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Introduction

A disk has the property that it can be rotated between two …xed parallel lines without losing contact with either line. It has been known for a long time that there are many other plane convex bodies with the same property. Such plane convex bodies are called plane convex bodies 'of constant width' or 'orbiforms'. Their boundaries are of course called 'plane convex curves of constant width'. A classical non-circular example is the Reuleaux triangle [START_REF]Reuleaux triangle: en.wikipedia.org/wiki/Reuleaux_triangle Y. Martinez-Maure[END_REF] which is made of three circular arcs. But a non-circular plane convex curve of constant width can be smooth, and not having any circular arc in its boundary. The notion of a convex body of constant width can of course be extended to higher dimensions. For a recent survey on the topic, we refer the reader to [START_REF] Martini | Bodies of constant width. An introduction to convex geometry with applications[END_REF] In this paper, we are essentially interested in non-circular algebraic curves of constant width. Rabinowitz [START_REF] Rabinowitz | A polynomial curve of constant width[END_REF] found that the zero set of the following polynomial P 2 R [X; Y ] forms a non-circular algebraic curve of constant width in R 2 :

P (x; y) := (x 2 + y 2 ) 4 45 (x 2 + y 2 ) 3 41283 (x 2 + y 2 ) 2 +7950960 (x 2 + y 2 ) + 16 (x 2 3y 2 ) 3 + 48 (x 2 + y 2 ) (x 2 3y 2 ) 2 +x (x 2 3y 2 ) 16 (x 2 + y 2 ) 2 5544 (x 2 + y 2 ) + 266382 720 3 .
Then, he raised the following open questions: "The polynomial curve found is pretty complicated. Can it be put in simpler form? Our polynomial is of degree 8. Is there one with lower degree? What is the lowest degree polynomial whose graph is a noncircular curve of constant width? ". Recently, it has been proved by Bardet and Bayen [1, Cor. 2.1] that the degree of P , that is 8, is the minimum possible degree for a non-circular plane convex curve of constant width. Here, we emphasize the convexity assumption because it is implicit in the statement of Corollary 2.1 in [START_REF] Bardet | On the degree of the polynomial de…ning a planar algebraic curves of constant width[END_REF]. In this short note, we provide additional answers to Rabinowitz's open questions. First, we recall the notion of a plane hedgehog curve of constant width, and we notice that in this setting, we can …nd algebraic curves of constant width much simpler. Second, we give an example of a non-circular smooth algebraic curve of constant width whose equation is simpler than the one of Rabinowitz. Finally, we notice that we can deduce from it (relatively) simple examples in higher dimensions.

Plane algebraic hedgehogs of constant width

Here, we will follow more or less [START_REF] Martinez-Maure | A Note on the Tennis Ball Theorem[END_REF].

De…nition For any smooth function h :

S 1 = R n 2 Z ! R; 7 ! h ( ),
we let H h denote the envelope of the family of lines given by

x cos + y sin = h( ) (1) 
where (x; y) are the coordinates in the canonical basis of the Euclidean vector space R 2 . We say that H h is the plane hedgehog with support function h, and that H h is projective if h( + ) = h( ) for all 2 S 1 .

Partial di¤erentiation of (1) yields

x sin + y cos = h 0 ( ):

From ( 1) and ( 2), the parametric equations for H h are

x = h( ) cos h 0 ( ) sin y = h( ) sin + h 0 ( ) cos .
The family of lines (D ( )) 2S 1 of which H h is the envelope is the family of 'support lines' of H h . Suppose that H h has a well de…ned tangent line at the point (x; y), say T . Then T is the support line with equation (1): the unit vector u( ) = (cos ; sin ) is normal to T and h( ) may be interpreted as the signed distance from the origin to T .

A plane hedgehog is thus simply a plane envelope that has exactly one oriented support line in each direction. A singularity-free plane hedgehog is simply a convex curve. A plane hedgehog is projective if it has exactly one nonoriented support line in each direction Now, we can de…ne the width, say w h ( ), of such a plane hedgehog H h in the direction u ( ) to be the signed distance between the two support lines of H h that are orthogonal to u ( ), that is by

w h ( ) = h ( ) + h ( + ) .
Thus plane projective hedgehogs are hedgehogs of constant width 0, and the condition that a plane hedgehog H h is of constant width 2r is simply that its support function h has the form f + r, where f is the support function of a projective hedgehog. Here are three examples of plane hedgehogs: (a) a convex hedgehog of constant width; (b) a hedgehog with four cusps; (c) a plane projective hedgehog which is a hypocycloid with three cusps. 3) is a non-circular algebraic curve of constant width 0 with equation

(a) (b) (c) h ( ) = 10 + cos (3 ) h ( ) = cos (2 ) h ( ) = sin 3 Figure 1 Theorem. The projective hedgehog H h R 2 with support function h : S 1 ! R, 7 ! sin (
x 2 + y 2 2 + 18 x 2 + y 2
8y y 2 3x 2 = 27:

Proof. We already know that H h is a non-circular curve of constant width 0. From the parametric equations for H h , we deduce that 3) is the restriction of the polynomial y (y 2 3x 2 ) to the unit circle S 1 , and the linearization of y (y 2 3x 2 ) as a trigonometric function of gives We then eliminate s by computing the resultant of the polynomials A (s) = 64 (1 s 2 ) (s 3 1) 2

x 2 + y 2 = h ( ) 2 + h 0 ( ) 2 = sin 2 (3 ) + 9 cos 2 (3 ) = 5 + 4 cos (6 ) . Now, h : S 1 ! R, 7 ! sin (
x 2 and B (s) = 3 + 4s (2 + 3s 2s 3 ) y with Mathematica, and …nd after simpli…cation that:

(x 2 + y 2 )
2 + 8y (y 2 3x 2 ) 2 + 432y (y 2 3x 2 ) (351 10 (x 2 + y 2 ))

= 567 3 + 28 (x 2 + y 2 ) 3 + 486 (x 2 + y 2 ) (67 (x 2 + y 2 ) 567 18) : 

Higher dimension

The notion of a hedgehog of constant width can of course be extended to higher dimensions (see, e.g. [START_REF] Martinez-Maure | A stability estimate for the Aleksandrov-Fenchel inequality under regularity assumptions[END_REF]). Each of the above two examples of algebraic curves of constant width admits an axis of symmetry in R 2 . By rotating it around such an axis, we deduce immediately an example of algebraic surface of revolution that is of constant width in R 3 . More precisely, the algebraic surface with equation :

x 2 + y 2 + z 2 2 + 18 x 2 + y 2 + z 2 8z z 2 3 x 2 + y 2 = 27 is a 'projective hedgehog'of revolution and a surface of constant width 0 in R 3 (see Figure 3, left), and the algebraic surface with equation 

Figure 2 .

 2 Figure 2. The non-circular convex curve of constant width 16 with equation (3)

(x 2 + 3 +486 (x 2 +

 232 y 2 + z 2 ) 2 + 8z (z 2 3 (x 2 + y 2 )) 2 +432z (z 2 3 (x 2 + y 2 )) (351 10 (x 2 + y 2 + z 2 ))= 567 3 + 28 (x 2 + y 2 + z 2 ) y 2 + z 2 ) (67 (x 2 + y 2 + z 2 ) 567 18) is a convex surface of constant width 16 in R 3 (see Figure3, right).

Figure 3 :

 3 Figure 3: Our two algebraic surfaces of constant width

y y 2 3x 2 = 12 14 cos (6 ) cos (12 ) = 11 14 cos (6 ) 2 cos 2 (6 ) .

From the above two equations, we deduce easily that

8y y 2 3x 2 = 27; 

Proof. The parametric equations for H h are equivalent to:

x = 8 sin 3 ( ) 1 cos ( ) y = 2 cos (2 ) cos (4 ) + 8 sin ( ) .

Expanding x and y in terms of c = cos and s = sin , we obtain after simpli…cation:

x = 8 (s 3 1) c y = 3 + 4s (2 + 3s 2s 3 ) .

Squaring the …rst equation and substituting in c 2 = 1 s 2 gives us the following system of equations in the three unknowns x, y, and s: 64 (1 s 2 ) (s 3 1)

x 2 = 0 3 + 4s (2 + 3s 2s 3 ) y = 0.