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An expansion of the Riemann Zeta function on the critical line

Laguerre functions

The Laguerre polynomials x → L m (2x) are defined by the generating function (cf. [START_REF] Lebedev | Special functions and their applications[END_REF]) 

1 1 -a e -
With z = 1+u 1-u , we get for Re(z) > 0

e -xz = √ 2π +∞ m=0 ϕ m (x)ψ m (z), (2) 
where ψ m is the function defined in the half-plane {Re(z) > 0} by

ψ m (z) = 1 √ π(1 + z) z -1 z + 1 m .
The function ψ m is related to ϕ m by ψ m (z) = This transformation maps the space L 2 (]0, +∞[, dx) to the Hardy space H 2 (P ) of analytic functions g in the half-plane P = {Re(z > 0} such that: there exists M g > 0 with R |g(x + iy)| 2 dy ≤ M g for all x > 0.

Mellin transform and Meixner polynomials

For a function f on ]0, +∞[, we define the Mellin transform of f by

M(f )(s) = +∞ 0 x s-1 f (x) dx
which is supposed to be defined for s ∈ C such that 0 < Re(s) < 1.

We have MLf (s) = Γ(s)Mf (1 -s) for 0 < Re(s) < 1, and if f and g are in L 2 (]0, +∞[), we have the Parseval-Mellin formula (cf. [START_REF] Ivic | The theory of Hardy's Z-function[END_REF]) :

1 2iπ 1 2 +i∞ 1 2 -i∞ M(f )(z)M(g)(z) dz = +∞ 0 f (x)g(x) dx.
The Mellin transform of ϕ m is given by

+∞ 0 ϕ m (x)x s-1 dx = √ 2 m k=0 C k m (-2) k k! +∞ 0 e -x x s+k-1 dx = √ 2 Γ(s)q m (s), with q m (s) = m k=0 C k m (-2) k (s) k k! where (s) k = s(s + 1) • • • (s + k -1) (with (s 0 ) = 1).
We have (cf. [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF]) q m (s) = F (-m, s; 1; 2) where F is the Gauss hypergeometric function (also denoted by 2 F 1 ). We have also

q k (s) = 1 k! m k (-s, 1, -1)
, where m k is a Meixner polynomial of the first kind. Since Mϕ m (s) = √ 2 Γ(s)q m (s) and

ψ m = 1 √ 2π Lϕ m , we get for 0 < Re(s) < 1 Mψ m (s) = 1 √ 2π MLϕ m (s) = 1 √ 2π Γ(s)Γ(1 -s)Mϕ m (1 -s) = √ π sin(πs) q m (1 -s).
By the definition of ψ m we verify that 1 x ψ m ( 1 x ) = (-1) m ψ m (x), thus we have

Mψ m (1 -s) = (-1) m Mψ m (s), this gives q m (1 -s) = (-1) m q m (s).
By the Parseval-Mellin formula we get

1 2π +∞ -∞ M(ϕ m )( 1 2 + it)M(ϕ n )( 1 2 + it) dt = +∞ 0 ϕ m (x)ϕ n (x) dx = δ m,n (with δ m,n = 1 if m = n and δ m,n = 0 if m = m). This gives δ m,n = +∞ -∞ Γ( 1 2 + it)q m ( 1 2 + it)Γ( 1 2 + it)q n ( 1 2 + it) dt π = +∞ -∞ q m ( 1 2 + it)q n ( 1 2 + it) dt cosh(πt)
Thus the polynomials t → q m ( 1 2 + it) form an orthonormal basis of L 2 (R, dt cosh(πt) ) with respect to the scalar product

(f |g) = +∞ -∞ f (t)g(t) dt cosh(πt)
This implies that all the zeros of the polynomials t → q m ( 1 2 + it) are real. We have q 0 = 1 and

q 1 ( 1 2 + it) = -2 it q 2 ( 1 2 + it) = 1/2 -2 t 2 q 3 ( 1 2 + it) = -5/3 it + 4/3 it 3 q 4 ( 1 2 + it) = 3/8 -7/3 t 2 + 2/3 t 4
By Mellin transform of (1), we see that the generating function of the polynomials q m is +∞ m=0

q m (s)u m = 1 1 -u 1 + u 1 -u -s for u ∈] -1, 1[. (3) 
This gives, with y = 1+u 1-u , the relation

y -s = 2 √ π +∞ m=0 ψ m (y)q m (s) for y > 0. (4) 
Let s = 1 2 + it with t ∈ R and y = e -ξ , we get

e itξ = 2 √ πe -ξ/2 +∞ m=0 ψ m (e -ξ )q m ( 1 2 + it) for ξ ∈ R.
The latter series converges in

L 2 (R, dt cosh(πt) ) since +∞ m=0 |ψ m (e -ξ )| 2 < +∞. And if a function h ∈ L 2 (R, dt cosh(πt) ) has an expansion h(t) = n≥0 a n q n ( 1 2 + it),
then we have

(h|e itξ ) = 2 √ πe -ξ/2 +∞ m=0 a m ψ m (e -ξ ), that is F h(t) cosh(πt) (ξ) = 2 √ πe -ξ/2 +∞ m=0 a m ψ m (e -ξ ) ( 5 
)
where F is the Fourier transform Fg(ξ) = +∞ -∞ g(t)e -itξ dt.

An expansion of Zeta

In the critical strip 0 < Re(s) < 1, we have (cf. [START_REF] Titchmarsh | The theory of the Riemann Zeta-function[END_REF])

ζ(s) = 1 Γ(s) +∞ 0 f (x)x s-1 dx = 1 Γ(s) Mf (s) where f (x) = 1 e x -1 - 1 x (also we have ζ(s) = s +∞ 0 ([x] -x)x -s-1 dx, which gives |ζ( 1 2 + it)| = O(|t|) for t → ±∞). Since we have (cf.[2]) for x > 0 L(f )(x) = log(x) -Ψ(1 + x) where Ψ = Γ Γ ,
we get for 0 < Re(s) < 1

M(log(x) -Ψ(1 + x))(s) = ML(f )(s) = Γ(s)M(f )(1 -s) = Γ(s)Γ(1 -s)ζ(1 -s), thus π sin(πs) ζ(1 -s) = M(log(x) -Ψ(1 + x))(s).
By Mellin inversion, we obtain for x) dt cosh(πt) .

x > 0 log(x) -Ψ(1 + x) = 1 2iπ c+i∞ c-i∞ π sin(πs) ζ(1 -s)x -s ds for all 0 < c < 1. With c = 1 2 , we have for x > 0 log(x) -Ψ(1 + x) = 1 2 +∞ -∞ ζ( 1 2 + it) 1 √ x e it log(
Let x = e -ξ with ξ ∈ R, then we get

F ζ( 1 2 + it) cosh(πt) (ξ) = -2e -ξ/2 (ξ + Ψ(1 + e -ξ )). (6) 
By ( 5), the coefficients a m of the expansion of

t → ζ( 1 2 + it) in the space L 2 (R, dt cosh(πt) ) ζ( 1 2 + it) = m≥0 a m q m ( 1 2 + it)
are given by

-(ξ + Ψ(1 + e -ξ )) = √ π +∞ m=0 a m ψ m (e -ξ ). ( 7 
)
For an explicit evaluation of a m , let u = e -ξ -1 e -ξ +1 in the relation [START_REF] Titchmarsh | The theory of the Riemann Zeta-function[END_REF], then we get for -1

< u < 1 1 1 -u log( 1 + u 1 -u ) -Ψ(1 + 1 + u 1 -u ) = +∞ m=0 b m u m where b m = a m 2 . ( 8 
)
Now, take the Taylor expansion of the left side of (8). For the logarithmic part, we have simply

1 1 -u log( 1 + u 1 -u ) = 1 1 -u 2 +∞ n=0 1 2n + 1 u 2n+1 = +∞ n=1 2 [(n-1)/2] p=0 1 2p + 1 u n ,
For the part involving the function Ψ, we need the help of (cf. [START_REF] Gradshteyn | Tables of Integrals, Series and Products[END_REF]) the integral formula

Ψ(x + 1) = 1 x + Ψ(x) = 1 x -γ + +∞ 0 e -t -e -xt
1 -e -t dt, this gives

- 1 1 -u Ψ 1 + 1 + u 1 -u ) = - 1 1 + u + 1 1 -u γ - 1 1 -u +∞ 0 e -t -e -1+u 1-u t 1 -e -t dt,
and, with (1), we get

- 1 1 -u Ψ 1 + 1 + u 1 -u = - 1 1 + u + 1 1 -u γ - +∞ m=1 +∞ 0 e -t (1 -L m (2t)) 1 -e -t dt u m .
Since, for k integer ≥ 1, we have

+∞ 0 e -t t k 1 -e -t dt = k! ζ(k + 1)
we get for m ≥ 1

- +∞ 0 e -t (1 -L m (2t)) 1 -e -t dt = +∞ 0 e -t 1 -e -t ( m k=1 C k m (-2) k t k k! )dt = m k=1 C k m (-2) k ζ(k + 1).
Thus we have proved the following theorem.

Theorem. The expansion of t → ζ( 1 2 + it) in the space L 2 (R, dt cosh(πt) ) is given by

ζ( 1 2 + it) = 2 m≥0 b m q m ( 1 2 + it) (9) 
with b 0 = -1 + γ et and for m ≥ 1 b m = 2 [(m-1)/2] p=0 1 2p + 1 + (-1) m+1 + γ + m k=1 (-2) k C k m ζ(k + 1). ( 10 
)
For example we have

b 1 = 3 + γ -2ζ(2) b 2 = 1 + γ -4ζ(2) + 4 ζ(3) b 3 = 11 3 + γ -6ζ(2) + 12 ζ (3) -8ζ(4) b 4 = 5 3 + γ -8ζ(2) + 24 ζ (3) -32ζ(4) + 16 ζ (5)
Remark. The Fourier transform given by the relation [START_REF] Lebedev | Special functions and their applications[END_REF], gives for g ∈ L 2 (R), the relation

+∞ -∞ ζ( 1 2 + it)Fg(t) dt cosh(πt) = -2 +∞ -∞ g(ξ)e -ξ/2 (ξ + Ψ(1 + e -ξ )) dξ. (11) 
For example, let g(t) = t s-1 e -at χ [0,+∞[ (t) with a > 0 and Re(s) > 1 2 . Then Fg(t) = Γ(s) (a+it) s and we have

- 1 2 +∞ -∞ ζ( 1 2 + it) 1 (a + it) s dt cosh(πt) = 1 Γ(s) +∞ 0 ξ s-1 e -ξ(a+ 1 2 ) (ξ + Ψ(1 + e -ξ )) dξ.
Expanding the Ψ function as

Ψ(1 + e -ξ ) = -γ + +∞ n=1 (-1) n+1 ζ(n + 1)e -nξ since 0 < e -ξ < 1, we get for α = a + 1 2 > 1 2 - 1 2 +∞ -∞ ζ( 1 2 + it) 1 (α -1 2 + it) s dt cosh(πt) = s α s+1 -γ 1 α s + +∞ n=1 (-1) n+1 ζ(n + 1) 1 (n + α) s ,
Thus, for x > - 1 2 and Re(s) > 1 2 , we have a generalization of a formula of I.V.Blagouchine (cf. [START_REF] Blagouchine | A complement to a recent paper on some infinite sums with the zeta values[END_REF])

) +∞ n=2 (-1) n ζ(n) 1 (n + x) s = - s (x + 1) s+1 + γ 1 (x + 1) s - 1 2 +∞ -∞ ζ( 1 2 + it) 1 (x + 1 2 + it) s dt cosh(πt)

An integral formula

If we use now the notation γ = z 0 and 2 k ζ(k + 1) = z k for k ≥ 1, then (10) is simply

b n -c n = n k=0 (-1) k C k n z k where n≥0 c n u n = 1 1 -u log( 1 + u 1 -u ) - 1 1 + u (12)
We remind that the binomial transform

a n = n k=0 (-1) k C k m a k
is auto-inverse and is given in terms of generating function by

n≥0 a n x n = g(x) ⇒ n≥0 a n x n = 1 1 -x g( -x 1 -x )
Then by inversion of the binomial transform, (12) gives

z n = n k=0 (-1) k C k n b k -d n where d n = n k=0 (-1) k C k n c k
The generating function of (

d n ) is 1 1 -x ( 1 1 --x 1-x log( 1 + -x 1-x 1 --x 1-x ) - 1 1 + -x 1-x ) = log(1 -2x) - 1 1 -2x
this gives d 0 = -1 and

d n = (-1 - 1 n )2 n for n ≥ 1
Thus we have γ = z 0 = b 0 -1 and for m ≥ 1

2 m ζ(m + 1) = z n = m k=0 (-1) k C k m b k + (1 + 1 m )2 m
Since, from (9), we have for m ≥ 0

b m = 1 2 +∞ -∞ ζ( 1 2 + it)q m ( 1 2 -it) dt cosh(πt) , ( 13 
)
we can evaluate the binomial transform of (b m ) using the binomial transform of (q m (s)). We have

q m (s) = m k=0 C k m (-2) k (s) k k! ⇒ 2 m (s) m m! = m k=0 (-1) k C k m q k (s) thus m k=0 (-1) k C k m b k = 1 2 +∞ -∞ ζ( 1 2 + it) m k=0 (-1) k C k m q k ( 1 2 -it) dt cosh(πt) = 2 m +∞ -∞ ζ( 1 2 + it) ( 1 2 -it) m m! dt cosh(πt)
Finally we get the integral expressions

γ = 1 + 1 2 +∞ -∞ ζ( 1 2 + it) dt cosh(πt) , ζ(m + 1) = 1 + 1 m + 1 2 +∞ -∞ ζ( 1 2 + it) ( 1 2 -it) m m! dt cosh(πt) for m ≥ 1.
which is also

ζ(m + 1) = 1 + 1 m + 1 2 +∞ -∞ ζ( 1 2 + it) Γ( 1 2 + it)Γ( 1 2 -it + m) Γ(m + 1)
dt for m ≥ 1.

We see that the analytic functions defined by

f (s) = ζ(s + 1) - 1 s for s = 0 and f (0) = γ and g(s) = 1 + 1 2π +∞ -∞ ζ( 1 2 + iu) Γ( 1 2 + iu)Γ( 1 2 -iu + s) Γ(s + 1) du for Re(s) > - 1 2
are such that f (m) = g(m) for all integers m ≥ 0. Then by the Carlson's theorem we have the integral formula

ζ(s + 1) - 1 s = 1 + 1 2π +∞ -∞ ζ( 1 2 + iu) Γ( 1 2 + iu)Γ( 1 2 -iu + s) Γ(s + 1) du for Re(s) > - 1 2 (14) 
For s = -1 2 + it we get the integral equation

ζ( 1 2 + it) = 1 2π +∞ -∞ ζ( 1 2 + iu) Γ(i(t -u))Γ( 1 2 + iu) Γ( 1 2 + it) du - 1 2 + it 1 2 -it which is also a convolution equation for the function t → (Γζ)( 1 2 + it) (Γζ)( 1 2 + it) = 1 2π +∞ -∞ (Γζ)( 1 2 + iu) Γ(i(t -u)) du -Γ( 1 2 + it) 1 2 + it 1 2 -it (15) 
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Soit f la fonction définie par

f (s) = ζ(s + 1) - 1 s pour s = 0 et f (0) = γ
La formule d'interpolation de Newton donne

f (s) = n≥0 (-1) n c n s(s -1)...(s -n + 1) n! où c n = n k=0 (-1) k C k n f (k)
On a vu précédemment que

f (0) = 1 + 1 2 +∞ -∞ ζ( 1 2 + it) dt cosh(πt) , et pour k ≥ 1 f (k) = 1 + 1 2 +∞ -∞ ζ( 1 2 + iu) ( 1 2 -iu) k k! du cosh(πu)
On en déduit que

c 0 = 1 + 1 2 +∞ -∞ ζ( 1 2 + it) dt cosh(πt) , et pour n ≥ 1 c n = 1 2 +∞ -∞ ζ( 1 2 + iu) n k=0 (-1) k C k n ( 1 2 -iu) k k! du cosh(πu)
Par définition des polynômes de Legendre, on a n k=0

(-1) k C k n ( 1 2 -iu) k k! = 1 Γ( 1 2 -iu) M(e -x L m (x))( 1 2 -iu)
on obtient donc

c n = 1 2π +∞ -∞ ζ( 1 2 + iu)Γ( 1 2 + iu)M(e -x L m (x))( 1 2 -iu)du
La formule d'interpolation de Newton s'écrit alors

f (s) = 1 + 1 2π +∞ -∞ ζ( 1 2 + iu)Γ( 1 2 + iu) M e -x n≥0 (-1) n L m (x) s • • • (s -n + 1) n! ( 1 2 -iu) du (il y a eu permutation M = M ).
Or on a pour Re(s) > -1

n≥0 (-1) n L m (x) s(s -1)...(s -n + 1) n! = x s Γ(s + 1) ce qui donne f (s) = 1 + 1 2π +∞ -∞ ζ( 1 2 + iu)Γ( 1 2 + iu)M e -x x s Γ(s + 1) ( 1 2 -iu)du Comme on a immédiatement M e -x x s )( 1 2 -iu) = Γ( 1 2 -iu + s) Conclusion. Pour Re(s) > -1 et s = 0 on a ζ(s + 1) = 1 + 1 s + 1 2π +∞ -∞ ζ( 1 2 + iu) Γ( 1 2 + iu)Γ( 1 2 -iu + s) Γ(s + 1) du (16) 
En particulier avec s = -1 2 + it on obtient l'équation intégrale

ζ( 1 2 + it) = 1 2π +∞ -∞ ζ( 1 2 + iu) Γ(i(t -u))Γ( 1 2 + iu) Γ( 1 2 + it) du - 1 2 + it 1 2 -it C'est une équation de convolution sur la fonction t → (Γζ)( 1 2 + it) (Γζ)( 1 2 + it) = 1 2π +∞ -∞ (Γζ)( 1 2 + iu) Γ(i(t -u)) du -Γ( 1 2 + it) 1 2 + it 1 2 -it (17) 
6 Generalization

Pour 0 < c < 1, la formule de Parseval-Mellin s'écrit:

1 2π +∞ -∞ M(f )(c + iτ )M(g)(c + iτ )dτ = +∞ 0 x 2c-1 f (x)g(x)dx
On va construire, au moyen des fonctions de Laguerre, des fonctions Φ c m qui sont orthogonales pour le produit scalaire qui intervient naturellement dans la relation de Parseval-Mellin

(f, g) c = +∞ 0 x 2c-1 f (x)g(x)dx
Polynômes et fonctions de Laguerre Soit 0 < c < 1. On considère les polynômes de Laguerre x → L c-1 m (2x) qui sont définis par la fonction génératrice 1

(1 -t) c e -2xt 1 1-t = m≥0 L c-1 m (2x)t m
Ils sont orthogonaux dans L 2 (R, x c-1 e -2x dx). La fonction exponentielle a un développement très simple sur cette famille de polynômes 

e -2ax = 1 (1 + a) c m≥0 ( a a + 1 ) m L c-1 m (2x) (18 

L

  m (2x)a m where |a| < 1.They are given byL m (2x) = m k=0 C k m (-2) k x k k! . The Laguerre functions ϕ m (x) = √ 2 e -x L m (2x),form an orthonormal basis of L 2 (]0, +∞[, dx), and we have the generating function √ x)u m where |u| < 1.

Thus we have ψ m (z) = 1 √2π 0 e

 10 Lϕ m (z), where L is the Laplace transformLf (z) = +∞ -xz f (x) dx.

)

  Soient les fonctions de Laguerreϕ c m (x) = e -x L c-1 m (2x)Elles sont orthogonales dans L 2 (]0, +∞[, x c-1 dx), et sont données par la fonction génératrice1 (1 -t) c e -x 1+t 1-t = m≥0 ϕ c m (x)t mEn faisant t = 1 + 2a dans (1) on obtient e -πx 2 t 2 =

  t 2 ) c La transformée de Mellin de ϕ c m (cf. I.S.Gradshteyn, I.M.Ryzhik. Tables of Integrals, Series and Products. Academic Press, Inc. (1994). p.850) est pour Re(s) > 0 +∞ 0ϕ c m (x)x s-1 dx = Γ(s)Γ(c + m) m!Γ(c) q c m (s)où c m est le polynôme q c m (s) = F (-m, s; c; 2) la fonction F (notée aussi 2 F 1 ) étant la fonction hypergéométrique de Gauss.1 On a q c m (c -s) = (-1) m q c m (s) De l'orthogonalité des ϕ c m on déduit que les polynômes t → q c m ( c 2 + it) sont orthogonaux pour la mesure |Γ( c 2 + it)| 2 dt sur ]0, +∞[. Donc q c m a ses racines sur la droite Re(s) = c/2.

1c m ( c 2 +

 2 c'est le polynôme de Meixner M m (s, -c, 1) et aussi une variante du polynôme de Meixner-PollaczekP (c/2) m (t, π 2 ) = i m Γ(c + m) m!Γ(c) F (-m, c 2 + it; c; 2) = i m Γ(c + m) m!Γ(c) q it)