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DOUBLE BACK-PROPAGATION AND DIFFERENTIAL MACHINE LEARNING

Framework

We have introduced a novel (ζ, ε)-Double Back-propagation Scheme (DBS) applicable to any parametric model with convergence properties in terms of Mean Square Error. The DBS indicates that with an optimal number ζ of DBS updates, and appropriate ε learning rate vector for all the model parameters, the Mean

Square Error of both training and testing data get to be decreasing, and converge to zero for the training data. The DBS recommends a local Stochastic Gradient Descent (SGD) per observation after the model parameters have been obtained after a first-step estimation with any chosen optimization framework. It has been applied to the Shallow Potts Neural Network Model developed in a previous research by [START_REF] Karl | Shallow Structured Potts Neural Network Regression (S-SPNNR)[END_REF], and the results are outstanding. Not the least, we prove mathematically that under an assumption that if there exists a differentiable function that associate covariables (predictors) and target variables (our outputs) as well as their respective local DBS associated parameters, for each observation, we can make the train error and the test error converge to zero simultaneously by applying a dist-NN-h-Taylor Series-PMI model. This last model dictates that we can always differentiate sufficiently the model parameters using a combination of Taylor Approximation Theorem with h ≥ 2 order with a Perfect Multivariate Interpolation (PMI) framework, and finally, an optimal distance (dist) for a suitable Train-Test covariables association. Our main conclusion is that overfitting, mainly with the convergent DBS optimizer is the beginning of a new type of learning method, as we can still generalize our parametric model with local neighborhood learning with multivariate interpolation and fine tuned empirical differentiation.

The Double backpropagation scheme (DBS)

The Double backpropagation scheme applied the Shallow Potts Neural

Network Model developed in a previous research by [START_REF] Karl | Shallow Structured Potts Neural Network Regression (S-SPNNR)[END_REF] Similarly to our Iterative projected gradient (IPG) applied to our model variational parameter λ w , we found that the Mean Square Error (MSE) of our regression model can also be back-propagated w.r.t to each of the model parameter, i.e ψ = (b (1) , W (1) , b (2) , W (2) ), the main parameters of the network, with b (1) ∈ l 1 , W (1) ∈ M q×l 1 , b (2) ∈ p , and W (2) ∈ M l 1 ×p , l 0 = q, l 2 = p, Σ ∈ M p×p being the variance-covariance matrix of y. First, we know that y|x, ψ, Σ is distributed as a multivariate normal distribution with mean f (y) = f ψ (y) = E(y|x, ψ), and variance

Σ. That is, p(y|x, ψ, Σ) = (2π) -p/2 |Σ| -1/2 exp{-12(y -f ψ (x)) Σ -1 (y -f ψ (x))}.
Then, by applying the sampling method based on the Cholesky decomposition, we have :

ŷest = f ψ (x) + L • u = [b (2) + g 1 (b (1) + xW (1) )W (2) ] + L • u (1) 
such that L ∈ M d (R) is a lower triangular matrix such that Σ = LL T , and u ∼ N (0, I). The double backpropagation scheme for the Shallow Gibbs goes as follows:

1. Using the IPG, apply backpropagation method on hyper-parameter λ w to reduce its Kullback-Leibler (KL) estimation error. Once done, generate an estimate ψ0 of ψ = (b (1) , W (1) , b (2) , W (2) ), using Monte Carlo sampling method from the variational distribution of the parameters.

2. Use equation 1 to backpropagate the M SE(y i -ŷi ) = y i -ŷest,i 2 to update ψ0 in the Potts cluster and per observation as follows:

ψ1,i ←-ψ0 -ψ,0 ∂M SE(y i -ŷest,i ) ∂ψ (2) ψt,i ←-ψt-1,i -ψ,t-1 ∂M SE(y i -ŷest,i ) ∂ψ (3)
The Generalized DBS and its Convergence Property The General Double Back-propagation Scheme (GDBS) using the Mean Squared Error (MSE), and for any (parametric) model with parameter ψ as :

ŷest,i = f ψ (x i ) (4) 
Apply to [START_REF] Zhang Qian | High Order Directional Derivative and the Simple Form of Multivariate Taylor Theorem[END_REF] the Double Backpropagation scheme (DBS). To reach convergence, above assignments have to integrate updates for y as follows:

ŷest,(i,t) ←-

f ψ i,t (x) + L i,t • u i,t -ŷest,(i,t) ∂M SE(y i -ŷest,i ) ∂ ŷest,i (5) 
where

∂M SE(y i -ŷ est,(i,t) ) ∂ ŷest,i = 2 * (y i -ŷest,(i,t) ).
In practice, we have applied 2 * (y i -ŷest,(i,t-1) ).

So each training data has its own learning rate which is here set as ŷest,(

. This is valuable for each test data as follows:

ŷtest est,(i,t) ←-f ψ i,t (x test ) + L i,t • u i,t -test ŷest,(i,t) ∂M SE(y i -ŷest,i ) ∂ ŷest,i (6) 
where for the k-th test data x test k the changes f ψ i,t are taken from the j-th training data y j which verify:

j choosen = x j ∈ Training Set Mean(x j -x test k ) (7) 
where the operation Mean(u) for vector u is taken upon all dimension of u. (u a , v a ) and (v b , v b ) , and at the point (u, v), the interpolation equation is given by:

v = v a + (v b -v a ) u -u a u b -u a (9)
To generalize equation [9] to a learning problem, remember the Taylor's theorem for a multivariate function ι in functions analysis theory [[3], [START_REF] Browder | Mathematical analysis: an introduction[END_REF]]. We already know the best linear approximation to ι. It involves the derivative Dι(a) such as:

ι(x) ≈ ι(a) + Dι(a) • (x -a) (10) 
where Dι(a) is the matrix of partial derivatives of ι evaluated in the neighborhood of a, and • is the dot product between both vectors Dι(a) and (x -a). This approximation is linear and represents the first-order Taylor polynomial [ [START_REF] Reimer | Multivariate polynomial approximation[END_REF]]. Multivariate version of Taylor theorem ( [START_REF] Zhang Qian | High Order Directional Derivative and the Simple Form of Multivariate Taylor Theorem[END_REF]) is the generalization of approximation [10].

Data Augmentation for Empirical Differentiation (DAED) and Differential Machine Learning

It is not a coincidence that Taylor Approximation theorem is only defined in a certain vicinity or a given neighborhood set! One of the main contribution here is to understand that : Multivariate Interpolation using 

with δ ∈ R has to be a very small real number. Because the closed neighborhood training data j 2 for j 1 required for the differentiation computation is not available in practice in the training data, we can create more data as follows, to compute derivative [11] with almost exact precision:

x train j 1 = (x train j 1 (1), ..., x train j 1 (q))-→

           (x train j 1
(1) + δ, ..., x train j 1 (q)) (x train j 1

(1), x train j 1

(2) + δ, ..., x train j 1 (q)) . . . . . . . . . 
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 2 Generalized Double Back-Propagation Scheme (GDBS) for any parametric modelWe propose an effective Generalized Double Back-Propagation for any parametric model, augmented with a differential and local neighborhood machine learning framework for almost sure convergence.

j 1 ( 1 ), x train j 1 ( 2 ) 1 (

 11121 , ..., x train j q) + δ) (12) This method is the reason why (dist)-Nearest Neighbor-(h)-Taylor Series-Perfect Multivariate Interpolation (dist-NN-(h)-TS-PMI) presented previously, is the Perfect fit (or the Perfect learning model) for the Shallow Gibbs Network, summarized in equation [13]: lim l 1,opt ,ζ opt , dbs,opt ,dist opt ,h opt (M SE Train , M SE Test ) = (0, 0) (13) where M SE Train , M SE Test are the Mean Squared Error of the train and test data respectively, dist opt is the optimal distance for the research of the nearest neighbor in the training dataset for each test data x test i , h opt is the optimal order of the Taylor approximation for the Perfect Multivariate Interpolation (dist-NN-(h)-TS-PMI) model once the (l 1 , ζ, dbs ) -DBS has overfitted the training dataset. l 1,opt , ζ opt are respectively the optimal number of hidden neurons, and the optimal number of DBS updates. dbs integrates simultaneously the DBS learning rate vector for all the model parameters, the DBS learning rate for the training data, and the DBS learning rate for the test data. dbs,opt is the optimal one.

  Taylor theorem is the refined generalization of simple Neighborhood Train-Test association. Notice in equation[10], if a = x train and x = x test , we have ι(x test ) ≈ ι(x train ), when we suppose x train ≈ x test . To avoid that simple approximation, we add more differential terms, as exposed in equation[10]. Taylor Approximation can truly solve any machine learning problem. We illustrate this fact using data augmentation. To take profit from assumption (F d ) [when it is valid], we need to create more samples from existent training data. To understand this intuition, remember that the partial derivative of a function ι (x 1 , . . . , x n ) in the direction x i at the point (e 1 , . . . , e n ) is defined by: , . . . , e i + δ, . . . , e n ) -ι (e 1 , . . . , e i , . . . , e n ) δ

	∂ι ∂x i	δ→0 (e 1 , . . . , e n ) = lim	ι (e 1