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Abstract 

 

Numerous models have been developed in the literature to simulate the thermomechanical behavior of 

amorphous polymer at large strain. These models generally show a good agreement with experimental results 

when the material is submitted to uniaxial loadings (tension or compression) or in case of shear loadings. 

However, this agreement is highly degraded when they are used in the case of combined load cases. A 

generalization of these models to more complex loads is scarce. In particular, models that are identified in tension 

or compression often overestimate the response in shear. One difficulty lies in the fact that 3D models must 

aggregate different physical modeling, described with different kinematics. This requires the use of transport 

operators complex to manipulate. In this paper, we propose a mechanical model for large strains, generalized in 

3D, and precisely introducing the adequate transport operators in order to obtain an exact kinematic. The stress 

strain duality is validated in the writing of the power of internal forces. This generalized model is applied in the 

case of a polycarbonate amorphous polymers. The simulation results in tension/compression and shear are 

compared with the classical modeling and experimental results from the literature. The results highly improve 

the numerical predictions of the mechanical response of amorphous polymers submitted to any load case. 
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1. Introduction 

Amorphous polymers are known to be highly strain rate and temperature dependent. To understand their 

deformation mechanisms and to model their thermomechanical behavior at small and large strains, numerous 

studies [1–21] have been performed since the early 30’s. Most of the theories developed in the literature try to 

understand and to model the physics and the mechanics of amorphous polymers leading to the deformation 

processes. Thus, they have highlighted the importance of the different relaxation phenomena (glass transition 

and secondary relaxations) on the mechanical behavior of these materials, in particular the strain rate and 

temperature dependencies of the elastic modulus [1–3] and the yield stress [6–8, 11, 15]. Other models focus on 

the orientational hardening observed at large strain in the mechanical behavior of polymers [16–19, 22–24]. 

Based on these different theories, several numerical (visco)elastic-viscoplastic models [25–29] have been 

developed using a decomposition of the total deformation gradient into an elastic and an inelastic parts. At large 

strain, these models exhibit a good correlation between experimental results and numerical predictions for 

simple load cases such as uniaxial loadings (compression or tension), or independently in shear loading. The main 
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reason for this is because the model parameters are identified on these specific loading cases (uniaxial 

compressive/tensile loadings or shear loadings). However, when the same set of parameters is used to predict 

both uniaxial and shear mechanical behavior, inaccuracy of the numerical mechanical response is observed. Since 

large strain involves internally complex movements and deformation mechanisms, a true kinematics of the 

deformable solid is needed to predict the numerical mechanical behavior of amorphous polymers under any 

loading cases. However, introducing the true kinematics of the deformable solid into the constitutive equations 

is not an easy task. It needs to take into account transport operators such as rigid body spins induced by the 

different strain measures used. The solution proposed in this study is not unique, nevertheless, it allows to fit 

experimental results while focusing on a clear and strict theoretical background for the modelling of the large 

strain behavior of amorphous polymers.  

Under the assumption of small strain, there exist a linearized deformation tensor 𝜀  such that 𝜀̇ = 𝔻, 

where 𝜀̇ is the total time derivative of the linearized deformation tensor 𝜀  and 𝔻 is the rate of deformation 

tensor, defined as the symmetric part of the velocity gradient 𝕃. However, at large strain, such simple relation 

cannot be found due to the difficulty to calculate the material time derivative of the strain measure in the general 

three-dimensional deformation case. Among the various strain measures available in the literature, the 

logarithmic strain introduced by Hencky [30] was historically favored as it is considered as the most adequate 

strain measure in particular for experimental applications and due to its additive property [31–33]. Nevertheless, 

in the presence of fixed principal axes of strain, a rather simple expression links the rate of the deformation 

tensor 𝔻 and the logarithmic strain of the left stretch tensor 𝕍: 

𝔻 = (ln𝕍)
̇
, (1) 

with ( )̅̅ ̅̅ ̅̇  the time derivative of a given tensor. However, in the general case, when the principal axes of strain 

are not fixed, this relationship is no longer valid. Several authors [34–46] have theoretically investigated how to 

link 𝔻 to the logarithmic strain in the general three dimensional strain. By considering the rotation of the Eulerian 

or Lagrangian ellipsoid, Hill [36] established a relationship between 𝔻 and the logarithm of the right stretch 

tensor 𝕌 when the principal stretches are distinct. Later, Gurtin and Spear [37] proposed a relationship between 

𝔻 and ln 𝕍: 

𝔻 = (ln𝕍)° − 𝑠𝑦𝑚(𝔽Ω𝑟𝔽
−1) (2) 

where 𝔽  is the deformation gradient, Ω𝑟  is the spin of the right principal axes of strain. (ln𝕍)°  is the time 

derivative of ln 𝕍 given by the corotational derivative or Jaumann rate formula, and 𝑠𝑦𝑚(𝔽Ω𝑟𝔽
−1) corresponds 

to the symmetric part of 𝔽Ω𝑟𝔽
−1. Hoger [38, 39] proposed a rather complicated formula to relate 𝔻 and the 

derivative of ln 𝕍 and ln𝕌 A good correlation is obtained to Hill’s results. Moreover, Hoger [38, 39] established 

a necessary and sufficient condition for the Jaumann and the corotational derivatives to be equal to the rate of 

deformation tensor. 

Deriving a formula for the rate of deformation tensor from the strain measure will induce modifications 

in the expression of the stress tensor [46–49] according to stress-strain duality. By stress-strain duality, we 

understand that the power of internal forces 𝒫𝑖  is an intrinsic concept, independent of the chosen basis. In a 

given deformation basis, 

𝒫𝑖 = ∫(−𝕋:𝔻)𝑑𝑣 (3) 

where 𝕋 is the stress tensor. As a consequence of the stress-strain duality, the link between the Cauchy stress 

tensor and the rate of deformation tensor needs to account for the spins of the ellipsoid strain in the tensors’ 

expressions.  

In this paper, to propose a generalized model, we investigate the stress-strain duality by considering the 

true (3D) kinematics of the deformable solid and its consequences on the numerical thermomechanical 

modelling of amorphous polymers at large strain. Thus, we implement one of the theories developed to correlate 
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the rate of deformation tensor to the time derivative of the logarithmic strain into an elastic-viscoplastic model 

from the literature. We choose the polymer physics based model developed by Richeton et al. [26] which allows 

to reproduce with accuracy, for uniaxial loading cases, the thermomechanical behavior of amorphous polymers 

over a wide range of strain rates and temperatures. This model is briefly detailed in section 2. Section 3 is 

dedicated to the introduction of the true (3D) kinematics of the deformable solid according to the formalism of 

the numerical model. Then, a comparison between experimental results from the literature and the numerical 

predictions is provided in section 4. We show that by integrating the true (3D) kinematics of the deformable solid 

into the constitutive equations of amorphous polymers model, we develop a generalized model able to predict 

both uniaxial and shear loading using the same set of parameters.  

2. Constitutive equations 

Before presenting the generalized model in Section 3, we recall the previous work of Richeton’s model 

[26]. Richeton’s model [26] is an elastic-viscoplastic model based on the time–temperature superposition 

principle of the (i) elastic modulus [3] and (ii) yield stress [15]. To account for the drop of stiffness due to the 

glass transition, the expression of the elastic modulus considers Weibull statistics to represent its evolution over 

a large range of temperatures from glassy to rubbery region [3]. The evolution of the yield stress as a function of 

the temperature and the strain rate is described by the cooperative model which assumes cooperative 

movements between the molecular chain segments allowing them to jump from one equilibrium position to 

another. Based on previous work from Fotheringham and Cherry [13, 14], Richeton [15] assumed (i) the existence 

of an internal stress depicting the thermal history of the material and (ii) that the flow of the polymer is allowed 

by the cooperative movement of several polymer chain segments. 

These two models were implemented into a general 3D framework based on (i) the Cauchy stress tensor 

governed by the logarithmic strain measure to model the elastic behavior, and (ii) the back-stress tensor 

governed by the Green-Lagrange strain measure to model the viscoplastic behavior of amorphous polymers. In 

this section 2, the main equations of the constitutive model developed by Richeton [26] are presented. They will 

be used to introduce the stress-strain duality in section 3. 

2.1. Preliminary kinematics 

Let us consider a deformable solid where each material point will move from one position to another 

during its deformation through various configurations (initial, intermediate and final). At initial time 𝑡0, let 𝑿 ∈

 ℝ3 be the spatial position of a material point, in the initial (or reference) configuration ℛ𝑡0
0 ⊂ ℝ3, contained in 

the deformable solid. At time 𝑡, the particle is in the final (or current) configuration ℛ𝑡 ⊂ ℝ3. Let us denote 𝒙 ∈

 ℝ3 the spatial position of the material point in this final configuration. To follow the deformation of the material 

point from ℛ𝑡0
0  to ℛ𝑡  over the time interval 𝛥𝑡 = 𝑡 − 𝑡0, the deformation gradient 𝔽 = ∇𝒙(𝑿, 𝑡) is used. This 

total deformation can be seen as a combination of elastic ’e’, thermal ‘th’ and plastic or viscoplastic ‘p’ 

deformations, each one of these parts linking one configuration (initial or intermediate) to the next configuration 

(intermediate or final). The different intermediate and final configurations are related to the spatial position 

induced by a specific deformation. Let us assume the existence of two intermediate configurations denoted ℛ𝑡
1 

and ℛ𝑡
2. 𝔽𝑝 represents the plastic deformation gradient related to the plastic or viscoplastic deformation of the 

solid particle, and links together the initial and the first intermediate configurations, ℛ𝑡0
0  and ℛ𝑡

1 respectively. 

Similarly,  𝔽𝑡ℎ is the thermal deformation gradient, defined from the first intermediate configuration ℛ𝑡
1 to the 

second ℛ𝑡
2. It allows describing the evolution of the thermal deformation over time.  𝔽𝑒 is the elastic deformation 

gradient, defined from ℛ𝑡
2 to ℛ𝑡. This last gradient allows describing the evolution of the elastic deformation 

over time. The different gradient tensors are obtained by multiplicatively decomposing the total deformation 

gradient 𝔽 such that 𝔽 = 𝔽𝑒𝔽𝑡ℎ𝔽𝑝. A schematic representation of the different configurations and deformation 

tensors is represented in Figure 1.  

The solid deformation can occur through stretches and/or rotations. To identify the influence of each 

contribution, the polar decomposition, which multiplicatively decomposes the left or right stretch tensors, 

respectively 𝕌  or 𝕍 , from the rotation tensor ℝ , is performed on the deformation gradient. Thus, the 
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deformation gradient is written as 𝔽 = ℝ𝕌 = 𝕍ℝ. The rotation tensor ℝ links together the right and the left 

stretch tensors 𝕌 and 𝕍, respectively associated with the initial basis of deformation 𝚫, and the final basis of 

deformation 𝛅 through 𝕌 = ℝ𝑇𝕍ℝ or 𝕍 = ℝ𝕌ℝ𝑇. The principal stretches are the same whatever the basis. Thus, 

𝕌  and 𝕍 have the same eigenvalues. However, due to the change of configuration between 𝕌  and 𝕍, their 

orthogonal basis of eigenvectors, respectively 𝚫  and 𝛅, are different. They are linked together through the 

rotation tensor ℝ via the relation 𝛅 = ℝ𝚫. 

In addition, the current spatial position of the material point is correlated to its past deformation history. 

This is of a high importance for polymers since it can strongly affect the microstructure and the 

thermomechanical behavior of the material. The past and the current spatial position of the material point are 

related through the velocity gradient 𝕃 = 𝔽̇𝔽−1, where the superposed dot ( ̇ ) designates the material time 

derivative of a given tensor and 𝔽−1 represents the inverse tensor of 𝔽.  

 
Figure 1: Schematic representation of the different configurations, deformation tensors and deformation gradients. 𝓡𝒕

𝟎 is 

the initial (or reference) configuration, 𝓡𝒕
𝟏 and 𝓡𝒕

𝟐, the first and second intermediate configurations, respectively and 𝓡𝒕 

is the final (or current) configuration. The rate of deformation tensor 𝔻 =
𝟏

𝟐
(𝕃 + 𝕃𝑻) = 𝔻𝒆 +𝔻𝒕𝒉 +𝔻𝒑, is defined as 

the symmetric part of the velocity gradient 𝕃 = 𝔽̇𝔽−𝟏 = 𝕃𝒆 + 𝕃𝒕𝒉 + 𝕃𝒑 . Using the polar decomposition, the 
deformation gradient 𝔽 is multiplicatively decomposed into rotation tensor ℝ and left or right stretch tensors, respectively 
𝕌 or 𝕍. 

The behavior of amorphous polymers being strongly strain rate dependent, the rate of the stretches, the 

material properties and model parameters need to be evaluated to compute the flow rule of the material. From 

the expression of  𝕃, a unique additive decomposition can be performed such that 𝕃 = 𝔻 +𝕎 where 𝔻, the 

symmetric part of 𝕃, is related to the rate of the deformation tensor and 𝕎, the skew-symmetric part of 𝕃, is the 

spin tensor. 𝕎 is related to the rate of the rotation or vorticity of the solid. In order to identify the contributions 

of each configuration to the rate of stretches, the elastic, thermal and plastic deformation gradients are 

introduced in the expression of 𝔻. Thus, the rate of deformation tensor 𝔻 is additively decomposed into elastic, 

thermal and plastic rate of deformation tensors, respectively 𝔻𝑒, 𝔻𝑡ℎ and 𝔻𝑝: 

𝔻 = 𝔻𝑒 +𝔻𝑡ℎ +𝔻𝑝 (4) 

where 𝔻𝑒, 𝔻𝑡ℎ and 𝔻𝑝 are respectively the symmetric part of the elastic part 𝕃𝑒, the thermal part 𝕃𝑡ℎ, and the 

plastic part 𝕃𝑝 of the velocity gradient 𝕃 = 𝕃𝑒 + 𝕃𝑡ℎ + 𝕃𝑝 with 
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{
𝕃𝑒 = 𝔽̇𝑒𝔽𝑒−1

𝕃𝑡ℎ = 𝔽𝑒𝔽̇𝑡ℎ𝔽𝑡ℎ
−1
𝔽𝑒−1

𝕃𝑝 = 𝔽𝑒𝔽𝑡ℎ𝔽̇𝑝𝔽𝑝−1𝔽𝑡ℎ
−1
𝔽𝑒−1

 (5) 

In equation (5), 𝔽𝑒, 𝔽𝑡ℎ, and 𝔽𝑝 are defined in the schematic decomposition of Figure 1. By decomposing the rate 

of deformation tensor into its elastic, thermal and plastic parts, we can investigate the rigid body spins due to 

each deformation. Thus, the influence of each strain measure can be taken into account when modelling the 

thermomechanical behavior of the material.  

2.2. Elastic-viscoplastic model 

In Richeton’s model [26], according to Richeton et al. [3], Dupaix and Boyce [50], Pandini and Pegoretti 

[51, 52] and Bernard et al. [53], the Young’s modulus and Poisson’s ratio are strongly strain rate and temperature 

dependent. Therefore, the fourth order rigidity tensor ℂ𝑒 is also strain rate and temperature dependent through 

these two parameters [3]. The elastic response of the material is then described by the Cauchy stress tensor 𝕋, 

defined using the logarithm of the strain measure 𝕍𝑒 with 𝔽𝑒 = 𝕍𝑒ℝ𝑒: 

𝕋 =
1

𝐽
ℂ𝑒 ln 𝕍𝑒 (6) 

where 𝐽 = det 𝔽𝑒  is the volume change. The Cauchy stress tensor is computed in the orthogonal basis of 

deformation associated with 𝕍𝑒. Thus, 𝕋 is defined in the current configuration ℛ𝑡 since it corresponds to the 

final orthogonal basis of the elastic deformation. 

Beyond the yield point, predicted by the cooperative model [15], the mechanical behavior of the material 

is no longer elastic. According to Bowden and Haward [54], Boyce et al. [55], the stress-strain response of glassy 

polymers and the associated physics, particularly the orientational hardening, are close to the behavior observed 

for rubbery materials like elastomers. Thus, to account for the hardening observed in the viscoplastic response, 

the glassy polymers can be considered as a rubbery network. To represent this behavior, several hyperelastic 

models have been developed by considering a statistical model for the distribution of the polymer chain 

segments in the rubbery network [16–19, 22, 56]. These models allow predicting the sharp increase of stress due 

to the chain length locking. Among them, the 8-chain model developed by Arruda and Boyce [18] provides an 

accurate description of this mechanical behavior. When the material is submitted to a displacement or stress 

field, the polymer chain segments will move according to the imposed deformation until they break or they reach 

their maximal extension. To describe the orientational hardening of the material, the 8-chain model considers 

only two parameters: 𝐶𝑅, the rubbery modulus, and 𝑁, the number of statistical links in the chain (which is linked 

to the locking stretch). The viscoplastic response of the material is described using a kinematic hardening 

approach where the back-stress tensor 𝔹 is defined using the 8-chain model:  

𝔹𝑖 =
𝐶𝑅

3𝜆𝑐ℎ𝑎𝑖𝑛
√𝑁ℒ−1 (

√𝑁

𝜆𝑐ℎ𝑎𝑖𝑛
) (𝜆𝑖

2 − 𝜆𝑐ℎ𝑎𝑖𝑛
2 ) with 𝔹 = 𝜹𝑝⟦𝔹𝑖⟧𝜹

𝑝−1. (7) 

Here, 𝔹𝑖  are the principal components of the back-stress. Therefore, 𝔹𝑖  describes the diagonal components of 

the back-stress tensor𝔹  obtained after multiplication by the transfer matrix 𝜹𝑝 . 𝜆𝑖  are the principal plastic 

stretches (eigenvalues of 𝕍𝑝 with 𝔽𝑝 = 𝕍𝑝ℝ𝑝), and 𝜆𝑐ℎ𝑎𝑖𝑛
2  is the chain stretch equal to (𝜆1

2 + 𝜆2
2 + 𝜆3

2)/3. The 

notation ⟦ ⟧ defines the given tensor in the principal axes. The back-stress tensor is therefore computed in the 

orthogonal basis of deformation associated with 𝕍𝑝. The strain measure used in the back-stress relationship is 

relative to the Green-Lagrange strain measure 𝔼. More details about the actual strain measure will be provided 

in section 3.2. Thus, 𝔹 is defined in the first intermediate configuration ℛ𝑡
1  since it corresponds to the final 

orthogonal basis of the viscoplastic deformation. 
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To determine the rate of deformation tensors, we introduce the driving stress tensor 𝕋∗ defined as the 

difference between the Cauchy stress and the back-stress. Richeton et al. [26] proposed to rotate 𝕋 in order to 

define the Cauchy stress tensor and the back-stress tensor in the same first intermediate configuration ℛ𝑡
1: 

𝕋∗ = ℝ𝑒𝑇𝕋ℝ𝑒 −𝔹 (8) 

where ℝ𝑒 is the elastic rotation tensor. 

The flow rule allows expressing the plastic rate of deformation tensor 𝔻𝑝 as follows: 

𝔻𝑝 =
𝛾̇𝑝

√2𝜏
𝑑𝑒𝑣(𝕋∗) (9) 

with 𝛾̇𝑝 the plastic shear strain rate computed from the expression of the cooperative model given by Richeton 

et al. [15, 57], 𝜏 is the effective equivalent stress obtained from the deviatoric part of the driving stress tensor 

𝑑𝑒𝑣(𝕋∗) (𝜏 = [𝑑𝑒𝑣(𝕋∗): 𝑑𝑒𝑣(𝕋∗) 2⁄ ]1 2⁄ ). 

Finally, the thermal deformations occur through conduction, convection or self-heating phenomena. The 

evolution of the thermal rate of deformation tensor is assumed to follow an isotropic thermal expansion. Thus, 

the tensor 𝔻𝑡ℎ associated with the thermal deformation is given by: 

𝔻𝑡ℎ = 𝛽(𝜃)𝜃̇𝕀 (10) 

where 𝛽 is the thermal expansion coefficient, dependent on the temperature 𝜃, and 𝕀 is the identity tensor. 

The application of this model is conducted on polycarbonate (PC) and the model parameters (materials 

properties and parameters) are defined in the work of Richeton et al. [26] and  are given in Table 1. 

Table 1: Material properties for polycarbonate (PC) from Richeton et al. [26] 

 PC 

Elastic properties 

𝜀̇𝑟𝑒𝑓 (s-1) 

𝐸1
𝑟𝑒𝑓
/𝐸2

𝑟𝑒𝑓
/𝐸3

𝑟𝑒𝑓
 (MPa) 

𝑇𝛽
𝑟𝑒𝑓
/𝑇𝑔

𝑟𝑒𝑓
/𝑇𝑚

𝑟𝑒𝑓
 (K) 

𝑚1/𝑚2/𝑚3  

s 

1 

3500/1700/20 

195/423/436 

5/80/15 

0.011 

Flow properties 

n 

V (m3) 

𝜏𝑖(0) (MPa) 

𝑚 (MPa K-1) 

𝛾̇0 (s-1) 

Δ𝐻𝛽  (kJ mol-1) 

𝑐1  

𝑐2 (K) 

𝜏𝑝𝑠/𝜏𝑖   

ℎ (MPa K-1) 

5.88 

9.18 × 10−29  

81 

0.14 

1.36 × 1013 

40 

16.19 

55.6 

0.57 

300 

8-chain model properties 

𝐶𝑅(0) (MPa) 

𝑎 (MPa K-1) 

𝑁(0)  

𝑏  

37.57 

0.077 

1.960 

0.0013 

Material properties  

𝜌(298 K) (kg m-3) 

Γ(298 K) (W m-1 K-1) 

𝑐𝑝(298 K) (J kg-1 K-1) 

𝛽(298 K) (K-1) 

1200 

0.187 

1200 

70.2 × 10−6 
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𝜈(298 K)  0.36 

Up to this point, the general background of the thermomechanical modelling of amorphous polymers 

behavior [3, 15] was presented. In the following, we focus on the numerical modelling of the amorphous polymer 

mechanical behavior without thermal activation. The development of the thermal sensitivity of our model, in the 

framework of the generalized modelling, will be pursued in a future work. 

3. Generalized model 

In the model presented in section 2, two different strain measures are used in eq. (6) and in eq. (7). Eq. 

(6) defines Cauchy stress via linear Hooke’s law and using the logarithmic elastic strain (Henky strain). Eq. (7) 

defines the back-stress for kinematic hardening during plastic deformation via a non-linear, rubber-like, behavior 

where the Green-Lagrange measure of strain is used. Both of these strain measures, used to represent the large 

deformation of the material, will play an important role on the generalization of the numerical mechanical model 

developed by Richeton et al. [26]. In the following, the link between 𝔻, the time derivative of the strain measures, 

and the rigid body spin tensor will be done according to these measures. In order to simplify the equations, all 

relationships will be written based on the right stretch tensor 𝕌 (𝕌𝑒 and 𝕌𝑝). 

3.1. Logarithmic strain measure 

Let us consider the influence of the stress-strain duality on the elastic deformation modelling in this 

generalized model. According to eq. (6), the Cauchy stress tensor is defined using the logarithmic strain measure 

of the left stretch tensor 𝕍𝑒 which is suitable for large strains [47]. Several theories [47, 36–38, 44, 45] have been 

developed to correlate the rate of the logarithmic strain measure to the rate of deformation tensor at large strain. 

These theories are generally written using the right stretch tensor 𝕌. One of these first theories has been 

developed by Hill [36] where he established a relationship between 𝔻 and ln 𝕌
̇

. 

For applications to amorphous polymers at large strain, we propose to develop thereafter the reasoning 

in accordance with the logarithm strain measure.  

Let 𝐿𝑒 = ln𝕌𝑒  where the eigenvalues of 𝕌𝑒  are denoted by 𝜆𝑖
𝑒  (i=1,2,3) and the orthonormal basis of 

eigenvectors of 𝕌𝑒 is denoted by 𝚫e. Let Ω𝚫
e
 be the spin tensor associated to 𝕌𝑒. 𝕌𝑒 , 𝐿𝑒 and Ω𝚫

e
 are defined in 

[47] by: 

{

𝕌𝑒 = 𝚫e⟦𝜆𝑖
𝑒⟧𝚫e−1

𝐿𝑒 = 𝚫e⟦ln 𝜆𝑖
𝑒⟧𝚫e−1

ΩΔ
e

= −ΩΔ
e
= 𝚫ė𝚫e−1

. (11) 

The notation ⟦ ⟧  defines a diagonal tensor. Thus, ⟦𝜆𝑖
𝑒⟧  represents the tensor 𝕌𝑒  in its principal axes of 

deformation. Thus, the time derivative of 𝕌𝑒 is given by: 

𝕌̇𝑒 = 𝚫e⟦𝜆̇𝑖
𝑒⟧𝚫e−1 + Ω𝚫

e
𝕌𝑒 − 𝕌𝑒Ω𝚫

e
. (12) 

Thus, for the time derivative of 𝐿𝑒, we obtain: 

𝐿𝑒̇ = 𝚫e⟦𝜆̇𝑖
𝑒𝜆𝑖
𝑒−1⟧𝚫𝑒−1 + Ω𝚫

e
ln𝕌𝑒 − ln𝕌𝑒 Ω𝚫

𝑒
. (13) 

The underlined subscripts are used for non-summation on the repeated indices. In terms of components in the 

basis 𝚫e, the derivative of the logarithmic strain measure 𝐿𝑒̇ is expressed as: 

𝐿𝑖𝑗
𝑒̇ = {

𝜆̇𝑖
𝑒𝜆𝑗

𝑒−1            if 𝑖 = 𝑗

Ω𝑖𝑗
𝚫e ln (

𝜆𝑗
𝑒

𝜆𝑖
𝑒) if 𝑖 ≠ 𝑗

 (14) 
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For establishing a relationship between the time derivative of the strain measure 𝐿𝑒̇  and the rate of elastic 

deformation tensor 𝔻𝑒, we have to express 𝔻𝑒 in terms of stretch and rotation tensors. 𝔻𝑒 corresponds to the 

symmetric part of the velocity gradient 𝕃𝑒 = 𝔽̇𝑒𝔽𝑒−1. Using the polar decomposition of the deformation gradient 

𝔽𝑒, 𝔻𝑒 becomes: 

𝔻𝑒 =
1

2
(ℝ𝑒𝕌𝑒̇𝕌𝑒−1ℝ𝑒𝑇 + ℝ𝑒𝕌𝑒−1𝕌𝑒̇ℝ𝑒𝑇)  (15) 

with ℝ𝑒 the elastic rotation tensor. Multiplying expression (15) by ℝ𝑒𝑇on the left side and ℝ𝑒 on the right side, 

and subsisting 𝕌𝑒̇ by its expression given by eq. (12), we obtain: 

ℝ𝑒𝑇𝔻𝑒ℝ𝑒 = 𝚫e⟦𝜆̇𝑖
𝑒𝜆𝑖
𝑒−1⟧𝚫e−1 +

1

2
(𝕌𝑒−1Ω𝚫

e
𝕌𝑒 − 𝕌𝑒Ω𝚫

e
𝕌𝑒−1) (16) 

In terms of components in the basis Δ, 𝔻𝑒 is expressed as: 

𝔻𝑖𝑗
𝑒 =

{
 

 𝜆̇𝑖
𝑒𝜆𝑗
𝑒−1                   if 𝑖 = 𝑗

1

2
Ω𝑖𝑗
𝚫e (

𝜆𝑗
𝑒

𝜆𝑖
𝑒 −

𝜆𝑖
𝑒

𝜆𝑗
𝑒) if 𝑖 ≠ 𝑗 

 (17) 

Expressing Ω𝚫
e

 as a function of 𝔻𝑒  given by eq. (17), replacing it in eq. (14) and using elastic deformation 

formalism, we obtain: 

(ln𝕌𝑒
̇
)
𝑖𝑗
= 𝐾𝑖𝑗

𝑒𝔻𝑖𝑗
𝑒 with 𝐾𝑖𝑗

𝑒 =

{
 
 

 
 

1 if 𝑖 = 𝑗 (𝑎)

2𝜆𝑖
𝑒𝜆𝑗
𝑒

𝜆𝑗
𝑒2 − 𝜆𝑖

𝑒2
ln (

𝜆𝑗
𝑒

𝜆𝑖
𝑒) if 𝑖 ≠ 𝑗 and 𝜆𝑖

𝑒 ≠ 𝜆𝑗
𝑒 (𝑏)

1 if 𝑖 ≠ 𝑗 and 𝜆𝑖
𝑒 = 𝜆𝑗

𝑒 (𝑐)

 (18) 

where 𝐾𝑒 is a symmetric tensor representing the rigid body spins induced by the true kinematics of the elastic 

strain measure. 𝜆𝑖
𝑒  are the principal elastic stretches (eigenvalues of 𝕌𝑒). In the uniaxial directions of strain, when 

𝑖 = 𝑗 (eq. (18)(a)), the elastic strain and the logarithmic strain rate measure are equivalent. However, in the shear 

directions of strain, when the two principal in-plane stretches (eigenvalues of 𝕌𝑒 ) are distinct, the rate of 

deformation tensor components are corrected as shown by eq. (18)(b). This correction enables to link the time 

derivative of the logarithmic strain measure and the rate of deformation tensor. In addition, when two 

eigenvalues are equals, eq. (18)(b) is undetermined. Thus, to insure the continuity of strain when 𝜆𝑖
𝑒 = 𝜆𝑗

𝑒 with 

𝑖 ≠ 𝑗, it is common to use 𝐾𝑖𝑗
𝑒 = 1 (eq. (18)(c)). 

As the power density of internal forces should be the same regardless of the chosen basis of deformation, 

we have to use the stress-strain duality to correct the writing of the stress tensor in regards of the corresponding 

rate of deformation tensor. Thus, an update of 𝔻𝑒 leads to an update of the stress tensor. By taking into account 

the true (3D) kinematics of the deformable solid, the power density of internal forces is written: 

−𝒫 = 𝕋𝑖𝑗𝔻𝑖𝑗
𝑒  

                                          = (𝕋𝑘𝑙𝐾𝑘𝑙
𝑒−1)

𝑖𝑗
(𝐾𝑚𝑛

𝑒 𝔻𝑚𝑛
𝑒 )

𝑖𝑗
 

                       = (𝕋𝑘𝑙𝐾𝑘𝑙
𝑒−1)

𝑖𝑗
𝐿̇𝑒𝑖𝑗  

(19) 

Again, the underlined subscripts are classically used for non-summation on the repeated indices. Thus, the 

update of the Cauchy stress tensor is given according to the stress-strain duality of the logarithmic strain measure. 
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𝕋̂𝑖𝑗 = 𝐾𝑖𝑗
𝑒−1𝕋𝑖𝑗  (20) 

with the tensor 𝐾𝑒 defined in eq. (18) and 𝕋̂ the Cauchy stress tensor after considering the stress-strain duality 

due to the elastic deformation. It appears, from eq. (20), that no correction of the diagonal terms of Cauchy 

stresses is needed since the diagonal components of the tensor 𝐾𝑒 are equal to 1. Thus, the used elastic strain 

measure does not induce rigid body spins for uniaxial deformation. However, as shown by eq. (18)(b-c), in the 

case of shear deformation, a correction of the shear components of the Cauchy stress tensor is needed when the 

two in plane eigenvalues are distinct. Thus, this correction allows preserving the power density of “internal” 

forces concept in the elastic regime. 

3.2. Green-Lagrange measure 

In the framework of this generalized model, the effect of the true (3D) kinematics of the deformable solid 

need to be introduced in the definition of the viscoplastic deformation modelling to obtain the global mechanical 

behavior. According to eq. (7), the back-stress tensor, given by the 8-chain model, is defined using stretches 

(𝜆𝑖
2 − 𝜆𝑐ℎ𝑎𝑖𝑛

2 ). Thus, a theory of viscoplasticity will be applied to define the rigid body spins, different from the 

one used for the Cauchy stress tensor. To account for the inaccuracy of the strain measure at large strain, a 

similar approach to the elastic behavior (see previous section) is developed for the plastic rate of deformation 

and the back-stress tensors. 

To estimate the rate of deformation and back-stress tensors correction, we assume the existence of a 

transformation function 𝑓, defined from ℝ+ to ℝ+, representative of the viscoplastic strain measure. In order 

for 𝑓 to be a suitable strain measure, it is required to verify three conditions [47]: 

• 𝑓(1) = 0, 𝑓(𝕌) is null when there is no deformation 

• 𝑓̇(1) = 1, in small strain 𝑓(𝕌) ≡ 𝕌 

• 𝑓 is increasing with the dilatation 

To verify these three properties, a suitable function 𝑓 can be given, in the principal axes of deformation, by: 

𝑓(𝜆𝑖
𝑝
) =

1

2
(𝜆𝑖

𝑝2
− 𝜆𝑐ℎ𝑎𝑖𝑛

𝑝2
) (21) 

with 𝜆𝑖
𝑝

 the eigenvalues of 𝕌𝑝  and 𝜆𝑐ℎ𝑎𝑖𝑛
𝑝

= √(𝜆1
𝑝2
+ 𝜆2

𝑝2
+ 𝜆3

𝑝2
) 3⁄ . In the orthogonal axes of deformation 

relative to the strain measure 𝕌𝑝, 𝑓 is given by: 

𝑓(𝕌𝑝) = 𝚫𝑝⟦𝑓(𝜆𝑖
𝑝
)⟧𝚫𝑝−1 (22) 

with 𝚫𝑝 eigenvectors basis of 𝕌𝑝.  

One of the well-known measures based on the stretches is the Green-Lagrange measure 𝔼 defined as: 

𝔼 =
1

2
(𝔽𝑇𝔽 − 𝕀). (23) 

If the material is incompressible, which is the assumed case for the viscoplastic deformation of amorphous 

polymers, then trace(𝔼) = 0 and eq. (23) becomes: 

𝔼 =
1

2
(𝔽𝑇𝔽 −

trace(𝔽𝑇𝔽)

3
𝕀) (24) 

where trace(𝔽𝑇𝔽) 3⁄  corresponds to 𝜆𝑐ℎ𝑎𝑖𝑛
2  mentioned in eq. (21). Thus, under the above assumption, the 

transformation 𝑓  is equal to the Green-Lagrange strain measure. To better understand the influence of the 

viscoplastic strain measure on the thermomechanical modelling of the material behavior, the stress-strain duality 

consistency with the Green-Lagrange measure will be analyzed.  
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The derivative of the plastic strain rate measure is given by: 

𝑓(𝕌𝑝)
̇

= 𝚫p⟦𝑓(𝜆̇𝑖
𝑝
)⟧𝚫p−1 + Ω𝚫

p
𝑓(𝕌𝑝) − 𝑓(𝕌𝑝)Ω𝚫

p
 (25) 

with Ω𝚫
p
= 𝚫̇𝑝𝚫p−1 [38, 47] being the spin tensor associated to the orthogonal basis 𝚫p. In terms of components 

in 𝚫p, using eqs. (22) and (25), we obtain: 

𝑓(𝕌𝑝)
̇

𝑖𝑗
= {

𝜆̇𝑖
𝑝
𝜆𝑖
𝑝
                         if 𝑖 = 𝑗

1

2
Ω𝑖𝑗
𝚫p (𝜆𝑗

𝑝2
− 𝜆𝑖

𝑝2
) if 𝑖 ≠ 𝑗

. (26) 

The development performed in eq. (15) to (17) for the rate of elastic deformation tensor 𝔻𝑒 is also valid 

for the viscoplastic strain measure. Thus, using eq. (16) (superscript “e” is now “p”) and eq. (26), the relationship 

between the derivative of the strain measure 𝑓(𝕌𝑝)
̇

 and the rate of plastic deformation tensor 𝔻𝑝  can be 

deduced: 

𝑓(𝕌𝑝)
̇

𝑖𝑗
= 𝔻𝑖𝑗

𝑝
𝜆𝑖
𝑝
𝜆𝑗
𝑝
. (27) 

If 𝑖 = 𝑗, 𝔻𝑖𝑖
𝑝
= 𝜆̇𝑖

𝑝
𝜆𝑖
𝑝−1

 (see eq. (17)) leading to 𝑓(𝕌𝑝)
̇

𝑖𝑖
= 𝜆̇𝑖

𝑝
𝜆𝑖
𝑝

 (eq. (26)). Thus, eq. (27) is sufficient to take into 

account the correction for diagonal and shear components. According to the power of internal forces (eq. (19)), 

the correction of the back-stress tensor 𝔹̂ , induced by the Green-Lagrange measure, is given, in terms of 

component, by: 

𝔹𝑖𝑗̂ = 𝔹𝑖𝑗𝜆𝑖
𝑝−1
𝜆𝑗
𝑝−1
. (28) 

Expression (28) clearly shows that the true (3D) kinematics due to the viscoplastic deformation will affect the 

mechanical modelling of the material whatever the loading considered (uniaxial or shear loading). 

In this section 3, we developed the constitutive equations to take into account the true (3D) kinematics in the 

model developed by Richeton et al. [26] to predict the mechanical behavior of amorphous polymers. From a 

mathematical point of view, we can see that the generalization of the model will affect both uniaxial and shear 

loadings. In the next section, a clear understanding of the influence of the true kinematics on the prediction of 

the mechanical behavior of amorphous polymers will be reached. 

4. Generalized model prediction 

Section 3 highlights the influence of the true kinematics of the deformable solid on the mathematical 

expressions of Richeton’s model for the prediction of the mechanical behavior of amorphous polymers. It has 

been observed, from a mathematical viewpoint, that the generalization of the numerical model introduces 

significant changes in the expressions of the stress tensors and rate of deformation tensor, according to the 

stress-strain duality concept, for both uniaxial and shear loading cases. 

In this section 4, we investigate the numerical prediction of the generalized model on a polycarbonate 

(PC) tested at 25°C and 1 s-1. The material properties and model parameters can be found in Table 1. The 

numerical predictions from our model will be compared with the numerical predictions of the classical elastic-

viscoplastic model developed by Richeton et al. [26] and experimental results from the literature. 

4.1. Uniaxial compression 

Figure 2a represents the experimental results of a uniaxial compressive test on a polycarbonate. On the 

same figure, the experimental results are compared with the numerical prediction obtained with the model 

developed by Richeton et al. [26]. Figure 2b presents the numerical predictions obtained by the generalized 

model with the same parameters identified by Richeton et al. [26] (black line). Using the same set of parameters, 
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the simulation shows an important increase of stress as soon as the strain softening phase is over (20% strain). 

Therefore, it is necessary to re-identify the set of parameters for the generalized model. This is shown by the red 

line in Figure 2 that represents the numerical prediction of the generalized model after re-identification of the 

parameter set. This new simulation shows very good agreement with the experimental results. 

 
Figure 2: Influence of the true (3D) kinematics on the numerical prediction of the mechanical behavior of amorphous 
polymer submitted to uniaxial compressive loading (polycarbonate tested at 25°C and 1 s-1). Comparison between a) the 
mechanical model developed by Richeton et al. [26] and b) the generalized model. Because the correction of the Green-
Lagrange measure affects both diagonal and non-diagonal components, re-identification of the model parameters (see 
Table2) is needed to fit the experimental behavior in uniaxial compression. Both numerical predictions were compared to 
experimental data in uniaxial compression from Richeton et al. [26]. 

Since the set of parameters is generally determined to fit the experimental results in uniaxial loadings 

(tensile or compressive loading), it is necessary to determine a new set of parameters while accounting for the 

influence of the true (3D) kinematics of the deformable solid. That way, the numerical predictions can fit the 

uniaxial compressive experimental results. The new set of parameters is presented in Table 2. 

Table 2: New set of parameters for the description of the thermomechanical behavior of PC while accounting for the true 
(3D) kinematics. Only the changed parameters are mentionned. 

 
Former value [26] 

New value after accounting for 

the transport operators 

𝐶𝑅(0) (MPa) 37.57 31.57 

𝑁(0)  1.96 11.09 

Only the two re-identified parameters are presented in Table 2. These parameters correspond to the two 

parameters of the 8-chain model, related to the large strain behavior of the material: the rubbery modulus, 𝐶𝑅 

and 𝑁, the number of statistical links of length 𝑙 between entanglements. According to Arruda and Boyce [18], 

rubber elastic materials have important capabilities to deform under stretch. Thus, they present a high value for 

𝑁, such as 7.9 for silicon rubber, 40 for gum rubber or neoprene rubber, associated with a very low rubbery 

modulus (lower than 1 MPa). Although, rubber materials are usually chemically and physically crosslinked unlike 

glassy amorphous polymers, like polycarbonate, which exhibit only physical crosslinking. It is commonly admitted 

that, at large strain, the mechanical behavior of glassy amorphous polymers involves similar deformation 

mechanisms as rubber elastic materials. In the same paper – Arruda and Boyce [18] – , the chain locking stretch 

𝜆𝐿 is equal to the square root of N. Elongation at break for molded polycarbonate is estimated at 233% [58], 

which correspond to a chain stretch of 11.09. Using this set of parameters, a good agreement is observed 

between the numerical prediction and the experimental results from Richeton et al. [26]. 

4.2. Shear loading 

Ghorbel and collaborators [59, 60] highlight that constitutive models are able to well describe the 

mechanical behavior of amorphous polymer under uniaxial compressive or tensile loadings, but largely 
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overestimate the prediction of the shear behavior. Tomita [61] implied that this overestimation of the shear 

behavior is partially due to the development of internal stresses in the material leading to an evolution of the 

number of entangled points 𝑁 between uniaxial and shear loadings.  

Here, it is assumed that there is no microstructural change of the material between uniaxial and shear 

loadings. The influence of the true (3D) kinematics on the shear behavior modelling of amorphous polymers was 

modelled and is reported in Figure 3. The numerical predictions were compared with the experimental results 

on polycarbonate from Ghorbel et al. [60] and G’Sell et al. [62]. The experimental shear stress-shear strain curves 

were transformed into equivalent true stress-equivalent true strain curves to be compared with the numerical 

predictions using the relations: 

{
𝜀𝑒𝑞 = √3𝛾

𝜎𝑒𝑞 = 𝜏 √3⁄
 (29) 

where 𝜏 and 𝛾 refers to the shear stress and shear strain, respectively, while 𝜎𝑒𝑞  and 𝜀𝑒𝑞 refers to the equivalent 

true stress and equivalent true strain respectively. 

 

Figure 3: Influence of the true (3D) kinematics on the numerical prediction of the mechanical behavior of 
amorphous polymer submitted to pure shear loading (polycarbonate tested at 25°C and 1 s-1). Comparison 
between a) the mechanical model developed by Richeton et al. [26] and b) the generalized model. Accounting 
for the true (3D) kinematics and the parameters re-identification (see Table 2) highly improve the numerical 
prediction for shear loading. Both numerical predictions were compared to experimental data in shear loading 
from Ghorbel et al. [60] and G’Sell et al. [62]. 

In Figure 3a, we used the model developed by Richeton et al. [26], identified in uniaxial loading, to 

simulate the mechanical behavior of polycarbonate submitted to shear loading. The numerical prediction is 

compared with the experimental results from Ghorbel et al. [60] and G’Sell et al. [62].The Figure 3a shows that 

the yield stress is slightly overestimated due to the difficulties of the cooperative model to fit both uniaxial and 

shear loadings. The shear behavior of polymers is governed by specific physics which should be taken into 

account here to obtain better prediction of the yield stress. From 40% strain, discrepancy between the numerical 

prediction and the experimental results appears. At 100% strain, a large overestimation of the numerical 

response in shear loading is observed (+120% at 100% strain) as mentioned by Ghorbel and collaborators [59, 

60]. The Figure 3b shows the generalized model results. To fit the uniaxial compression while accounting for the 

true (3D) kinematics, a new set of parameters was identified (see Table 2). Using these data, the numerical 

prediction of the shear modelling was plotted on Figure 3b (red curve). For large strain, a slight underestimation 

occurs due to the change in stiffness in the experimental results around 70% strain (see [60, 62]). However, a 

very good agreement is observed between the numerical prediction and the experimental results of Ghorbel et 

al. [60] and G’Sell et al. [62] up to 70% strain after the parameters re-identification. 

5. Conclusion 
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This paper presents the influence of the true kinematics of the deformable solid on the prediction of the 

three-dimensional mechanical modelling of amorphous polymers. This concept is not taken into account in the 

numerical mechanical model developed in the literature which leads to misjudgments of the stress tensor and 

rate of deformation tensor at large strain. To better understand its influence on the mechanical behavior of 

polymers, the true kinematics were implemented in the numerical model developed by Richeton et al. [26] 

through the logarithmic strain measure for elastic deformation, and the Green-Lagrange measure for viscoplastic 

deformation. It has been observed that the true kinematics influences the numerical prediction of the mechanical 

behavior of amorphous polymers submitted to both uniaxial and shear loadings. Because the material 

parameters are generally fitted on uniaxial tests (compression or tension), a new identification of the model 

parameters at large strain is needed to obtain a good agreement between experimental results and the 

generalized model predictions  
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