SI , I(eAcc(x)) = true, that is I(Acc(x)) = true and I(Supp(x)) =
true. By definition of I(Acc) and I(Supp) it follows that x ∈ S. Conversely, given x ∈ S, it holds
that I(Acc(x)) = true. As U is admissible, U is self-supporting, so x ∈ Sup(U), then it holds that

17This proof is inspired by the proof of Proposition 6.1 in [11].
18By definition, formulae (4) to (10) are satisfied by I.

27

I(Supp(x)) = true. As a consequence, I(eAcc(x)) = true and x ∈ SI . Proving that ΓI = Γ and
∆I = ∆ is similar.
F Obviously I satisfies formulae (3), (2bis), (3bis).
F Let us first consider formula (2). Let y ∈ Ra and x ∈ A with x = ty , I(eV al(y)) = true and
I(eAcc(sy)) = true (so ∀xi ∈ s(y), I(eAcc(xi)) = true). Then sy ⊆ S and y ∈ Γ. Let us assume
that I(NAcc(x)) = false. Then I(Acc(x)) = true, by definition of I(NAcc). As U is admissible, U is
conflict-free, so x cannot belong to S, and, by definition of I(Acc), it follows that x ∈ Defended(U) and
so y ∈ UnAct(U), that is y belongs to UnAcc(U) or sy is included in UnAcc(U). However, y and all
elements of sy being elements of the admissible structure U , due to Lemma 1, we obtain a contradiction.
Hence, we have proved that I(NAcc(x)) = true and formula (2) is satisfied by I. Proving that formula
(1) is satisfied by I is similar.
F Let us first consider formula (17). Let x such that I(Supp(x)) = true. By definition of I(Supp),
x ∈ Sup(U). By definition of Sup(U), either x ∈ P or x is the target of a support α such that α ∈ ∆,
α ∈ Sup(U \ {x}), sα ⊆ S and sα ⊆ Sup(U \ {x}). In the first case, formula (17) is trivially satisfied
by I. In the second case, as S = SI and ∆ = ∆I it holds that I(eAcc(sα)) = true and I(eV al(α)) =
true. Hence formula (17) is satisfied by I.
F Let us consider formula (1bis). In the case when I(PrimaFacie(x)) = true, x ∈ P, so x ∈ Sup(U),
hence I(Supp(x)) = true and formula (1bis) is satisfied. Let us consider the case when x 6∈ P and x is
the target of a support y such that I(eAcc(sy)) = true and I(eV al(y)) = true. We have to prove that
I(Supp(x)) = true. As SI = S and ∆I = ∆ it holds that y ∈ ∆ and sy ⊆ S. Moreover, as U is
admissible, U is self-supporting, so y belongs to Sup(U) and sy is included in Sup(U). From Lemma 3,
it follows that x ∈ Sup(U) hence I(Supp(x)) = true. So formula (1bis) is satisfied by I.
F Let us now consider formula (18). Consider x such that I(UnSupp(x)) = true. By definition of
I(UnSupp), x ∈ UnSupp(U). And, since UnSupp(U) = Sup(U ′) (where U ′ = (Def A(U), Ra,
Def Re

(U))), x ∈ Sup(U ′). So x /∈ P and using the contrapositive of Lemma 3, applied to the structure
U ′, it follows that for each support leading to x, either the support or its source (at least one of its compo-
nents) is defeated by U , or the support or its source (at least one of its components) is itself not supported
by U ′, hence belongs to UnSupp(U). So the “only if” part of formula (18) is satisfied by I.
For the “if” part, let us consider x such that x /∈ P and for each support leading to x, either the sup-
port or its source (at least one of its components) is defeated by (SI ,ΓI ,∆I) = U , or the support or
its source (at least one of its components) belongs to UnSupp(U) = Sup(U ′). As U ′ \ {x} ⊆ U ′, it
holds that Sup(U ′) ⊆ Sup(U ′ \ {x}). Hence, from Definition 5, it holds that x /∈ Sup(U ′), that is
x ∈ UnSupp(U) and so I(UnSupp(x)) = true. So formula (18) is satisfied by I.
F Let us now consider formula (11). Let α ∈ Ra and x ∈ A such that x = tα and I(Acc(x)) = true. By
definition of I(Acc), either x ∈ S or (x /∈ S, x /∈ Sup(U) and x ∈ Defended(U)). As U is admissible,
in both cases, it holds that α ∈ UnAct(U). Then the fact that I satisfies formula (11) follows directly
from the definition of UnAct(U), the definition of I(Unsupp) and the fact that for an argument (resp. an
attack) x, I(eAcc(x)) = true (resp. I(eV al(x)) = true) iff x ∈ S (resp. x ∈ Γ).
Proving that formula (12) is satisfied by I is similar.
F Finally, we have to prove that I is support-founded.
Condition 2 of Definition 13 is trivially satisfied.
Consider now Condition 1. Let x ∈ A such that x is non prima-facie and there exists a DCS C containing
x. Assume that I(eAcc(x)) = true. So x ∈ U and, since U is admissible (so self-supporting) and x
non prima-facie, then there exists at least one tree of supported supports (x0, . . . , xn) leading to x with
any xi belonging to U . Moreover, for all xi, we have xi ∈ Sup(U). So following the definition of I
we have either I(eAcc(xi)) = true or I(eV al(xi)) = true depending of the nature of xi (argument or
support). Thus there exists an impacting support tree (x0, . . . , xn) for x that is satisfied by I. So I is a
support-founded model. The proof for x ∈ Re is similar.

⇐ Let I be a support-founded model of Σd(REBAF). We have to prove that the structure U = (SI ,ΓI ,∆I)
is admissible.

28

F Let prove that U is conflict-free w.r.t. REBAF. If it is not the case, there exist x ∈ SI ∪ ΓI ∪∆I and
y ∈ ΓI , with sy ⊆ SI and ty = x.
By definition, it holds that I(eAcc(sy)) = true and I(eV al(y)) = true. Moreover, in the case when
x ∈ SI , it holds that I(eAcc(x)) = true and so I(Acc(x)) = true (as I satisfies formula (2bis)). Then it
holds that I(NAcc(x)) = false (as I satisfies formula (3)). As a consequence, formula (2) is falsified.
In the case when x ∈ ΓI ∪∆I , it holds that I(eV al(x)) = true and so I(V al(x)) = true (as I satisfies
formula (3bis)). As a consequence, formula (1) is falsified.
In both cases, there is a contradiction with I being a model of Σ(REBAF).
F Let us prove that U is self-supporting. Assume that x ∈ SI (resp. x ∈ ΓI ∪ ∆I). By definition, it
holds that I(eAcc(x)) = true (resp. I(eV al(x)) = true). As I satisfies formula (2bis), I(Supp(x)) =
true. As I satisfies formula (17), it holds that either x ∈ P or x is the target of a support xn of source
xn−1 such that xn ∈ ∆I and xn−1 ∈ SI . In the first case, it holds that x ∈ Sup(U). In the other case,
it holds that I(eAcc(xn−1)) = true and I(eV al(xn)) = true, and formula (17) can still be used, thus
enabling to build a tree of supports. As U is finite and I is support founded, this process will end with
x1 ∈ P and x0 = s(x1) ∈ P. And so it can still be proved that x ∈ Sup(U) w.r.t. Definition 5. Hence U
is self-supporting.
F It remains to prove that, given x an element of the structure, if x is the target of an attack α, then
α is unactivable w.r.t. U . Assume that x ∈ SI is the target of an attack α. By definition, it holds that
I(eAcc(x)) = true. It follows that I(Acc(x)) = true. As I satisfies formula (11), it follows that either
there exists an attack β targeting α (or an element of sα) with β ∈ ∆I and sβ ⊆ SI , or I satisfies
UnSupp(α) (or I satisfies UnSupp(sα), i.e. at least for one element xi of sα we have I(UnSupp(xi)) =
true).

In the first case, it holds that α (resp. an element of sα) belongs to Def(U).
In the second case, we prove that α (resp. an element of sα) belongs to UnSupp(U). For that
purpose, we must prove that for any element x, if I satisfies UnSupp(x), then x ∈ UnSupp(U), or
equivalently, if x ∈ Sup(U ′) then I does not satisfy UnSupp(x). Let us consider x ∈ Sup(U ′).
There is a tree of supports leading to x, rooted in prima-facie elements such that each support (and its
source) in the tree is not defeated by U . As I satisfies formula (18), the contrapositive of the “only
if” part of formula (18) can be used for proving that each supported element y in this tree is such that
I(UnSupp(y)) = false. The proof starts with the prima-facie elements of the set, and goes on by
induction. Thus it can be proved that I(UnSupp(x)) = false.

So, in both cases, α is unactivable w.r.t. U .
The same reasoning can be done for x ∈ ΓI ∪ ∆I using formula (12). Hence, we can prove that U is
admissible.

2. (complete semantics)

⇒ Assume that the structure U = (S,Γ,∆) is complete. Let us build an interpretation I of Σd(REBAF) ∪
Σr(REBAF):

We keep the same interpretation as the one used in Item 1 of the current proof except for Acc, V al.
For all x ∈ A, I(Acc(x)) = true iff x ∈ S or (x /∈ S and x ∈ Defended(U)).
For all x ∈ Ra (resp. ∈ Re), I(V al(x)) = true if and only x ∈ Γ (resp. ∆) or (x /∈ Γ (resp. ∆) and
x ∈ Defended(U)).

We have to prove that SI = S, ΓI = Γ and ∆I = ∆, and that I is a support-founded model of
Σd(REBAF) ∪ Σr(REBAF).
F Note that if U is complete, for all x ∈ A ∪ Ra ∪ Re, if x /∈ S and x ∈ Defended(U) then x /∈
Sup(U). So the above constraint expressed for the definition of I(Acc) (resp. I(V al)), x /∈ S and
x ∈ Defended(U), is stronger than the one used for defining a model of an admissible structure (x /∈ S,
x /∈ Sup(U) and x ∈ Defended(U)).

29

Due to the above remark and the proof of Item 1 of this proof, it holds that I satisfies SI = S, ΓI = Γ,
∆I = ∆, and that I is a model of Σd(REBAF).
F Now let prove that I satisfies formulae (13) and (14). Let us consider formula (13). Let x ∈ A such
that for each attack α targeting x, either I(UnSupp(α)) = true, or I(UnSupp(sα)) = true, or α (or
an element of sα) is attacked by β with β ∈ ΓI and sβ ⊆ SI . Due to the definition of I(UnSupp),
for each attack α targeting x, either α ∈ UnSupp(U), or an element of sα ∈ UnSupp(U), or α (or an
element of sα) belongs to Def(U). In other words, for each attack α targeting x, α ∈ UnAct(U), so
x ∈ Defended(U). Now, by definition of I(Acc), it holds that I(Acc(x)) = true. We have proved that I
satisfies formula (13). Proving that I satisfies formula (14) is similar.
So I is a model of Σd(REBAF) ∪ Σr(REBAF).
F It remains to prove that I is support-founded. For that purpose, the proof written in Item 1 of the current
proof can be used as U is self-supporting.

⇐ Let I be a support-founded model of Σd(REBAF)∪Σr(REBAF). We have to prove that the structureU =
(SI ,ΓI ,∆I) is complete. For that purpose, it is enough to prove thatAcc(U) is included in SI∪ΓI∪∆I .
Consider x ∈ A ∩ Acc(U). So x ∈ Sup(U) and x ∈ Defended(U). The first condition implies that
I(Supp(x)) = true, as I satisfies formula (1bis) and following the definition of Sup(U). The second
condition means that for each attack α targeting x, either α ∈ UnSupp(U), or an element of sα ∈
UnSupp(U), or α (or an element of sα) belongs to Def(U) (i.e. α –or an element of sα– is attacked
by β ∈ U with sβ ⊆ U). So, since I is a support-founded models (so Condition 2 of the definition
of a support-founded model holds) and the fact that if an element β belongs to (resp. sβ is included in)
the structure then I(eV al(β)) (resp. I(eAcc(sβ))) is also true, the premisse of formula (13) is true,
and as I satisfies formula (13), it follows that I(Acc(x)) = true. As I satisfies formula (2bis) it holds
that I(eAcc(x)) = true, so x ∈ SI . Similarly, it can be proved that for all x ∈ Ra ∩ Acc(U) (resp.
x ∈ Re ∩Acc(U)), x ∈ ΓI (resp. x ∈ ∆I). We have proved that U is a complete structure.
The proof is similar for any support or attack in Acc(U).

3. (preferred semantics) Let I be an interpretation of a set of formulae Σx. LetUI denote the structure (SI ,ΓI ,∆I).
It is easy to see that I is a ⊆-maximal support-founded model of Σx iff the structure UI is ⊆-maximal among
all the structures of the form UJ = (SJ ,ΓJ ,∆J), where J denotes a support-founded model of Σx. Then
taking Σx = Σd(REBAF), it follows that the preferred structures correspond to the structures UI where I is a
⊆-maximal support-founded model of Σd(REBAF).

4. (grounded semantics) Let I be an interpretation of a set of formulae Σx. LetUI denote the structure (SI ,ΓI ,∆I).
It is easy to see that I is a⊆-minimal support-founded model of Σx iff the structure UI is⊆-minimal among all
the structures of the form UJ , where J denotes a support-founded model of Σx. Taking Σx = Σd(REBAF) ∪
Σr(REBAF), it follows that the grounded structure correspond to the structure UI where I is a ⊆-minimal
support-founded model of Σd(REBAF) ∪ Σr(REBAF).

5. (stable semantics)

⇒ Assume that the structure U = (S,Γ,∆) is stable. Let us define an interpretation I of Σs(REBAF) as
follows:

Once again, we keep the same interpretation as the one used in Item 1 of the current proof except for
Acc, V al.
For all x ∈ A, I(Acc(x)) = true iff x ∈ S or x /∈ Def(U).
For all x ∈ Ra (resp. ∈ Re), I(V al(x)) = true iff x ∈ Γ (resp. ∆) or x /∈ Def(U).

30

We have to prove that SI = S, ΓI = Γ and ∆I = ∆, and that I is a support-founded model of
Σs(REBAF). And, for proving that I is a support-founded model of Σs(REBAF) it is sufficient to prove
that I satisfies formulae (1), (2), (3), (1bis), (2bis), (3bis) and (17), (18), (15), (16), (19) and that I is
support-founded.
F Let x ∈ SI . By definition, I(Acc(x)) = true and I(Supp(x)) = true. By definition of I(Acc) and
I(Supp), it follows that x ∈ Sup(U) and (x ∈ S or x /∈ Def(U)). Following Lemma 2, x /∈ UnSupp(U)
and (x ∈ S or x /∈ Def(U)). If x /∈ S, as U is stable, it follows that x ∈ Def(U) or x ∈ UnSupp(U).
We obtain a contradiction, hence x ∈ S.
Conversely, given x ∈ S, it holds that I(Acc(x)) = true. As U is stable, U is self-supporting, so x ∈
Sup(U), then it holds that I(Supp(x)) = true. As a consequence, I(eAcc(x)) = true and x ∈ SI .
Proving that ΓI = Γ and ∆I = ∆ is similar.
F Obviously I satisfies formulae (3), (2bis), (3bis).
F Let us first consider formula (2). Let y ∈ Ra and x ∈ A with x = ty , I(eV al(y) = true and
I(eAcc(sy) = true. Then sy ⊆ S and y ∈ Γ, and it holds that x ∈ Def(U). As U is stable, U is conflict-
free, so x cannot belong to S. Hence we have x /∈ S and x ∈ Def(U), or equivalently I(Acc(x)) = false,
by definition of I(Acc) and then I(NAcc(x)) = true, by definition of I(NAcc). We have proved that I
satisfies formula (2). Proving that formula (1) is satisfied by I is similar.
F Proving that I satisfies formulae (1bis), (17), (18) can be done with exactly the same reasoning as the
one used in Item 1 of the current proof.
F Let us now consider formula (15). Let x ∈ A such that I(Acc(x)) = false. By definition of I(Acc), it
holds that x /∈ S and x ∈ Def(U). So, there is y ∈ Γ with x = ty and sy ⊆ S. Hence, there is y ∈ ΓI
with x = ty and sy ⊆ SI , or equivalently, there is y ∈ Ra with x = ty and I(eV al(y)) = true and
I(eAcc(sy)) = true. We have proved that I satisfies formula (15). Proving that formula (16) is satisfied
by I is similar.
F Lastly, we consider formula (19). Let x ∈ A ∪Ra ∪Re such that I(Supp(x)) = false. By definition
of I(Supp), x /∈ Sup(u). Due to Lemma 2, it follows that x ∈ UnSupp(U), hence I(UnSupp(x)) =
true, by definition of I(UnSupp). We have proved that I satisfies formula (19). So I is a model of
Σs(REBAF).
F It remains to prove that I is support-founded. For that purpose, the proof written in Item 1 of the current
proof can be used as U is self-supporting.

⇐ Let I be a support-founded model of Σs(REBAF). We have to prove that the structure U = (SI ,ΓI ,∆I)
is stable.
As noted in Definition 7, it is sufficient to prove that U is conflict-free, self-supporting and satisfies U ⊆
UnAcc(U).
As Σs(REBAF) contains Σ(REBAF), from Proposition 6.1 in [11], we know that the structure U is
conflict-free. Moreover, Σs(REBAF) contains formulae (17), (18). So, with exactly the same reasoning
as the one used in Item 1 for the admissible case, it can be proved that U is self-supporting.
It remains to prove that U ⊆ UnAcc(U). Let x ∈ A such that x ∈ U . So x /∈ SI and by definition of SI ,
I(eAcc(x)) = false. As I satisfies formula (2bis), it follows that I(Acc(x)) = false or I(Supp(x)) =
false. In the case when I(Acc(x)) = false, as I satisfies formula (15), it follows that x ∈ Def(U).
If I(Acc(x)) = true, it holds that I(Supp(x)) = false. As I satisfies formula (19), it follows that
I(UnSupp(x)) = true, so x ∈ UnSupp(U) (following Condition 2 of Definition 13 since I is support-
founded). In both cases, we have that x ∈ UnAcc(U). We have proved that U is stable.

31

	Introduction
	Background on argumentation frameworks
	The Standard Abstract Framework
	A Framework with Higher-Order Evidential Supports and Attacks

	Background on the Logical Description of a REBAF
	Vocabulary
	Logical theory for describing REBAF
	Logical Formalization of REBAF semantics
	Conflict-freeness
	Self-supporting
	Defence
	Reinstatement
	Stability

	Characterizing Semantics of a REBAF

	Collective interactions in a REBAF: a new proposition
	Vocabulary
	Formulae
	Some examples
	New definitions
	Characterization: a new proposition

	Conclusion
	Proofs

