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Introductory Framework

We have introduced a novel (ζ, ε)-Double Back-propagation Scheme (DBS) ap-
plicable to any parametric model with convergence properties in terms of Mean
Square Error. The DBS indicates that with an optimal number ζ of DBS updates,
and appropriate ε learning rate vector for all the model parameters, the Mean
Square Error of both training and testing data get to be decreasing, and con-
verge to zero for the training data. The DBS recommends a local Stochastic
Gradient Descent (SGD) per observation after the model parameters have been
obtained after a first-step estimation with any chosen optimization framework. It
has been applied to the Shallow Potts Neural Network Model developed in a pre-
vious research by [1], and the results are outstanding. Not the least, we prove
mathematically that under an assumption that if there exists a differentiable func-
tion that associate covariables (predictors) and target variables (our outputs) as
well as their respective local DBS associated parameters, for each observation,
we can make the train error and the test error converge to zero simultaneously
by applying a dist-NN-h-Taylor Series-PMI model. This last model dictates that
we can always differentiate sufficiently the model parameters using a combina-
tion of Taylor Approximation Theorem with h ≥ 2 order with a Perfect Multivariate
Interpolation (PMI) framework, and finally, an optimal distance (dist) for a suitable
Train-Test covariables association. Our main conclusion is that overfitting, mainly
with the convergent DBS optimizer is the beginning of a new type of learning
method, as we can still generalize our parametric model with local neighborhood
learning with multivariate interpolation and fine tuned empirical differentiation.

The Double backpropagation scheme (DBS)

0.1 The Double backpropagation scheme applied the Shallow Potts Neural
Network Model developed in a previous research by [1]

Similarly to our Iterative projected gradient (IPG) applied to our model variational
parameter λw, we found that the Mean Square Error (MSE) of our regression
model can also be back-propagated w.r.t to each of the model parameter, i.e
ψ = (b(1),W (1), b(2),W (2)), the main parameters of the network, with b(1) ∈l1,
W (1) ∈ Mq×l1, b

(2) ∈p, and W (2) ∈ Ml1×p, l0 = q, l2 = p, Σ ∈ Mp×p being the
variance-covariance matrix of y. First, we know that y|x, ψ,Σ is distributed as a
multivariate normal distribution with mean f (y) = fψ(y) = E(y|x, ψ), and variance
Σ. That is, p(y|x, ψ,Σ) = (2π)−p/2|Σ|−1/2 exp{−12(y − fψ(x))′Σ−1(y − fψ(x))}.
Then, by applying the sampling method based on the Cholesky decomposition,
we have :

ŷest = fψ(x) + L · u = [b(2) + g1(b(1) + xW (1))W (2)] + L · u (1)

such that L ∈ Md(R) is a lower triangular matrix such that Σ = LLT , and u ∼
N(0, I). The double backpropagation scheme for the Shallow Gibbs goes as
follows:

1. Using the IPG, apply backpropagation method on hyper-parameter λw to re-
duce its Kullback-Leibler (KL) estimation error. Once done, generate an esti-
mate ψ̂0 of ψ = (b(1),W (1), b(2),W (2)), using Monte Carlo sampling method
from the variational distribution of the parameters.

2. Use equation 1 to backpropagate the MSE(yi− ŷi) = ‖yi− ŷest,i‖2 to update
ψ̂0 in the Potts cluster and per observation as follows:

ψ̂1,i←− ψ̂0 − εψ,0
∂MSE(yi − ŷest,i)

∂ψ
(2)

ψ̂t,i←− ψ̂t−1,i − εψ,t−1
∂MSE(yi − ŷest,i)

∂ψ
(3)

The Generalized DBS and its Convergence Property

0.2 A Generalized Double Back-Propagation Scheme (GDBS) for any parametric
model

We propose an effective Generalized Double Back-Propagation for any parametric model, augmented
with a differential and local neighborhood machine learning framework for almost sure convergence.
The General Double Back-propagation Scheme (GDBS) using the Mean Squared Error
(MSE), and for any (parametric) model with parameter ψ as :

ŷest,i = fψ(xi) (4)

Apply to [4] the Double Backpropagation scheme (DBS). To reach convergence, above as-
signments have to integrate updates for y as follows:

ŷest,(i,t)←− fψi,t(x) + Li,t · ui,t − εŷest,(i,t)
∂MSE(yi − ŷest,i)

∂ŷest,i
(5)

where
∂MSE(yi−ŷest,(i,t))

∂ŷest,i
= 2∗(yi−ŷest,(i,t)). In practice, we have applied 2∗(yi−ŷest,(i,t−1)).

So each training data has its own learning rate which is here set as εŷest,(i,t). This is valuable
for each test data as follows:

ŷtest
est,(i,t)←− fψi,t(x

test) + Li,t · ui,t − εtest
ŷest,(i,t)

∂MSE(yi − ŷest,i)
∂ŷest,i

(6)

where for the k-th test data xtest
k the changes fψi,t are taken from the j-th training data yj

which verify:

jchoosen =xj∈ Training Set Mean(xj − xtestk ) (7)

where the operation Mean(u) for vector u is taken upon all dimension of u. The criteria used
in this optimization [7] can be modified for a distance dist for which each test data xtest

k is
ensured to find an associate xtrain

i in the training data with :

dist(xtest
k , xtrain

i ) ≤ ε (8)

where ε is a very small number. This presented framework will be called (ζ, εdbs)− GDBS,
and augmented with the data Augmentation for Empirical Differentiation (DAED) framework,
shall be called the dist-NN-(h)-TS-PMI-(l1, ζ, εdbs) − GDBS. When the model is truly dif-
ferentiable [This is our assumption (Fd) ], the learning with this model is almost surely
perfect.
Multivariate Interpolation come into action, as the later can be taken also as a machine
learner, because it can refine Nearest Neighborhood Train-Test association [7]. To perceive
this, let us remind linear interpolation. Linear interpolation usually requires two data points
(ua, va) and (vb, vb) , and at the point (u, v), the interpolation equation is given by:

v = va + (vb − va)
u− ua
ub − ua

(9)

To generalize equation [9] to a learning problem, remember the Taylor’s theorem for a mul-
tivariate function ι in functions analysis theory [[3], [2]]. We already know the best linear
approximation to ι. It involves the derivative Dι(a) such as:

ι(x) ≈ ι(a) +Dι(a) ◦ (x− a) (10)

where Dι(a) is the matrix of partial derivatives of ι evaluated in the neighborhood of a, and
◦ is the dot product between both vectors Dι(a) and (x − a). This approximation is linear
and represents the first-order Taylor polynomial [[5]]. Multivariate version of Taylor theorem
([4]) is the generalization of approximation [10].

Data Augmentation for Empirical
Differentiation (DAED) and Differential

Machine Learning

It is not a coincidence that Taylor Approximation theorem is only defined in a
certain vicinity or a given neighborhood set! One of the main contribution here is
to understand that : Multivariate Interpolation using Taylor theorem is the refined
generalization of simple Neighborhood Train-Test association. Notice in equation
[10], if a = xtrain and x = xtest, we have ι(xtest) ≈ ι(xtrain), when we
suppose xtrain ≈ xtest. To avoid that simple approximation, we add more
differential terms, as exposed in equation [10].
Taylor Approximation can truly solve any machine learning problem. We illustrate
this fact using data augmentation. To take profit from assumption (Fd) [when it
is valid], we need to create more samples from existent training data.
To understand this intuition, remember that the partial derivative of a function
ι (x1, . . . , xn) in the direction xi at the point (e1, . . . , en) is defined by:

∂ι

∂xi
(e1, . . . , en) = lim

δ→0

ι (e1, . . . , ei + δ, . . . , en)− ι (e1, . . . , ei, . . . , en)

δ
(11)

with δ ∈ R has to be a very small real number. Because the closed neighborhood
training data j2 for j1 required for the differentiation computation is not available
in practice in the training data, we can create more data as follows, to compute
derivative [11] with almost exact precision:

xtrain
j1

= (xtrain
j1

(1), ..., xtrain
j1

(q))−→


(xtrain
j1

(1) + δ, ..., xtrain
j1

(q))

(xtrain
j1

(1), xtrain
j1

(2) + δ, ..., xtrain
j1

(q))

. . . . . . . . .

(xtrain
j1

(1), xtrain
j1

(2), ..., xtrain
j1

(q) + δ)

(12)
This method is the reason why (dist)-Nearest Neighbor-(h)-Taylor Series-
Perfect Multivariate Interpolation (dist-NN-(h)-TS-PMI) presented previously,
is the Perfect fit (or the Perfect learning model) for the Shallow Gibbs Network,
summarized in equation [13]:

lim
l
1,opt,ζopt,εdbs,opt,distopt,hopt

(MSETrain,MSETest) = (0, 0) (13)

where MSETrain, MSETest are the Mean Squared Error of the train and test
data respectively, distopt is the optimal distance for the research of the nearest
neighbor in the training dataset for each test data xtest

i , hopt is the optimal order
of the Taylor approximation for the Perfect Multivariate Interpolation (dist-NN-(h)-
TS-PMI) model once the (l1, ζ, εdbs) − DBS has overfitted the training dataset.
l1,opt, ζopt are respectively the optimal number of hidden neurons, and the op-
timal number of DBS updates. εdbs integrates simultaneously the DBS learning
rate vector for all the model parameters, the DBS learning rate for the training
data, and the DBS learning rate for the test data. εdbs,opt is the optimal one.
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