and allowing to take into account REBAF with any kind of support cycles.

In this new work, we propose a second improvement of our previous works in order to relax the first constraint and so to be able to take into account collective interactions, i.e. those whose source can be a set of arguments and not only one single argument.

Introduction

Formal argumentation has become an essential paradigm in Artificial Intelligence, e.g. for reasoning from incomplete and/or contradictory information or for modelling the interactions between agents [START_REF] Rahwan | Argumentation in Artificial Intelligence[END_REF]. Formal abstract frameworks have greatly eased the modelling and study of argumentation. The original Dung's argumentation framework (AF) [START_REF] Minh | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] consists of a collection of arguments interacting with each other through a relation reflecting conflicts between them, called attack, and enables to determine acceptable sets of arguments called extensions.

AF have been extended along different lines, e.g. by enriching them with positive interactions between arguments (usually expressed by a support relation), or higher-order interactions (i.e. interactions whose targets are other interactions).

Positive interactions between arguments. They have been first introduced in [START_REF] Karacapilidis | Computer supported argumentation and collaborative decision making: the HERMES system[END_REF][START_REF] Verheij | Deflog: on the logical interpretation of prima facie justified assumptions[END_REF]. In [START_REF] Cayrol | Gradual valuation for bipolar argumentation frameworks[END_REF], the support relation is left general so that the bipolar framework keeps a high level of abstraction. The associated semantics are based on the combination of the attack relation with the support relation which results in new complex attack relations. However, there is no single interpretation of the support, and a number of researchers proposed specialized variants of the support relation (deductive support [START_REF] Boella | Support in abstract argumentation[END_REF], necessary support [START_REF] Nouioua | Bipolar argumentation frameworks with specialized supports[END_REF][START_REF] Nouioua | Argumentation frameworks with necessities[END_REF], evidential support [START_REF] Oren | Semantics for evidence-based argumentation[END_REF][START_REF] Oren | Moving between argumentation frameworks[END_REF]). Each specialization can be associated with an appropriate modelling using an appropriate complex attack. These proposals have been developed quite independently, based on different intuitions and with different formalizations. [START_REF] Cayrol | Bipolarity in argumentation graphs: towards a better understanding[END_REF] presents a comparative study in order to restate these proposals in a common setting, the bipolar argumentation framework (see also [START_REF] Cohen | A survey of different approaches to support in argumentation systems[END_REF] for another survey).

Higher-order interactions. The idea of encompassing attacks to attacks in abstract argumentation frameworks has been first considered in [START_REF] Barringer | Temporal dynamics of support and attack networks : From argumentation to zoology[END_REF] in the context of an extended framework handling argument strengths and their propagation. Then, higher-order attacks have been considered for representing preferences between arguments (second-order attacks in [START_REF] Modgil | Reasoning about preferences in argumentation frameworks[END_REF]), or for modelling situations where an attack might be defeated by an argument, without contesting the acceptability of the source of the attack [START_REF] Baroni | AFRA: Argumentation framework with recursive attacks[END_REF]. Attacks to attacks and supports have been first considered in [START_REF] Gabbay | Fibring argumentation frames[END_REF] with higher level networks, then in [START_REF] Villata | Modelling defeasible and prioritized support in bipolar argumentation[END_REF]; and more generally, [START_REF] Cohen | An approach to abstract argumentation with recursive attack and support[END_REF] proposes an Attack-Support Argumentation Framework which allows for nested attacks and supports, i.e. attacks and supports whose targets can be other attacks or supports, at any level.

Here are examples of higher-order interactions in the legal field. The first example considers only higher-order attacks (this example is borrowed from [START_REF] Arisaka | Voluntary Manslaughter? A Case Study with Meta-Argumentation with Supports[END_REF]).

Example 1 The lawyer says that the defendant did not have intention to kill the victim (argument b). The prosecutor says that the defendant threw a sharp knife towards the victim (argument a). So, there is an attack from a to b. And the intention to kill should be inferred. Then the lawyer says that the defendant was in a habit of throwing the knife at his wife's foot once drunk. This latter argument (argument c) is better considered attacking the attack from a to b, than argument a itself. Now the prosecutor's argumentation seems no longer sufficient for proving the intention to kill.

The second example is a variant of the first one and considers higher-order attacks and evidential supports.

Example 2

The prosecutor says that the defendant had intention to kill the victim (argument b). A witness says that she saw the defendant throwing a sharp knife towards the victim (argument a). Argument a can be considered as a support for argument b. The lawyer argues back that the defendant was in a habit of throwing the knife at his wife's foot once drunk. This latter argument (argument c) is better considered attacking the support from a to b, than arguments a or b themselves. Once again, the prosecutor's argumentation seems no longer sufficient for proving the intention to kill.

We follow here an evidential understanding of the support relation [START_REF] Oren | Semantics for evidence-based argumentation[END_REF] that allows to distinguish between two different kinds of arguments: prima-facie and standard arguments. Prima-facie arguments were already present in [START_REF] Verheij | Deflog: on the logical interpretation of prima facie justified assumptions[END_REF] as those that are justified whenever they are not defeated. On the other hand, standard arguments are not directly assumed to be justified and must inherit support from prima-facie arguments through a "chain" of supports. For instance, in Example 2, arguments a and c could be considered as prima-facie arguments while b would be regarded 1 as a standard argument. Hence, while a and c can be accepted as in Dung's argumentation, b must inherit support from a: this holds if c is not accepted, but does not otherwise. Indeed, in the latter, the support from a to b is defeated by c.

A natural idea that has proven useful to define semantics for these extended frameworks, known as "flattening technique", consists in turning the original extended framework into an AF, by introducing meta-arguments and a new simple (first-order) attack relation involving these meta-arguments [START_REF] Baroni | AFRA: Argumentation framework with recursive attacks[END_REF][START_REF] Boella | Attack relations among dynamic coalitions[END_REF][START_REF] Cayrol | Towards a new framework for recursive interactions in abstract bipolar argumentation[END_REF][START_REF] Cohen | An approach to abstract argumentation with recursive attack and support[END_REF], or by reducing higher-order attacks to first-order joint attacks [START_REF] Gabbay | Semantics for higher level attacks in extended argumentation frames[END_REF]. More recently, alternative acceptability semantics have been defined in a direct way for argumentation frameworks with higher-order attacks [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF] or for higher-order attacks and supports (necessary supports: [START_REF] Cohen | On the acceptability semantics of argumentation frameworks with recursive attack and support[END_REF], evidential supports: [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF]). The idea is to specify the conditions under which the arguments (resp. the interactions) are considered as accepted directly on the extended framework, without translating the original framework into an AF. Morever, in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] then in [START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], a logical encoding of argumentation frameworks with higher-order attacks and evidential supports (REBAF) has been proposed. This encoding is able to take into account REBAF. A strong constraint exists in these works: the source of an interaction must be a single argument. So the aim of the current work is to relax this constraint and to propose a new logical encoding of REBAF in which interactions are not binary ones (this kind of interactions is called "collective interactions").

The paper is organized as follows: the necessary background about argumentation frameworks is given in Section 2; the logical encoding for frameworks with higher-order attacks and evidential supports (REBAF) is recalled in Section 3; the new proposition that can handle collective interactions is given in Section 4; Section 5 concludes the paper. The proofs are given in Appendix A.

Background on argumentation frameworks

Note that the text (definitions, propositions and examples) of this section is extracted from [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF].

The Standard Abstract Framework

The standard case handles only one kind of interaction: attacks between arguments. A graphical representation can be used for an AF. We recall the definitions1 of some well-known extension-based semantics. Such a semantics specifies the requirements that a set of arguments should satisfy. The basic requirements are the following ones:

An extension can "stand together". This corresponds to the conflict-freeness principle.

An extension can "stand on its own", namely is able to counter all the attacks it receives. This corresponds to the defence principle.

Reinstatement is a kind of dual principle. An attacked argument which is defended by an extension is reinstated by the extension and should belong to it.

Stability: an argument that does not belong to an extension must be attacked by this extension.

Definition 2 [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] Let AF = A, R and S ⊆ A.

S is conflict-free iff (a, b) ∈ R for all a, b ∈ S. a ∈ A is acceptable w.r.t. S (or equivalently S defends a) iff for each b ∈ A with (b, a) ∈ R, there is c ∈ S with (c, b) ∈ R.
The characteristic function F of AF is defined by: F(S) = {a ∈ A such that a is acceptable w.r.t. S}. S is admissible iff S is conflict-free and S ⊆ F(S).

S is a complete extension of AF iff it is conflict-free and a fixed point of F.

S is the grounded extension

of AF iff it is the minimal (w.r.t. ⊆) fixed point 2 of F. S is a preferred extension of AF iff it is a maximal (w.r.t. ⊆) complete extension.
S is a stable extension of AF iff it is conflict-free and for each a ∈ S, there is b ∈ S with (b, a) ∈ R.

Note that the complete (resp. grounded, preferred, stable) semantics satisfies the conflict-freeness, defence and reinstatement principles.

A Framework with Higher-Order Evidential Supports and Attacks

In this section, we recall the extension of [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF] proposed in [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] for handling recursive attacks and evidence-based supports.

Definition 3 [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] An evidence-based recursive argumentation framework (REBAF) is a sextuple A, R a , R e , s, t, P where A, R a and R e are three (possible infinite) pairwise disjunct sets respectively representing arguments, attacks and supports names, and where P ⊆ A ∪ R a ∪ R e is a set representing the prima-facie elements that do not need to be supported. Functions s : (R a ∪ R e ) -→ 2 A \ ∅ and t : (R a ∪ R e ) -→ (A ∪ R a ∪ R e ) respectively map each attack and support to its source and its target.

Note that the source of attacks and supports is a set of arguments, the set P may contain several prima-facie elements (arguments, attacks and supports) and no constraint on the prima-facie elements is assumed (they can be attacked or supported). Example 2 (cont'd): The argumentation framework corresponding to the second example given in the introduction can be represented as follows (argument names are given in circular nodes, interaction names in square nodes, primafacie elements are in grey nodes and non prima-facie element in white nodes; supports are represented by double edges):

a α b β c
Semantics of REBAF are defined in [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] using the extension of the notion of structure introduced in [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF]. The idea is to characterize which arguments are regarded as "acceptable", and which attacks and supports are regarded as "valid", with respect to some structure.

Consider a given framework REBAF = A,R a ,R e ,s,t,P .

Definition 4 [8]

A triple U = (S, Γ, ∆) is said to be a structure of REBAF iff it satisfies:

S ⊆ A, Γ ⊆ R a and ∆ ⊆ R e .
Intuitively, the set S represents the set of "acceptable" arguments w.r.t. the structure U , while Γ and ∆ respectively represent the set of "valid attacks" and "valid supports" w.r.t. U . Any attack3 α ∈ Γ is understood as "non-valid" and, in this sense, it cannot defeat the element that it is targeting. Similarly, any support β ∈ ∆ is understood as "non-valid" and it cannot support the element that it is targeting.

The following definitions are extensions of the corresponding ones defined in [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF] in order to take into account the evidential supports.

Definition 5 [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] Given a structure U = (S, Γ, ∆),

The sets of defeated elements w.r.t. U are:

Def X (U ) def = {x ∈ X|∃α ∈ Γ, s(α) ⊆ S and t(α) = x} with X ∈ {A, R a , R e } Def (U ) def = Def A (U ) ∪ Def Ra (U ) ∪ Def Re (U )
The set of supported elements Sup(U ) is recursively defined as follows:4 

Sup(U

) def = P∪ {t(α)|∃α ∈ ∆ ∩ Sup(U \{t(α)}), s(α) ⊆ (S ∩ Sup(U \{t(α)}))}
Note that a standard element is supported if there is a "chain"5 of supported supports leading to it, rooted in primafacie arguments. Acceptability is more complex. Intuitively, an element is acceptable if it supported and in addition, every attack against it can be considered as "non-valid" because either the source or the attack itself is defeated or cannot be supported. The elements that cannot be supported w.r.t. a structure U are called unsupportable w.r.t. U . An element is supportable w.r.t. U if there is a support for it which is non-defeated by U , with its source being non-defeated by U , and the support and its source being in turn supportable. The elements that are defeated or unsupportable are called unacceptable. Then an attack is said unactivable if either some argument in its source or itself is unacceptable.

Formally,

The set of unsupportable elements w.r.t. U is:

UnSupp(U ) def = Sup(U ) with U = (Def A (U ), R a , Def Re (U )).
The set of unacceptable elements w.r.t. U is:

UnAcc(U ) def = Def (U ) ∪ UnSupp(U )
The set of unactivable attacks w.r.t. U is:

UnAct(U ) def = {α ∈ R a |α ∈ UnAcc(U ) or s(α) ∩ UnAcc(U ) = ∅} Definition 6 [8] An element x ∈ A ∪ R a ∪ R e is said to be acceptable w.r.t. a structure U iff (i) x ∈ Sup(U ) and (ii) every attack α ∈ R a with t(α) = x is unactivable, that is, α ∈ UnAct(U ).
Acc(U ) denotes the set containing all arguments, attacks and supports that are acceptable with respect to U .

The following order relations will help defining preferred structures: for any pair of structures U = (S, Γ, ∆) and U = (S , Γ , ∆ ), we write U ⊆ U iff (S ∪Γ∪∆) ⊆ (S ∪Γ ∪∆ ). As usual, we say that a structure U is ⊆-maximal (resp. ⊆-minimal) iff every U that satisfies U ⊆ U (resp. U ⊆ U ) also satisfies U ⊆ U (resp. U ⊆ U ).

Definition 7 [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] A structure U = (S, Γ, ∆) is:

1. self-supporting iff (S ∪ Γ ∪ ∆) ⊆ Sup(U ), 2. conflict-free iff X ∩Def Y (U ) = ∅ for any (X, Y ) ∈ {(S, A), (Γ, R a ), (∆, R e )},
3. admissible iff it is conflict-free and S ∪ Γ ∪ ∆ ⊆ Acc(U ), 4. complete iff it is conflict-free and Acc(U ) = S ∪ Γ ∪ ∆, 5. grounded iff it is a ⊆-minimal complete structure, 66. preferred iff it is a ⊆-maximal admissible structure,

7. stable 7 iff (S ∪ Γ ∪ ∆) = UnAcc(U ).
From the above definitions, it follows that if U is a conflict-free structure, unsupportable elements w.r.t. U are not supported w.r.t. U , that is UnSupp(U ) ⊆ Sup(U ).

Note that every admissible structure is also self-supporting. Moreover, the usual relations between extensions also hold for structures: every complete structure is also admissible, every preferred structure is also complete, and every stable structure is also preferred and so admissible. Other properties of REBAF are described in [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF], which enable to prove for instance that there is a unique grounded structure.

The previous definitions are illustrated on the following examples.

Example 4 Consider two arguments a and b and a support from a to b. Following the set of prima-facie elements, different behaviours can be described.

1. The support and its source are assumed to be prima-facie. The target is not prima-facie. In this case, as α (resp. a) is prima-facie and not attacked, it is acceptable w.r.t. any structure. In contrast, b is not prime-facie, so b is supported w.r.t. a structure U implies that U contains the support α and its source a. As a consequence, the structures ({a}, ∅, {α}) and ({a, b}, ∅, {α}) are admissible, whereas the structure ({b}, ∅, {α}) is not admissible.

2. Only the source of the support is assumed to be prima-facie. In this case, for any structure U , α is not supported w.r.t. U . It is the same for b. So the only admissible structures are U = (∅, ∅, ∅) and U = ({a}, ∅, ∅).

3. Only the support is assumed to be prima-facie. In this case, α is acceptable w.r.t. any structure. However, for any structure U , a is not supported w.r.t. U . So b cannot be supported. As a consequence, the only admissible structures are U = (∅, ∅, ∅) and U = (∅, ∅, {α}).

4. The support and its target are assumed to be prima-facie. The source is not prima-facie.

a α b
In this case, α (resp. b) is acceptable w.r.t. any structure. In contrast, a cannot be supported. So there are 4 admissible structures: U = (∅, ∅, ∅), U = (∅, ∅, {α}), U = ({b}, ∅, ∅) and U = ({b}, ∅, {α}).

In the next example, the support is itself the target of an attack. Example 2 (cont'd): In this framework, neither β nor its source is attacked and β and its source are prima-facie. So, for any structure U , it holds that neither β nor its source c is unacceptable w.r.t. U . As a consequence, for any structure U , α is not acceptable w.r.t. U as α is attacked by β and β is not unactivable w.r.t. U . As b is not prima-facie, and α is the only support to b, no admissible structure contains b. As a consequence, there is a unique complete, preferred and stable structure U = ({a, c}, {β}, ∅).

Finally, REBAF is a conservative generalization of RAF described in [START_REF] Cayrol | Valid attacks in argumentation frameworks with recursive attacks[END_REF] with the addition of supports and joint attacks. Every RAF can be easily translated into a corresponding REBAF with no support and where every element (argument or attack) is prima-facie (see [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF]).

In [START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], some notions related to directed cycles of supports have been defined in order to take into account support cycles in the logical computation of structures for the REBAF. Nevertheless these definitions are given only for REBAF without collective interactions (so the source of an interaction is only a singleton).

Definition 8 Let REBAF = A,R a ,R e ,s,t,P . A directed cycle of supports (DCS) in this REBAF is a sequence C = (x 0 , . . . , x n-1 , x n ) such that: 8 n > 0 and n is the size of the DCS, ∀i = 0 . . . n, x i ∈ A ∪ R e , x n = x 0 ∀i = 0 . . . n -1, if x i ∈ A then x i+1 ∈ R e and s(x i+1 ) = x i , ∀i = 0 . . . n -1, if x i ∈ R e then x i+1 = t(x i ). A simple DCS C = (x 0 , . . . , x n-1 , x n ) is a DCS in which ∀i, j = 0 . . . n -1, if i = j then x i = x j . An input support of a DCS C = (x 0 , . . . , x n-1 , x n ) is: either a support y ∈ R e such that y ∈ C and ∃x i ∈ C and x i = t(y), or an argument y ∈ A such that y ∈ C and ∃x i ∈ R e ∩ C and y = s(x i ).
The set of inputs of the DCS C is denoted by C In and it is partitioned into

C In A = C In ∩ A and C In Re = C In ∩ R e .
Example 5 This example illustrates the fact that a support in a cycle can also be the target of another support in the cycle. Note that the source of the targeted support does not belong to the cycle. Here there exists one DCS C = (a, α, β, c, γ, d, δ, a) with C In = {b, π}. Note that the source of π is not considered as an input of the cycle. Another notion will be important in order to compute the logical characterization of REBAF semantics: the impacting support chains for an element of a REBAF. Unformally an impacting support chain for an element x is a sequence targeting x, originated in a prima-facie argument and composed alternatively by "an argument, a support, an argument, a support, . . . ". Moreover no repetition is authorized (so any element appears only one time in the sequence); and x cannot belong to the sequence. So Formally we have:

Definition 9 Let REBAF = A,R a ,
R e ,s,t,P . Let x be an element of this REBAF. An impacting support chain for x is a sequence ISC = (x 0 , . . . , x n ) with n > 0 and:

∀x i , i ∈ [0 . . . n], x i ∈ (A ∪ R e ) \ {x} x 0 ∈ A ∩ P and x n ∈ R e such that t(x n ) = x ∀i, j ∈ [0 . . . n], if i = j, then x i = x j ∀i ∈ [1 . . . n], if x i ∈ R e then x i-1 = s(x i ) ∀i ∈ [2 . . . n -1], if x i ∈ A then x i = t(x i-1 )
It is obvious to see that if a DCS has some inputs then these inputs may belong to some impacting support chains of the elements of the DCS, if they are prima-facie or if they have at least one impacting support chain.

Another trivial property is the fact that, in a DCS without input and in which none argument is prima-facie, the elements of the DCS have no impacting support chains. Example 5 (cont'd): Considering the impacting support chains of some elements of the DCS, we have for instance: For argument d, there exist two impacting support chains: (e, π) and (b, β, c, γ).

For argument c, there exists only one impacting support chain: (b, β).

For argument a, there exist two impacting support chains: (e, π, d, δ) and(b, β, c, γ, d, δ).

For support β, there exists only one impacting support chain: (e, π, d, δ, a, α). Considering the impacting support chains of some elements of the DCS, we have for instance:

For argument d, there exists only one impacting support chain: (e, π).

For argument c, there exists only one impacting support chain: (e, π, d, µ, b, β).

For argument a, there exists only one impacting support chain: (e, π, d, δ).

For support β, there exists only one impacting support chain: (e, π, d, δ, a, α).

It is worth to notice that DCS can be aggregated:

Definition 10 Let REBAF = A,R a ,R e ,s,t,P . Let C = (x 0 , . . . , x n-1 , x n ) and C = (x 0 , . . . , x m-1 , x m ) be two DCS of this REBAF such that there exist x i ∈ C and x j ∈ C and x i = x j .
The aggregation of C and C is the directed cycle corresponding to the union of the sets {x 0 , . . . , x n-1 } and {x 0 , . . . , x m-1 }. This aggregation will be denoted by abuse of language C ∪ C .

Using this notion of aggregation, a maximal DCS of a REBAF can be defined:

Definition 11 Let REBAF = A,R a ,
R e ,s,t,P . Let C = (x 0 , . . . , x n-1 , x n ) be a DCS. C is a maximal DCS iff there does not exist another DCS that could be aggregated with C.

Example 6 (cont'd): In this example, the two simple DCS can be aggregated since they share several elements (β, c, γ, d). And this aggregation is the only maximal DCS of this REBAF:

C = (a, α, β, c, γ, d, µ, b, β, c, γ, d, δ, a)
3 Background on the Logical Description of a REBAF

Here, we recall the logical description of a REBAF proposed in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] then improved in [START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], that allows an explicit representation of arguments, attacks, evidential supports and their properties. In [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] a variant of REBAF has been considered in which interactions are restricted to binary interactions (that is for any interaction α, s(α) is a singleton) and the support relation is assumed to be acyclic. In [START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] the last constraint has been relaxed but not the first one. As a consequence, the definitions of Def X (U ) and Sup(U ) given in Definition 5 can be simplified as follows:

Definition 12 Given a structure U = (S, Γ, ∆),

Def X (U ) def = {x ∈ X|∃α ∈ Γ, s(α) ∈ S and t(α) = x} with X ∈ {A, R a , R e }. Sup(U ) def = P ∪ {t(α)|∃α ∈ (∆ ∩ Sup(U \{t(α)})), s(α) ∈ (S ∩ Sup(U \{t(α)}))}

Vocabulary

In [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF][START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], the following unary predicate symbols and unary functions symbols are used with the following meaning:

Arg(x) means "x is an argument" Attack(x) means "x is an attack"

ESupport(x) means that "x is an evidential support"

T (x) (resp. S(x)) denotes the target (resp. source) of x, when x denotes an attack ou a support P rimaF acie(x) means that "x is a prima-facie element" Acc(x) (resp. N Acc(x)) means "x is accepted" (resp. "x cannot be accepted"), when x denotes an argument V al(α) means "α is valid" when α denotes an attack or a support

The binary equality predicate is also used. Note that the quantifiers ∃ and ∀ range over some domain D. To restrict them to subsets of D, bounded quantifiers will be used:

∀x ∈ E (P (x)) means ∀x (x ∈ E → P (x)) or equivalently ∀x(E(x) → P (x)). So we will use:

∀x ∈ Attack (Φ(x)) (resp. ∃x ∈ Attack (Φ(x))) ∀x ∈ ESupport (Φ(x)) (resp. ∃x ∈ ESupport (Φ(x))) and ∀x ∈ Arg (Φ(x)) (resp. ∃x ∈ Arg (Φ(x))).
Note that the meaning of N Acc(x) is not "x is not accepted" but rather "x cannot be accepted" (for instance because x is the target of a valid attack whose source is accepted). Hence, N Acc(x) is not logically equivalent to ¬Acc(x). However, the logical theory will enable to deduce ¬Acc(x) from N Acc(x), as shown below.

Then we need symbols for denoting acceptability of elements. Let us recall that the purpose of [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] was to obtain a logical characterization of structures. As explained before, intuitively, a structure of REBAF represents the set of acceptable arguments (attacks and supports) w.r.t. the structure. And following Definition 6, acceptability w.r.t. a structure requires two conditions, one of them being a support by the structure, the other one making use of the notion of unsupportability. So the following unary predicate symbols are introduced in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]:

Supp for denoting supported elements (argument, attack or support), U nSupp for denoting unsupportable elements and eAcc (resp. eV al) for denoting acceptability for arguments (resp. for interactions, attacks or supports).

Note that eAcc(x) ("x is e-accepted") can be understood as "x is accepted and supported" and similarly eV al(α) ("α is e-valid" ) can be understood as "α is valid and supported".

Logical theory for describing REBAF

In [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF][START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], the formulae describing a given REBAF have been partitioned in two sets:

The first set, denoted by Π, contains the formulae describing the general behaviour of an attack, possibly recursive, i.e. how an attack interacts with arguments and other attacks related to it, and also the formulae describing the general behaviour of an evidential support, possibly recursive, i.e. how a support interacts with arguments and other interactions related to it.

The second set, denoted by Π(REBAF), contains the formulae encoding the specificities of the current framework.

The meaning of an attack is described under the form of constraints on its source (an argument) and its target (an argument or an attack). Moreover, as attacks may be attacked by other attacks, some attacks may not be valid. And finally supports must be taken into account in order to define this "validity". So we have:

If an attack from an argument to an attack (or a support) is e-valid, then if its source is e-accepted, its target is not valid.

If an attack between two arguments is e-valid and if its source is e-accepted, then its target cannot be accepted. In that case, the target is not accepted.

An evidential support can be described by the following constraints:

If an element (argument or interaction) is prima-facie, it is supported.

If an element is the target of an evidential support, it is supported if the source of the support is e-accepted and if the support is itself e-valid.

Using the vocabulary defined above, 9 these constraints have been expressed in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] by the following formulae:

(1) ∀x ∈ (Attack ∪ ESupport) ∀y ∈ Attack (eV al(y) ∧ (t y = x) ∧ eAcc(s y )) → ¬V al(x) (2) ∀x ∈ Arg ∀y ∈ Attack (eV al(y) ∧ (t y = x) ∧ eAcc(s y )) → N Acc(x) (3) ∀x ∈ Arg (N Acc(x) → ¬Acc(x)) (1bis) ∀x ∈ (Attack ∪ ESupport ∪ Arg)       P rimaF acie(x) ∨ ∃y ∈ ESupport (eV al(y) ∧ (t y = x) ∧ eAcc(s y ))   → Supp(x)    
The following formulae define the e-acceptability (resp. e-validity). Recall that eAcc(x) (resp. eV al) means "x is accepted (resp. valid) and supported":

(2bis) ∀x ∈ Arg ((Acc(x) ∧ Supp(x)) ↔ eAcc(x)) (3bis) ∀x ∈ (Attack ∪ ESupport) ((V al(x) ∧ Supp(x)) ↔ eV al(x))
Other formulae limit the domain to arguments, attacks, supports.

(4) ∀x (Attack(x) → ¬Arg(x)) 

(4bis) ∀x (Attack(x) → ¬ESupport(x)) (4ter) ∀x (ESupport(x) → ¬Arg(x)) Supp(β) (from (1bis), ( 8ter 

Logical Formalization of REBAF semantics

In presence of higher-order attacks and supports, the conflict-freeness, defence, reinstatement and stability principles must take into account the fact that acceptability for an argument or an interaction requires that any attack against it is unactivable. Moreover acceptability requires support.

Conflict-freeness

In [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF][START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], the conflict-freeness principle has been formulated as follows:

If there is an e-valid attack between two arguments, these arguments cannot be jointly e-accepted.

If there is an e-valid attack from an e-accepted argument to an interaction (attack or support), this interaction cannot be e-valid.

Note that these properties are already expressed in Σ(REBAF) (by the formulae (1), ( 2), ( 3), (2bis), (3bis)).

Self-supporting

The self-supporting principle states that each supported element must receive evidential support. In [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF][START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], it has been formulated as follows:

If an element is supported then, either it is prima-facie, or it is the target of an e-valid support from an e-accepted source:

(17) ∀x ∈ (Attack ∪ ESupport ∪ Arg)     Supp(x) →   P rimaF acie(x)∨ ∃y ∈ ESupport (eV al(y) ∧ (t y = x) ∧ eAcc(s y ))      
Supportability is a weaker notion, as elements that are not supportable (i.e. unsupportable) cannot be supported. An element is unsupportable iff it is not prima-facie and for each of its supports, either the support itself or its source is defeated, or the support or its source is in turn unsupportable:

(18) ∀x ∈ (Attack ∪ ESupport ∪ Arg)           U nSupp(x) ↔         ¬P rimaF acie(x) ∧ ∀y ∈ ESupport(t y = x →     ∃β ∈ Attack(t β ∈ {s y , y}∧ eV al(β) ∧ eAcc(s β ))) ∨ U nSupp(s y ) ∨ U nSupp(y))                      
Formulae (17) and (18) are added to the base Σ(REBAF), thus producing the base Σ ss (REBAF).

Defence

As stated in Definition 6, an attacked element is acceptable if (i) it is supported and (ii) for each attack against it, either the source or the attack itself is defeated (by an e-valid attack from an e-accepted argument), or the source or the attack itself is unsupportable (w.r.t. e-valid elements and e-accepted arguments). So, in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF][START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], the principle corresponding to the previous item (ii) has been expressed by the following formulae that are associated with formulae (17) and ( 18):

(11) ∀α ∈ Attack       Acc(t α ) →     ∃β ∈ Attack (t β ∈ {s α , α} ∧ eV al(β) ∧ eAcc(s β )) ∨ U nSupp(s α ) ∨ U nSupp(α)           (12) ∀α ∈ Attack ∀δ ∈ (Attack ∪ ESupport)       ((δ = t α ) ∧ V al(δ)) →     ∃β ∈ Attack (t β ∈ {s α , α} ∧ eV al(β) ∧ eAcc(s β )) ∨ U nSupp(s α ) ∨ U nSupp(α)          
Formulae [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] and ( 12) are added to the base Σ ss (REBAF), thus producing the base Σ d (REBAF).

Reinstatement

In [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF][START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], the reinstatement principle has been expressed by the following formulae that are be associated with formulae [START_REF] Gabbay | Fibring argumentation frames[END_REF] and (18):

(13) ∀c ∈ Arg                   ∀α ∈ Attack       t α = c →     ∃β ∈ Attack(t β ∈ {s α , α} ∧ eV al(β) ∧ eAcc(s β )) ∨ U nSupp(s α ) ∨ U nSupp(α)                   → Acc(c)           (14) ∀δ ∈ (Attack ∪ ESupport)                   (∀α ∈ Attack       t α = δ →     ∃β ∈ Attack(t β ∈ {s α , α} ∧ eV al(β) ∧ eAcc(s β )) ∨ U nSupp(s α ) ∨ U nSupp(α)                   → V al(δ)          
Formulae (13) and ( 14) are added to the base Σ ss (REBAF), thus producing the base Σ r (REBAF).

Stability

In [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF][START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], the stability principle has been expressed by the three following formulae that are associated with formulae (17) and (18):12 

(15) ∀c ∈ Arg   ¬Acc(c) → ∃β ∈ Attack(t β = c ∧ eV al(β) ∧ eAcc(s β ))   (16) ∀α ∈ (Attack ∪ ESupport)   ¬V al(α) → ∃β ∈ Attack(t β = α ∧ eV al(β) ∧ eAcc(s β ))   (19) ∀x ∈ (Arg ∪ Attack ∪ ESupport) (¬Supp(x) → U nSupp(x))
Formulae ( 15), ( 16) and ( 19) are added to the base Σ ss (REBAF), thus producing the base Σ s (REBAF). 3.4 Characterizing Semantics of a REBAF [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] proposed characterizations of the REBAF structures under different semantics in terms of models of the bases Σ(REBAF), Σ d (REBAF), Σ r (REBAF), Σ s (REBAF). The common idea is that a structure gathers the acceptable elements w.r.t. it.

Let REBAF = A,R a ,R e ,s,t,P . Given I an interpretation of Σ(REBAF), we define: Let recall that the characterization proposed in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] applies to a restricted variant of REBAF in which two constraints are given: first interactions are assumed to be binary and secondly there is no cycle of supports. This second restriction has been relaxed in [START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] using the notion of impacting support chains and the fact that the existence of support cycles has an impact on the U nSupp predicate. That leads to the following notion: 13Definition 13 Let REBAF = A,R a ,R e ,s,t,P . I is a support-founded interpretation iff the two following conditions hold:

S I = {x ∈ A|I(eAcc(x)) = true} Γ I = {x ∈ R a |I(eV al(x)) = true} ∆ I = {x ∈ R e |I(
1. for each argument (resp. support) x non prima-facie, belonging to a maximal DCS and such that I(eAcc(x)) = true (resp. I(eV al(x)) = true), there exists at least one impacting support chain ISC = (x 0 , . . . , x n ) for x that is satisfied by I, i.e. ∀x i ∈ ISC, if x i ∈ A then I(eAcc(x i )) = true, otherwise I(eV al(x i )) = true;

2. for each element x of REBAF, I(U nSupp(x)) = true iff x ∈ U nSupp(U I ) with U I = (S I , Γ I , ∆ I ).

Let Σ x be a base of formulae built over REBAF. A support-founded model of Σ x is a support-founded interpretation which is a model of Σ x .

Then using these support-founded models, the following characterization of REBAF semantics is given in [START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]: 

Proposition 1 Let REBAF = A,R a ,R e ,

Collective interactions in a REBAF: a new proposition

Considering the logical translation of a REBAF, it remains a constraint that is relaxed neither in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], nor in [START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]: the interactions must be binary ones. So in this section we propose a new encoding that relaxes this constraint and allows collective interactions.

Vocabulary

The first evolution of the previous encoding is a mandatory modification of the vocabulary in order to take into account the fact that the source of an interaction can be a set of arguments. So the old unary function S becomes now a binary predicate:

S(a, α) means that "the argument a belongs to the source of α"

Formulae

The second evolution concerns the formulae in which sources appear. Three cases occur and each case corresponds to a particular behaviour: 14The source is used as a parameter in the predicate eAcc; in this case, the idea is that the source of an interaction is e-accepted iff all the arguments belonging to this source are also e-accepted; so the old formula eAcc(s α ) corresponds to: ∀a ∈ Arg(S(a, α) → eAcc(a))

The source is used as a parameter in the predicate U nSupp; in this case, the idea is that the source of an interaction is unsupportable iff at least one argument belonging to this source is also unsupportable; so the old formula U nSupp(s α ) corresponds to:

∃a ∈ Arg(S(a, α) ∧ U nSupp(a))
The source is used as a parameter in the equality predicate; here two subcases are possible depending of the sense of this equality:

either the old equality s α = a becomes a logical or between all the elements of the source:

(a 1 = a) ∨ (a 2 = a), ∨ . . . ∨ (a n = a), for s(α) = {a 1 , a 2 , . . . , a n } that is equivalent to: ∃x ∈ Arg(S(x, α) ∧ x = a)
or the old equality s α = a becomes a logical and between all the elements of the source: S(a 1 , α) ∧ S(a 2 , α), ∧ . . . ∧ S(a n , α), for s(α) = {a 1 , a 2 , . . . , a n } Of course formulae (1) to (19) could be rewritten using the new formalism but the result becomes hard to read. So, our choice is to keep the old formulae in which the predicates applied to a source are considered as the shortcut defined as previously.

For instance, for formula (2), we keep:

∀x ∈ Arg ∀y ∈ Attack (eV al(y) ∧ (t y = x) ∧ eAcc(s y )) → N Acc(x)
but that means:

∀x ∈ Arg ∀y ∈ Attack (eV al(y) ∧ (t y = x) ∧ ∀x i ∈ Arg(S(x i , y) → eAcc(x i ))) → N Acc(x)
Another example is formula [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], we keep:

∀α ∈ Attack       Acc(t α ) →     ∃β ∈ Attack (t β ∈ {s α , α} ∧ eV al(β) ∧ eAcc(s β )) ∨ U nSupp(s α ) ∨ U nSupp(α)           but that means: ∀α ∈ Attack       Acc(t α ) →     ∃β ∈ Attack (∃x ∈ Arg(S(x, α) ∧ t β = x) ∨ t β = α) ∧ eV al(β) ∧ ∀x ∈ Arg(S(x, β) → eAcc(x)) ∨ ∃x ∈ Arg(S(x, α) ∧ U nSupp(x)) ∨ U nSupp(α)          
The only exception of this use of shortcut is formula (6) that is very specific and must be rewritten; the old formula

(s α = a) ∧ (t α = b) for all α ∈ R a ∪ R e with s(α) = a and t(α) = b becomes: S(a 1 , α) ∧ . . . ∧ S(a n , α) ∧ (t α = b) for all α ∈ R a ∪ R e with s(α) = {a 1 , . . . , a n } and t(α) = b
Note that the definition of the bases of formulae remains unchanged. At this point, it is worth to note that if there is no support cycles in the REBAF then the use of the formulae bases is enough for characterizing the REBAF semantics since any element could be supported without itself. So the difficulty comes with the existence of these cycles and implies that we are able to remove the models in which an element is supported because it is satisfied by these models. The detection of such models was exactly the aim of Definition 13.

Nevertheless, since we now want to take into account collective supports, some questions appear:

"Is Definition 13 enough for characterizing support-founded models when collective supports exist in the RE-BAF?"

and more generally "How to take into account support cycles when we have collective supports?".

The answer to these questions probably implies new definitions for the notions of DCS, of impacting support chains and of support-founded interpretations.

Some examples

First consider some examples that show how the source of a collective interaction that is not reduced to a singleton can impact the computation of structures (the three first examples have no cycle whereas there are support cycles in the two last ones).

Example 7

In this example, there are a collective attack and a collective support using the same source (this source is graphically represented by a "dotted diamond" containing the elements composing the source). And e is the only element that is not prima-facie. Since c cannot be supported without e and e cannot be supported without {b, c}, a support cycle appears. So neither β nor can be activable and there is one preferred structure that is: ({b, d}, {β, π}, { , }).

The interesting point is the form of this support cycle that is slightly different that the description given in Definition 8, since the target of (i.e. c) and the source of (i.e. {b, c}) do not coincide whereas follows in the cycle.

Example 11 This example gives another example of support cycles. In this example, none argument is prima-facie. Moreover, they are unsupportable since they cannot be supported without themselves: a is supported if c is supported; c is supported if d is supported; d is supported if {b, c} is supported, so if b and c are supported; and finally b is supported if a is supported. Moreover it graphically seems that there are here several supports cycles that are interconnected.

Here the only one preferred structure that is:

(∅, ∅, {α 1 , α 2 , β 1 , β 2 }).

New definitions

In this section we adapt the previous definitions about support cycles in order to take into account collective interactions.

The first definition that must be adapted is the definition of DCS. Here the important point is the fact that, in a cycle, the targets and the sources must be clearly identified: 15n > 0 and n is the size of the DCS, ∀i = 0 . . . n, either x i ∈ R e , or x i = (a, S) with S ∈ 2 A \ ∅ and a ∈ A ∩ S (a is called the "target field" of x i and S is called the "source field" of x i ),

Definition 14 Let REBAF = A,R a ,R e ,s,t,P . A directed cycle of supports (DCS) in this REBAF is a sequence C = (x 0 , . . . , x n-1 , x n ) such that:
x n = x 0 ∀i = 0 . . . n -1, if x i = (a, S) ∈ (A, 2 A \ ∅) then x i+1 ∈ R e and s(x i+1 ) = S, ∀i = 0 . . . n -1, if x i ∈ R e then -if x i+1 ∈ R e then t(x i ) = x i+1 -if x i+1 = (a, S) ∈ (A, 2 A \ ∅) then t(x i ) = a. A simple DCS C = (x 0 , . . . , x n-1 , x n ) is a DCS in which ∀i, j = 0 . . . n -1, if i = j then x i = x j . An input support of a DCS C = (x 0 , . . . , x n-1 , x n ) is: either a support y ∈ R e \ C and ∃x i ∈ C such that: -if x i ∈ R e then t(y) = x i , -if x i = (a, S) ∈ (A, 2 A \ ∅) then t(y) = a, or a set of arguments y ∈ 2 A \ ∅ such that y ∈ C and ∃x i ∈ R e ∩ C and y = s(x i ).
The set of inputs of the DCS C is denoted by C In and it is partitioned into

C In A = C In ∩ (A, 2 A \ ∅) and C In Re = C In ∩ R e .
Note that a DCS is now an "hybrid" sequence composed either with interactions, or with pairs (an argument, a no empty set of arguments). The other definitions (for aggregation and maximal DSC) remain unchanged. Example 10 (cont'd): In this example, there is only one DCS whose size is 4: ((c, {b, c}), , (e, {e}), , (c, {b, c})).

Note that a DCS whose size is n can be represented by n different sequences obtained by a shift to the right or to the left. For instance, in this example, the DCS can also be written as: , (e, {e}), , (c, {b, c}), )

Example 12 This example gives another example of support cycles with an higher-order support. Here β, d and e are not prima-facie. Here there is one DCS: ((d, {a, d}), α, β, (e, {e}), γ, (d, {a, d})).

Note that the set {b, c} is an input of this DCS; moreover, the only preferred structure is ({a, b, c}, ∅, {α, γ}).

Example 13 This example gives an example of several support cycles that can be aggregated. Here the only preferred structure is ({e, d, a}, ∅, {α 1 , α 2 , β 1 , β 2 , γ}). Here there are three DCS (only the last one is a maximal DCS):

((d, {d}), β 1 , (a, {a, b}), α 1 , (d, {d})) ((c, {c}), β 2 , (b, {a, b}), α 2 , (c, {c})) ((d, {d}), β 1 , (a, {a, b}), α 2 , (c, {c}), β 2 , (b, {a, b}), α 1 , (d, {d}))
The interesting point is the fact that the set {a, b} that is the source of α 1 and α 2 corresponds to two distinct elements in a DCS: (a, {a, b}) and (b, {a, b}); and each of them can be used as the preceding element of the supports α 1 or α 2 in the DCS. Moreover it could be possible to also have (b, {b}) in a DCS since, for instance a support exists in the REBAF using b as source. Consider for instance the following REBAF: In this case, the maximal DCS is: ((d, {d}), β 1 , (a, {a, b}), α 2 , (c, {c}), β 2 , (b, {b}), δ, (e, {e}), γ, (d, {d}), β 1 , (a, {a, b}), α 1 , (d, {d})).

Consider now the notion of impacting support chain. The following example shows that this notion must also be improved: Let consider now the elements that impact the supported status of argument z. Clearly simple chains are not enough and we must use the notion of "trees"; indeed, any element of the source of a collective support must be supported if we want the target of this support to be also supported. Here, three "trees" must be taken into account for computing the supported status of z.

a 0 α 1 a b β 1 x γ 1 d 0 e 0 α 2 α 3 c d e β 2 y γ 2 d 0 e 0 α 2 α 4 c d e β 2 y γ 2
The previous example gives the main ideas for defining the notion of impacting support tree for an element of the REBAF:

Definition 15 Let REBAF = A,R a ,R e ,s,t,P . Let x be an element of this REBAF. An impacting support tree for x is a set IST = {x 0 , . . . , x n } with n > 0 defined as follows:

∀x i , i ∈ [0 . . . n], x i ∈ (A ∪ R e ) \ {x}
and is called a node of the tree;

Let IST P = (IST ∩ P ∩ A). IST P = ∅; !∃x i ∈ IST such that x i ∈ R e and t(x i ) = x; this x i is called the root of the tree; ∀i, j ∈ [0 . . . n], if i = j, then x i = x j ; ∀x i ∈ IST ∩ A, either ∃x j ∈ IST ∩ R e such that x i = t(x j ), or x i ∈ IST P (in this case x i is called a leaf of the tree);

∀x i ∈ IST ∩ R e , ∀x j ∈ s(x i ), x j ∈ IST.
Note that, as in Definition 9, an element x cannot belong to its impacting support tree, and by definition non repetition is authorized. Example 7 (cont'd): There is no IST for any interaction or argument except for e. And the IST for e is: {b, c, }, with that is the unique root of IST and b, c that are the leaves of the tree. Note that IST P = {b, c} and so is not empty.

Example 8 (cont'd): In this example, even e has no IST. Indeed the support cannot belong to an IST for e since one argument of its source (c) cannot belong to an IST (it is neither prima-facie, nor targeted by a support).

Example 9 (cont'd): In this case, we obtain the same result as in Example 7: there is no IST for any interaction or argument except for e and the IST for e is: {b, c, }.

Note that the fact that b is attacked but not defended has no impact on the building of an IST containing b. Indeed the existence of an IST for an element x is not a guarantee for the supportability of x. It is just a necessary condition. The other elements of the REBAF have no IST.

Characterization: a new proposition

The previous definition completed by the constraint concerning the unsupportable status of the element 16 leads to the following new definition for support-founded interpretations and models: Definition 16 Let REBAF = A,R a ,R e ,s,t,P . I is a support-founded interpretation iff the two following conditions hold:

1. for each argument (resp. support) x non prima-facie, belonging to a maximal DCS and such that I(eAcc(x)) = true (resp. I(eV al(x)) = true), there exists at least one impacting support tree IST = (x 0 , . . . , x n ) for x that is satisfied by I, i.e. ∀x i ∈ IST, if x i ∈ A then I(eAcc(x i )) = true, otherwise I(eV al(x i )) = true;

2. for each element x of REBAF, I(U nSupp(x)) = true iff x ∈ U nSupp(U I ) with U I = (S I , Γ I , ∆ I ).

Let Σ x be a base of formulae built over REBAF. A support-founded model of Σ x is a support-founded interpretation which is a model of Σ x .

Then using these support-founded models, the following characterization of REBAF semantics is: Proposition 2 Let REBAF = A,R a ,R e ,s,t,P . Let U = (S, Γ, ∆) be a structure on REBAF. 

Example 9 (cont'd):

The ⊆-maximal support-founded models I of Σ d (REBAF) (in the sense of Definition 16) correspond to the preferred structure ({a, c, d}, {α, β, π}, { }). We see here that the existence of an IST for e was not enough for having e in the structure since there is no model I satisfying eAcc(b).

Example 10 (cont'd):

The ⊆-maximal support-founded models I of Σ d (REBAF) (in the sense of Definition 16) correspond to the preferred structure ({b, d}, {β, π}, { }). The models that satisfy eAcc(e) are not kept since they are not support-founded (no IST for e that could be satisfied).

Example 11 (cont'd):

The ⊆-maximal support-founded models I of Σ d (REBAF) (in the sense of Definition 16) correspond to the preferred structure (∅, ∅, {α 1 , α 2 , β 1 , β 2 }). The models that satisfy eAcc(a) (resp. eAcc(b), eAcc(c) or eAcc(d)) are not kept since they are not support-founded (no IST for these arguments that could be satisfied).

Example 12 (cont'd):

The ⊆-maximal support-founded models I of Σ d (REBAF) (in the sense of Definition 16) correspond to the preferred structure ({a, b, c}, ∅, {α, γ}). The models that satisfy eAcc(d) (resp. eAcc(e), eV al(β)) are not kept since they are not support-founded (no IST for these arguments or this interaction that could be satisfied).

Example 14 (cont'd):

The ⊆-maximal support-founded models I of Σ d (REBAF) (in the sense of Definition 16) correspond to the preferred structure (A, R a , R e ).

Conclusion

In this work, we have solved a specific issue concerning the handling of collective interactions in the logical translation of argumentation frameworks with higher-order attacks and evidential supports (REBAF). The resulting encoding is quite similar to the existing one for REBAF without collective interactions but the impact is much more important when support cycles exist and implies several new definitions.

Thus the notion of directed cycle of supports (DCS) has been improved. A new notion has also introduced here, the impacting support trees (IST), in order to improved the notion of support-founded models.

Then using all these elements, we provided a characterization of admissible (resp. complete, preferred, stable and grounded) structures in the presence of support cycles and collective interactions. I(Supp(x)) = true. As a consequence, I(eAcc(x)) = true and x ∈ S I . Proving that Γ I = Γ and ∆ I = ∆ is similar.

Obviously I satisfies formulae (3), (2bis), (3bis).

Let us first consider formula (2). Let y ∈ R a and x ∈ A with x = t y , I(eV al(y)) = true and I(eAcc(s y )) = true (so ∀x i ∈ s(y), I(eAcc(x i )) = true). Then s y ⊆ S and y ∈ Γ. Let us assume that I(N Acc(x)) = false. Then I(Acc(x)) = true, by definition of I(N Acc). As U is admissible, U is conflict-free, so x cannot belong to S, and, by definition of I(Acc), it follows that x ∈ Def ended(U ) and so y ∈ U nAct(U ), that is y belongs to U nAcc(U ) or s y is included in U nAcc(U ). However, y and all elements of s y being elements of the admissible structure U , due to Lemma 1, we obtain a contradiction. Hence, we have proved that I(N Acc(x)) = true and formula (2) is satisfied by I. Proving that formula (1) is satisfied by I is similar.

Let us first consider formula [START_REF] Gabbay | Fibring argumentation frames[END_REF]. Let x such that I(Supp(x)) = true. By definition of I(Supp), x ∈ Sup(U ). By definition of Sup(U ), either x ∈ P or x is the target of a support α such that α ∈ ∆, α ∈ Sup(U \ {x}), s α ⊆ S and s α ⊆ Sup(U \ {x}). In the first case, formula (17) is trivially satisfied by I. In the second case, as S = S I and ∆ = ∆ I it holds that I(eAcc(s α )) = true and I(eV al(α)) = true. Hence formula (17) is satisfied by I.

Let us consider formula (1bis). In the case when I(P rimaF acie(x)) = true, x ∈ P, so x ∈ Sup(U ), hence I(Supp(x)) = true and formula (1bis) is satisfied. Let us consider the case when x ∈ P and x is the target of a support y such that I(eAcc(s y )) = true and I(eV al(y)) = true. We have to prove that I(Supp(x)) = true. As S I = S and ∆ I = ∆ it holds that y ∈ ∆ and s y ⊆ S. Moreover, as U is admissible, U is self-supporting, so y belongs to Sup(U ) and s y is included in Sup(U ). From Lemma 3, it follows that x ∈ Sup(U ) hence I(Supp(x)) = true. So formula (1bis) is satisfied by I.

Let us now consider formula [START_REF] Gabbay | Semantics for higher level attacks in extended argumentation frames[END_REF]. Consider x such that I(U nSupp(x)) = true. By definition of I(U nSupp), x ∈ U nSupp(U ). And, since U nSupp(U ) = Sup(U ) (where U = (Def A (U ), R a , Def Re (U ))), x ∈ Sup(U ). So x / ∈ P and using the contrapositive of Lemma 3, applied to the structure U , it follows that for each support leading to x, either the support or its source (at least one of its components) is defeated by U , or the support or its source (at least one of its components) is itself not supported by U , hence belongs to U nSupp(U ). So the "only if" part of formula (18) is satisfied by I. For the "if" part, let us consider x such that x / ∈ P and for each support leading to x, either the support or its source (at least one of its components) is defeated by (S I , Γ I , ∆ I ) = U , or the support or its source (at least one of its components) belongs to U nSupp(U ) = Sup(U ). As U \ {x} ⊆ U , it holds that Sup(U ) ⊆ Sup(U \ {x}). Hence, from Definition 5, it holds that x / ∈ Sup(U ), that is x ∈ U nSupp(U ) and so I(U nSupp(x)) = true. So formula (18) is satisfied by I.

Let us now consider formula [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]. Let α ∈ R a and x ∈ A such that x = t α and I(Acc(x)) = true. By definition of I(Acc), either x ∈ S or (x / ∈ S, x / ∈ Sup(U ) and x ∈ Defended (U )). As U is admissible, in both cases, it holds that α ∈ U nAct(U ). Then the fact that I satisfies formula [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] follows directly from the definition of U nAct(U ), the definition of I(U nsupp) and the fact that for an argument (resp. an attack) x, I(eAcc(x)) = true (resp. I(eV al(x)) = true) iff x ∈ S (resp. x ∈ Γ). Proving that formula (12) is satisfied by I is similar.

Finally, we have to prove that I is support-founded. Condition 2 of Definition 13 is trivially satisfied. Consider now Condition 1. Let x ∈ A such that x is non prima-facie and there exists a DCS C containing x. Assume that I(eAcc(x)) = true. So x ∈ U and, since U is admissible (so self-supporting) and x non prima-facie, then there exists at least one tree of supported supports (x 0 , . . . , x n ) leading to x with any x i belonging to U . Moreover, for all x i , we have x i ∈ Sup(U ). So following the definition of I we have either I(eAcc(x i )) = true or I(eV al(x i )) = true depending of the nature of x i (argument or support). Thus there exists an impacting support tree (x 0 , . . . , x n ) for x that is satisfied by I. So I is a support-founded model. The proof for x ∈ R e is similar.

⇐ Let I be a support-founded model of Σ d (REBAF). We have to prove that the structure U = (S I , Γ I , ∆ I ) is admissible.

Let prove that U is conflict-free w.r.t. REBAF. If it is not the case, there exist x ∈ S I ∪ Γ I ∪ ∆ I and y ∈ Γ I , with s y ⊆ S I and t y = x. By definition, it holds that I(eAcc(s y )) = true and I(eV al(y)) = true. Moreover, in the case when x ∈ S I , it holds that I(eAcc(x)) = true and so I(Acc(x)) = true (as I satisfies formula (2bis)). Then it holds that I(N Acc(x)) = false (as I satisfies formula (3)). As a consequence, formula (2) is falsified. In the case when x ∈ Γ I ∪ ∆ I , it holds that I(eV al(x)) = true and so I(V al(x)) = true (as I satisfies formula (3bis)). As a consequence, formula (1) is falsified. In both cases, there is a contradiction with I being a model of Σ(REBAF).

Let us prove that U is self-supporting. Assume that x ∈ S I (resp. x ∈ Γ I ∪ ∆ I ). By definition, it holds that I(eAcc(x)) = true (resp. I(eV al(x)) = true). As I satisfies formula (2bis), I(Supp(x)) = true. As I satisfies formula [START_REF] Gabbay | Fibring argumentation frames[END_REF], it holds that either x ∈ P or x is the target of a support x n of source x n-1 such that x n ∈ ∆ I and x n-1 ∈ S I . In the first case, it holds that x ∈ Sup(U ). In the other case, it holds that I(eAcc(x n-1 )) = true and I(eV al(x n )) = true, and formula (17) can still be used, thus enabling to build a tree of supports. As U is finite and I is support founded, this process will end with x 1 ∈ P and x 0 = s(x 1 ) ∈ P. And so it can still be proved that x ∈ Sup(U ) w.r.t. Definition 5. Hence U is self-supporting.

It remains to prove that, given x an element of the structure, if x is the target of an attack α, then α is unactivable w.r.t. U . Assume that x ∈ S I is the target of an attack α. By definition, it holds that I(eAcc(x)) = true. It follows that I(Acc(x)) = true. As I satisfies formula [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], it follows that either there exists an attack β targeting α (or an element of s α ) with β ∈ ∆ I and s β ⊆ S I , or I satisfies U nSupp(α) (or I satisfies U nSupp(s α ), i.e. at least for one element x i of s α we have I(U nSupp(x i )) = true).

In the first case, it holds that α (resp. an element of s α ) belongs to Def (U ).

In the second case, we prove that α (resp. an element of s α ) belongs to U nSupp(U ). For that purpose, we must prove that for any element x, if I satisfies U nSupp(x), then x ∈ U nSupp(U ), or equivalently, if x ∈ Sup(U ) then I does not satisfy U nSupp(x). Let us consider x ∈ Sup(U ).

There is a tree of supports leading to x, rooted in prima-facie elements such that each support (and its source) in the tree is not defeated by U . As I satisfies formula [START_REF] Gabbay | Semantics for higher level attacks in extended argumentation frames[END_REF], the contrapositive of the "only if" part of formula (18) can be used for proving that each supported element y in this tree is such that I(U nSupp(y)) = false. The proof starts with the prima-facie elements of the set, and goes on by induction. Thus it can be proved that I(U nSupp(x)) = false. So, in both cases, α is unactivable w.r.t. U . The same reasoning can be done for x ∈ Γ I ∪ ∆ I using formula [START_REF] Cohen | A survey of different approaches to support in argumentation systems[END_REF]. Hence, we can prove that U is admissible.

(complete semantics)

⇒ Assume that the structure U = (S, Γ, ∆) is complete. Let us build an interpretation I of Σ d (REBAF) ∪ Σ r (REBAF):

We keep the same interpretation as the one used in Item 1 of the current proof except for Acc, V al. For all x ∈ A, I(Acc(x)) = true iff x ∈ S or (x / ∈ S and x ∈ Defended (U )). For all x ∈ R a (resp. ∈ R e ), I(V al(x)) = true if and only x ∈ Γ (resp. ∆) or (x / ∈ Γ (resp. ∆) and x ∈ Defended (U )). We have to prove that S I = S, Γ I = Γ and ∆ I = ∆, and that I is a support-founded model of Σ d (REBAF) ∪ Σ r (REBAF).

Note that if U is complete, for all x ∈ A ∪ R a ∪ R e , if x / ∈ S and x ∈ Defended (U ) then x / ∈ Sup(U ). So the above constraint expressed for the definition of I(Acc) (resp. I(V al)), x / ∈ S and x ∈ Defended (U ), is stronger than the one used for defining a model of an admissible structure (x / ∈ S, x / ∈ Sup(U ) and x ∈ Defended (U )).

Definition 1 [

 1 15] A Dung's argumentation framework (AF) is a tuple AF = A, R , where A is a finite and nonempty set of arguments and R ⊆ A × A is a binary attack relation on the arguments, with (a, b) ∈ R indicates that a attacks b.

Example 3

 3 An attack (a, b) ∈ R is represented by two nodes a, b (in a circle) and a simple edge from a to b: a b

Example 6

 6 This example extends Example 5 by adding a second cycle including the source of the support targeted in the first DCS.

C

  = (a, α, β, c, γ, d, δ, a) with C In = {b, π} and C = (b, β, c, γ, d, µ, b) with C In = {α, π} are the two simple DCS.

  )), (eAcc(a) ∧ eV al(α)) → Supp(b) (from (1bis)), (Supp(a) ∧ Acc(a)) ↔ eAcc(a) (from (2bis)), (Supp(b) ∧ Acc(b)) ↔ eAcc(b) (from (2bis)), (Supp(c) ∧ Acc(c)) ↔ eAcc(c) (from (2bis)), (Supp(α) ∧ V al(α)) ↔ eV al(α) (from (3bis)), (Supp(β) ∧ V al(β)) ↔ eV al(β) (from (3bis))}

Example 4 (

 4 cont'd): Considering the version 1, Σ ss (REBAF) is obtained from Σ(REBAF) by adding the following formulae: Supp(b) → (eAcc(a) ∧ eV al(α)) ¬U nSupp(a) ¬U nSupp(α) U nsupp(b) ↔ (U nSupp(a) ∨ U nSupp(α)) As there is no attack, Σ d (REBAF) contains nothing more than Σ ss (REBAF). And finally Σ r (REBAF) is obtained from Σ ss (REBAF) by adding the formulae: Acc(a), Acc(b) and V al(α). Considering the version 2, Σ ss (REBAF) is obtained from Σ(REBAF) by adding the following formulae: Supp(b) → (eAcc(a) ∧ eV al(α)) ¬Supp(α) ¬U nSupp(a) U nSupp(α) U nsupp(b) ↔ (U nSupp(a) ∨ U nSupp(α)) Once again, Σ d (REBAF) contains nothing more than Σ ss (REBAF). And Σ r (REBAF) is obtained from Σ ss (REBAF) by adding the formulae: Acc(a), Acc(b) and V al(α). Example 2 (cont'd): Σ ss (REBAF) is obtained from Σ(REBAF) by adding formulae among which: Supp(b) → (eAcc(a) ∧ eV al(α)) ¬U nSupp(a) ¬U nSupp(c) ¬U nSupp(α) ¬U nSupp(β) U nsupp(b) ↔   (eV al(β) ∧ eAcc(c)) ∨ U nSupp(a) ∨ U nSupp(α)   Then Σ d (REBAF) is obtained from Σ ss (REBAF) by adding formulae among which: V al(α) → (U nSupp(β) ∨ U nSupp(c)) Σ r (REBAF) is obtained from Σ ss (REBAF) by adding the formulae: Acc(a) Acc(b) Acc(c) V al(β) (U nSupp(c) ∨ U nSupp(β)) → V al(α) Σ s (REBAF) is obtained from Σ ss (REBAF) by adding the formulae: Acc(a) Acc(b) Acc(c) V al(β) ¬V al(α) → eV al(β) ∧ eAcc(c) ¬Supp(b) → U nSupp(b) and also ¬Supp(x) → U nSupp(x) for x ∈ {a, c, α, β}

  eV al(x)) = true} Moreover, let I be a model of Σ(REBAF): I is a ⊆-maximal model of Σ(REBAF) iff there is no model I of Σ(REBAF) with (S I ∪ Γ I ∪ ∆ I ) ⊂ (S I ∪ Γ I ∪ ∆ I ). I is a ⊆-minimal model of Σ(REBAF) iff there is no model I of Σ(REBAF) with (S I ∪ Γ I ∪ ∆ I ) ⊂ (S I ∪ Γ I ∪ ∆ I ).

  s,t,P . Let U = (S, Γ, ∆) be a structure on REBAF. 1. U is admissible iff there exists I support-founded model of Σ d (REBAF) (in the sense of Definition 13) with S I = S, Γ I = Γ and ∆ I = ∆. 2. U is complete iff there exists I support-founded model of the union (Σ d (REBAF) ∪ Σ r (REBAF)) (in the sense of Definition 13) with S I = S, Γ I = Γ and ∆ I = ∆. 3. U is a preferred structure iff there exists I ⊆-maximal support-founded model of Σ d (REBAF) (in the sense of Definition 13) with S I = S, Γ I = Γ and ∆ I = ∆. 4. U is the grounded structure iff S = S I , Γ I = Γ and ∆ I = ∆ where I is a ⊆-minimal support-founded model of (Σ d (REBAF) ∪ Σ r (REBAF)) (in the sense of Definition 13). 5. U is stable iff there exists I support-founded model of Σ s (REBAF) (in the sense of Definition 13) with S I = S, Γ I = Γ and ∆ I = ∆. Let us illustrate the above results on the previous examples: Example 5 (cont'd): Apply Proposition 1 leads to the unique complete, preferred, stable and grounded structure ({a, b, c, d, e}, ∅, {α, β, δ, γ, π}). Example 6 (cont'd): Apply Proposition 1 leads to the unique complete, preferred, stable and grounded structure ({a, b, c, d, e}, ∅, {α, β, γ, δ, π, µ}).

Example 8 eExample 9

 89 In this case, the source of β and is composed by supported and not defeated arguments. So β and are activable and there is one preferred structure that is: ({b, c, e, f }, {β, π}, { }). This is the same example as Example 7, except that argument c is now not prima-facie.Since c is unsupportable, then neither β nor can be activable and there is one preferred structure that is: ({b, d}, {β, π}, { }). This example is an extension of Example 7 in which we add an attack against one argument of the source of the collective interactions.Here, b is attacked and cannot be defended. So β and are unactivable and there is one preferred structure that is: ({a, c, d}, {α, β, π}, { }).Example 10 This is an extension of Example 8 with an additional support from e to c.

Example 10 (

 10 cont'd): In this example, due to the existence of a DCS, there is no IST for e, since, by definition, e cannot belong to an IST for itself. Example 11 (cont'd): Here arguments have no IST (because of the existence of a DCS) and interactions have no IST (because they are not targeted by a support). Example 12 (cont'd): Considering the existence of the DCS and the fact that d in this DCS needs to be supported without itself, there is no IST for d and so for β, and e. Example 14 (cont'd): Considering a, there is one IST = {α 1 , a 0 }. Considering d, there is one IST = {α 2 , d 0 }. Considering e, there are two IST, {α 3 , e 0 } and {α 4 , e 0 }. Considering z, there are three IST: {γ 1 , x, β 1 , a, b, α 1 , a 0 } (γ 1 being the root, a 0 and b being the leaves), {γ 2 , y, β 2 , c, d, e, α 2 , d 0 , α 3 , e 0 } (γ 2 being the root, c, d 0 and e 0 being the leaves), {γ 2 , y, β 2 , c, d, e, α 2 , d 0 , α 4 , e 0 } (γ 2 being the root, c, d 0 and e 0 being the leaves).

1 .

 1 U is admissible iff there exists I support-founded model of Σ d (REBAF) (in the sense of Definition 16) with S I = S, Γ I = Γ and ∆ I = ∆. 2. U is complete iff there exists I support-founded model of the union (Σ d (REBAF) ∪ Σ r (REBAF)) (in the sense of Definition 16) with S I = S, Γ I = Γ and ∆ I = ∆. 3. U is a preferred structure iff there exists I ⊆-maximal support-founded model of Σ d (REBAF) (in the sense of Definition 16) with S I = S, Γ I = Γ and ∆ I = ∆. 4. U is the grounded structure iff S = S I , Γ I = Γ and ∆ I = ∆ where I is a ⊆-minimal support-founded model of (Σ d (REBAF) ∪ Σ r (REBAF)) (in the sense of Definition 16). 5. U is stable iff there exists I support-founded model of Σ s (REBAF) (in the sense of Definition 16) with S I = S, Γ I = Γ and ∆ I = ∆. Using this proposition, the preferred semantics produce the following results on the previous examples. Example 7 (cont'd): The ⊆-maximal support-founded models I of Σ d (REBAF) (in the sense of Definition 16) correspond to the preferred structure ({b, c, e, f }, {β, π}, { }). Example 8 (cont'd): The ⊆-maximal support-founded models I of Σ d (REBAF) (in the sense of Definition 16) correspond to the preferred structure ({b, d}, {β, π}, { }).

Where "iff" (resp. "w.r.t.") stands for "if and only if" (resp. "with respect to").

It can be proved that the minimal fixed point of F is conflict-free.

By Γ def = Ra\Γ we denote the set complement of Γ w.r.t. Ra. Similarly, by ∆ def = Re\∆ we denote the set complement of ∆ w.r.t. Re.

By abuse of notation, we write U \T instead of (S\T, Γ\T, ∆\T ) with T ⊆ (A ∪ Ra ∪ Re).

In fact, strictly speaking, this chain is in reality a "tree". That is due to several reasons. The first one is that each support can be in turn supported. And the second reason is the fact that interactions are collective; so the source of a support can be a set of arguments and in this case all elements in the source are needed for supporting the target.

The definition for the grounded extension is not given in[START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] but can be easily proposed following the definition used in the AF case.

Note that this is also equivalent to U is self-supporting, conflict-free and S ∪ Γ ∪ ∆ ⊆ U nAcc(U ).

By abuse of language, the set of the elements composing C will be also denoted by C. So C will be used with set operators as ∩ ou ∪ and will be comparable with other sets.

In the remainder of the paper, we will write sα (resp. tα) in place of S(α) (resp. T (α)) for simplicity.

We recall that P ⊆ A ∪ Ra ∪ Re.

We omit the formulae issued from (4) to[START_REF] Cayrol | Bipolarity in argumentation graphs: towards a better understanding[END_REF] and the tautologies.

Let us recall that a stable structure U = (S, Γ, ∆) satisfies: S ∪ Γ ∪ ∆ ⊆ U nAcc(U ).

This is a correction of the notion of support-founded model proposed initially in[START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] that has been proved incorrect in[START_REF]Handling support cycles in the logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF].

Note that a formula as x ∈ {sy, y} is just a shortcut for (x = sy) ∨ (x = y) (see for instance formulae[START_REF] Gabbay | Semantics for higher level attacks in extended argumentation frames[END_REF] and (11) to (14)).

By abuse of language, the set of the elements composing C will be also denoted by C. So C will be used with set operators as ∩ ou ∪ and will be comparable with other sets.

See Definition 9.

This proof is inspired by the proof of Proposition 6.1 in[START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF].

By definition, formulae (4) to[START_REF] Cayrol | Bipolarity in argumentation graphs: towards a better understanding[END_REF] are satisfied by I.

(5) ∀x (Arg(x) ∨ Attack(x) ∨ ESupport(x))

The logical theory Π consists of all the above formulae. Then the logical encoding of specificities of a given REBAF leads to the set Π(REBAF) consisting of the following formulae. Let A = {a 1 , . . . a n }, R a = {α 1 , . . . , α k }, R e = {α k+1 , . . . , α m } and P = {x 1 , . . . x l }. 10 (6) (s α = a) ∧ (t α = b) for all α ∈ R a ∪ R e with s(α) = a and t(α) = b (7) ∀x (Arg(x) ↔ (x = a 1 ) ∨ . . . ∨ (x = a n )) [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] ∀x (Attack(x) ↔ (x = α 1 ) ∨ . . . ∨ (x = α k )) (8bis) ∀x (ESupport(x) ↔ (x = α k+1 ) ∨ . . . ∨ (x = α m )) (8ter) ∀x (P rimaF acie(x) ↔ (x = x 1 ) ∨ . . . ∨ (x = x l )) (9) a i = a j for all a i , a j ∈ A with i = j (10) α i = α j for all α i , α j ∈ R a ∪ R e with i = j Given REBAF a higher-order argumentation framework, Σ(REBAF) will denote the set of first-order logic formulae describing REBAF. And so the logical theory Σ(REBAF) is the union of Π and Π(REBAF). It is obviously consistent.

In the following examples, using the equality axioms, a simplified version of Σ(REBAF) is given. 11 Example 4 (cont'd): Considering the version 1 of this example, we have: 

Considering the version 2 of this example, we have:

Example 2 (cont'd): Note that this example is a variant of the version 1 of Example 4 in which the attack β targeting α has been added.

), Supp(a) (from (1bis), (8ter)), Supp(c) (from (1bis), (8ter)), Supp(α) (from (1bis),(8ter)),

A Proofs

We recalled here a notation and some lemmas given in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] that will be useful for our proof.

Notation 1 (Notation Appendix A.1 in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]) Let U = (S, Γ, ∆) be a structure of REBAF, and x ∈ A ∪ R a ∪ R e .

x will be said to be defended by U , iff every attack α ∈ R a with t(α) = x is unactivable w.r.t. U . Defended (U ) will denote the set of elements that are defended by U . Note that x ∈ Acc(U ) iff x ∈ Sup(U ) and x ∈ Defended (U ).

Lemma 1 (Lemma 7 in [START_REF] Cayrol | Argumentation frameworks with recursive attacks and evidence-based support[END_REF] and Lemma Appendix A.1 in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]) Any conflict-free self-supporting structure U satisfies:

Lemma 2 (Lemma Appendix A.2 in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF]) Any stable structure U satisfies: Sup(U ) = U nSupp(U ).

The following lemme corresponds to Lemma Appendix A.3, in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF] but for collective interactions.

Lemma 3 Let U = (S, Γ, ∆) be a structure and x / ∈ P be the target of a support y such that y ∈ ∆ ∩ Sup(U ) and s y ⊆ S ∩ Sup(U ). Then, there exists a support z such that t z = x, z ∈ ∆ ∩ Sup(U \ {x}) and s z ⊆ S ∩ Sup(U \ {x}) and so x ∈ Sup(U ).

Proof of Lemma 3

Assume that x = t y with y ∈ ∆ ∩ Sup(U ) and s y ⊆ S ∩ Sup(U ). If y ∈ Sup(U \ {x}) and s y ⊆ Sup(U \ {x}), the result is proved with z = y. In the other case, without loss of generality, it can be assumed that s y ⊆ Sup(U \ {x}) (the reasoning with y / ∈ Sup(U \ {x}) would be similar). So s y ⊆ Sup(U ) \ Sup(U \ {x}). As s y ⊆ Sup(U ), there is a tree of supported supports (i.e. the support and its source belong to U ∩ Sup(U )) leading to an element of s y and rooted in prima-facie elements. As s y ⊆ Sup(U \ {x}), at least one support in this tree has x as its source. Then let us consider the shortest sub-tree of this tree that is rooted in prima-facie elements and ends with x. It follows that this subtree contains supported supports, is rooted in prima-facie elements and does not contain x. Taking z as the support targeting x in this subtree will end the proof.

Proof of Proposition 1. 17 Let REBAF = A, R a , R e , s, t, P .

(admissibility)

⇒ Assume that the structure U = (S, Γ, ∆) is admissible. Let us define an interpretation I of Σ d (REBAF).

The idea is to define I by successively adding constraints that I should satisfy:

= true and I(Supp(x)) = true). Note that in the current case, Sup(U ) refers to Definition 5. We have to prove that S I = S, Γ I = Γ, ∆ I = ∆, and that I is a support-founded model of Σ d (REBAF). And for proving that I is a support-founded model of Σ d (REBAF) it is sufficient to prove that I satisfies the formulae (1), ( 2), (3), (1bis), (2bis), (3bis) and (17), ( 18), [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], [START_REF] Cohen | A survey of different approaches to support in argumentation systems[END_REF] and that is a support-founded interpretation. 18 Let x ∈ S I . By definition of S I , I(eAcc(x)) = true, that is I(Acc(x)) = true and I(Supp(x)) = true. By definition of I(Acc) and I(Supp) it follows that x ∈ S. Conversely, given x ∈ S, it holds that I(Acc(x)) = true. As U is admissible, U is self-supporting, so x ∈ Sup(U ), then it holds that Due to the above remark and the proof of Item 1 of this proof, it holds that I satisfies S I = S, Γ I = Γ, ∆ I = ∆, and that I is a model of Σ d (REBAF). Now let prove that I satisfies formulae [START_REF] Cohen | An approach to abstract argumentation with recursive attack and support[END_REF] and [START_REF] Cohen | On the acceptability semantics of argumentation frameworks with recursive attack and support[END_REF]. Let us consider formula [START_REF] Cohen | An approach to abstract argumentation with recursive attack and support[END_REF]. Let x ∈ A such that for each attack α targeting x, either I(U nSupp(α)) = true, or I(U nSupp(s α )) = true, or α (or an element of s α ) is attacked by β with β ∈ Γ I and s β ⊆ S I . Due to the definition of I(U nSupp), for each attack α targeting x, either α ∈ U nSupp(U ), or an element of s α ∈ U nSupp(U ), or α (or an element of s α ) belongs to Def (U ). In other words, for each attack α targeting x, α ∈ U nAct(U ), so x ∈ Defended (U ). Now, by definition of I(Acc), it holds that I(Acc(x)) = true. We have proved that I satisfies formula [START_REF] Cohen | An approach to abstract argumentation with recursive attack and support[END_REF]. Proving that I satisfies formula [START_REF] Cohen | On the acceptability semantics of argumentation frameworks with recursive attack and support[END_REF] 

It remains to prove that I is support-founded. For that purpose, the proof written in Item 1 of the current proof can be used as U is self-supporting.

⇐ Let I be a support-founded model of Σ d (REBAF)∪Σ r (REBAF). We have to prove that the structure U = (S I , Γ I , ∆ I ) is complete. For that purpose, it is enough to prove that Acc(U ) is included in S I ∪Γ I ∪∆ I . Consider x ∈ A ∩ Acc(U ). So x ∈ Sup(U ) and x ∈ Defended (U ). The first condition implies that I(Supp(x)) = true, as I satisfies formula (1bis) and following the definition of Sup(U ). The second condition means that for each attack α targeting x, either α ∈ U nSupp(U ), or an element of s α ∈ U nSupp(U ), or α (or an element of s α ) belongs to Def (U ) (i.e. α -or an element of s α -is attacked by β ∈ U with s β ⊆ U ). So, since I is a support-founded models (so Condition 2 of the definition of a support-founded model holds) and the fact that if an element β belongs to (resp. s β is included in) the structure then I(eV al(β)) (resp. I(eAcc(s β ))) is also true, the premisse of formula ( 13) is true, and as I satisfies formula [START_REF] Cohen | An approach to abstract argumentation with recursive attack and support[END_REF], it follows that I(Acc(x)) = true. As I satisfies formula (2bis) it holds that I(eAcc(x)) = true, so x ∈ S I . Similarly, it can be proved that for all x ∈ R a ∩ Acc(U ) (resp.

x ∈ R e ∩ Acc(U )), x ∈ Γ I (resp. x ∈ ∆ I ). We have proved that U is a complete structure. The proof is similar for any support or attack in Acc(U ).

(preferred semantics)

Let I be an interpretation of a set of formulae Σ x . Let U I denote the structure (S I , Γ I , ∆ I ).

It is easy to see that I is a ⊆-maximal support-founded model of Σ x iff the structure U I is ⊆-maximal among all the structures of the form U J = (S J , Γ J , ∆ J ), where J denotes a support-founded model of Σ x . Then taking Σ x = Σ d (REBAF), it follows that the preferred structures correspond to the structures U I where I is a ⊆-maximal support-founded model of Σ d (REBAF).

4. (grounded semantics) Let I be an interpretation of a set of formulae Σ x . Let U I denote the structure (S I , Γ I , ∆ I ).

It is easy to see that I is a ⊆-minimal support-founded model of Σ x iff the structure U I is ⊆-minimal among all the structures of the form U J , where J denotes a support-founded model of Σ x . Taking Σ x = Σ d (REBAF) ∪ Σ r (REBAF), it follows that the grounded structure correspond to the structure U I where I is a ⊆-minimal support-founded model of Σ d (REBAF) ∪ Σ r (REBAF).

(stable semantics)

⇒ Assume that the structure U = (S, Γ, ∆) is stable. Let us define an interpretation I of Σ s (REBAF) as follows:

Once again, we keep the same interpretation as the one used in Item 1 of the current proof except for Acc, V al.

We have to prove that S I = S, Γ I = Γ and ∆ I = ∆, and that I is a support-founded model of Σ s (REBAF). And, for proving that I is a support-founded model of Σ s (REBAF) it is sufficient to prove that I satisfies formulae (1), ( 2), ( 3), (1bis), (2bis), (3bis) and ( 17), ( 18), ( 15), ( 16), [START_REF] Karacapilidis | Computer supported argumentation and collaborative decision making: the HERMES system[END_REF] and that I is support-founded.

Let x ∈ S I . By definition, I(Acc(x)) = true and I(Supp(x)) = true. By definition of I(Acc) and I(Supp), it follows that x ∈ Sup(U ) and (x ∈ S or x / ∈ Def (U )). Following Lemma 2, x / ∈ U nSupp(U ) and (x ∈ S or x / ∈ Def (U )). If x / ∈ S, as U is stable, it follows that x ∈ Def (U ) or x ∈ U nSupp(U ). We obtain a contradiction, hence x ∈ S. Conversely, given x ∈ S, it holds that I(Acc(x)) = true. As U is stable, U is self-supporting, so x ∈ Sup(U ), then it holds that I(Supp(x)) = true. As a consequence, I(eAcc(x)) = true and x ∈ S I . Proving that Γ I = Γ and ∆ I = ∆ is similar.

Obviously I satisfies formulae (3), (2bis), (3bis).

Let us first consider formula [START_REF] Baroni | AFRA: Argumentation framework with recursive attacks[END_REF]. Let y ∈ R a and x ∈ A with x = t y , I(eV al(y) = true and I(eAcc(s y ) = true. Then s y ⊆ S and y ∈ Γ, and it holds that x ∈ Def (U ). As U is stable, U is conflictfree, so x cannot belong to S. Hence we have x / ∈ S and x ∈ Def (U ), or equivalently I(Acc(x)) = false, by definition of I(Acc) and then I(N Acc(x)) = true, by definition of I(N Acc). We have proved that I satisfies formula [START_REF] Baroni | AFRA: Argumentation framework with recursive attacks[END_REF]. Proving that formula (1) is satisfied by I is similar.

Proving that I satisfies formulae (1bis), ( 17), ( 18) can be done with exactly the same reasoning as the one used in Item 1 of the current proof.

Let us now consider formula [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF]. Let x ∈ A such that I(Acc(x)) = false. By definition of I(Acc), it holds that x / ∈ S and x ∈ Def (U ). So, there is y ∈ Γ with x = t y and s y ⊆ S. Hence, there is y ∈ Γ I with x = t y and s y ⊆ S I , or equivalently, there is y ∈ R a with x = t y and I(eV al(y)) = true and I(eAcc(s y )) = true. We have proved that I satisfies formula [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF]. Proving that formula (16) is satisfied by I is similar.

Lastly, we consider formula [START_REF] Karacapilidis | Computer supported argumentation and collaborative decision making: the HERMES system[END_REF]. Let x ∈ A ∪ R a ∪ R e such that I(Supp(x)) = false. By definition of I(Supp), x / ∈ Sup(u). Due to Lemma 2, it follows that x ∈ U nSupp(U ), hence I(U nSupp(x)) = true, by definition of I(U nSupp). We have proved that I satisfies formula [START_REF] Karacapilidis | Computer supported argumentation and collaborative decision making: the HERMES system[END_REF]. So I is a model of Σ s (REBAF).

It remains to prove that I is support-founded. For that purpose, the proof written in Item 1 of the current proof can be used as U is self-supporting.

⇐ Let I be a support-founded model of Σ s (REBAF). We have to prove that the structure U = (S I , Γ I , ∆ I ) is stable.

As noted in Definition 7, it is sufficient to prove that U is conflict-free, self-supporting and satisfies U ⊆ U nAcc(U ).

As Σ s (REBAF) contains Σ(REBAF), from Proposition 6.1 in [START_REF] Cayrol | Logical encoding of argumentation frameworks with higher-order attacks and evidential supports[END_REF], we know that the structure U is conflict-free. Moreover, Σ s (REBAF) contains formulae (17), [START_REF] Gabbay | Semantics for higher level attacks in extended argumentation frames[END_REF]. So, with exactly the same reasoning as the one used in Item 1 for the admissible case, it can be proved that U is self-supporting. It remains to prove that U ⊆ U nAcc(U ). Let x ∈ A such that x ∈ U . So x / ∈ S I and by definition of S I , I(eAcc(x)) = false. As I satisfies formula (2bis), it follows that I(Acc(x)) = false or I(Supp(x)) = false. In the case when I(Acc(x)) = false, as I satisfies formula [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF], it follows that x ∈ Def (U ). If I(Acc(x)) = true, it holds that I(Supp(x)) = false. As I satisfies formula [START_REF] Karacapilidis | Computer supported argumentation and collaborative decision making: the HERMES system[END_REF], it follows that I(U nSupp(x)) = true, so x ∈ U nSupp(U ) (following Condition 2 of Definition 13 since I is supportfounded). In both cases, we have that x ∈ U nAcc(U ). We have proved that U is stable.