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A B S T R A C T   

A unified framework for simulating various transport processes in the environment is presented. It consists in a 
single set of partial differential equations. The main feature of this model framework is its exchange layer, which 
allows to treat several types of transfer between the soil and the surface water. 

The model framework equations, termed transfer equations, is shown to reproduce three independently- 
published models developed for soil erosion, river bedload, and chemical transport respectively. By allowing 
the different processes to be represented within a single model framework, the transfer equations are therefore 
unifying the representation of particles and chemical fluxes in the environment. The transfer equations are 
implemented into the open-source software FullSWOF_1D. The code is verified against the approximation of an 
exact solution, assuring its proper functioning. A good adequacy is found between our numerical results and 
those published in the literature, attesting the capability of the transfer equations to unify modeling of soil 
erosion, river bedload, and chemical transport. Hence, the transfer equations can decrease the number of models 
to be used for simulating transfer of materials in the environment, and limit the number of computer codes to be 
developed and maintained. The transfer equations could also help in drawing parallels between different fields of 
hydrology.   

1. Introduction 

In hydrology, for a given process, many models may co-exist: for 
water infiltration at the soil surface, we have the equations of Green and 
Ampt (1911), Richards (1931), Horton (1939), etc., and for a given 
model, different numerical implementations are possible. For example, 
several computer codes exist for solving the shallow water equations 
(Barré de Saint-Venant, 1871): Hack and Jakob (1992), Breuer and 
Bader (2012), Delestre et al. (2017), etc. We emphasize the difference 
we make between a model, i.e. a set of equations, and a computer code: 
a given model can be solved by different codes (which can involve 
different numerical schemes or different mesh types). 

Because different models were developed for different processes, it 
seems that each model has a very specific description. For example, 
numerous equations have been proposed to model the transport of a 
material in a water flow. These various equations can represent different 
types of materials, such as particles or dissolved chemicals, and account 

for a wide range of processes: interrill erosion, rill erosion, gully erosion, 
suspended transport, bedload transport, etc. While this gives hydrolo
gists and environment specialists a large choice of models and computer 
codes, this diversity may be more apparent than real. 

Soil erosion, river bedload and chemical transport are typically seen 
as different processes, hence they are usually accounted for by different 
models, even if a few exceptions exist, such as Sander et al. (2011), 
where the Hairsine and Rose model (dedicated to soil erosion) was 
applied to the specific case of a sand-bed river. However, to simulate two 
transfer processes, two models usually have to be coupled and their 
interaction accounted for, leading to an additional complexity. For 
example, if one wants to simulate transfer processes within a watershed, 
such as interrill and rill erosions on the hillslopes, and bedload transport 
in the river network, it currently requires distinct functions to be 
implemented (one for each process), as well as dedicated coupling 
functions between these processes. The unifying model framework al
leviates these needs: a single function can deal with all the processes, 
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these processes being represented through a set of parameters. This 
obviously solves the coupling issues. Finally, one gets a computer code 
that is simpler to develop, to debug and to maintain, that simulates 
multiple processes, and that has a wide range of applications. 

In this article, we describe a single model framework that can 
represent soil erosion, river bedload and chemical transport. Hence, this 
model framework unifies the description of what is usually regarded as 
three different processes, and would typically lead to the use of three 
separate models. 

The proposed transfer model framework is based on a general mass 
balance and has been used previously in nonlinear chromatography 
(James et al., 2000). In the present paper, we consider a material located 
in the fluid or supplied by the original soil surface. The material can be 
stored in an exchange layer or released from this exchange layer. An 
exchange function is used to model the fluxes between the exchange 
layer and the water flow. The transfer model equations express the 
evolution in time and space of the concentrations of the material in the 
fluid and in the exchange layer. The model framework is not process- 
specific: various processes and materials can be considered. We show 
that this model framework is able to represent particle or chemical 
transport on hillslope or in rivers. Moreover, it can account for multiple 
classes of particles and their interactions. The model framework is of 
general purpose, while the equations are limited to the transport of a 
specific material in a specific type of water flow. This justify the unifying 
character of the proposed model framework. 

After describing the transfer model framework, its numerical 
implementation is presented. For a particular configuration, we are able 
to express a nearly-exact solution of the transfer model equations, for 
each time and space point. This is used to check that the software 
computes a good approximation of the solution and that no bug is pre
sent in the implementation. This is called a verification of proper func
tioning. Then, to exemplify its capabilities, we show that the unifying 
transfer model framework (and its computer code) can represent:  
1. Soil erosion by water on a hillslope as done in the model of Hairsine 

et al. (2002). This model considers erosion and deposition processes 
separately, taking into account several sizes of particles.  

2. Bedload transport in rivers, as done in the model of Lajeunesse et al. 
(2013). This model considers the spreading of a plume of tracer 
particles.  

3. Chemical transport by overland flow with rain and diffusion in the 
soil, as done in the model of Gao et al. (2004). 
While these three models (and for sure a lot of other models) are 

apparently very different, we show that they can be rewritten in the 
same formalism (i.e. the unifying transfer framework presented in 
this paper), and hence they can be run with a single computer code 
(e.g. FullSWOF_1D, or any other shallow water software through a 
coupling with the unifying transfer model equations). 

Note that several works are limited to the case of model equilibriums 
(Beuselinck et al., 2002; Sander et al., 2002). In this article, as an extra 
challenge, our goal is not only to catch the equilibrium, but also to get 
the evolution toward this equilibrium: starting from given initial con
ditions, the transitory solution towards the equilibrium is expected to be 
simulated. 

2. Material and methods 

2.1. The unifying transfer model framework 

2.1.1. Description 
We propose a unifying transfer model framework to compute the 

concentrations of materials in the environment as functions of time and 
space, based on equations previously used in nonlinear chromatography 
(James et al., 2000). For the sake of clarity, we expose the unifying 
transfer model framework in one space dimension, its extension to two 
dimensions being straightforward. 

The transfer model framework accounts for a fluid containing some 
materials which can be exchanged between the water column and an 
exchange layer (Fig. 1a). A source can supply additional materials to 
both the fluid and the exchange layer. As an example, from a physical 
point-of-view (Fig. 1b), we consider a medium, such as the soil, from 
which the materials (particles, chemicals) are released (due to the flow, 
to the rain, etc.). These materials enter the flow, are transported, and can 
be accreted to a layer covering part of the initial surface. Eventually, 
these materials can be released again from this layer, hence this layer is 
termed “exchange layer”. 

To write the transfer model equations, we consider the concentra
tions of the materials: c stands for the concentration in the fluid and M 
stands for the concentration in the exchange layer (Fig. 1a). We can 
consider several classes of materials (such as particles of different sizes): 
we denote the class by a i subscript (i = 1…N). All the quantities are 
expressed per unit width. 

Then, assuming the height of the fluid is h [m] and its discharge is q 
[m2 s− 1], by writing the mass balance for the materials, we get the 
following system: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂(hci)

∂t
+

∂(qci)

∂x
=

1
tsi
(Gi(M) − hci) + S1

i

A
∂Mi

∂t
= −

1
tsi
(Gi(M) − hci) + S2

i ,

(1)  

where ci [kg m− 2] is the concentration of the material class i in the fluid, 
M represents the vector of the Mi values, with Mi [kg m− 1] the 

Fig. 1. Conceptual representation (a) and an example of physical representa
tion (b) of the transfer equations for each class of materials. The material has a 
concentration c in the fluid and M in the exchange layer. This material can be 
moved from the original soil to the water (red arrows and source term S1), and 
from the original soil to the exchange layer (red arrows and source term S2). An 
exchange, as defined by G(M), can take place between the water and the ex
change layer (green arrows). The exchange layer does not have to be contin
uous over the domain. 
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concentration of the material class i in the exchange layer, S1
i and S2

i [kg 
s− 1 m− 1] are source terms representing the material from the original 
soil that supplies the flow and the exchange layer respectively (the signs 
of S1

i and S2
i define the direction of the supply), the function Gi is an 

equilibrium function, tsi [s] is a relaxation time, and A a constant co
efficient. The parameters Gi, tsi and A are defined by the physical 
problem under consideration, and consequently they depend on the 
intended application. 

In case of null source terms (S1
i = S2

i = 0), summing the two equa
tions of (1) cancels the right-hand side, and the overall mass balance 
becomes 

∂(hci)

∂t
+A

∂Mi

∂t
+

∂(qci)

∂x
= 0. (2) 

The transfer equations (1) are considered as a system and, in this 
formulation, we cannot impose one concentration to be at the equilib
rium in one equation but not the other (if the tsi are of the same 
magnitude). Some studies, such as Sander et al. (2002), consider so- 
called “partial equilibria” of the Hairsine and Rose model, i.e. they 
cancel some terms in one equation but not in the other. That can lead to 
states of the system that could not be attained by the complete model, 
questioning the relevancy of such an approach. The transfer equations 
(1) couple the evolution of the concentration of materials in the fluid 
and the concentration of materials in the exchange layer. This draws two 
remarks related to the capabilities of the transfer equations (1): First, if 
an equilibrium state is to be achieved, it will be related to both the 
concentration in the fluid and the concentration in the exchange layer. 
Second, an equilibrium will be achieved only if the prescribed condi
tions permit; otherwise the system will not converge to an equilibrium. 

2.1.2. Implementation 
FullSWOF (for “Full Shallow Water equations for Overland Flow”) is 

a free open-source software (GPL-compatible licence) that solves the 
shallow water equations and gives the evolution of a shallow layer of 
water in space and time (Delestre et al., 2017). Written in C++, it im
plements the finite-volume numerical method. It is developed by IDP 
(ex-MAPMO) and INRAE. There exists a one-dimensional version (for 
one-dimensional flows) where the quantities (such as the water height) 
depend only on one space dimension x and time, and a two-dimensional 
version, to simulate more general flows, where functions depend on the 
two space dimensions x and y and time. Currently, the transfer model 
framework (1) is integrated in the one-dimensional version of FullSWOF 
(FullSWOF_1D version 2.00.00) with a splitting method, meaning that, 
at each time step, the evolution of the water is computed first, giving the 
water height h and the water discharge q in space, and then the transfer 
equations (1) are solved. As implemented, the transfer equations (1) 
could also be used as a library by another flow software. In fact, for any 
other software giving the evolution of water height and discharge as 
functions of time, one can extract the resolution of the transfer model 
framework and make the coupling easily. For details about the imple
mentation, see Appendix A. 

In the following, the calculations are done using FullSWOF_1D. The 
parameters files are not fully detailed here but are available in the 
source code repository of FullSWOF_1D (https://sourcesup.renater.fr 
/projects/fullswof-1d/), either in the Benchmarks folder (for bedload 
transport in river) or in the Examples folder (for the other three cases). 

2.1.3. Verification of proper functioning 
Before doing comparisons with other physical models, we perform an 

academic test to check the proper functioning of the software. This is 
possible because we were able to write a nearly-exact solution at each 
time and at each point, for a given choice of parameters. A software 
computing the solutions of the transfer equations (1) should return a 
good approximation of this solution under the corresponding conditions, 
and the results should be improved when decreasing the space step. 

We consider two sizes of particles inside the domain, distributed in 
the flowing layer and in the exchange layer, without any source, and we 
let the system evolve in time. We choose Gi(M) = KiMi, with K1 = 243 
and K2 = 0.3, ts1 = 0.087 s and ts2 = 7.17× 10− 4 s, and A = 1. We 
solve the system 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(hc1)

∂t
+

∂(qc1)

∂x
=

1
0.087

(243M1 − hc1),

∂M1

∂t
= −

1
0.087

(243M1 − hc1),

∂(hc2)

∂t
+

∂(qc2)

∂x
=

1
0.000717

(0.3M2 − hc2),

∂M2

∂t
= −

1
0.000717

(0.3M2 − hc2),

(3)  

starting from h(t = 0, x) = 3.75 × 10− 3 m and u(t = 0, x) =
0.3391 m s− 1 to be at a steady-state for the water over an inclined plane 
with slope − 0.02 (the velocity u is given by u = q/h and stays constant as 
well as the water height), and 

c1(t = 0, x) =

⎧
⎪⎪⎨

⎪⎪⎩

x − 1 for 1 ⩽ x ⩽ 2
1 for 2 ⩽ x ⩽ 3

4 − x for 3 ⩽ x ⩽ 4
0 elsewhere,

c2(t = 0, x) =

⎧
⎪⎪⎨

⎪⎪⎩

x − 1.5 for 1.5 ⩽ x ⩽ 2
0.5 for 2 ⩽ x ⩽ 3

3.5 − x for 3 ⩽ x ⩽ 3.5
0 elsewhere,

(4)  

and M1(t = 0,x) = hc1(t = 0,x)/K1, M2(t = 0, x) = hc2(t = 0, x)/K2 for 
the particle concentrations (Fig. 4). 

Summing the two equations for the same class of particles i, the right- 
hand sides cancel two by two (see Eq. (2)), and we get 

∂(hci + Mi)

∂t
+

∂(qci)

∂x
= 0. (5) 

In our configuration, as the tsi are small, using an asymptotic devel
opment such as in James et al. (2000) and Lajeunesse et al. (2018), one can 
prove that a good approximation of the solution is given by Mi(t, x) ≈

hci(t, x)/Ki and, consequently, ci(t,x) ≈ ci

(

t = 0, x −
q/h

1 + Ki
t
)

. 

These theoretical approximations are useful to validate the code and 
to check the propagation velocities of the particles. 

2.2. Erosion on an hillslope: the Hairsine and Rose model 

2.2.1. Description 
Hairsine et al. (2002) described a model of hillslope erosion by 

rainfall for a set of particle sizes. The model includes erosion, deposition 
and reentrainment. The eroded particles can be deposited, forming a 
cohesive deposition layer. This deposition layer can be eroded too, 

Fig. 2. Conceptual representation of the processes interacting between the 
original soil, the deposited layer and the particles in overland flow on a cell of 
the domain, from Hairsine et al. (2002). 
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hence the possible reentrainment. 
Built-up on Hairsine and Rose (1991) and Hairsine and Rose (1992), 

the model of Hairsine et al. (2002) takes into account spatial variations, 
such as varying slopes. It is written as (Fig. 2): 
⎧
⎪⎪⎨

⎪⎪⎩

∂(hci)

∂t
+

∂(qci)

∂x
= ri + rri + ei + edi − di,

∂Mdi

∂t
= di − rri − edi.

(6) 

The variables h and q denote the water height and the discharge of 
the fluid respectively. The equations are written considering N different 
classes of particle sizes, denoted by the subscript i from 1 to N. The ci 

term stands for the particle concentration in the fluid for the ith size 
class, and Mdi for the mass of particles of size class i in the deposited layer 
per unit area. The ri term is the rate of entrainment of the original soil, rri 

is the rate of reentrainment of the deposited layer. The term ei is the rate 
of rainfall detachment of the original soil, and edi is the rate of rainfall 
detachment of the deposited layer. Finally, the term di is the deposition 
rate. 

Explicit formulas are detailed in the next section and can be found in 
the original article. This model was evaluated and confronted to 
experimental results obtained with a laboratory rainfall simulator on a 
bare soil, and published in Proffitt et al. (1991). 

2.2.2. Rewriting of the model of Hairsine et al. (2002) 
The Hairsine and Rose equations (6) can be rewritten in the form of 

the unifying transfer equations (1). The deposited layer of the Hairsine 
and Rose model is easily identified to the exchange layer of the transfer 
equations. The terms ri and ei are source terms from the original soil, 
while rri, edi and di are exchange terms between the fluid and the ex
change layer. We obtain: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂(hci)

∂t
+

∂(qci)

∂x
= rri + edi − di + ri + ei =

1
tsi
(Gi(M) − hci) + S1

i

A
∂Mi

∂t
= di − rri − edi = −

1
tsi
(Gi(M) − hci) + S2

i

(7)  

with A = 1, Mi = Mdi the mass of particles of the class i per unit area of 
the deposited layer, S1

i = ri +ei and S2
i = 0 the source terms, and the 

exchange is given thanks to the relation 1
tsi
(Gi(M) − hci) = rri + edi − di. 

More precisely, the deposition term di expresses as di = vici, where vi is 
the settling velocity of the ith class of particles, such that tsi = h/vi 
(where we recall that h is the water height). The rri and edi terms are 
functions of Mi (the explicit formulas are given below) and the function 
Gi reads Gi(M) = tsi(rri + edi). Following Hairsine et al. (2002) and 
Sander et al. (2007), the source and exchange terms can be written as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ri = (1 − H)pi
F
J
(Ω − Ω0),

ei = (1 − H)piaRp,

rri = H
F
gh

ρs

ρs − ρ(Ω − Ω0)
Mi

Mt
,

edi = HadRpMi

Mt
,

(8)  

where:  

• pi is the proportion of particles in the size class i of the original (i.e. 
uneroded) soil,  

• F is the fraction of excess stream power effective in entrainment and 
reentrainment,  

• J is the specific energy of entrainment,  
• Mt =

∑N
i=1Mi is the total mass of particles in the deposited layer,  

• H is the fractional shielding of the underlying soil provided by the 
deposited layer. H = min(1,Mt/M*

t ), with M*
t the mass of deposited 

particles required to shield the original soil completely,  
• a is the detachability of the original soil,  
• ad is the detachability of the deposited layer,  
• ρs and ρ are the particle and water densities respectively,  
• g is the acceleration due to gravity,  
• Ω = ρgSq is the stream power (S is the slope of the domain and q the 

water discharge) and Ω0 the critical threshold stream power,  
• R is the rain intensity and p is an exponent that was evaluated to be 

close to unity (Proffitt et al., 1991). In the following, we take p = 1. 

As a consequence, the source term S1
i is given by 

S1
i = (1 − H)pi

(
F
J
(Ω − Ω0) + aRp

)

and the exchange function Gi writes 

Gi(M) =

(
HF
gvi

ρs
ρs − ρ

(Ω − Ω0)

Mt
+

h
vi

HadRp

Mt

)

Mi. Note that, because there 

is no direct particle flux between the soil and the exchange layer in the 
model of Hairsine et al. (2002), the source term S2

i equals zero. 

2.2.3. Numerical comparison 
Hogarth et al. (2004) simulated the experiments of Proffitt et al. 

(1991), and specifically, temporal changes in sediment concentrations 
along a flume. According to Proffitt et al. (1991), the evolution of 
sediment concentrations is thought to be due to the development of a 
coarser deposited layer that shields an increasing fraction of the original 
soil surface until an equilibrium is achieved. 

To numerically reproduce the experiments of Proffitt et al. (1991), 
Hogarth et al. (2004) propose a numerical model for rainfall-driven 
erosion over a slope S = 0.4% considering N = 10 classes of particles 
uniformly distributed, with a constant rain of R = 100 mm h− 1. They fit 
the values of (1) the detachabilities a and ad, and of (2) the mass of 
deposited particles required to shield the original soil M*

t . As their nu
merical solution is in good agreement with the experiments, we take the 
same parameters as the ones they use. They found the value of M*

t to be 
M*

t = 0.0767 kg m− 2: M*
t is larger than Mt (so H = Mt/Mt* ), such that Gi 

becomes a linear function. As they also get an approximation of the 
water height as a linear function, we choose to initialize our flow solver 
with this expression and let it evolve in time towards the equilibrium. 

2.3. Bedload transport in rivers: the model of Lajeunesse et al. (2013) 

2.3.1. Description 
Bedload transport results from the particle entrainment near the bed 

by a flow. A model for the spreading of a plume of tracer particles in a 
river by bedload transport was proposed in Lajeunesse et al. (2013) for 
the case of a steady-state transport over a flat bed of uniform particles. 
They denote by n the number of particles in motion per unit bed area, V 
the mean particle velocity, ts the characteristic settling time of a particle, 
and α < 1 the ratio of mobile to immobile particles. For steady-state 
uniform particle transport, erosion and deposition are balanced, the 
erosion and deposition rates being the same, both equal to n/ts. 

Lajeunesse et al. (2013) are interested in the evolution in time and 
space of a plume of marked particles (tracers). In their test case, the 
tracers are initially immobile on the upstream part of the domain. As 
they are entrained, the tracers move downstream. This phenomenon is 
modeled by the following system: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ϕ
∂t

+ V
∂ϕ
∂x

=
1
ts
(ψ − ϕ)

1
α

∂ψ
∂t

= −
1
ts
(ψ − ϕ),

(9)  

where ϕ is the proportion of marked particles in the moving layer and ψ 
is the proportion of marked particles on the bed surface. 
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2.3.2. Rewriting of the model of Lajeunesse et al. (2013) 
Let us explain how to write the model of Lajeunesse et al. (2013) as a 

particular case of the unifying transfer equations (1). Multiplying the 
two equations of system (9) by mgn, where mg is the mass of one particle 
(and n the number of particles in motion per unit bed area), we get: 
⎧
⎪⎪⎨

⎪⎪⎩

∂C
∂t

+ V
∂C
∂x

=
1
ts
(αM − C)

∂M
∂t

= −
1
ts
(αM − C),

(10)  

with C = mgnϕ and M = mg
n
αψ the mass concentration of mobile and 

immobile marked particles per unit bed area, respectively. 
Note that these equations can also be written in a dimensionless form 

with the characteristic time T = t/ts and the characteristic space X =

x/(tsV): 
⎧
⎪⎪⎨

⎪⎪⎩

∂C
∂T

+
∂C
∂X

= (αM − C)

∂M
∂T

= − (αM − C).

(11) 

If we identify C = hc, G(M) = αM, S1 = S2 = 0 and A = 1, the 
bedload transport model of Lajeunesse et al. (2013) can be written in the 
form of the transfer equations (1). This clearly shows that the proposed 
transfer equations are really a unifying model framework. 

2.3.3. Numerical comparison 
Let us consider the tracer dispersion in bedload transport proposed 

by Lajeunesse et al. (2013). At the beginning of the experiment, the 
tracers are only immobile particles located between 0 and 20 (dimen
sionless distance), the proportion of marked particles on the bed surface 
ψ being equal to 1. We denote by α the ratio of the surface concentration 
of moving particles to the concentration of static particles. Following 
Lajeunesse et al. (2013), we choose α equal to 0.3: we obtain an initial 

concentration of tracer immobile particles of 
1

1 + α ψ ≈ 0.77 (Fig. 6, 

black line). Then, we solve Eqs. (11) in terms of the variables ϕ and ψ , 
the proportions of marked particles in the moving layer and on the bed 
surface respectively (see the parameters file in the Benchmarks folder of 
the software repository). 

2.4. Chemical transport: the model of Gao et al. (2004) 

2.4.1. Description 
The considered material can be dissolved chemicals (such as tracers, 

pollutants, nutrients, etc.). This approach is studied in Gao et al. (2004) 
with a model that takes into account both raindrop-driven processes and 
diffusion in the soil. 

Gao et al. (2004) consider three different vertically-distributed hor
izontal layers (Fig. 3):  

• the upper layer of height dw is the runoff or surface water ponding 
zone,  

• the exchange layer of height de, from which chemicals leave the soil 
and enter surface runoff,  

• the lower layer of height l − de is the soil, where chemicals are 
transported by diffusion and infiltration. 

They proposed the following model: 

where the unknowns are the chemical concentrations: Cw is the chemical 
solute concentration in the runoff, Ce is the chemical solute concentra
tion in the exchange layer, and Cs is the dissolved chemical concentra
tion in the soil water. The total chemical concentration in the soil is αCs, 
where α is equal to the soil moisture in case of non-adsorbed chemicals, 
or takes into account a partition coefficient in case of adsorbed chem
icals. The variable J is the diffusion rate of solute from the soil at z = de 
and is given by Fick’s law: 

J = Ds
∂Cs

∂z

⃒
⃒
⃒
⃒

z=de

. (13) 

The parameter I is the infiltration rate in the soil, P is the rainfall rate, 
q is the volumetric runoff flux per unit width, Ds is the dispersivity of 
chemicals in the soil and er, function of P, is the rate of soil water feeded 
into the runoff. As Ds is very small compared to er, the diffusion between 
the exchange layer and the runoff is neglected. Finally, λ (between 0 and 
1) is the proportion of chemical concentration Cw entering the exchange 
layer: λ = 0 if there is only rainwater (without chemicals) and λ = 1 if 
the water that enters in the exchange layer is only runoff. 

Through comparisons between experiments and numerical results, 
Gao et al. (2004) show that their model reproduces well the experiments 
and can be fitted using only measured parameters (i.e. without 
calibration). 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(dwCw)

∂t
+

∂(qCw)

∂x
= er(Ce − λCw) − ICw for − dw < z ⩽ 0

∂(αdeCe)

∂t
= J + er(λCw − Ce) + I(Cw − Ce) for 0 < z ⩽ de

∂(αCs)

∂t
=

∂
∂z

(

Ds
∂Cs

∂z
− ICs

)

for de < z < l,

with
∂Cs

∂z
= 0 for z = l and Cs = Ce for z = de,

(12)   

Fig. 3. Conceptual model of chemical transport processes, from Gao 
et al. (2004). 
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2.4.2. Rewriting of the model of Gao et al. (2004) 
The model (12) of Gao et al. (2004) can be written as a particular 

case of the unifying transfer equations (1): the equation on Cs (the third 
equation of (12)) can be considered as a secondary equation to be solved 
at each time step to obtain the value of the diffusion J. The water height 
is dw, which corresponds to the variable h, and the water discharge is 
denoted by q in both models. If we denote by M = deCe (to get a con
centration per surface unit) and c = Cw, we get: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂(hc)
∂t

+
∂(qc)

∂x
=

er

de
M −

λer + I
dw

hc

∂(αM)

∂t
= −

(
er

de
M −

λer + I
dw

hc
)

+ J −
I
de

M,

(14)  

which takes the form of the transfer equations (1) with A = α, S1 = 0, 

S2 = J −
I
de

M, ts =
dw

λer + I 
and G(M) = KM =

dw

de

er

λer + I
M. 

2.4.3. Numerical comparison 
Gao et al. (2004) proposed a numerical scheme to solve their model 

in a case with no infiltration (I = 0) and no water flux (q = 0) which fits 
their experiments. They apply the Crank-Nicolson finite-difference 
scheme, with a spatial discretization of 0.02 cm and a time step of 1 s, to 
get Cs as a function of z at each time step. Ce and Cw can be computed 
easily at each time from the values at the previous time. As their nu
merical results are in very good agreement with their experiments, we 
consider them as the reference solution to be compared to the results of 
the unifying transfer equations as computed by FullSWOF_1D. 

We reproduce the first experiment of Gao et al. (2004), taking their 
values of the parameters, namely a rain intensity of 7.4 cm h− 1, an initial 
concentration of Cl− in the soil and in the exchange layer of 29.82 g L− 1, 
a water height of 7 mm, a height of the exchange layer of 7.6 mm, a bulk 
density of ρb = 1.5 g cm− 1, a soil moisture of θ = 0.37 = α, a soil 
erodibility of a = 0.40 g cm− 3, a soil diffusivity coefficient of 4.2×

10− 6 cm2 s− 1, a parameter λ = 1, and a raindrop chemical transfer rate 
of er = 2.1 × 10− 4 cm s− 1. 

3. Results 

3.1. Verification of proper functioning 

As explained in Section 2.1.3, we have an approximation of the exact 
solution for the unifying transfer equations in the case of two classes of 
particles without any source. In Fig. 4, we compare the values of c and M 
for the two classes of particles with the numerical solution obtained by 
FullSWOF_1D (see the parameters file in the Examples/Sed
iment_deposition folder of the repository). The results are given at time 
T = 8 s. The values of M1 are multiplied by 100 in order to display them 
within the same graph as M2 values. The approximation of the exact 
solution and the numerical solution are in good agreement. Note that we 
took 1000 cells in space (i.e. the space step is equal to 1 cm) to have a 
good precision. If the number of cells is decreased, the results get less 
accurate, and the numerical errors accumulate with time. 

3.2. Rainfall detachment and deposition 

In the context of rainfall-driven erosion over a slope, the experiments 
of Proffitt et al. (1991) were reproduced numerically by Hogarth et al. 
(2004), and now by the unifying transfer model framework. 

In Fig. 5, we plot the total concentration of particles detached by the 
rain and suspended in the fluid as a function of space for several times 
(Fig. 5a), and at the output as a function of time (Fig. 5b). The numerical 
concentrations obtained with FullSWOF_1D and by Hogarth’s compu
tations are in good agreement, except for the first times (T < 5 min). 
This discrepancy is due to the difference in the initial condition: we start 
from flow conditions near the equilibrium, and, by solving the Shallow 

Water equations coupled with the Hairsine and Rose equations for the 
particles, the steady-state for the water flow is attained after some time, 
while, in their calculations, Hogarth et al. (2004) consider the steady- 
state for the flow and only solve the equation for the particles. 

As explained in the description of the unifying transfer model 
framework (Section 2.1.1), it is not possible to catch a partial equilib
rium of the complete system where the fluid is at a steady-state but not 
the particles. The global equilibrium can be attained only if the exper
imental conditions allow it. In this experiment, the solution at the first 
times (namely, on Fig. 5, for t = 1 min) is very dependent on the initial 
condition taken for the water height. One can see on Fig. 5b that the 
coupled Shallow Water – unifying transfer equations catches the first 
experimental point (T = 1 min) in a much better way than Hogarth 
et al. (2004) while using the same parameters. We can also note, at the 
end of the experiment, near the steady-state, that the results of Hogarth 
et al. (2004) are quite similar to the ones of the unifying transfer 
equations solved by FullSWOF_1D: for large times, the same system is 
solved in both cases (the flow is at the equilibrium) and the results are 
the same. Thus, our approach can simulate both equilibrium and non- 
equilibrium conditions. 

Fig. 4. Verification of proper functioning for two classes of particles evolving 
by erosion and deposition without sources. Concentrations (a) c1 and c2 in the 
water and (b) M1 and M2 in the exchange layer, at T = 8 s, for the approxi
mation of the exact solution and for the numerical solution of the unifying 
transfer equations obtained by FullSWOF_1D. The initial concentrations are 
also given. 
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3.3. Bedload transport in rivers 

The dispersion of tracer particles by bedload transport, as proposed 
by Lajeunesse et al. (2013), was simulated using the unifying transfer 
model framework. 

In Fig. 6, we plot the concentrations of tracer particles (Section 

2.3.3), namely 
1

1 + αψ and 
α

1 + αϕ, against distance (dimensionless). To 

better see the particles and their actual behavior in the two layers 
(mobile and immobile particles), we decided to perform the same plot as 

in Lajeunesse et al. (2013): we plot 
1

1 + αψ (immobile particles) and the 

sum 
1

1 + αψ +
α

1 + αϕ to see the concentration of mobile particles above 

the immobile particles. For all times (T = 100, 700 and 1400 – 
dimensionless), the unifying transfer equations solved by FullSWOF_1D 
match exactly the results obtained by Lajeunesse et al. (2013). 

3.4. Chemical transport 

An experiment of chemical transport with rain was simulated 
numerically by Gao et al. (2004), and now with the unifying transfer 
model framework. 

In Fig. 7, we plot the solute concentration (i.e. Cl− ) in the exchange 
layer and in the runoff layer corresponding to this experiment with the 
numerical approximation proposed by Gao et al. (2004) represented as 
cross marks. FullSWOF_1D solves the shallow water equations and the 
unifying transfer equations with the same parameters, and we choose a 
point of the domain to plot the evolution in time. In both layers, the 
concentrations as computed by the unifying transfer equations match 
very well the results of Gao et al. (2004). 

4. Discussion 

The first point we want to underline in this discussion is the cor
rectness of the results and the comparison with exact solutions. The 
writing of a code from a set of equations that models physical phe
nomena can be affected by two types of errors: either a bug or an issue in 
the numerical scheme used to solve the equations. In both cases, it 
negatively affects the results. However, this may easily go unnoticed: 

Fig. 5. Rainfall detachment and transport. Comparison of the experimental 
data of Proffitt et al. (1991) (stars), the numerical resolution of Hogarth et al. 
(2004) (black lines) and the numerical resolution of the unifying transfer 
equations by FullSWOF_1D (color lines). 

Fig. 6. Bedload transport in rivers. Results comparison for the tracer dispersion 
proposed by Lajeunesse et al. (2013) with α = 0.3, at 4 times (dimensionless). 
Laj: results of Lajeunesse et al. (2013). FS: resolution of the unifying equations 
by FullSWOF_1D. 

Fig. 7. Chemical transport. Solute concentrations in the exchange layer (Ce) 
and in the ponding water layer (Cw) at x = 0.025 m, as found by the numerical 
approximations of Gao et al. (2004) and by the resolution of the unifying 
transfer equations by FullSWOF_1D. 
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assessing that the results are faithful to the equations is not a trivial task. 
The use of (quasi-)analytical solutions allows to verify the proper 
functioning (Delestre et al., 2013). As shown in the present paper, this 
approach has been applied successfully to the unifying transfer equa
tions as implemented in FullSWOF_1D. Such a verification was previ
ously carried out to check that FullSWOF_1D accurately solves the 
shallow water equations. FullSWOF_1D is routinely tested via a bench
marking script using ten analytical solutions of the shallow water 
equations taken from the library SWASHES (Delestre et al., 2013). 
Following the implementation of the unifying transfer equations, the 
exact solution of Lajeunesse et al. (2013) was added to the list of 
benchmarks. These analytical solutions, representing a diversity of flow 
conditions, enable users and developers to assess the quality of the nu
merical results (see https://sourcesup.renater.fr/projects/fullswof-1d/). 
On the one hand, they allow developers to check that code changes do 
not decrease the simulation quality. On the other hand, they allow users 
to check that FullSWOF_1D (and the unifying transfer equations) runs 
faithfully with their computer and compiler. We believe such an 
approach should be carried out as a standard procedure before any 
scientific results be reported. Since different computer codes of the same 
model can lead to non-identical results, we strongly recommend that 
other implementations of the transfer equations are validated using 
exact solutions. 

Let us come now to the unifying transfer model framework proposed 
in this article. For soil erosion by rainfall, bedload transport in rivers and 
chemical transport, the numerical results of the unifying transfer equa
tions coupled to the shallow water equations are in good agreement with 
the results reported in the literature. This clearly shows that the transfer 
equations are able to simulate soil erosion by rainfall, bedload transport in 
rivers and chemical transport. This underlines the unifying character of 
this model framework. Up to now, to simulate within a catchment both 
soil erosion (on hillslopes) and bedload transport (in rivers), two set of 
equations had to be implemented together with their boundary condi
tions, such as the boundary condition between hillslopes and rivers. With 
the unifying transfer model framework, both processes could be simulated 
within the same domain by the same computer code, just by changing the 
parameters of the unifying transfer equations (depending if the grid cells 
are within the hillslope or the river). Note that the current implementa
tion of the transfer equations of FullSWOF_1D allows for a unique set of 
parameters within the domain. The implementation of the unifying 
transfer equations in the 2D version of FullSWOF (namely FullSWOF_2D – 
see https://sourcesup.renater.fr/projects/fullswof-2d/) will overcome 
this limitation. 

In the case of soil erosion by rainfall, our results are not the same as 
the ones of Hogarth et al. (2004) because the authors simplified the 
equations, considering that one part of the model (the fluid) is at the 
equilibrium and not the other part (the particles). As a consequence, the 
transitory evolutions towards the equilibrium are different, while the 
same equilibrium is attained. Our numerical results outperform the re
sults of Hogarth et al. (2004) because our implementation in Full
SWOF_1D can simulate transitory states. Our approach is more 
complete, giving the evolution of the physical system in time as well as 
the final steady-state. In the environment, most of the processes are 
transitory; steady-states being more of an exception than a common 
case. Thus, the capability to simulate transitory states should be a 
requirement for most of the computer codes. 

The unifying transfer model framework could also simulate pro
cesses not considered in the present paper, as long as they can be 
described as an exchange between two layers, following the scheme of 
Fig. 1a. While we show that the unifying transfer model framework is 
able to simulate soil erosion by rainfall, bedload transport in rivers and 
chemical transport, this set of equations may have application for other 
processes, in the environment or in other fields of science. Our approach, 
consisting in unifying various models from different fields of applica
tion, opens up interesting horizons: the same code can be used for 
different processes, alleviating the need to develop a specific code for 

each process. As detailed before, this also makes the combined simula
tion of different processes easier. Finally, for each specific problem, the 
reader can identify the layers and the fluxes between the layers, as 
represented in Fig. 1a, and the corresponding parameters. Thus, the 
physical meaning of the parameters is not lost. 

In all the cases considered in this paper, the relaxation term was 
linear, leading to the advection of symmetric distributions of concen
tration (e.g. Fig. 6). Indeed, Lajeunesse et al. (2018) showed that, for 
this system, the distribution of concentration tends asymptotically (i.e. 
for long time) to a Gaussian curve. For future works, it would be inter
esting to investigate the physical relevance of non-linear terms for hy
drology, as it has already been done for the field of chromatography 
(James et al., 2000). That will lead to asymmetric distribution of con
centrations: depending on the type of non-linearity, the front edge or the 
back edge of the concentration distribution could get sharper, skewing 
the distribution. Thus, the unifying transfer model framework could 
have an even wider range of applications than presently illustrated. 

5. Conclusions 

A unifying framework was proposed to model different transfers 
between a fluid layer and the soil. It is based on a general mass balance 
between the fluid layer and an exchange layer. 

Implemented in FullSWOF_1D, its proper functioning was verified by 
comparison with a nearly-exact solution. This ascertained the adequacy 
of the computer programming. 

Based on three examples, with various parameters and physical 
conditions, the obtained results were similar to or better than those in 
the literature. These examples covered three environmental transfer 
processes: soil erosion on a hillslope, bedload transport in rivers and 
chemical transport with rain and diffusion in the soil. While these ex
amples are usually simulated using apparently different models and 
completely different computer codes, the unifying transfer model 
framework (and the same computer code) was able to simulate them. 
This exemplifies the unifying character of the proposed transfer model 
framework. 

The unifying transfer equations relate the evolution of the concen
trations of particles or chemicals in a fluid and in an exchange layer. 
They can account for several classes of particles or chemicals. They are 
proposed as a unifying transfer model framework for soil erosion, river 
bedload and chemical transport. The unifying transfer equations could 
open new prospects to understand one model thanks to another and to 
use a single model framework for several processes. 

CRediT authorship contribution statement 

Amina Nouhou Bako: Conceptualization, Methodology, Software, 
Formal analysis, Investigation, Writing - original draft. Carine Lucas: 
Conceptualization, Methodology, Software, Validation, Formal analysis, 
Writing - review & editing, Supervision, Funding acquisition. Frédéric 
Darboux: Conceptualization, Methodology, Validation, Writing - re
view & editing, Supervision, Funding acquisition. François James: 
Conceptualization, Methodology, Formal analysis, Writing - review & 
editing, Supervision, Funding acquisition. Noémie Gaveau: Validation. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

The authors thank the Région Centre-Val de Loire and INRAE for the 
PhD fellowship of Amina Nouhou Bako. 

A. Nouhou Bako et al.                                                                                                                                                                                                                         

https://sourcesup.renater.fr/projects/fullswof-1d/
https://sourcesup.renater.fr/projects/fullswof-2d/


Journal of Hydrology X 12 (2021) 100082

9

Appendix A. Numerical method 

We write the numerical scheme for the homogeneous part of the first equation of (1). The right-hand side terms and the second equation of (1) are 
added at the end this section. The scheme described here is performed for each class i of materials, one class after the other. 

Denoting by V = hci and F(V) = uV =
q
h V = qci, the homogeneous part of the first equality of the transfer equations (1) reads: 

∂V
∂t

+
∂F(V)

∂x
= 0. (A.1) 

The velocity u is the eigenvalue of system (1). 
We use a finite-volume method to discretize Eq. (A.1) over a 1D grid, with a space step denoted by Δx and a time step denoted by Δt1 (Fig. 8). The 

discrete time is t0 = 0, t1,…, tn, tn+1 = tn + Δt, with t0 the initial time. On the colored cell [tn, tn+1[ × ]xk− 1/2,xk+1/2], the value of V is considered as 
constant and is denoted by Vn

k. 
Integrating Eq. (A.1) over each space–time cell, we get the relation: 

Vn+1
k = Vn

k −
Δt
Δx

(
Fn

k+1/2 − Fn
k− 1/2

)
, (A.2)  

where Fn
k+1/2 and Fn

k− 1/2 are the approximations of the fluxes at the interfaces xk+1/2 and xk− 1/2, respectively. They depend on the values of Vn
k on the 

left and right boundaries of the cell, denoted by Vn
L and Vn

R respectively. 

A.1. Spatial scheme at order 1 

To compute the values of the Fn
k+1/2 and Fn

k− 1/2 fluxes, we choose the HLL scheme (Harten, Lax, van Leer, detailed in Harten et al. (1983)) that was 
proved to be robust and simple (Delestre, 2010). It is one of the fluxes already implemented in FullSWOF_1D for the hydrodynamic part. 

For a given interface, we denote by φ(Vn
L,V

n
R) the numerical flux that reads: 

φ(Vn
L,Vn

R) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F(Vn
L) if 0 < cL

cRF(Vn
L) − cLF(Vn

R)

cR − cL
+

cLcR

cR − cL
(Vn

R − Vn
L) if cL < 0 < cR

F(Vn
R) if cR < 0,

(A.3)  

where cL and cR are propagating speeds computed by the following formulas (Delestre et al., 2014): 

cL = min
Vn

L ,V
n
R

(min(u, 0)), cR = max
Vn

L ,V
n
R

(max(u, 0)). (A.4) 

The values of Vn
L and Vn

R are taken equal to the values of V in the neighbor cells and consequently the fluxes are approximated by Fn
k+1/2 = φ(Vn

k+1,

Vn
k) and Fn

k− 1/2 = φ(Vn
k,V

n
k− 1), which means that the scheme is at order one in space. 

A.2. Spatial scheme at order 2 

To improve the numerical scheme, one can linearly reconstruct the variables Vn
L et Vn

R in order to obtain a second order scheme in space. We choose 
MUSCL method (introduced in van Leer (1979)): the variables are reconstructed using a piece-wise linear function depending on the slope of each cell 
of the grid, denoted by σn

k. On each side of the interface located at xk+1/2, the reconstructed values are: 

Fig. 8. Space–time discretization grid (1D in space).  

1 The time and space steps must be adapted to the parameters of the system; in particular, they must be small if the values of tsi are small. 
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Vn
k+1/2,L = Vn

k +
Δx
2

σn
k , Vn

k+1/2,R = Vn
k+1 −

Δx
2

σn
k+1, (A.5) 

which gives Fn
k+1/2 = φ

(
Vn

k+1/2,L,V
n
k+1/2,R

)
and Fn

k− 1/2 = φ
(

Vn
k− 1/2,L,V

n
k− 1/2,R

)
. To assure the stability of the scheme, one can compute three slopes from 

the neighbor cells with: 

αk− 1 =
Vn

k − Vn
k− 1

Δx
, αk =

Vn
k+1 − Vn

k− 1

2Δx
, αk+1 =

Vn
k+1 − Vn

k

Δx
, (A.6)  

and compute σn
k as σn

k = minmod(αk− 1,αk,αk+1) where the minmod function is defined by: 

minmod(a, b, c) =

⎧
⎨

⎩

min(a, b, c) if a, b, c > 0
max(a, b, c) if a, b, c < 0
0 else,

(A.7)  

as described in Delestre (2010) and Godlewski and Raviart (1996). 

A.3. Second order in time 

In the previous Eq. (A.2), we perform an Euler scheme, of order 1 in time. To improve the accuracy of the scheme and get a second order in time, we 
choose the Heun method, as it is also the one already implemented in FullSWOF (Delestre et al., 2014). It is a predictor–corrector method that 
computes first some predicted values V*

k and V**
k and then performs a correction step to obtain the value at the following time n + 1: 

⎧
⎪⎪⎨

⎪⎪⎩

V*
k = Vn

k −
Δt
Δx

(
Fn

k+1/2 − Fn
k− 1/2

)

V**
k = V*

k −
Δt
Δx

(
F*

k+1/2 − F*
k− 1/2

)
and Vn+1

k =
Vn

k + V**
k

2
. (A.8)  

A.4. Coupling with the hydrodynamic part of FullSWOF_1D 

To implement a numerical scheme for the full system (1), we must deal with the right-hand side of the equations, that is the relaxation term and the 
sources. This leads to the following numerical scheme: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Vn+1
k = Vn

k + Δt
(
− Fn

k+1/2 + Fn
k− 1/2

Δx
+
(Gi(M))

n
k − Vn

k

(tsi)
n
k

+ (S1
i )

n
k

)

(Mi)
n+1
k = (Mi)

n
k +

Δt
A

(
− (Gi(M))

n
k + Vn

k

(tsi)
n
k

+ (S2
i )

n
k

)

.

(A.9) 

We couple this numerical scheme with the hydrodynamic part of FullSWOF_1D with a splitting method. The variables h and q = hu are computed at 
time n by FullSWOF_1D and then are used by the transfer part to compute the concentrations ci and Mi at time n + 1. 
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