
HAL Id: hal-03265396
https://hal.science/hal-03265396

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Solving robust bin-packing problems with a
branch-and-price approach

Xavier Schepler, André Rossi, Evgeny Gurevsky, Alexandre Dolgui

To cite this version:
Xavier Schepler, André Rossi, Evgeny Gurevsky, Alexandre Dolgui. Solving robust bin-packing prob-
lems with a branch-and-price approach. European Journal of Operational Research, 2022, 297 (3),
pp.831-843. �10.1016/j.ejor.2021.05.041�. �hal-03265396�

https://hal.science/hal-03265396
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Solving robust bin-packing problems
with a branch-and-price approach

Xavier Scheplera,b,∗, André Rossia,c, Evgeny Gurevskyd, Alexandre Dolguie

aLERIA, Université d’Angers, France
bRecommerce R&D, France

cLAMSADE, Université Paris-Dauphine, PSL, France
dLS2N, Université de Nantes, France

eIMT Atlantique, LS2N, Nantes, France

Abstract

One-dimensional bin-packing is a well-known combinatorial optimization problem which is strongly

NP-hard. It consists of allocating a given set of items of different sizes into bins of the same capacity

to minimize the number of bins used. The capacity of each bin cannot be exceeded. This paper

deals with some variants of this problem to take into account the cases when there are items with

uncertain sizes. The goal is to obtain robust solutions taking into account possible variations of item

sizes around their nominal values. First, two robust approaches are considered which are based on a

stability radius calculation, to ensure that the stability radius, measured either with the Manhattan or

Chebyshev norm, is not below a given threshold. Then, a complementary robust approach is applied

which is based on a relative resiliency calculation. To solve to optimality these robust variants of

the bin-packing problem, a compact 0-1 linear programming formulation, which is also valid for the

standard bin-packing problem, is introduced. Then, a Dantzig-Wolfe decomposition is suggested

in order to provide a set-cover reformulation with a stronger linear relaxation, but an exponential

number of columns. Finally, to obtain integer optimal solutions, a branch-and-price algorithm

is developed, whose linear relaxation of the set-cover formulation is solved by a dynamic column

generation. Numerical experiments are conducted on adapted benchmark sets from the literature.

The performance of the branch-and-price algorithm allows us to investigate what protection against

uncertainty is offered by each approach, and at which cost of robustness.

Keywords: Packing, Robustness, Sensitivity analysis, Uncertainty, Stability radius, Relative

resiliency, Dantzig-Wolfe decomposition, Column generation, Branch-and-price

∗Corresponding author
Email address: xavier.schepler@gmail.com (Xavier Schepler)

Preprint submitted to Elsevier May 24, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0377221721004690
Manuscript_8a907edd7b5f5be37fe0ca6d060309ee

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0377221721004690
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0377221721004690

1. Introduction

For the standard bin-packing (BP) problem, one-dimensional items of different sizes have to

be assigned to a minimum number of identical one-dimensional bins. The size of each item and

the capacity of a bin are assumed to be known in advance. Nevertheless, in real-life applications

of BP , the sizes of items often have random deviations from the nominal values. For example, in

hospital administration (see Cardoen et al., 2010; Lamiri et al., 2008), one of the most important

optimization issues which can be modeled as BP problems, is the daily planning of surgeries. The

surgery durations are likely to change. A smaller number of operating rooms used per day reduces

the cost of dealing with their preparation. The context of BP under uncertainty appears also in the

domain of supply-chain management. For example, for the problem of logistics capacity planning

(see Crainic et al., 2016), where it is necessary to predict four to six months in advance the allocation

of goods to a minimum number of containers of different capacities. The volumes of delivered goods

have random deviations around the planned values. BP models are also used in the design of paced

assembly lines. The problem is known in the literature as an assembly balancing problem of type

1 (see Boysen et al., 2007; Battäıa and Dolgui, 2013), where a given set of production tasks, some

involving issues of precedence, has to be assigned to a minimum number of identical workstations.

The so-called cycle time constraint expresses a limit on a station capacity. In the case of non-fully

automated lines, there is a subset of manual tasks, whose processing times may vary depending on

operator skills and random performances. The assembly line balancing problem of type 1 is a BP

problem with precedence constraints. Another case of BP problems under uncertainty is the one

dimensional cutting stock problem, as in Alem et al. (2010), where the demand or item sizes can be

uncertain. A robust machine availability problem in a parallel machine environment with uncertain

task durations in Song et al. (2018) is another example. The latter two articles are discussed in more

detail in Section 3, dedicated to the literature review.

Probabilistic models are often used to consider uncertainty. Nevertheless, this approach is not

always possible because of the absence of reliable historical data in order to establish adequate prob-

ability distributions as, for example, in the case of the initial design of the aforementioned assembly

lines. Only a subset of tasks with uncertain processing times can be identified by decision makers at

the line design stage. In order to overcome this difficulty, Rossi et al. (2016), motivated by the work

of Sotskov et al. (2006), proposed a new approach, based on the stability radius optimization. For

any given solution, its stability radius is obtained as the maximal magnitude of variations from their

nominal values of the uncertain task times for which the solution feasibility (or optimality) is pre-

served. In other words, studying the simple assembly line balancing problem with a fixed number of

2

workstations, the authors search for solutions which maximize the stability radius. The well-known

norms `1 and `∞ are used to calculate the stability radius. First, the authors show that if the `1

norm is used, then the minimum idle time1 among all the workstations having at least one uncertain

task, has to be maximized. Second, they also show that if the `∞ norm is employed, a duration equal

to the stability radius, added to the duration of each uncertain task, has to be maximized. Thus,

from a managerial point of view, it is necessary to search for a feasible task assignment having the

maximal value of the mentioned above indicators, since this leads to the greatest protection against

uncertainty.

In this paper, we develop a branch-and-price method applied to the problems, which are inverse to

those addressed in Rossi et al. (2016). By considering a BP problem, therefore excluding precedence

constraints, the problem consists of allocating a given set of items to a minimum number of bins

so that the stability radius of the solution is not less than a specified threshold, which determines

a desired level of robustness. Then, to overcome a possible limitation of the previous approach, in

which the variation of an uncertain size is not related to its nominal value, another robust approach

based on the concept of relative resiliency proposed by Pirogov (2019), is developed. The relative

resiliency of a solution is the proportion by which each uncertain size can be increased without losing

solution feasibility.

Hereafter, the robust BP problem ensuring that the stability radius calculated for the `1 norm

(resp. the `∞ norm) is not less than r is denoted as RBP1(r) (resp. RBP∞(r)), and the robust

BP problem ensuring the relative resiliency is not less than α is denoted as RBPrr(α). These three

problems can be simply stated as follows.

We want to pack a given set of one-dimensional items whose nominal sizes are known into a

minimum number of one-dimensional identical bins of the same given capacity. A known subset of

these items have uncertain sizes, which can vary after the allocation of items to bins. The solution

must remain feasible for real item sizes, provided that the variations of uncertain sizes are bounded

as follows:

• with RBP∞(r), each uncertain size can be increased by a maximum of r,

• with RBPrr(α), each uncertain size wi can be increased by a maximum of αwi,

• with RBP1(r), in any bin with at least one uncertain-size item, the sum of all uncertain sizes’

variations is at most r.

1Idle time is the difference between the cycle time and the effective load of the considered workstation.

3

Given these conditions, a solution to any instance of RBP∞(r) (resp. RBPrr(α)) can be obtained

by solving an instance of BP , in which each uncertain size wi is increased by r (resp. αwi), to

reserve free space. Therefore, RBP∞(r) and RBPrr(α) can both be straightforwardly reduced to

BP . However, this is not the case with RBP1(r), as it requires a quantity of free space not lesser

than r in each bin containing at least one item of uncertain size.

Note that, a solution to BP has a stability radius (resp. relative resiliency) at least equal to r

(resp. α) if and only if a quantity r (resp. αwi) of free space is reserved for each item i of uncertain

size wi in its assigned bin. Similarly, a solution to BP has a stability radius at least equal to r if

and only if a quantity r of free space is reserved in each bin containing at least one uncertain item.

Formal definitions of stability radius, relative resiliency, and proofs of the properties stated above

are provided in Appendix A.

The remainder of this paper is organized as follows. Section 2 provides a literature review about

column-generation based approaches for variants of BP under uncertainty and branch-and-price

algorithms for BP . Section 3 presents the details of the adapted branch-and-price method for

the proposed set-cover formulation valid for RBP1(r), RBP∞(r), RBPrr(α) and BP . Section 4 is

devoted to numerical experiments, in which we evaluate the performance of the proposed branch-and-

price algorithm and we investigate what protection against uncertainty is offered by each approach

and at which cost of robustness. Section 5 concludes the paper and gives some perspectives for

future work.

2. Literature review

We first consider two papers introducing column-generation based algorithms to tackle variants

of BP under uncertainty, then the literature about branch-and-price algorithms designed to solve

the set-cover formulation of BP provided in Section 3.2.

Song et al. (2018) address the robust machine availability problem in a parallel machine envi-

ronment, which in its deterministic version coincides with BP . Using the methodology proposed

by Bertsimas and Sim (2004), they introduce a robust version with budgeted uncertainty, where at

most Γ jobs can deviate from their nominal processing times, which are assumed to belong to sym-

metric and bounded intervals. They propose a set-cover formulation with an exponential number

of columns. The formulation is solved by a branch-and-price algorithm, with the Ryan and Foster

branching scheme, and zero-suppressed binary decision diagrams to handle a pricing problem more

complicated than the one occuring with BP . They perform numerical experiments on a new set of

randomly generated instances. Results show that their algorithm can handle instances with up to

4

180 items within a time limit of 1200 seconds, provided that either the value of Γ is small, or the

size of each item is in the range {1, . . . , 20}.

Alem et al. (2010) address a stochastic variant of the one dimensional cutting stock problem,

where demand is a random variable. The authors propose a two stage stochastic non-linear program,

where the first stage decisions are the numbers of objects to be cut according to a cutting pattern,

and the second stage decisions are the numbers of holding or backordering items. The objective

is to minimize the expected costs due to waste and holding or backordering penalties. A column-

generation based algorithm is introduced to solve the linear relaxation of the formulation, and

heuristics allow integer solutions to be obtained. Numerical experiments are performed to investigate

the value of the stochastic solution and the expected value with perfect information. The results show

that the two-stage stochastic approach represents a better modeling framework than the alternative

wait-and-see and expected value frameworks, even under small variations in the parameters of the

problem.

There is abundant literature about branch-and-price algorithms, including general studies, for

example by Barnhart et al. (1998), Vanderbeck (2000), and Desrosiers and Lübbecke (2011), as well

as many other application-related studies, in various domains, such as cutting and packing (Delorme

et al. (2016)), vehicle routing (Fukasawa et al. (2006)), production planning (Alfandari et al. (2015)),

etc. The theories and concepts behind branch-and-price algorithms are covered in the Ph.D. thesis

by Gamrath (2010).

We focus on two branch-and-price algorithms similar to the one proposed in Section 3 designed

to solve the set-cover formulation of BP , which corresponds to the set-cover formulation proposed

in this paper, when there is either no uncertain item or all items are uncertain, or r is equal to zero.

These are the ones by Vance et al. (1994) and by Gamrath et al. (2016).

The first branch-and-price algorithm for the set-cover formulation of BP was proposed by Vance

et al. (1994). The first-fit decreasing heuristic initializes the solving process with a primal solution.

The branch-and-price algorithm relies on the Ryan and Foster branching scheme, which selects one

of the fractionally packed pairs of items for branching, and performs branching so that either the

items are packed in the same bin, or in two different bins. In the first case, when items have to

be packed in the same bin, the structure of the subproblem is preserved, as it suffices to merge the

items. In the second case, the structure of the subproblem is altered, with the presence of a conflict

constraint, forbidding the items in conflict to be packed together. When considering pairs of items

for branching, the one with the largest total size is selected. Nodes of the search tree without any

conflict constraint are explored first, as their subproblem can be solved by a more efficient algorithm.

5

Vance et al. (1994) proposed solving the subproblem without conflict constraint, that is, the pseudo-

polynomial 0-1 knapsack problem, with the Horowitz and Sahni (1974) algorithm, having a worst

case temporal complexity in O(min{2n/2, n ·W}), potentially better than the one of the classical

dynamic programming algorithms, in O(n ·W), described by Kellerer et al. (2004). When each item

is in conflict with at most one other item, Vance et al. (1994) use an adapted version of the algorithm

by Horowitz and Sahni (1974). Otherwise, in the presence of conflict constraints, the subproblem

becomes strongly NP-hard, and it is addressed with an integer linear program solver.

The branch-and-price algorithm proposed by Gamrath et al. (2016) also uses a branching scheme

based on the Ryan and Foster branching scheme. Nevertheless, it differs from the one by Vance et al.

(1994) on several points. First, one of the most unfeasible pairs of items is selected for branching,

that is, the one which provides a sum value closest to 0.5. Second, the node which is selected

for exploration is the one which provides the best estimation value of the progress toward integer

feasibility, relative to its degradation of the objective function. Third, since this branch-and-price

algorithm is provided as an example with the SCIP Optimization Suite, it relies on its integer linear

program solver to address the subproblem. Last, for the same reason, it uses primal heuristics

of the SCIP Optimization Suite, described in Berthold (2008) and Achterberg et al. (2012). This

includes more than forty very fast heuristics, generally requiring only a few milliseconds, even with

the largest BP instances. They are called repetitively during the exploration of the search tree.

The branch-and-price algorithm that we propose is presented in the next section, and some of the

concepts involved, such as dynamic column generation, are covered in more detail.

3. A branch-and-price algorithm

We are given a set K of one-dimensional identical bins of capacity W , a set V = {1, 2, . . . , n} of

one-dimensional items, a nominal size wi for each item i ∈ V , and a set Ṽ ⊆ V of items of uncertain

size. An allocation of the set of items to the set of bins is called a feasible solution to BP if each item

is assigned to exactly one bin such that the capacity constraints are satisfied. We use the following

decision variables: xik is set to one if item i is assigned to bin k, and zero otherwise, and yk is set

to one if bin k is used and zero otherwise.

We introduce a branch-and-price algorithm for RBP1(r) derived from the ones proposed by

Vance et al. (1994) and by Gamrath et al. (2016) for BP . This algorithm can also be used for BP ,

which corresponds to RBP1(r) when there is no uncertain items, and, therefore, for RBP∞(r) and

RBPrr(α), as explained below.

RBP∞(r) can be formulated as follows.

6

min
∑
k∈K

yk (1a)

s.t.
∑
k∈K

xik ≥ 1, ∀i ∈ V, (1b)

∑
i∈Ṽ

(wi + r)xik +
∑

i∈V \Ṽ

wixik ≤Wyk, ∀k ∈ K, (1c)

yk ∈ {0, 1}, ∀k ∈ K, (1d)

xik ∈ {0, 1}, ∀i ∈ V, ∀k ∈ K. (1e)

Where (1a) minimizes the number of open bins, (1b) assigns each item to at least one bin, (1c)

enforces the bin capacity. Here, the size of all the uncertain items has been increased by the positive

constant r, as per Property 4 presented in Appendix A, and (1d)–(1e) are domain constraints.

RBPrr(α) can be formulated using the same BP model, but where constraints (1c) should be

replaced with:

∑
i∈Ṽ

wi(1 + α)xik +
∑

i∈V \Ṽ

wixik ≤Wyk, ∀k ∈ K.

In this constraint, the size of all the uncertain items is multiplied by 1 + α, where α is a positive

constant, as per Property 5 presented in Appendix A.

3.1. Compact formulation of RBP1(r)

The compact formulation of RBP1(r) uses an additional decision variable: ak is set to one if bin

k contains at least one uncertain-size item, and zero otherwise.

RBP1(r) can be formulated as follows.

min
∑
k∈K

yk (2a)

s.t.
∑
k∈K

xik ≥ 1, ∀i ∈ V, (2b)

xik ≤ ak, ∀i ∈ Ṽ , ∀k ∈ K, (2c)∑
i∈V

wixik + rak ≤Wyk, ∀k ∈ K, (2d)

yk ∈ {0, 1}, ∀k ∈ K, (2e)

ak ∈ {0, 1}, ∀k ∈ K, (2f)

xik ∈ {0, 1}, ∀i ∈ V, ∀k ∈ K. (2g)

7

Constraints (2b) are the same as (1b). Constraints (2c) give to each variable ak the value 1 if bin

k contains at least one uncertain-size item. Constraints (2d) represent the bin capacity, taking into

account the minimum desired level of robustness r for the bins having uncertain-size items. This

constraint is also a natural consequence of Property 6, presented in Appendix A. More specifically,

this property pertains to bins that accommodate uncertain items. In the present formulation of

RBP1(r), these bins are open (yk = 1) and such that ak = 1. Objective (2a) is to minimize the

number of bins used.

Note that, BP is a particular case of RBP1(r), where there is no uncertain item (Ṽ = ∅), or all

items are uncertain (V = Ṽ), or, alternatively r = 0. When there is no uncertain item, variables

ak can be set to 0, and we obtain a formulation of BP . When all items are uncertain, or r = 0,

variables ak can be set to 1, and we also obtain a formulation of BP .

Besides, the linear programming relaxation of this compact formulation is expected to be weak,

as shown by Vance et al. (1994) for their formulation of BP , which we extended. To check if a state-

of-the-art solver is able to solve this compact formulation, we performed numerical experiments on

adapted instances of Falkenauer (1996). We added 20% of uncertain-size items and we set r equal

to 10% of the bin capacity. Only 30 of the 80 adapted instances were solved by IBM CPLEX 12.7

within a time limit of one hour per instance, which motivated us to develop a more efficient approach.

3.2. Set-cover reformulation of RBP1(r)

Another possibility is to use a set-cover formulation, which is obtained by applying the Dantzig-

Wolfe decomposition principle (Dantzig and Wolfe (1960)), in order to obtain in this case a much

tighter lower bound on the optimal value of bins.

Once the constraints (2b) are dualized in a Lagrangian way (Lemaréchal (2007)), subsystem

(2c)-(2d) decomposes into a subproblem for each bin k ∈ K. Let B be the family of the subsets of

items that can be fit into one bin with respect to uncertain sizes and to the threshold r on stability

radius ρ1. Each subset B ∈ B is defined by an indicator vector xB (xBi = 1 iff item i ∈ V is in set

B) and associated with a binary variable λB taking value 1 if the corresponding subset of items is

selected to fill one bin.

8

The reformulation is:

min
∑
B∈B

λB (3a)

s.t.
∑
B∈B

xBi λB ≥ 1, ∀i ∈ V, (3b)

∑
B∈B

λB ≤ K (3c)

λB ∈ {0, 1}, ∀B ∈ B. (3d)

Here, constraints (3b) replace constraints (2b), constraints (3c) limit the number of used bins to at

most K, and all other constraints of the compact formulation are built into the definition of feasible

sets B ∈ B of items. This problem will be referred to as the master problem. When Ṽ = ∅ or Ṽ = V

or r = 0, we obtain the set-cover formulation of BP , for which it is conjectured that the difference

between the linear relaxation value at root node and the optimal solution value is always less than

or equal to two (see, for example, Scheithauer and Terno, 1997).

The set-cover formulation, which has an exponential number of columns, is addressed by a

branch-and-price approach. Its principles are described in Section 3.3. At each node of a branch-

and-bound tree, its linear relaxation is solved by dynamic column generation. The master problem

is restricted to a subset of columns, and its linear relaxation is solved by the simplex method. Then,

a pricing subproblem is solved to check for the existence of an improving column, with a negative

reduced cost. It consists in solving the following robust variant of the knapsack problem, denoted

as PS(LP):

max
∑
i∈V

πizi (4a)

s.t. zi ≤ a, ∀i ∈ Ṽ , (4b)∑
i∈V

wizi + ra ≤W, (4c)

zi ∈ {0, 1}, ∀i ∈ V, (4d)

a ∈ {0, 1}. (4e)

The formulation of the pricing subproblem is related to a vector of dual variables π corresponding

to constraints (3b) of the set-cover reformulation. A binary variable zi indicates whether item i is

selected. A binary variable a indicates whether the knapsack contains at least one uncertain-size

item or not. Clearly, the feasible solutions to this problem are the feasible subsets B ∈ B of items.

9

3.3. Dynamic column generation at root node

The number of variables of the set-cover formulation grows exponentially with the number of

items. Hence, it is only possible to generate all of its columns when the number of items is small.

Otherwise, with a large number of items, the well-known principle of dynamic column generation

can be applied. Dynamic column generation allows the linear relaxation of the set-cover formulation

to be solved, as proposed by Dantzig and Wolfe (1960) for linear programs, considering, implicitly,

the whole set of columns. An iteration of dynamic column generation starts with solving the linear

relaxation of the set-cover formulation restricted to a relatively small subset of columns. The first

iteration begins with a column pool constituted of columns corresponding to subsets of B containing

exactly one item, and of columns in the solution provided by the adapted first-fit decreasing heuristic,

described below in Section 3.6.1. Solving the restricted master problem with the Simplex method

provides values of dual variables πi, for all i ∈ V .

Then, to check whether an improving column exists, reduced cost pricing is performed, by solving

PS(LP), for the current values of dual variables. If its optimal objective value is strictly larger than

one, the corresponding improving column, with a negative reduced cost, is added to the current

restricted master problem, providing a new restricted master problem, and a new iteration of dynamic

column generation starts. If not, no improving column exists, and the current feasible solution to

the linear relaxation of the set-cover formulation is optimal.

PS(LP) is a robust variant of the 0-1 knapsack problem. It can be solved in pseudo-polynomial

time, by solving two instances of the 0-1 knapsack problem, as shown below.

Property 1. PS(LP) can be solved in O(n·W), by solving two instances of the 0-1 knapsack problem.

Proof. First, the value of binary variable a is set to 0 (the bin contains no uncertain-sized item), and

the resulting 0-1 knapsack problem is solved in O(n ·W), with the classical dynamic programming

algorithm (see Toth (1980)). Second, the same is done for a = 1 (the bin is allowed to contain at least

one uncertain-sized item). Then, one of the two solutions which provides the best value is selected,

and it is an optimal solution to PS(LP). Hence, solving PS(LP) requires O(2 · n ·W) = O(n ·W)

operations.

Note that, by ordering the items such that certain-sized items are followed by uncertain-sized

items, and by adapting the classical dynamic programming algorithm (see Toth (1980)) so that,

when uncertain-sized items are reached, the knapsack capacity is decreased by r, it is possible to

10

solve PS(LP) with a single call to this adapted algorithm. However, we use two calls to the Combo

algorithm (Martello et al. (1999)) to deal with PS(LP) and solving two knapsack problems.

As its name suggests, the Combo algorithm is a combination of several techniques. One of the

central ideas upon which it relies is that a small subset of items is generally enough to form an optimal

solution. Therefore, the Combo algorithm restricts the search to a subset of items denoted as the

core, which is expanded when needed. Besides this, the algorithm makes use of upper and lower

bounds, which allow to fathom dominated states in the list-based dynamic programming procedure,

and to terminate the search earlier.

When the Combo algorithm is called to solve the second instance of the 0-1 knapsack problem,

it takes advantage of the lower bound provided by the solution to the first one. It generally enables

us to solve the robust 0-1 knapsack subproblem faster than the adapted dynamic programming

algorithm. Note that, for a pricing subproblem occurring when Ṽ = ∅, Combo is called only one

time (for a = 0).

Finally, we use the bound proposed by Farley (1990) to terminate column generation early when

dvRMPe =
⌈vRMP

vPS

⌉
,

where vRMP is the linear relaxation value of the current restricted master problem and vPS is the

optimal solution value to the current pricing subproblem. This bound is also used by Vance et al.

(1994) and Song et al. (2018). It was shown to be effective in reducing tailing off effects.

3.4. Branching scheme

Dynamic column generation provides solutions to the linear relaxation of the set-cover formu-

lation. However, its solution generally does not satisfy integrality constraints. When some of the

variables of the solution to the linear relaxation of Problem (3) have non-integral values, branching

is performed. We use the branching rule described by Ryan and Foster (1981), which relies on the

following property.

Property 2. Let Bi,j ⊂ B be the set of patterns that contains both items i and j. A solution to the

linear relaxation of the set-cover formulation contains variables with non-integral values if and only

if there exists an item pair {i, j} such that: 0 <
∑
Bi,j λB < 1 (Ryan and Foster (1981)).

When the solution to the linear relaxation of the set-cover formulation contains variables with

non-integral values, we select one of the item pairs {i, j} with the most unfeasible value, that is,

which minimizes |0.5−
∑
Bi,j λB|. At least one such pair is guaranteed to exist, according to Property

2.

11

Then, two child nodes are created. In the left node, items i and j have to be in the same bin:

the branching constraint is zi = zj . In the right node, items i and j have to be in different bins: the

branching constraint is zi + zj ≤ 1. In each of the two nodes, the variables of the restricted master

problem corresponding to columns which do not satisfy its branching constraints are removed. Each

branching constraint is directly added to the subproblem of its node, so that such columns are not

generated again. The problem of each node is solved by column generation, and branching occurs

as with the root node. The search tree is explored by a depth-first search procedure with restart, in

which the best-bound node is selected periodically for a new start of depth-first search.

In Vance et al. (1994), a different item pair selection strategy is proposed: one of the {i, j} with

the largest total size, but lower than the bin capacity, is selected for branching. We performed

numerical experiments with the 50 difficult AI instances introduced by Delorme et al. (2016) to

compare this node selection strategy with the one we propose. These instances do not allow free

space in any optimal solution. The time limit was set to 3600 seconds. Results are reported in Table

1. Column “Strategy” provides the node-selection strategy. Column “Avg. CPU, (s.)” gives the

average solution time in seconds. Column “#OPT” provides the number of proven optimal solutions

obtained. Column “#NODES” gives the average number of opened nodes in the search tree.

Strategy #OPT Avg. CPU, (s.) Avg. #NODES

Most unfeasible 32 1337 8420

Largest sum 12 2796 11444

Table 1: Comparison of two node-selection strategies

The “Most unfeasible” strategy of the proposed branch-and-price algorithm shows faster conver-

gence than the “Largest sum” strategy with these instances. These instances require the exploration

of a relatively large search tree, and the choice of this strategy is therefore important with them. In

the case of a non-optimal solution, only one extra bin was always used.

3.5. Subproblems after branching

Imposing branching constraints zi = zj on pairs {i, j} of items in a 0-1 robust knapsack subprob-

lem preserves its structure. Each of these constraints ensure that either both or none of the items of

its pair are selected. Hence, items i and j can be merged into an item of weight wi + wj and value

πi + πj . The resulting item has an uncertain size if i or j has an uncertain size, otherwise it is a

certain-size item. This subproblem is denoted as PS(left) and it is equivalent to PS(LP).

However, imposing branching constraints zi +zj ≤ 1 on pairs {i, j} of items (conflict constraints,

12

also called disjunctive constraints) to a 0-1 robust knapsack subproblem alters its structure. It turns

the subproblem into a robust 0-1 knapsack problem with conflict constraints on items, denoted as

PS(right). The non-robust variant of this problem is referred in the literature to as 0-1 knapsack

problem with conflicts. The 0-1 knapsack problem with conflicts is strongly NP-hard, and the

more general robust variant is therefore also strongly NP-hard. Property 1 can be straightforwardly

adapted to PS(right), which is addressed by solving two instances of the 0-1 knapsack problem with

conflicts. The optimal solution value to the first PS(right) instance (for a = 0), is used as a lower

bound for the second instance (for a = 1). Note that, for a pricing subproblem occurring when

Ṽ = ∅, this algorithm is called only one time (for a = 0).

We solve the 0-1 knapsack problem with conflicts with the dedicated branch-and-bound algorithm

by Sadykov and Vanderbeck (2013), which combines the classic depth-first search based branch-

and-bound algorithm for the 0-1 knapsack problem by Kellerer et al. (2004) with the enumeration

algorithm for solving the maximum clique problem (or the independent set problem) by Österg̊ard

(2002). Upper bounds are computed at each node of the search tree by solving the linear relaxation of

the residual knapsack problem, ignoring conflict constraints, with the well-known greedy algorithm

for the 0-1 knapsack problem. This algorithm sorts the items in decreasing order of utility (i.e. the

ratio value over weight), and then proceeds to insert them into the knapsack. A limit is set on the

number of nodes, which is active only if the current primal bound is greater than one, that is, if an

improving column has been found. The branch-and-bound terminates if this limit is reached and if

one improving column is available. Otherwise, the solving process goes on, to obtain an improving

column, or to prove that no such column exists.

Finally, we introduce the following dominance rule between items for PS(right), which is an

extension of classical dominance rules.

Property 3. Let Ci ⊂ V be the set of items in conflict with i ∈ V , i.e., for each j ∈ Ci we have

xi + xj ≤ 1. If the following four conditions hold for any j ∈ Ci, then item j is dominated by item

i, and can be removed from the instance of the robust 0-1 knapsack problem with conflicts:

1. i ∈ Ṽ ∧ j ∈ Ṽ or i /∈ Ṽ ∧ j /∈ Ṽ or i /∈ Ṽ ∧ j ∈ Ṽ ,

2. πi ≥ πj,

3. wi ≤ wj,

4. Ci \ {j} ⊆ Cj \ {i}.

Proof. We show that, if the conditions are verified, any feasible solution s containing item j can be

substituted by another solution s′ in which item j is replaced by item i, such that the value of s′ is

greater than or equal to the value of s.

13

First, solution s′ is feasible, regarding (1) the slack space r required in the presence of at least

one uncertain item, as i ∈ Ṽ ∧ j ∈ Ṽ or i /∈ Ṽ ∧ j /∈ Ṽ or i /∈ Ṽ ∧ j ∈ Ṽ , (2) the total item size, as

wi ≤ wj , and (3) the conflicts between items, as Ci \ {j} ⊆ Cj \ {i}. Second, solution s′ has a value

greater than or equal to solution s since πi ≥ πj .

Hence, if the conditions are verified, it is not necessary to consider any solution containing j,

which can be removed from the instance of the robust 0-1 knapsack problem with conflicts.

This dominance rule allows to eliminate some items of an instance of PS(right) in a preprocessing

phase. It is not mentioned in the preceding studies by Vance et al. (1994) and Sadykov and Van-

derbeck (2013), which uses the same branching rule, that conducts to a non-robust 0-1 knapsack

problem with conflicts as subproblem.

We performed numerical experiments with the 50 difficult AI instances introduced by Delorme

et al. (2016) to evaluate the impact of the proposed dominance rule. They do not allow free space

in any optimal solution. The time limit was set to 3600 seconds. Results are reported in Table 2.

Column “Dominance rule” indicates whether the dominance rule is used or not. Column “Avg. CPU,

(s.)” gives the average solution time in seconds. Column “#OPT” provides the number of proven

optimal solutions obtained. Column “#NODES” gives the average number of opened nodes in the

search tree.

Dominance rule #OPT Avg. CPU, (s.) Avg. #NODES

Yes 32 1337 8420

No 24 1879 6427

Table 2: Impact of the dominance rule

The proposed dominance rule enables a faster convergence for the algorithm, while exploring a

larger number of nodes, as subproblems are solved faster after the reduction of the number of items

they contain, and this reduction is done efficiently. In the case of a non-optimal solution, only one

extra bin was always used.

3.6. Primal heuristics

We use the following primal heuristics, which have an important role in the efficiency of the pro-

posed branch-and-price-algorithm, because they generally provide optimal or near optimal solutions

earlier than the branching procedure would.

14

3.6.1. Adapted first-fit decreasing heuristic

The FFD (First-Fit Decreasing heuristic) for BP can be stated as follows: items are sorted by

non-increasing weights, and placed into the first bin in that order where it is possible. If no bin with

enough free space is available, a new bin is used. FFD uses no more that 11/9 OPT + 1 bins for

BP , where OPT denotes the optimal number of required bins, as shown in Yue (1990).

FFD is simply adapted to RBP1(r) as follows: first, FFD is applied to uncertain-sized items

only, with the capacity of the used bins decreased by r, producing a partial solution; second, FFD

is applied to certain-sized items, using the residual bin capacities of the partial solution, and using

new bins when needed.

The main idea here is to pack together uncertain-sized items, as the presence of only one

uncertain-sized item in a bin decreases its capacity by r. Hence, in an optimal solution, uncertain-

sized items tend to be packed together as much as possible. The adapted FFD for RBP1(r) is used

to initiate the branch-and-price algorithm with a primal solution, providing both a primal bound

and columns for the first restricted master problem.

3.6.2. Integer programming based heuristics

We use all the integer programming based heuristics provided with the SCIP Optimization Suite,

upon which our branch-and-price algorithm is implemented. Only three of the most efficient ones

with the proposed formulation are presented here, for the sake of brevity. They are executed repet-

itively as new columns are generated during the branch-and-price algorithm, with the aim of con-

structing integer solutions using the pool of columns available at the current node.

Simple rounding. Given a feasible solution to the linear relaxation of the set-cover formulation,

simple rounding rounds up each variable to obtain a feasible integer solution.

One-opt. One-opt starts from a feasible solution to the set-cover formulation, for example provided

by Simple Rounding, and tries to improve it, by shifting some values of the variables from 1 to 0

whenever possible.

ZI Round. Given a feasible solution λ to the linear relaxation of the set-cover formulation, ZI

Round defines the fractionality for each variable λB as ZI(λB) = min{λB − bλBc, dλBe − λB} and

the fractionality of the solution as ZI(λ) =
∑

B∈B ZI(λB). The goal of ZI Round is to identify the

variables that can be rounded to improve ZI(λ) until the integer infeasibility becomes 0 at which

point an integral solution has been found. Therefore, each variable λB is rounded in the direction

15

that reduces ZI(λB) the most. In the case of a tie, the variable is rounded down. The ZI Round

heuristic is described in detail by Wallace (2010).

4. Numerical experiments

We conduct, with three main purposes, numerical experiments based on standard instances of

BP , from which we construct instances with uncertain-size items. First, we explore numerically

the tractability of these problems by the proposed branch-and-price algorithm. Second, we estimate

numerically the costs of robustness, in terms of the average additional numbers of required bins,

for the three proposed robust approaches. Third, we perform simulations of solution feasibility

under various scenarios generated with different probability distributions for increasing variations

of uncertain sizes. Last, an evaluation of the ability of the proposed branch-and-price algorithm to

deal with BP , using as a reference results found in the literature, is provided in Appendix B.

The branch-and-price algorithm is implemented in C on top of the SCIP Optimization Suite

7.0.2. IBM CPLEX 12.8 is used as the linear programming solver. All numerical experiments

were performed on an Intel Core i7-6700HQ CPU at 2.6 GHz with 4 GB of RAM. The time limit

was set to ten minutes of running time per instance. For the branch-and-bound algorithm which

solves the knapsack problem with conflicts, the limit on the number of nodes, active only when

an improving column has been found, is set to 10000|V |. Depth first search is restarted from the

best-bound node every 100 nodes. Average results are reported here, but full results are available

at: https://tinyurl.com/y6myu7uo.

4.1. Adaptation of the BP instances to RBP1(r), RBP∞(r) and RBPrr(α)

We considered all the most used BP benchmark sets from the literature, and selected those

where item sizes are sufficiently lower than bin capacity, to be turned into feasible robust instances.

BP instances from the following studies were adapted to RBP1(r), RBP∞(r) and RBPrr(α).

Falkenauer (1996). We use the 80 instances from the set Falkenauer T, which have between 60 and

501 items, a bin capacity equal to 1000, and item sizes in the range {250, · · · , 499}.

Scholl et al. (1997). We use the 10 instances from the set Scholl 3. Their number of items is

uniformly distributed between 50 and 500. The bin capacity is equal to 100,000. Item sizes are in

the range {20000, · · · , 35000}.

16

Schwerin and Wäscher (1997). We use two sets of 100 instances, one with 100 items, Schwerin 1,

the other with 120 items, Schwerin 2, and a bin capacity equal to 10,000. Item sizes are in the range

{150, · · · , 200}.

Let P stand for the probability for an item to have an uncertain size. We set P = 0.1 to generate

290 instances, in which a binary flag is simply added to indicate whether an item size is uncertain

or not, then P = 0.3 to generate 290 others and finally P = 0.5 to generate the last 290. In the

following, these instances are used for non-robust BP , treating for this problem uncertain sizes as

certain, as well as for the robust approaches RBP1(r), RBP∞(r) and RBPrr(α), for which r or α is

considered as a separate parameter.

4.2. Results of the proposed branch-and-price algorithm for the robust variants of BP

In Tables 3, 4 and 5, we report aggregated results obtained by the proposed branch-and-price

algorithm for RBP1(r), RBP∞(r) and RBPrr(α), respectively. Results are grouped by percentage of

uncertain-size items and by value of r or α. Each row provides aggregated results with 290 instances.

Column “Ṽ , (%)” indicates the percentage of uncertain-size items. Column “r” or “α” provides

the minimum value of the robustness indicator. The four other columns give aggregated values for

the corresponding group of instances. Column “Min. CPU, (s.)” gives the minimum solution time

in seconds. Column “Avg. CPU, (s.)” gives the average solution time in seconds. Column “Max.

CPU, (s.)” gives the maximum solution time in seconds. Column “Std. CPU, (s.)” gives the standard

deviation of solution time in seconds. Column “Avg. #BIN” indicates the average number of bins in

the best found solutions. Column “#OPT, (%)” provides the percentage of proven optimal solutions

obtained. Column “#SOL, (%) with GAP = 1” gives the percentage of solutions with an absolute gap

of one with the best known lower bound at the end of the optimization process.

In every case, the proposed algorithm either converged to a proven optimal solution or obtained

a solution with an absolute gap of one to the best known lower bound. Hence, for each row, the sum

of the two last columns equals 100 percent. As the proposed algorithm always obtains an optimal

solution with RBP∞(r) and RBBrr(α), the last column is omitted in Tables 4 and 5.

4.2.1. Results of the proposed branch-and-price algorithm with RBP1(r)

In Table 3, we report average results of the proposed branch-and-price algorithm with RBP1(r),

aggregated by percentage of uncertain-size items and by value of r.

17

Ṽ , (%) r Min. CPU, (s.) Avg. CPU, (s.) Max. CPU, (s.) Std. CPU, (s.) Avg. #BIN #OPT, (%)
#SOL, (%)

with GAP = 1

10%

All 0.09 52.28 616.78 161.45 39.69 92.3% 7.7%

0.2W (290) 0.11 38.46 605.82 137.26 38.52 94.83% 5.17%

0.3W (290) 0.1 40.26 616.78 141.86 39.44 94.14% 5.86%

0.4W (290) 0.09 78.1 603.47 195.99 41.1 87.93% 12.07%

30%

All 0.03 55.19 601.78 168.88 44.2 91.26% 8.74%

0.2W (290) 0.06 63.11 601.78 179.58 40.64 90% 10%

0.3W (290) 0.08 38.08 600.21 140.7 43.71 94.14% 5.86%

0.4W (290) 0.03 64.37 600.21 182.4 48.26 89.66% 10.34%

50%

All 0.02 64.59 600.88 182.2 48.63 89.66% 10.34%

0.2W (290) 0.05 65.43 600.02 182.21 42.68 89.66% 10.34%

0.3W (290) 0.02 62.53 600.88 179.7 47.76 90% 10%

0.4W (290) 0.02 65.8 600.01 185.27 55.44 89.31% 10.69%

All All 0.02 57.35 616.78 171.07 44.17 91.07% 8.93%

Table 3: Results of the proposed branch-and-price algorithm with RBP1(r), 870 runs

With RBP1(r), the proposed branch-and-price algorithm obtains an optimal solution 91% of the

times. Its average running time is less than one minute, and its running time is greater than one

minute for 37% of the runs.

At the end of the optimization process, the absolute gap between the rounded-up lower bound

and the best-found integer feasible solution value, within the time limit of ten minutes, is always

lower than or equal to one. This means that either one extra bin is used, compared to an optimal

solution, or that the solution is optimal, but the rounded-up lower bound is one unit below. In

the latter case, proving optimality requires branching to increase the lower bound, which may be

computationally expensive, and generally can’t be achieved within the time limit of 600 seconds.

Only nine such instances were solved within this time limit.

4.2.2. Results of the proposed branch-and-price algorithm with RBP∞(r)

In Table 4, we report average results of the proposed branch-and-price algorithm with RBP∞(r),

aggregated by percentage of uncertain-size items and by value of r.

18

Ṽ , (%) r Min. CPU, (s.) Avg. CPU, (s.) Max. CPU, (s.) Std. CPU, (s.) Avg. #BIN #OPT, (%)

10%

All 0.04 2.47 56.2 4.68 42.04 100%

0.2W (290) 0.11 2.65 21.74 4.7 40.37 100%

0.3W (290) 0.04 2.37 55.7 4.15 41.81 100%

0.4W (290) 0.06 2.4 56.2 5.15 43.94 100%

30%

All 0 1.54 180.43 8.47 52.25 100%

0.2W (290) 0.05 1.65 20.73 3.06 46.62 100%

0.3W (290) 0.02 2.47 180.43 14.26 51.83 100%

0.4W (290) 0 0.48 4.99 1.06 58.31 100%

50%

All 0 0.37 16.59 0.93 65.3 100%

0.2W (290) 0.01 0.77 16.59 1.51 53.1 100%

0.3W (290) 0.01 0.31 1.08 0.19 63.04 100%

0.4W (290) 0 0.04 1.43 0.11 79.77 100%

All All 0 1.46 180.43 5.68 53.2 100%

Table 4: Results of the proposed branch-and-price algorithm RBP∞(r), 870 runs

With RBP∞(r), the proposed branch-and-price algorithm always obtains an optimal solution,

in less than 2 seconds on average. The algorithm requires only six times more than 30 seconds to

converge, with a maximum solving time at 180 seconds. The gap between the rounded-up value of

linear relaxation at root node and the optimal integer solution value is always equal to zero.

4.2.3. Results of the proposed branch-and-price algorithm with RBPrr(α)

In Table 5, we report average results of the proposed branch-and-price algorithm with RBPrr(α),

aggregated by percentage of uncertain-size items and by value of α.

Ṽ , (%) α Min. CPU, (s.) Avg. CPU, (s.) Max. CPU, (s.) Std. CPU, (s.) Avg. #BIN #OPT, (%)

10%

All 0.09 3.01 25.23 4.91 38.2 100%

0.2W (290) 0.13 2.71 22.84 4.49 37.88 100%

0.3W (290) 0.09 3.15 20.97 5.04 38.13 100%

0.4W (290) 0.13 3.16 25.23 5.17 38.57 100%

30%

All 0.03 2.78 28.34 4.63 40.45 100%

0.2W (290) 0.1 2.92 28.34 4.89 39.38 100%

0.3W (290) 0.03 2.87 27.33 4.85 40.44 100%

0.4W (290) 0.07 2.55 19.36 4.09 41.52 100%

50%

All 0.02 2.17 21.32 3.26 42.68 100%

0.2W (290) 0.06 2.53 21.32 3.96 40.83 100%

0.3W (290) 0.04 2.25 15.89 3.36 42.61 100%

0.4W (290) 0.02 1.72 11.67 2.17 44.61 100%

All All 0.02 2.65 28.34 4.34 40.44 100%

Table 5: Results of the proposed branch-and-price algorithm with RBPrr(α), 870 runs

With RBPrr(α), the proposed branch-and-price algorithm always obtains an optimal solution,

19

in less than 3 seconds on average. The algorithm always requires less than 30 seconds to converge.

The gap between the rounded-up value of linear relaxation at root node and the optimal integer

solution value is always equal to zero.

4.3. Numerical evaluation of the extra cost for robustness

In the following, the extra cost for robustness is measured as the percentage of extra-bins required

in the best found robust solution, for the considered robust approach, compared to the best found

non-robust BP solution, to the same base instance. Concerning the BP solutions, 868 out of 870

are optimal, and the two others may be optimal, or use at most one extra bin.

4.3.1. Extra costs for robustness with RBP1(r) and RBP∞(r)

In Figure 1, we report the increase of the number of bins in percentages, compared to the non-

robust case, for RBP1(r) and RBP∞(r), with a percentage of uncertain-size items varying from

10%, 30% to 50%, and r varying by 0.2W , 0.3W and 0.4W .

Figure 1: Increase of the extra cost for robustness, varying the percentage of uncertain-size items and r, for RBP1(r)

and RBP∞(r)

The extra cost for robustness ranges from 4% to 146% of extra bins, depending on the robust

approach, the percentage of uncertain-size items, and r. For RBP1(r), this extra cost remains

moderate for Ṽ , (%) = 10%, ranging from 4% to 11% of extra bins. It grows up to 47% of extra bins

20

for the maximum values of r = 0.4W and Ṽ , (%) = 50%. For RBP∞(r), this cost sharply increases

with Ṽ , (%), particularly for larger value of r: for r = 0.4W , it ranges from 22% to 146%, as Ṽ , (%)

increases.

Besides, we observe that the increase of the number of bins, compared to the non-robust case, is

on average 2.8 times greater with RBP∞(r) than with RBP1(r). As can be easily proven, with the

same value of the stability radius, and the same uncertain items, the extra cost with the `∞ norm

is always greater than or equal to the one with the `1 norm.

4.3.2. Extra cost for robustness with RBPrr(α)

In Table 6, we report the increase of the number of bins in percentages, compared to the non-

robust case, for RBPrr(α), with a percentage of uncertain-size items equal to 10%, 30% or 50%,

when α is set to 0.2 or 0.3 or 0.4.

Column “Ṽ , (%)” indicates the percent of uncertain-size items. Column “α” indicates the min-

imum relative resiliency. Column “Extra bins, (%)” provides the percent of extra bins required

compared to the non-robust case.

α Ṽ , (%) Extra bins, (%)

0.2

10% 1.97%

30% 5.80%

50% 9.69%

0.3

10% 2.48%

30% 8.56%

50% 14.34%

0.4

10% 3.68%

30% 11.54%

50% 19.47%

Table 6: Extra cost for robustness increasing relative resiliency, for RPBrr(α)

With relative resiliency, for 10% of uncertain items, the extra cost for robustness is almost

negligible, under 4% of extra bins, even for α = 0.4. It remains under 10% for α ≤ 0.3, excepted for

α = 0.3 and Ṽ , (%) = 50%. It reaches a maximum of 19% for the maximum considered values of

α and Ṽ , (%). In the next section, we investigate through simulation the solution feasibility under

various scenarios, for the proposed robust approaches, compared to a non-robust one.

21

4.4. Simulation of solution feasibility under various scenarios

We perform numerical simulation of solution feasibility under various scenarios. Random vari-

ables describing uncertain-size variations are assumed to be independent and identically distributed,

with [−1, 1] as probability distribution’s support. Five symmetric probability distributions are con-

sidered: truncated normal, triangular, bimodal, uniform and beta(0.5, 0.5). A variation is obtained

by multiplying the draw of a random variable by a level of variation and by either bin capacity or

current item size. Negative variations are converted to 0. Ten levels of variations are tested, from

0.05 to 0.5, by increment of 0.05.

For each of the 870 instances described in Section 4.1, each of the 10 levels of variation, each

of the 5 probability distributions, in the case of variations relative to bin capacity and in the case

of variations relative to item size, 1 000 scenarios are generated, resulting in a total of 87 000

000 scenarios. The feasibility of each solution obtained by the considered approaches, with the

considered values for parameters r or α, is evaluated under each of the 100 000 scenarios generated

for the corresponding instance.

For each probability distribution, in the case of variations relative to bin capacity and in the

case of variations relative to item size, we report in Figure 2 the overall feasibility probability after

real item sizes are known for each considered approach, against an increasing level of variation of

uncertain sizes.

For a given probability distribution and a given level of variation, this overall feasibility proba-

bility of an approach, for a given value of r or α, is estimated as the number of scenarios that have

a feasible solution, over the total number of scenarios.

22

F
ig

u
re

2
:

S
im

u
la

ti
o
n

re
su

lt
s

o
f

so
lu

ti
o
n

fe
a
si

b
il
it

y
u
n
d
er

fi
v
e

p
ro

b
a
b
il
it

y
d
is

tr
ib

u
ti

o
n
s,

in
cr

ea
si

n
g

m
a
x
im

u
m

p
o
ss

ib
le

a
b
so

lu
te

va
ri

a
ti

o
n
,

re
la

ti
v
e

to
b
in

si
ze

o
r

it
em

si
ze

s

23

We observe that standard BP provides solutions with a feasibility probability always close to 0,

as they don’t reserve any free space in the used bins, that could absorb positive variations, and as

they use as few bins as possible. Hence, in the case of uncertain sizes, if feasibility is required, a

robust approach is a necessity.

Considering variations relative to bin capacity, therefore unrelated to each nominal size, only

solutions to RBP∞(r) have a guarantee of feasibility, as long as any variation is not greater than

r. Although the cost of robustness with RBP∞(r) is high (see Section 4.3.1), it is a requirement

for this guarantee, according to Property 4. Once r is exceeded, the feasibility probabilities always

quickly decrease, as r increases, at a rate that depends on the probability distribution, and which

is higher when more extreme values are generated, for example with the beta(0.5, 0.5) distribution.

Hence, these solutions are not overly conservative, even in the presence of negative variations, as in

these simulations, which compensate positive ones.

A solution to RBP1(r) comes with some protection against uncertainty, but generally no guaran-

tee of feasibility. Its feasibility probability is close to one for a range of variation level that depends

on the probability distribution and on r. With the truncated normal distribution, this probability

is greater than 0.7 with a variation level not greater than r. For probability distributions generating

more extreme values, this probability is lower.

As can be expected, relative resiliency based approaches are inadequate for variations that are

not related to nominal item sizes, as they have a low probability of feasibility.

Finally, in the case of variations related to nominal sizes, relative resiliency is a more adequate

approach, which offers both a feasibility guarantee and a smaller cost for robustness. In this case,

the proposed stability radius based approaches require more bins to offer the same protection against

uncertainty.

5. Conclusion and perspectives

In this paper, we introduced three robust variants of the BP problem with items of uncertain

size. After the assignment of items to bins has been decided, the size of these items can vary. The

objective was to minimize the number of bins used, while ensuring the chosen level of robustness.

Three indicators of robustness were studied: the stability radius calculated by using the `1 norm,

the stability radius calculated by using the `∞ norm, and the relative resiliency, in which possible

variations are related to nominal size values. A unique 0-1 linear program was designed, valid for

the three robust variants of the BP problem. A set-cover reformulation of the model was done

with an exponential number of columns, but a stronger linear relaxation bound. A branch-and-price

24

algorithm with dynamic column generation was developed. Then, a thorough numerical study was

performed with thousands of standard benchmark BP instances, in which randomly chosen item

sizes were set are uncertain.

We observed that the proposed algorithm is able to obtain an optimal solution to every instance

of RBP∞(r) and RBPrr(α), on average in less than three seconds per instance. It also provided a

proven optimal solution to 91% of RBP1(r) instances, and a solution either optimal or requiring one

extra bin to the remaining ones, on average in less than one minute.

We also measured the extra cost for robustness, which ranged from 2% to 146% extra bins,

depending on the robust approach, the percentage of uncertain items, and the value of r or α. Then,

we performed simulation of solution feasibility under various scenarios, generated with different

probability distributions for increasing variations. We observed that standard BP provides solutions

with a feasibility probability always close to 0. In the case of variations relative to bin capacity, for

all the considered robust approaches, feasibility probability always decreases relatively fast, as the

level of variation increases. The solutions obtained with RBP∞(r) have a greater cost for robustness

but come with a guarantee of feasibility when any variation is not greater than r. With variations

observing a truncated normal distribution, a solution to RBP1(r) had a feasibility probability greater

than 0.7 with a variation level not greater than r. For probability distributions generating more

extreme values, this bound was lower. Finally, in the case of variations relative to item sizes,

RBPrr(α) offers both a feasibility guarantee and a smaller cost for robustness.

This work offers several perspectives. First, one could consider different robustness models,

with for example uncertain bins, in which all item sizes can deviate, or with different kinds of

uncertainties, affecting different subsets of items. Second, the proposed branch-and-price algorithm

could be improved. To achieve this, a possible research direction is related to the acceleration of the

lower bound evaluation, another one to the improvement of this lower bound, and another one to

the design of primal heuristics.

Appendix A Formal definitions

A.1 Definition of stability radius ρ1, stability radius ρ∞ and relative resiliency ρrr

To evaluate the robustness of a feasible solution, we use the stability radius concept, whose

formal definition requires some additional notations to the ones provided in Section 3.1:

• w = (w1, w2, . . . , wn) ∈ Rn
+, a vector expressing nominal item sizes. For any item i ∈ V of

certain size, nominal and real sizes are assumed to be equal. For any item i ∈ Ṽ of uncertain

size, there may be a difference between nominal and real sizes,

25

• Ξ = {ξ ∈ Rn | ξi = 0, i ∈ V \ Ṽ }, a set of vectors, such that each vector ξ ∈ Ξ represents a

possible scenario of uncertain-size variations,

• F (w), the set of feasible solutions with respect to a given vector w ∈ Rn
+,

• K̃ = {k ∈ K | V k ∩ Ṽ 6= ∅}, the set of bins of a given feasible solution having at least one

uncertain item, where V k is the set of items assigned to bin k.

The stability radius of a feasible solution s ∈ F (w) can then be defined as follows (see Sotskov

et al. (2006)): ρ(s, w) = max{ε ≥ 0 | ∀ξ ∈ B(ε), s ∈ F (w + ξ)}, where B(ε) = {ξ ∈ Ξ | ‖ξ‖ ≤ ε}.

Hence, ρ(s, w) is determined as the value of the radius of the greatest closed ball B(·), called the

stability ball which represents uncertain size variations, for which s remains feasible. Any element

ξ of B(·) is evaluated based on a given norm ‖·‖ defining the distance between vectors w and w+ ξ

(or the amplitude of variations from w). In this paper, two norms `1 (‖·‖1) and `∞ (‖·‖∞) are

considered, where by definition ‖ξ‖1 =
∑

i∈Ṽ |ξi| and ‖ξ‖∞ = max
i∈Ṽ
{|ξi|}. As a consequence, the

notations ρ1 and ρ∞ will be used for `1 and `∞, respectively.

The integer programming formulation of RBP1, RBP∞ and RBPrr is based on the following

three theorems, which are demonstrated by Rossi et al. (2016), by Sotskov et al. (2006) and by

Pirogov (2019), respectively.

Theorem 1 (Rossi et al. (2016)). The stability radius ρ for a given feasible solution is calculated as

follows: ρ1 = min
k∈K̃

{
W −

∑
i∈V k wi

}
.

Theorem 2 (Sotskov et al. (2006)). The stability radius ρ∞ for a given feasible solution is calculated

as follows: ρ∞ = min
k∈K̃

{
W−

∑
i∈V k wi

|V k∩Ṽ |

}
.

For some practical applications, a possible limitation of theses approaches is that variations are

not related to nominal size values. Therefore, we consider another robust approach, proposed by

Pirogov (2019), based on the relative resiliency.

The relative resiliency ρrr(s, w) refers to the situation where each uncertain-size variation is

bounded by an amount that is proportional to the nominal value defined by a coefficient α > 0.

The set of vectors representing possible scenarios of uncertain-size variations is then defined as

Ξ(α,w) = {ξ ∈ Ξ | ξi ≤ αwi, i ∈ Ṽ }. In this case, the relative resiliency ρrr(s, w) = max{α ≥ 0 | s ∈

F (w + ξ), ξ ∈ Ξ(α,w)} is the greatest value of α for which the solution s remains feasible.

Theorem 3 (Pirogov (2019)). The relative resiliency ρrr for a given feasible solution is calculated

as follows: ρrr = min
k∈K̃

{
W−

∑
i∈V k wi∑

i∈V k∩Ṽ wi

}
.

26

A.2 Robust bin-packing problems RBP1(r), RBP∞(r) and RBPrr(α)

We define:

• RBP1(r) (resp. RBP∞(r)) as the problem of obtaining a solution to BP with a stability radius

in norm `1 (resp. `∞) at least equal to r ∈ R+ using a minimum number of bins.

• RBPrr(α) as the problem of obtaining a solution to BP with a relative resiliency at least equal

to α ∈ R+ using a minimum number of bins.

We introduce the following property which states that adding a value r ∈ R+ to each uncertain

size ensures that any feasible solution to the resulting instance of BP has a stability radius ρ∞ at

least equal to r in the original instance.

Property 4. A given feasible solution of BP has the stability radius ρ∞ at least equal to r iff the

following inequality
∑

i∈V k∩Ṽ (wi + r) +
∑

i∈V k\Ṽ wi ≤W holds for any bin k ∈ K̃.

Proof. The latter inequality is equivalent to the following one
∑

i∈V k wi + |V k ∩ Ṽ | · r ≤ W , which

can be transformed into r ≤ W−
∑

i∈V k wi

|V k∩Ṽ |
and, as a consequence, we have r ≤ min

k∈K̃

{
W−

∑
i∈V k wi

|V k∩Ṽ |

}
.

Based on Theorem 2, we finally obtain that r ≤ ρ∞.

In Figure A.3, a robust solution to an instance of BP is presented with a total of five items,

three uncertain sizes (items 2, 3 and 5), a bin capacity of ten, and a stability radius ρ∞ equal to

one. Property 4 states that to obtain such a solution, with a stability radius ρ∞ at least equal to

one, it is possible to add one to each uncertain size, and to solve the resulting BP instance, as it

appears in the figure.

Similarly, the following property states that adding a value αwi to each uncertain size wi for

i ∈ Ṽ ensures that any feasible solution to the resulting instance of BP will have a relative resiliency

ρrr at least equal to α in the original instance.

Property 5. A given feasible solution of BP has a relative resiliency ρrr at least equal to α iff the

following inequality
∑

i∈V k∩Ṽ (1 + α)wi +
∑

i∈V k\Ṽ wi ≤W holds for any bin k ∈ K̃.

Proof. The latter inequality is equivalent to the following one α ·
∑

i∈V k∩Ṽ wi +
∑

i∈V k∩Ṽ wi ≤

W −
∑

i∈V k\Ṽ wi, which can be transformed into α ≤ W−
∑

i∈V k wi∑
i∈V k∩Ṽ wi

and, as a consequence, we have

α ≤ min
k∈K̃

{
W−

∑
i∈V k wi∑

i∈V k∩Ṽ wi

}
. Based on Theorem 3, we finally obtain that α ≤ ρrr.

Property 4 (resp. Property 5) implies that a solution to any instance of RBP∞(r) (resp.

RBPrr(α)) can be obtained by solving an instance of BP , in which item sizes are chosen accordingly.

27

Item 3

unc. size

Item 2

unc. size

Item 1

w3 = 1.5

w2 = 3

w1 = 3.5

Bin 1

Used space: 8/10,

2 uncertain sizes

Item 5

unc. size

Item 4

w5 = 6

w4 = 1.5

Bin 2

Used space: 7.5/10,

1 uncertain size

Figure A.3: A robust solution to an instance of BP with ρ∞ = 1, obtained by reserving one unit of free space for each

uncertain size

However, for RBP1(r), we can’t use the same kind of straightforward reduction, as implied by the

following Property.

Property 6. A given feasible solution of BP has a stability radius ρ1 at least equal to r iff the

following inequality
∑

i∈V k wi + r ≤W holds for any bin k ∈ K̃.

Proof. The latter inequality is equivalent to the following one r ≤ W −
∑

i∈V k wi, which conducts

us to r ≤ min
k∈K̃

{
W −

∑
i∈V k wi

}
. Based on Theorem 1, we finally obtain that r ≤ ρ1.

Hence, with RBP1(r), any bin containing one uncertain item or more must keep a quantity of

unused space at least equal to r, which led us to the 0-1 linear programming formulation of Section

3.1.

Appendix B Numerical results with BP

We provide numerical results for BP , with instances from the benchmark sets proposed by

Falkenauer (1996), Scholl et al. (1997), Wäscher and Gau (1996), Schwerin and Wäscher (1997),

Schoenfield (2002) and Delorme et al. (2016). We restrict the report to the subset of 3877 instances

28

(out of 5450) used by Delorme et al. (2016). The maximum amount of time per instance is set to

one minute.

In Table B.7, we report comparative numerical results for BP obtained by the proposed branch-

and-price algorithm and other branch-and-price algorithms from the literature. In the column “Set”,

the name of the set of instances is provided. In the column “#INSTANCE”, the number of tested

instances for the corresponding set of instances is given. In the columns “#OPT”, “#OPT Vance”,

“#OPT SCIP”, “#OPT Belov”, and “#OPT Song”, the number of instances solved to optimality in

less than one minute per instance, by the proposed branch-and-price algorithm, and by the ones

by Vance et al. (1994), by Gamrath et al. (2016), by Belov and Scheithauer (2006), and by Song

et al. (2018), are provided, respectively. For “#OPT Vance”, “#OPT SCIP”, and “#OPT Belov”, the

reported results come from the study by Delorme et al. (2016), in which a benchmark of several

algorithms for BP was performed on the same computer, an Intel Xeon CPU at 3.1 GHz, with 8

GB of RAM, faster than the Intel Core i7-6700HQ CPU at 2.6 GHz with 4 GB of RAM that we

used. An asterisk in a cell indicates that the algorithm obtained the maximum number of optimal

solutions. In Song et al. (2018), results are provided for only six instance sets, and a hyphen “-” in

a cell indicates that no results are available for the algorithm.

29

Set #INSTANCE #OPT
#OPT

Vance

#OPT

SCIP

#OPT

Belov

#OPT

Song

Falkenauer U 74 60 53 18 74* -

Falkenauer T 80 79* 76 35 57 52

Scholl 1 323 323* 323* 244 323* -

Scholl 2 244 197 204 67 244* -

Scholl 3 10 10* 10* 0 10* 0

Wascher 17 15 6 0 17* 6

Schwerin 1 100 100* 100* 0 100* 100*

Schwerin 2 100 99 100* 0 100* 100*

Hard 28 28 26 11 7 28* 11

Random 50 165 165* 165* 165* 165* -

Random 100 271 271* 271* 271* 271* -

Random 200 359 359* 358 293 359* -

Random 300 393 393* 387 155 393* -

Random 400 425 425* 416 114 425* -

Random 500 414 412 394 69 414* -

Random 750 433 407 99 22 433* -

Random 1000 441 282 62 0 441* -

Total 3877 3623 3035 1460 3854* -

Table B.7: Comparative results with BP : number of instances solved in at most one minute per instance

Globally, the proposed algorithm is able to solve 93 percent of the instances of the considered

subset in less than one minute per instance. It solves more instances than the previous ones based on

the same branching rule: 19 percent more instances than the best previous one proposed by Vance

et al. (1994). It solves only 6 percent less instances than the best known branch-and-price algorithm

for BP proposed by Belov and Scheithauer (2006).

Regarding the instances which are not solved within one minute, there are two main difficulties.

First, in the case of a large number of items or a large bin capacity, solving the linear relaxation of the

master problem at root node may require more than one minute. Improving the performance of the

proposed branch-and-price algorithm would require accelerating the lower bound evaluation. Second,

obtaining an integer optimal solution may require too much branching and column generation. A

very efficient tailored heuristic such as the one used by Belov and Scheithauer (2006) and introduced

30

by Mukhacheva et al. (2000), may be adapted to RBP1 and incorporated into the algorithm, to

speed-up the solving process.

References

Achterberg, T., Berthold, T., and Hendel, G. (2012). Rounding and propagation heuristics for mixed

integer programming. In Klatte, D., Lüthi, H.-J., and Schmedders, K., editors, Operations

Research Proceedings 2011, pages 71–76, Berlin, Heidelberg. Springer Berlin Heidelberg.

Alem, D. J., Munari, P. A., Arenales, M. N., and Ferreira, P. A. V. (2010). On the cutting stock

problem under stochastic demand. Annals of Operations Research, 179(1):169–186.

Alfandari, L., Plateau, A., and Schepler, X. (2015). A branch-and-price-and-cut approach for sus-

tainable crop rotation planning. European Journal of Operational Research, 241(3):872–879.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., and Vance, P. H. (1998).

Branch-and-price: Column generation for solving huge integer programs. Operations Research,

46(3):316–329.

Battäıa, O. and Dolgui, A. (2013). A taxonomy of line balancing problems and their solution

approaches. International Journal of Production Economics, 142(2):259–277.

Belov, G. and Scheithauer, G. (2006). A branch-and-cut-and-price algorithm for one-dimensional

stock cutting and two-dimensional two-stage cutting. European Journal of Operational Research,

171(1):85–106.

Berthold, T. (2008). Heuristics of the branch-cut-and-price-framework SCIP. In Kalcsics, J. and

Nickel, S., editors, Operations Research Proceedings 2007, pages 31–36, Berlin, Heidelberg.

Springer Berlin Heidelberg.

Bertsimas, D. and Sim, M. (2004). The price of robustness. Operations Research, 52(1):35–53.

Boysen, N., Fliedner, M., and Scholl, A. (2007). A classification of assembly line balancing problems.

European Journal of Operational Research, 183(2):674–693.

Cardoen, B., Demeulemeester, E., and Beliën, J. (2010). Operating room planning and scheduling:

A literature review. European Journal of Operational Research, 201(3):921–932.

31

Crainic, T. G., Gobbato, L., Perboli, G., and Rei, W. (2016). Logistics capacity planning: A

stochastic bin packing formulation and a progressive hedging meta-heuristic. European Journal

of Operational Research, 253(2):404–417.

Dantzig, G. B. and Wolfe, P. (1960). Decomposition principle for linear programs. Operations

Research, 8(1):101–111.

Delorme, M., Iori, M., and Martello, S. (2016). Bin packing and cutting stock problems: Mathe-

matical models and exact algorithms. European Journal of Operational Research, 255(1):1–20.

Desrosiers, J. and Lübbecke, M. (2011). Branch-price-and-cut algorithms. In Cochran, J., editor,

Encyclopedia of Operations Research and Management Science. John Wiley & Sons.

Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics,

2(1):5–30.

Farley, A. A. (1990). A note on bounding a class of linear programming problems, including cutting

stock problems. Operations Research, 38(5):922–923.

Fukasawa, R., Longo, H., Lysgaard, J., De Aragão, M. P., Reis, M., Uchoa, E., and Werneck,

R. F. (2006). Robust branch-and-cut-and-price for the capacitated vehicle routing problem.

Mathematical Programming, 106(3):491–511.

Gamrath, G. (2010). Generic branch-cut-and-price. PhD thesis, Technischen Universität Berlin.

Gamrath, G., Fischer, T., Gally, T., Gleixner, A. M., Hendel, G., Koch, T., Maher, S. J., Mil-

tenberger, M., Müller, B., Pfetsch, M. E., et al. (2016). The SCIP Optimization Suite 3.2.

Technical report, Zuse Institute Berlin, Germany.

Horowitz, E. and Sahni, S. (1974). Computing partitions with applications to the knapsack problem.

Journal of the ACM, 21(2):277–292.

Kellerer, H., Pferschy, U., and Pisinger, D. (2004). Knapsack problems. Springer, Berlin.

Lamiri, M., Xie, X., Dolgui, A., and Grimaud, F. (2008). A stochastic model for operating room

planning with elective and emergency demand for surgery. European Journal of Operational

Research, 185(3):1026–1037.

Lemaréchal, C. (2007). The omnipresence of lagrange. Annals of Operations Research, 153(1):9–27.

32

Martello, S., Pisinger, D., and Toth, P. (1999). Dynamic programming and strong bounds for the

0-1 knapsack problem. Management Science, 45(3):414–424.

Mukhacheva, E., Belov, G., Kartack, V., and Mukhacheva, A. (2000). Linear one-dimensional

cutting-packing problems: numerical experiments with the sequential value correction method

(SVC) and a modified branch-and-bound method (MBB). Pesquisa Operacional, 20(2):153–168.

Pirogov, A. (2019). Robust balancing of production lines: MILP models and pre-processing rules.

PhD thesis, IMT Atlantique, Nantes, France.

Rossi, A., Gurevsky, E., Battäıa, O., and Dolgui, A. (2016). Maximizing the robustness for simple

assembly lines with fixed cycle time and limited number of workstations. Discrete Applied

Mathematics, 208:123–136.

Ryan, D. and Foster, E. (1981). An integer programming approach to scheduling. Computer Schedul-

ing of Public Transport Urban Passenger Vehicle and Crew Scheduling, page 269–280.

Sadykov, R. and Vanderbeck, F. (2013). Bin packing with conflicts: A generic branch-and-price

algorithm. INFORMS Journal on Computing, 25(2):244–255.

Scheithauer, G. and Terno, J. (1997). Theoretical investigations on the modified integer round-up

property for the one-dimensional cutting stock problem. Operations Research Letters, 20(2):93–

100.

Schoenfield, J. E. (2002). Fast, exact solution of open bin packing problems without linear program-

ming. Technical report, US Army Space and Missile Defense Command, Huntsville, Alabama,

USA.

Scholl, A., Klein, R., and Jürgens, C. (1997). Bison: A fast hybrid procedure for exactly solving the

one-dimensional bin packing problem. Computers & Operations Research, 24(7):627–645.

Schwerin, P. and Wäscher, G. (1997). The bin-packing problem: A problem generator and some

numerical experiments with FFD packing and MTP. International Transactions in Operational

Research, 4(5):377–389.

Song, G., Kowalczyk, D., and Leus, R. (2018). The robust machine availability problem – bin

packing under uncertainty. IISE Transactions, 50(11):997–1012.

33

Sotskov, Y. N., Dolgui, A., and Portmann, M.-C. (2006). Stability analysis of an optimal balance for

an assembly line with fixed cycle time. European Journal of Operational Research, 168(3):783–

797.

Toth, P. (1980). Dynamic programming algorithms for the zero-one knapsack problem. Computing,

25(1):29–45.

Vance, P. H., Barnhart, C., Johnson, E. L., and Nemhauser, G. L. (1994). Solving binary cutting

stock problems by column generation and branch-and-bound. Computational Optimization and

Applications, 3(2):111–130.

Vanderbeck, F. (2000). On Dantzig-Wolfe decomposition in integer programming and ways to

perform branching in a branch-and-price algorithm. Operations Research, 48(1):111–128.

Wallace, C. (2010). ZI round, a MIP rounding heuristic. Journal of Heuristics, 16(5):715–722.

Wäscher, G. and Gau, T. (1996). Heuristics for the integer one-dimensional cutting stock problem:

A computational study. Operations-Research-Spektrum, 18(3):131–144.

Yue, M. (1990). A simple proof of the inequality FFD (L) ≤ 11/9 OPT (L) + 1, ∀L for the FFD

bin-packing algorithm. Acta Mathematicae Applicatae Sinica, 7:321–331.

Österg̊ard, P. R. (2002). A fast algorithm for the maximum clique problem. Discrete Applied

Mathematics, 120(1):197–207.

34

