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Polyvinylidene difluoride (PVDF) is a ferroelectric polymer characterized by negative strain along the 
direction of the applied electric field. However, the electromechanical response mechanism of PVDF 
remains unclear due to the complexity of the hierarchical structure across the length scales. In this 
letter, we employ the Finsler geometry model as a new solution to the aforementioned problem and 
demonstrate that the deformations observed through Monte Carlo simulations on 3D tetrahedral lattices 
are nearly identical to those of real PVDF. Specifically, the simulated mechanical deformation and 
polarization are similar to those observed experimentally.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Ferroelectric polymers such as polyvinylidene difluoride (PVDF) 
exhibit strongly coupled mechanical and electrical properties. Be-
cause of their large deformations under external electric fields, 
PVDF and its copolymers are commonly used to design actuators 
[1–3]. In contrast to typical classical ferroelectrics, PVDF exhibits 
an unusual negative longitudinal piezoelectric coefficient, i.e., the 
bulk thickness decreases in the direction of the applied electric 
field. Moreover, the mechanical strain is proportional to the square 
of the polarization [4], which implies that field-induced deforma-
tion in PVDF is a result of electrostriction. However, the strain 
and polarization are linearly correlated under low-intensity electric 
fields [4]. This complex behavior occurs because both piezoelectric-
ity and electrostriction are associated with scales ranging from the 
monomer to polymeric domain sizes, and this complex multiscale 
behavior can be reflected through the “electromechanical proper-
ties” of PVDF.
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Broadhurst et al. [5] demonstrated that the piezoelectricity can 
be attributed to a mechanism known as the dimensional effect. Ac-
cording to this mechanism, the dipoles are rigid, and the polariza-
tion behavior can be attributed to macroscopic shape deformation. 
Katsouras et al. [6] indicated that the piezoelectric nature of PVDF 
is a result of two microscopic mechanisms: changes in the lattice 
constant and coupling of the crystalline and amorphous parts.

Several studies based on first principles and molecular dynam-
ics simulations have been devoted to PVDF-based polymers [7–10]. 
However, purely atomistic approaches cannot be used to effectively 
examine polymers because polymer chains consist of thousands of 
monomers that cannot be processed through these calculations. 
Nevertheless, well-developed phenomenological models for ferro-
electrics exist, which can reproduce the polarization-electric field 
(PE) curves [11]. In addition, several researchers combined molec-
ular dynamics and phenomenological approaches [12]. Despite the 
notable research conducted in this domain, the molecular mech-
anisms of the piezoelectric effect and electrostriction in PVDF re-
main unclear.

In Finsler geometry (FG) modeling, the anisotropy of mechan-
ical, optical or other properties is represented through a Finsler 
metric that effectively deforms the discrete elastic energy [13]. 
Consequently, the corresponding interaction among the molecules 
is direction dependent and hence anisotropic. The FG modeling 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. (a) Thin cylinder discretized by tetrahedrons of size N = 10346 and used for 
the simulations. (b) Tetrahedron on which the Finsler metric is defined.

technique has been successfully applied to evaluate the deforma-
tion of materials with mechanical anisotropy, such as rubbers and 
soft biological materials [14], as well as the shape transformation 
of liquid crystal elastomers under external electric fields [15]. In 
this letter, we extend the FG model to describe the unusual piezo-
electric effect pertaining to ferroelectric polymers by defining the 
Finsler metric using an internal degree of freedom σ correspond-
ing to the polarization [16].

2. Model

Considering the continuous form of the Hamiltonian for the 
tensile energy,

S1 =
∫ √

g gab ∂�r
∂xa

· ∂�r
∂xb

d3x, (1)

where �r(∈ R3) is a position vector of the material and xa(a =
1, 2, 3) denotes the local coordinates. The symbol gab indicates the 
inverse of the Finsler metric gab , as described in the following 
text, and g is the corresponding determinant. If gab is the Eu-
clidean metric, the expression (1) represents the classical Gaussian 
bond potential, which is a 3D extension of the linear chain model 
[17].

To define the Finsler metric, we consider a 3D thin cylinder dis-
cretized by tetrahedrons by using Voronoi tessellation (Fig. 1(a)). 
The ratio of the cylinder height to its diameter is 0.125, and the 
lattice is the same as that used in Ref. [15]. A variable �σi (∈
S2 : unit sphere) is introduced for the polarization at vertex i of 
a tetrahedron (Fig. 1(b)). In contrast to the case of a liquid crys-
tal elastomer, as described in Ref. [15], �σi is assumed to be a polar 
variable. Using �σi , we define the unit Finsler length along bond i j
such that

vij =
√

1 − (�σi · �ti j)
2 + v0, (2)

where �ti j is the unit tangential vector from vertex i to vertex j. 
The expression presented as Eq. (2) is new and different from that 
used in [15]. In accordance with this new definition, the tetrahe-
drons shrink along the direction of �σ . The parameter v0 serves 
to strengthen/weaken the anisotropy in the mechanical properties, 
and it is assumed that v0 = 0.1. At vertex 1 of tetrahedron 1234 
(Fig. 1(b)), the metric is defined as

gab =
⎛
⎜⎝

v−2
12 0 0

0 v−2
13 0

0 0 v−2
14

⎞
⎟⎠ . (3)

Using the equivalence of the expressions with respect to the sub-
stitutions of indices (1 → 2, 2 → 3, 3 → 4, 4 → 1), (1 → 3, 2 →
4, 3 → 1, 4 → 2), · · · and by replacing the differentials with differ-
ences, we obtain
2

S1 =
∑

i j

�i jl
2
i j, �i j = 1

4N̄

∑
tet

γi j(tet),

γ12 = v12

v13v14
+ v21

v23 v24
, γ13 = v13

v12v14
+ v31

v32 v34
,

γ14 = v14

v12v13
+ v41

v42 v43
, γ23 = v23

v21v24
+ v32

v31 v34
,

γ24 = v24

v21v23
+ v42

v41 v43
, γ34 = v34

v31v32
+ v43

v41 v42
,

(4)

where N̄ is the mean total number of tetrahedrons sharing bond 
i j and is given by N̄ � 4.84 for the considered lattice.

We intuitively demonstrate the deformation mechanism of the 
PVDF shape by the external electric field. Note that �i j in S1
functions as the local tension coefficient of the bond i j. If the 
variable σ is aligned through an external electric field, owing to 
the interaction implemented in vij in Eq. (2), almost all �i j along 
the direction of the electric field become larger than those along 
the perpendicular direction. Consequently, the corresponding bond 
lengths �i j along the field direction decrease. These aspects per-
tain to an intuitive explanation of the effect of the interaction of 
the polarization vector σ and polymer position �r implemented in 
vij .

The full Hamiltonian of the model including certain additional 
terms can be expressed as

S = λS0 + γ S1 + κ S2 + S3 + αS4, (γ = 1)

S0 = −
∑
(i, j)

�σi · �σ j, S2 =
∑

i

[1 − cos(φi − π/3)] ,

S3 = −
∑

i

�σi · �E, S4 = −
∑

i

(�σi · �E)2.

(5)

The unit of energy is kB T , which is fixed as kB T = 1 in the simu-
lations, where kB and T denote the Boltzmann constant and tem-
perature, respectively. Notably, the simulation unit is defined by 
the relation kB T = 1 for the energy, and the relation for the lat-
tice spacing a = 1 pertains to the length. The lattice spacing a is 
introduced such that all the quantities with the unit of length are 
multiplied by a. Moreover, the coefficient γ of S1 is fixed as γ = 1
for simplicity. This condition can be ensured by rescaling T in the 
Boltzmann factor exp(−S/kB T ) such that γ /T = 1/T ′ . In accor-
dance with the new T ′ , all other coefficients are rescaled. The sym-
bol T denotes the temperature instead of T ′ , and the expression 
for S in Eq. (5) can be obtained. S2 corresponds to the strength 
against the shear and bending deformations, and φi denotes the 
internal angle of the triangle at vertex i (Fig. 1(b)). The parameter 
κ denotes the stiffness, and it influences the resistance against all 
deformations of the tetrahedron except the similarity deformation. 
As described in the subsequent sections, κ effectively determines 
the strength of the electromechanical coupling; i.e., this parameter 
is macroscopically reflected in the slope of the strain-polarization 
curve.

S0 represents the interaction between two nearest neighbors 
σi and σ j . Such a Heisenberg spin Hamiltonian is widely used in 
simulations for ferroelectric domain structures [18–20]. In these 
models, the energy 〈�σi · �σ j〉 = −S0/N without an external electric 
field increases with increasing λ. This phenomenon is the same 
as that considered in our FG model except that σ interacts with 
the lattice deformation through vij in Eq. (3). Thus, the remnant 
polarization is controlled by λ.

To describe the interaction between the polarization and exter-
nal electric field �E , we introduce S3 and S4. Note that the coeffi-
cient for S3 is assumed to be 1 for simplicity. This condition can 
be ensured by rescaling the electric field from E to E ′ such that 
aS3(E) + bS4(E) = S3(E ′) + αS4(E ′) for any combination of a(�= 0)
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and b. Using the relations E ′ = aE and α = b/a2, we can obtain 
the expression S3 +αS4 in Eq. (5). The symbol E denotes the elec-
tric field instead of E ′ . S3 represents a classical PE field interaction, 
and S4 is the corresponding quadratic extension. In this case, the 
shape of the PE curve is expected to be dependent on the param-
eter α. For small α values, the PE hysteresis loop is squarelike, 
which is typical of crystalline materials. The loop becomes more 
rounded with increasing α. Notably, λ and α determine the polar-
ization strength of the model, and the electromechanical coupling 
can be controlled by varying the parameters κ and v0.

The partition function Z is defined as

Z =
∑
σ

∫ N−1∏
i=1

d�ri exp(−S), (6)

where 
∑

σ denotes the sum over all possible configurations of σ , 
and 

∫ ∏N−1
i=1 d�ri denotes 3(N − 1)-dimensional integration, where 

the center of mass is fixed at the origin of R3.

3. Simulation results

The Monte Carlo (MC) simulation technique is used to study 
the behavior of a 3D cylinder under an external field �E along the 
z axis (Fig. 1(a)). The vertex position r and polarization �σ are up-
dated with the Metropolis algorithm [21]. To suppress meaningless 
configurations, we apply several constraints on r. Specifically, the 
volume of a tetrahedron cannot be negative or exceed ten times
the initial mean value. The squared bond lengths must be less than 
10�2

0, where �0 is the mean initial bond length. To ensure that the 
thin cylinder is horizontal, a hard-wall potential is introduced such 
that the z component of r lies in (−H0, H0), where H0 is the mean 
initial height of the cylinder in the equilibrium configuration for 
E = 0 and is evaluated through test simulations. These constraints 
do not influence the equilibrium configurations, and this aspect 
can be verified by the relation S1/N = 3(N − 1)/(2N) � 1.5, the 
plot of which is presented below. This relation can be attributed 
to the scale-invariant property of the partition function [15] and 
is used to verify whether the simulation program and simulations 
are sufficiently correct.

In this letter, we compare our simulation results with the ex-
perimental data of uniaxially drawn PVDF measured at a low elec-
tric field frequency of 0.1 Hz [4]. In the experimental data, the 
polarization and strain vs. electric field form hysteresis loops. How-
ever, the standard MC technique allows the examination of only 
the equilibrium properties. Therefore, we simulate only parts of 
the return loop in which the polarization aligns along the electric 
field and switching is not expected, as in the equilibrium configu-
ration. The data are acquired at frequencies less than 1 kHz [22], 
and hence, a value of 0.1 Hz is considered to be sufficiently low 
for equilibration.

In the simulations, we set λ = 0.345 to ensure that the sys-
tem is in the ferroelectric phase. λ = 0.345 is selected owing 
to the following: According to the test simulations, the polariza-
tion 〈σz〉 starts to saturate at 〈σ max

z 〉 = 0.94 with a further in-
crease in the electric field intensity. Additionally, among the ex-
perimental data, the maximal experimental polarization is P max

exp =
0.097 C/m2 = 97 mC/m2 [4]. Hence, 〈σz〉 and Pexp are related as 
〈σz〉 = (〈σ max

z 〉/P max
exp )Pexp ≈ 9.7Pexp. This relation can also be used 

to determine the remnant polarization P r = 54.8 mC/m2, which 
corresponds to the experimental polarization as E → 0 [4]. Thus, 
we obtain the simulated remnant polarization at E = 0 such that 
〈σ r

z 〉 = 0.0548 × 9.7 = 0.53, and thus, λ = 0.345 in the test simu-
lations. Using the factor P r/〈σ r

z 〉 = 54.8/0.53 ≈ 103.4, we define P
by P = 103.4〈σz〉 to compare 〈σz〉 with Pexp.
3

Fig. 2. (a) Snapshots of the lattice at (a) E = 0 and (b) E = 0.15 (⇔ Eexp �
189MV/m), where the scales of the graphics are the same. The small red cylinders 
on the surface denote the variable σ . The parameters are as follows: λ = 0.345, 
κ = 1.8, α = 300 and v0 = 0.1. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

Next, we consider the relation between the external electric 
fields E and Eexp. First, [15]

ε0
εE2
exp = αE2 kB T

a3
(7)

for the electrostriction energy, where ε0 = 8.85 × 10−12 F/m is 
the vacuum permittivity, 
ε = 0.25 is the dielectric anisotropy, 
referenced from [23], and a is the lattice spacing. The parame-
ter α is set to be relatively large (α = 300) because PVDF is a 
semicrystalline polymer, and thus, certain parts of the material 
are in the amorphous state. Moreover, owing to this reason, the 
PE loop becomes more rounded compared to that for crystalline 
ferroelectrics. According to the comparison of the dipole-field in-
teractions,

Pexp Eexp = 〈σz〉E f
N

V

kB T

a3
, (8)

where f is the number of monomers associated with one vertex, 
N = 10346 is the total number of vertices, and V = 836 is the 
cylinder volume (in units of a3) at E = 0.15. According to Eqs. (7)
and (8), E = ε0
ε(N〈σz〉/αV Pexp) f Eexp � 7.96 × 10−10 Eexp, using 
the abovementioned values, with f = 900, where Eexp is in units 
of MV/m. Furthermore, a ≈ 7.01 × 10−9 m according to Eq. (7), 
considering kB T = 4 × 10−21. This a is considerably larger than the 
van der Waals distance 10−10 m; i.e., a lies in a reasonable range.

Moreover, the value f = 900 is reasonable. This f is slightly 
larger than the estimated real density (N AρV a3)/(MN) ≈ 570, 
where ρ = 1.97 g/(cm)3 is the density of β-PVDF, N A is Avo-
gadro’s number, and M (=64 g/mol) is the molar mass of the 
PVDF monomer. This deviation occurs because the model is coarse 
grained, and each vertex corresponds to a lump of monomers; con-
sequently, the monomer density is different from the actual den-
sity. Moreover, if the coefficient γ of γ S1 in Eq. (5) is taken to be 
slightly larger than 1, the volume is expected to be slightly smaller 
than the current V ; consequently, f decreases and is hence con-
trollable.

Snapshots of the PVDF model are shown in Figs. 2(a) and (b), 
where the external electric field is E = 0 and E = 0.15, correspond-
ing to Eexp � 189 MV/m. The small red cylinders on the surface 
denote the variable σ . σ aligns along the z axis even when E = 0
because λ is set as λ = 0.345, corresponding to the ferroelectric 
behavior of the β phase of PVDF.

According to Fig. 3(a), the simulation results of P vs. E are in 
agreement with Pexp vs. Eexp. The influence of the other simula-
tion parameters κ and v0, which are set as κ = 1.8 and v0 = 0.1, 
on the PE curve is almost negligible.

Fig. 3(b) shows the relation between the height strain εH and 
electric field. The simulated strain is obtained by measuring the 
mean height of the cylinder. The mean height is calculated from 
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Fig. 3. (a) Polarizations Pexp and P vs. electric field. (b) Height strain εH vs. electric 
field. λ = 0.345.

Fig. 4. (a) Height strain εH vs. square of the polarization, with λ = 0.345 and 
α = 300. The solid line (black) indicates the theoretical prediction with the elec-
trostriction constant κ33 = −2.4 m4/C2. (b) Diameter strain and Poisson ratio vs. 
electric field. The large fluctuation in the Poisson ratio is due to the numerical dif-
ferentiation of the strain.

the vertices on the upper and lower surfaces at the central part 
inside a circle of radius R0 = 10�0, where �0 is the mean bond 
length. We should note that the experimental loop has a butterfly 
shape, and the polymer shrinks (elongates) along the electric field 
when the field direction and polarization are parallel (antiparallel) 
to each other. The simulation results show that the height of the 
cylinder decreases with increasing electric field, in agreement with 
the experimentally observed data.

The dependence of the PVDF strain on the square of the polar-
ization is linear and exhibits almost no hysteresis [4]. This finding 
implies that the strain is directly related to the polarization rather 
than the electric field. Therefore, we expect that the electrostric-
tion constant, i.e., the slope of the strain-polarization curve, can 
be controlled by κ . The solid line in Fig. 4(a), denoted “Theory”, 
is plotted using P 2(S) = P 2(0) + (1/κ33)S with the electrostric-
tion constant κ33 = −2.4 and experimental remnant polarization 
P (0), where S denotes the strain. The constant |κ33| decreases 
with increasing κ . The experimental sample involves the constant 
κ33 = −2.4, and this value is achieved in our model as κ = 1.8.

The elongation of the cylinder diameter D is calculated as 
D = 2

√
V /(π H0) with the initial height H0 at E = 0. Using this 

D , we obtain the diameter strain εD , which is considered to be 
the “nominal strain” because H0 is used to calculate D; hence, we 
estimate the Poisson ratio ν = −εD/εH (Fig. 4(b)). ν tends to be 
close to 0.3 with increasing strain within the experimental electric 
field range. This value is comparable to the experimental value of 
0.33 for β-PVDF obtained through mechanical testing [24].

Thus, we conclude that the FG model successfully repro-
duces the electromechanical properties of β-PVDF. Notably, the PE, 
strain-electric (SE) and Poisson ratio data are obtained with a sin-
gle set of parameters.

To ensure that the simulations are correctly performed, we plot 
S1/N vs. E , as shown in Fig. 5(a), where the simulation unit is used 
for all the quantities including E . As mentioned above, S1/N = 1.5
is satisfied. This finding implies that the constraints imposed on 
the lattice, such as the hard wall, do not influence the equilibrium 
property because this relation is satisfied only when no constraint 
is imposed on the vertex positions �ri [13–15]. The relation of vol-
4

Fig. 5. (a) S1/N vs. E and (b) volume V vs. E , where the simulation unit is used for 
all quantities.

ume V and E in Fig. 5(b) changes symmetrically with respect to 
the changes in E and −E , as expected.

In the final part of this section, we comment on (i) the advan-
tage of the FG model over the other models and (ii) how the FG 
model facilitates the understanding of such unusual and complex 
phenomena. To clarify these points, we intuitively express the basic 
idea. First, we must emphasize that the elastic energy or bond po-
tential γ S1 = γ

∑
i j �i jl2i j in Eq. (4) is of the form of the sum of the 

“effective coupling constant” γ�i j multiplied by the squared length 
�2

i j between molecules. The term “molecules” does not always ex-
press real molecules and is used in the context of coarse-grained 
particles, as described above.

In the original model, in which the Euclidean metric is as-
sumed, the effective coupling constant is γ�i j = γ (⇔ �i j = 1), and 
therefore, the elongation of the materials governed by this bond 
potential must be isotropic. However, the elongation of the poly-
mers under uniaxial forces, such as that of PVDF under electric 
fields, is anisotropic or direction dependent, and therefore, the for-
mer part, γ , of the bond potential should be direction dependent, 
because the latter part �2

i j is simply position dependent and does 
not depend on the polarization direction.

How the constant γ depends on the direction remains unclear. 
One possible solution is to consider that the metric for the length 
unit of the local coordinates inside the material is dependent on 
the direction of the polarization vectors. In this manner, the de-
formation, such as that of PVDF, can be understood. Indeed, the
bond potential of the FG model depends on not only the distance 
squares but also the coupling constant, as described above. More-
over, the distance increases (decreases) for a small (large) coupling 
constant, as mentioned in Section 2, because the mean value of 
S1 remains unchanged from that of the original model even if 
S1 is deformed by the FG modeling prescription. Accordingly, the 
coupling constant (⇔ �i j) can be numerically or automatically de-
termined by averaging over the scales of molecular distance altered 
by fluctuations in the polarization direction.

The key aspect is that the macroscopic properties, such as 
the elongation of PVDF, vary depending on a certain position-
dependent microscopic physical quantity of the material, such as 
the polarization vector of the PVDF. Depending on the value of 
the microscopic quantity, the unit Finsler length vij is suitably de-
fined, similar to that in Eq. (2) with a suitable value of v0, and the 
effective coupling constant (⇔ �i j) is automatically determined. 
In general, the macroscopic property obtained in this manner is 
independent of not only whether the microscopic quantity has 
a directional degree of freedom but also detailed information of 
the physical process, such as the interactions of the electrons and 
atoms [25]. Consequently, the FG modeling technique can be im-
plemented easily in many models for complex phenomena and is 
advantageous to other modeling techniques.
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4. Concluding remarks

We demonstrate that the FG model can be applied to exam-
ine the electromechanical properties of ferroelectric polymers. The 
Monte Carlo simulation results are in agreement with the experi-
mental data of β-PVDF. Both PE and SE field curves are reproduced 
using a single set of simulation parameters. Moreover, the simu-
lated Poisson ratio is reasonable. The technique used for PVDF is 
also applicable to ferroelectric ceramics such as BaTiO3. The mag-
netostriction of ferromagnetic materials will be examined in future 
work.
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