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Abstract: 16 

Vegetation optical depth (VOD) retrieved from microwave observations has been found to be 17 

useful to monitor the dynamics of the vegetation features at global scale. Particularly, many 18 

applications could be developed in several fields of research (ecology, water and carbon cycle, 19 

etc.) from VOD products retrieved from the SMOS and SMAP observations at L-band, and 20 

from the combined AMSR-E (2002-2011) / AMSR2 (2012-present) observations at C- and X-21 

bands. One of the main difficulties in retrieving VOD is that the microwave observations are 22 

sensitive to both the soil (mainly soil moisture) and vegetation (mostly VOD) features. The 23 

AMSR-E/2 sensors provide only mono-angular observations at two polarizations. These dual-24 

channel observations may be strongly correlated so that retrieving SM and VOD simultaneously 25 
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can be an ill-posed problem. Here, to overcome this problem, we proposed and evaluated a new 26 

retrieval approach from AMSR2 observations at X-band to produce a new X-VOD product. 27 

The X-VOD retrievals were based on the inversion of the X-MEB model, an extension of the 28 

L-MEB model (L-band microwave emission of the biosphere) to the X-band. The main 29 

originality in comparison to previous algorithms is that (i) only VOD was retrieved while SM 30 

was estimated from a reanalysis data set (ERA5-Land); (ii) model inversion was based on an 31 

innovative approach to initialize the cost function; and (iii) new values for the soil and 32 

vegetation X-MEB model parameters were calibrated. To evaluate the methodology, we 33 

performed the VOD retrievals over the whole African continent over 2014-2016, including a 34 

dry (2015) and a wet (2014) year. In a first step, we calibrated a set of three parameters: effective 35 

scattering albedo (ω), soil roughness (HR) and VOD first guess (VODini). Several datasets of 36 

vegetation indices as Above-Ground Biomass (AGB), Leaf Area Index (LAI) and Normalized 37 

Difference Vegetation Index (NDVI) were chosen as reference data to optimize these model 38 

parameters. Globally-constant values (ω = 0.06 and HR = 0.6) were found to achieve high spatial 39 

and temporal correlations between retrieved X-VOD and the reference vegetation parameters. 40 

Comparison with other X-VOD products suggested IB X-VOD had competitive advantages in 41 

terms of both spatial and temporal performances. In particular, spatial correlation with three 42 

biomass datasets was found to be higher than for previous X-VOD products (R2 ~ 0.76-0.83) 43 

and temporal correlation with LAI or NDVI showed obvious improvements, especially in dense 44 

vegetation. 45 

 46 

Introduction: 47 

Improved knowledge of the carbon, water and energy transformation between terrestrial 48 

surfaces and the atmosphere is essential for global climate and environment studies (Abbott et 49 
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al., 2019; Hamilton and Friess, 2018; Pan et al., 2017). Microwave remote sensing has helped 50 

in these research domains by providing global and long-term time series of vegetation 51 

properties. For example, Vegetation Optical Depth (VOD) is a useful proxy of vegetation water 52 

content (Feldman et al., 2018; Tian et al., 2018; Wigneron et al., 1995; Jackson and Schmugge, 53 

1991), vegetation water status (Konings and Gentine, 2017; Konings et al., 2017a) or above-54 

ground biomass (AGB) (Bastos et al., 2018; Brandt et al., 2018a; Fan et al., 2019; Liu et al., 55 

2015; Tong et al., 2020; Wigneron et al., 2020, Qin et al., 2021).  56 

VOD can be retrieved from microwave observations at different frequencies (L-VOD, C-VOD 57 

and X-VOD). As VOD is more sensitive to the features of the upper layers of vegetation as 58 

frequency increases (Li et al., 2021; Chaparro et al., 2019), different VOD indices can be used 59 

in a number of complementary applications (Frappart et al., 2020). The present study focuses 60 

on X-band observations from AMSR2 in consideration of: i) the higher sensitivity of C-band 61 

to radio frequency interference (RFI) at global scale (de Nijs et al., 2015; Draper, 2018; Lacava 62 

et al., 2012; Njoku et al., 2005); ii) the low penetration inside the vegetation cover at higher 63 

frequencies (K, Ka and W-bands). X-VOD products have been used in a number of applications: 64 

estimating the start of the vegetation growth and its annual variability at the ecoregion scale 65 

(Jones et al., 2012); detecting a recent reversal in loss of global terrestrial biomass from 2003 66 

onwards (Liu et al., 2015); evaluating the degree of isohydricity at the ecosystem scale (Konings 67 

and Gentine, 2017); significantly improving the simulation of evapotranspiration and GPP 68 

(Kumar et al., 2020). These potential applications strengthen our motivations to extend the L-69 

MEB (L-band microwave emission of the biosphere) model to X-band which offers a long-term 70 

observation records (AMSR-E & AMSR2). The X-MEB model is very similar to the L-MEB 71 

model, except that the soil and vegetation parameters of X-MEB need to be calibrated at X-72 

band (Pellarin et al., 2006). 73 
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X-VOD data sets have been mainly retrieved from the LPDR algorithm (the Land Parameter 74 

Data Record) based on the inversion of the land-water emissivity slope index (Du et al., 2015; 75 

Du et al., 2017) and the LPRM (the Land Parameter Retrieval Model) algorithm based on the 76 

Microwave Polarization Difference Index (MPDI) (Owe et al., 2001; Owe et al., 2005; Owe et 77 

al., 2008). These algorithms were applied to observations from AMSR-E (the Advanced 78 

Microwave Scanning Radiometer for EOS, 2002-2011), AMSR2 (the Advanced Microwave 79 

Scanning Radiometer 2, 2012-present) and other satellites. For these sensors providing mono-80 

angular observations, one difficulty may originate from the ill-posed problem for retrieving the 81 

parameters of interest: two parameters (SM and VOD) are retrieved from dual-polarized 82 

observations which are strongly correlated (Montpetit et al., 2015). Another important 83 

challenge is the large retrieval uncertainty of the X-VOD products in dense vegetation (>100 84 

t/ha) (Du et al., 2017; Brandt et al., 2018a). 85 

To overcome the first issue, several methods, such as use of a priori information (constraints) 86 

and multi-temporal algorithms, have been applied (Konings et al., 2016; Baur et al., 2019). As 87 

well, a recent study used the self-constrain relationship between soil and vegetation parameters 88 

as constraints (Zhao et al., 2021). In this study, we evaluated the possibility to retrieve VOD 89 

from AMSR2 using an approach similar to that applied in Baur et al. (2019), which consisted 90 

in retrieving only vegetation parameters while soil moisture (SM) was estimated from ancillary 91 

data. The observation time of the SM data derived from other Earth observation (EO) sensors 92 

(such as SMOS, SMAP) is different from that of AMSR2 and the time period of those products 93 

is too short (for instance, SMOS was launched in the end of 2009). Therefore, in the present 94 

study, we used model-based SM simulations from ECMWF ERA5-Land (C3S, 2019) as a 95 

known input. ERA5-Land is a state-of-the-art global reanalysis product that provides a long-96 

term time series record at high spatial (~10 km) and temporal (hourly) resolutions. The use of 97 

modelled SM from ERA5-Land allowed having SM (and temperatures) data at exactly the same 98 
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time as the AMSR2 observations. Note that we evaluated in this study a new retrieval approach 99 

from AMSR2 observations at X-band, but our final objective is to compute eventually a long-100 

term VOD time series from the AMSR-E/AMSR2 observations at both the C- and X-bands 101 

from 2002 to present. 102 

In order to decrease the uncertainty on the retrieved VOD values, especially for dense 103 

vegetation, it is necessary to account for the effects of vegetation scattering, as parameterized 104 

by the effective scattering albedo (ω) and of soil roughness, as parameterized by the HR 105 

parameter (Wigneron et al., 2017). The value of the effective scattering albedo is influenced by 106 

the vegetation type and structure (Kurum, 2013; Feldman et al., 2018) and there is significant 107 

variability in the value of ω across land cover classes (Konings et al., 2016). Previous studies 108 

generally assumed ω as polarization independent (ωH = ωV) and set ω to constant or to IGBP-109 

land cover-class based values. Della Vecchia et al. (2009) and Baur et al. (2019) indicated a 110 

slight drop in ω with increasing frequencies. At X-band, Njoku et al. (2005) assumed vegetation 111 

scattering albedo to be negligible (ω = 0) while Karthikeyan et al. (2019) set a globally fixed 112 

value equal to 0.06. LPDR (Du et al., 2015) and LPRM (Owe et al., 2001) used the same 113 

constant value. There are also some studies suggesting IGBP-based values, in the ranges of 0.03 114 

to 0.08 (Gupta and Jangid, 2013), 0.05 to 0.1 (Baur et al., 2019), 0.06 to 0.12 (Pellarin et al., 115 

2006). Similar to ω, the value of HR at X-band is generally not consistent among different 116 

studies. Jackson (1993) assumed a constant HR value of 0.1 at the global scale. Pellarin et al. 117 

(2006) found the optimum HR value of 0.3 for various vegetation classes. Montpetit et al. (2015) 118 

calculated HR from the standard deviation of measured soil height and obtained a range of 0 to 119 

1.12. Karthikeyan et al., (2019) produced a HR map with an even broader range of 0 to 3.5. The 120 

large range of values of ω and HR at X-band found in the literatures showed the importance of 121 

implementing a complete calibration step of these two parameters for the X-MEB model in this 122 

study.  123 
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To perform the calibration step, some reference data were needed against which we could 124 

evaluate the X-VOD retrievals. VOD is a radiative transfer variable which is strongly related 125 

to the vegetation water content (VWC, kg/ m2). However, estimating VWC is very difficult at 126 

large scales and it is a big challenge to validate VOD from coarse scale satellite observations in 127 

a direct way (Frappart et al., 2020; Li et al., 2021). Previous studies have suggested that VOD 128 

is strongly related to some reference variables of vegetation structure such as biomass 129 

(Wigneron et al., 2007; Tian et al., 2016; Santi et al., 2009; Liu et al., 2013; Liu et al., 2015; 130 

Brandt et al., 2018; Vittucci et al., 2019), LAI (Kerr et al., 2012; Kumar et al., 2020) and NDVI 131 

(O'Neill et al., 2015; Tian et al., 2016; Jones et al., 2012). Thus, in the present study, we used 132 

these three vegetation parameters (AGB, LAI and NDVI) to select the optimum parameters of 133 

(ω, HR) in the X-VOD retrievals. The performance of the X-VOD parameter retrieved in this 134 

study (referred to as IB X-VOD, corresponding to AMSR2 INRAE Bordeaux X-Band VOD) 135 

was assessed by inter-comparing with other X-VOD products, including LPDR X-VOD (Du et 136 

al., 2015), VODCA X-VOD (VOD Climate Archive, Moesinger et al., 2020) and LPRM X-137 

VOD (Owe et al., 2008). 138 

The study is structured as follows: Section 2 introduces the datasets used in this study and the 139 

methodology presenting the new X-MEB model developed for the inversion of VOD at X-band, 140 

the calibration and inter-comparison steps. Section 3 presents the calibration results and the 141 

performances of the IB, LPDR, VODCA and LPRM X-VOD by comparison to vegetation 142 

proxies in time and space. Section 4 and 5 conclude with some remarks and perspectives. 143 

Data and methodology 144 

2.1 Data 145 

The purpose of this study is to explore X-VOD retrievals based on AMSR2 observations using 146 

the X-MEB model. To this end, we selected the African continent which is large enough to 147 
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include a large variety in terms of vegetation and climate conditions, but not so large to allow 148 

analysing in detail a new methodology.  149 

2.1.1 AMSR 2 brightness temperature 150 

The AMSR2 sensor, on board the Global Change Observation Mission 1st-Water (GCOM-W) 151 

satellite which was launched by the Japan Aerospace Exploration Agency (JAXA) in May 2012, 152 

is a remote sensing instrument developed for accurately measuring the microwave emission 153 

from the land surface and the atmosphere of the Earth. It has a sun-synchronous orbit with an 154 

incidence angle of 55 degrees and a crossing time of 01:30/13:30±15 mins local standard time 155 

(LST), respectively, for the descending and ascending orbits. 156 

AMSR2 measures the surface microwave emission from 7 frequency channels but we focused 157 

here on the X-band (10.65GHz) 158 

(https://suzaku.eorc.jaxa.jp/GCOM_W/data/data_w_index.html). The microwave signal at X-159 

band has a ground spatial resolution of 24×42 km2 at both vertical and horizontal polarizations.  160 

In consideration of the thermal equilibrium conditions of the near-surface air, canopy, and soil 161 

surface during night-time and as suggested by Owe et al. (2008), observations at 1:30 am LST, 162 

corresponding to the descending pass, were considered. 163 

2.1.2 ERA5-Land 164 

ERA5-Land is a global land surface reanalysis dataset, released by the European Centre for 165 

Medium-Range Weather Forecasts (ECMWF, https://cds.climate.copernicus.eu/), describing 166 

the land water and energy cycles. It is a downscaled land product from ERA5 (Hersbach et al., 167 

2020) with a spatial resolution of 0.1°×0.1° (9 km) and a temporal resolution of one hour. 168 

Evaluation of ERA5-Land soil moisture against in situ measurements have suggested an overall 169 

good performance (Beck et al., 2020), and an acceptable uncertainty (ubRMSE = 0.05 m3/m3, 170 

Chen et al., 2021). In addition to SM, skin temperature, soil temperatures in 2 layers (0-7 cm 171 
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and 28-100 cm under the surface) were also used in X-MEB model. In order to keep datasets 172 

spatially consistent, ERA5-Land data was re-sampled to the grid of AMSR2 and to keep it 173 

temporally consistent with AMSR2 observations, ERA5-Land data simulated at 1:00 am was 174 

selected.  175 

2.1.3 Vegetation variables used for validation 176 

We selected three vegetation parameters, including AGB (Bouvet et al., 2018; Mermoz et al., 177 

2015; Saatchi et al., 2011; Santoro et al., 2019), LAI, NDVI (Baret et al., 2007) to evaluate the 178 

retrieved IB X-VOD data. All the five vegetation parameters used here are based on optical, 179 

light detection and ranging (LiDAR) observations and Synthetic Aperture Radar (SAR) data 180 

from multiple Earth observation satellites and inventory datasets. They are thus completely 181 

independent of IB X-VOD, as the X-MEB model does not use any ancillary information on 182 

vegetation as presented above. 183 

Saatchi AGB 184 

Saatchi AGB was estimated from the Lorey’s height (the basal area weighted height of all trees 185 

with a diameter of more than 10 cm). It was extracted based on Geoscience Laser Altimeter 186 

System (GLAS) (LiDAR) signal on NASA Ice, Cloud, and land Elevation (ICESat) satellite 187 

and spatially extrapolated with Moderate Resolution Imaging Spectroradiometer (MODIS) and 188 

Quick Scatterometer (QuikSCAT) data through maximum entropy (MaxEnt) modelling. The 189 

overall uncertainty in mapping AGB averaged over all continental regions is estimated at ±30% 190 

(Saatchi et al., 2011). Saatchi AGB map used in this study represents AGB circa 2015 year 191 

(Carreiras et al., 2017). 192 

Bouvet-Mermoz AGB 193 

Bouvet-Mermoz AGB (hereafter referred to as Bouvet AGB) consists of the merging of the 194 

Bouvet (Bouvet et al., 2018) and Mermoz (Mermoz et al., 2015) AGB datasets. Bouvet AGB 195 
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was produced using a Bayesian inversion of Phased Array L-band SAR (PALSAR) HH and 196 

HV polarizations on Advanced Land Observing Satellite (ALOS) and evaluated with 144 field 197 

plots collected between 2006 and 2012. Therefore, the resulting biomass dataset is 198 

representative of AGB circa 2010. This dataset only focuses on savannahs and woodlands (low 199 

biomass) in Africa at a spatial resolution of 25m × 25m. On the contrary, Mermoz et al. (2015) 200 

paid more attention on the dense forest. Mermoz et al. used both theoretical and experimental 201 

approaches to build a relationship between L-band SAR backscatter and dense tropical forest 202 

biomass. Bouvet AGB has an overall good accuracy (RMSD = 17 Mg·ha−1) for the cross-203 

validation with the field plots (Bouvet et al., 2018). 204 

CCI AGB 205 

CCI AGB was produced by the European Space Agency's (ESA's) Climate Change Initiative 206 

(CCI) programme (http://data.ceda.ac.uk/neodc/esacci/biomass/data/agb/maps/2017/v1.0/). 207 

This data was derived based on L-band SAR observations (PALSAR-2) on ALOS-2 satellite 208 

and C-band SAR observations on Sentinel-1 satellite (Santoro et al., 2019). The algorithm first 209 

obtained growing stock volume (GSV), then converted to AGB with auxiliary datasets 210 

describing canopy density, microwave transmissivity, maximum biomass etc. CCI AGB used 211 

in this study is a global map for the year 2017. 212 

LAI and NDVI 213 

LAI and NDVI were downloaded from the Copernicus Global Land Service (CGLS) website 214 

(https://land.copernicus.eu/global/). CGLS provides a series of bio-geophysical parameters 215 

describing the vegetation dynamics at the global scale. These two products were derived from 216 

PROBA-V since January 2014 onwards. LAI and NDVI both have a temporal resolution of 10 217 

days and spatial resolution of 1 km. Quality control was conducted according to the reference 218 



10 

 

documents (Buchhorn et al., 2017; Swinnen et al., 2017). These datasets were resampled to a 219 

spatial resolution of 25 km to keep them consistent with X-VOD.  220 

2.1.4 Other X-VOD products 221 

To assess the performance of the new X-VOD product retrieved in this study, we compared it 222 

with three other X-VOD products, namely LPDR X-VOD (version 2), VOD Climate Archive 223 

(VODCA X-band version 6), LPRM X-VOD (version 5), which are freely available to the 224 

public.  225 

LPDR X-VOD was designed by University of Montana (Du et al., 2015) based on LPDR 226 

algorithm and is available at the National Snow & Ice Data Center (NSIDC) website 227 

(https://nsidc.org/data/). LPDR provides a long-term (June 2002-present) global record of VOD 228 

and other climate parameters at a 25km grid cell resolution (Du et al., 2017). The LPDR 229 

algorithm is based on the (τ-ω) radiative transfer equation (Mo et al., 1982) and VOD is 230 

retrieved by inverting a land-water emissivity slope index. It should be noted that LPDR regards 231 

the soil as dry bare soil, therefore, LPDR X-VOD also incorporates surface roughness effects. 232 

Importantly, note that the LPDR water fraction dataset was also used in the present study to 233 

filter out pixels with large open water. 234 

LPRM X-VOD was developed by Vrije Universiteit Amsterdam and NASA (Owe et al., 2008; 235 

Owe et al., 2005; Owe et al., 2001) based on the Land Parameter Retrieval Model and is 236 

available at the Goddard Earth Sciences Data and Information Services Center (GES DISC) 237 

website (https://disc.gsfc.nasa.gov/datasets/). As for LPDR, the theoretical background is the τ-238 

ω model, but using MPDI to estimate the vegetation effects. LPRM relies on a nonlinear 239 

iterative procedure to divide the emission signal into the soil part and the canopy part, and VOD 240 

is retrieved in a second step. 241 
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VODCA was produced by Technische Universität Wien (Moesinger et al., 2020) and is 242 

available at https://doi.org/10.5281/zenodo.2575599. This product combines VOD retrievals 243 

that have been derived from multiple sensors (SSM/I, TMI, AMSR-E, WindSat and AMSR2) 244 

based on the LPRM model. To obtain a long-term and amplitude-consistent X-VOD, VODCA 245 

chose AMSR-E as the scaling reference and then applied a CDF-matching technique to adjust 246 

VOD from the other sensors. AMSR2 does not share any temporal overlap with the reference 247 

sensor, therefore, the scaled VOD from TMI was used to bridge this gap (Moesinger et al., 248 

2020). 249 

2.2 Methodology 250 

In this study, VOD was retrieved by the inversion of the X-MEB model. The X-MEB model is 251 

an extension to the X-band of the L-MEB model which was defined by Wigneron (Wigneron 252 

et al., 2007; Wigneron et al., 2017) based on zero-order τ-ω radiative transfer model (Mo et al., 253 

1982).  254 

2.2.1 Radiative transfer theory 255 

Radiative transfer model characterizes the complex process of microwave scattering and 256 

emission from different layers within the soil-vegetation media and finally sensed by the 257 

satellite antenna. In this study, we used the so-called τ-ω model and, as shown in (Kurum et al., 258 

2013; Li et al., 2020), using higher-order solutions of the radiative transfer solution did not 259 

improve VOD retrievals. In the τ-ω model, the upwelling radiation (brightness temperature at 260 

polarization P (TBP)) as observed from above the canopy consists of three components: 1) the 261 

radiation from the soil layer attenuated by the overlaying vegetation; 2) the upward radiation 262 

from the vegetation; and 3) the downward radiation from the vegetation, reflected upwards by 263 

the soil layer again (Mo et al., 1982; Paloscia et al., 1993; Fujii et al., 2009; Yang et al., 2007): 264 

��� = �1 − �	�
���	 + �1 − 

�1 − ��
�� + �1 − 

�1 − ��
�	�����                       �1
 265 
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with                                                                �� =266 

��� �����
���� �                                                                           �2
 267 

where P denotes the horizontal (P = H) or vertical (P = V) polarization; θ denotes the incidence 268 

angle; TG and TC represent, respectively, the effective temperature of soil and vegetation; ω 269 

denotes the effective scattering albedo of vegetation; rGP is the soil reflectivity at polarization 270 

(P) which is related to soil moisture, soil texture, soil roughness (HR) and the incidence angle 271 

(θ) (Njoku and Kong, 1977; Choudhury et al., 1979; Schmugge and Choudhury, 1981; Yang et 272 

al., 2005; Koike, 1996); γP represents the soil signal attenuation by the vegetation canopy with 273 

the assumption of isotropic conditions and no dependence on the polarization (γH = γV). The 274 

vegetation attenuation is determined by biomass, vegetation moisture content (%), vegetation 275 

structure and is usually described as a function of the vegetation optical depth at nadir (VOD) 276 

and the incidence angle (θ) as in Eq. (2). VOD has been considered as a good proxy of biomass 277 

and vegetation water content (Li et al., 2021; Chaparro et al., 2019; Frappart et al., 2020). VOD 278 

= 0, means the measured signal comes only from the soil (at X-band the signal from the 279 

atmosphere can be neglected generally). On the contrary, the soil signal is completely 280 

attenuated for very high VOD values (i.e. over dense vegetation). The absolute magnitude of 281 

brightness temperature at V polarization is somewhat higher than at H polarization. The 282 

difference of the emissivity from the land surface between the H and V polarizations decreases 283 

with gradually denser vegetation, eventually to almost zero for very dense vegetation (Owe et 284 

al., 2001). In consideration of the above characteristics, the polarization ratio, also termed as 285 

the microwave polarization difference index (MPDI = (TBV - TBH) / (TBV +TBH)) is a good 286 

indicator of the canopy density (Becker et al., 1998; Owe et al., 2001; Shi et al., 2008) and it 287 

will be analysed in detail in section 2.2.2. 288 
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2.2.2 X-MEB Model 289 

In this study, we used the X-MEB model to exclusively retrieve VOD, while ERA5-Land SM 290 

(0-7 cm) was considered as a known input. In the X-MEB model, the key part is to clarify the 291 

details of the input parameters: the effective soil and vegetation temperatures (TG and TC), and 292 

the soil (rGP) and vegetation (γP and ω) parameters. 293 

TG represents the effective soil temperature. It presents gradients within soil which emphasizes 294 

the necessity to consider temperatures in different layers to compute TG. Choudhury et al. (1982) 295 

developed an effective soil temperature equation as a function of temperatures in different 296 

layers, soil dielectric constant and the observation wavelength. Wigneron et al. (1995, 2008) 297 

refined the equation by considering soil moisture and soil texture. More detailed and complete 298 

information on the calculation of TG in X-MEB model can be found in Wigneron et al. (2007) 299 

and Wigneron et al. (2008).  As in SMOS-IC (Wigneron et al., 2021), ERA5-Land soil 300 

temperature in the 0-7 cm and 28-100 cm top soil layers, and ERA5-Land skin temperature 301 

were used to compute, respectively, the effective temperature of soil (TG) and of vegetation 302 

(TC); 303 

The reflectivity of soil (rGP) is computed as a function of the reflectivity of a smooth soil (r*
GP), 304 

the soil roughness parameter (HR) and the incidence angle (θ): 305 

�	� =  �∗	� ����−� × "#$%
                                                       �3
 306 

As only observations at H polarization at one angle were modelled with X-MEB, only one 307 

roughness parameter (HR) was used in this study. The reflectivity (r*
GP) of a smooth soil was 308 

calculated using the Fresnel coefficients (Ulaby et al., 1986) as a function of the effective soil 309 

dielectric constant (ε) and the incidence angle (θ). As in L-MEB, the Mironov model (Mironov 310 

et al., 2012) was also used in the X-MEB model to compute the soil dielectric constant as a 311 

function of soil temperature (TG), soil moisture (SM) and the percentage of clay.  312 
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As for the vegetation parameters, γP represents the soil signal attenuation by the vegetation 313 

determined by VOD and the incidence angle (θ) as given in Eq. (2). ω denotes the effective 314 

scattering albedo of vegetation which needs to be calibrated in this study. 315 

The AMSR2 TB observations were simulated using Eq. (1-3) and VOD was retrieved by the 316 

inversion of the X-MEB model. An iterative method was used to determine the minimum value 317 

of the cost function below (Wigneron et al., 2017): 318 

"#$' ()*"'+#* =  ����
�,� − ���

�-.
/

0���
/ +  �123-4- − 123567
/

0�123
/                                    �4
 319 

Where TBP
obs and TBP

sim denote, respectively, the observed and simulated brightness 320 

temperature at the P polarization; VODini and VODret represent, respectively, the initial and the 321 

retrieved VOD; σ(TB) and σ(VOD) are the standard deviation of, respectively, the brightness 322 

temperature and VOD. When the initial VOD (VODini) is considered as reliable, a strong 323 

constraint (low σ(VOD) value) is generally used; on the contrary, if there is a high uncertainty 324 

associated with VODini, a weak constraint (high σ(VOD) value) is chosen. VODini and σ(VOD) 325 

were calibrated as presented in the next section. Note that here, contrary to the SMOS-IC 326 

retrieval at L-band which considers both polarizations simultaneously in the cost function, we 327 

used only observations at H polarization in the cost function (this specific choice was made 328 

after many tests evaluating the retrieval performance; not shown here). The observations at both 329 

the H and V polarizations were used to estimate VODini, as presented below. 330 

2.2.3 Calibration 331 

In this study, the IB X-VOD retrieval is based on the minimization of Eq. (4). In a preliminary 332 

step, two vegetation and soil parameters (ω and HR) and two retrieval parameters (VODini and 333 

σ(VOD)) have to be calibrated.  The parameters were divided into 2 groups (group 1: ω and HR, 334 

group 2: VODini and σ(VOD)). These 2 groups were calibrated alternately, following an 335 
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iterative calibration process (Fig. 2). We stopped the calibration when the values of the 336 

optimized parameters were the same as those from the last step. Convergence was obtained 337 

very quickly (after 2 rounds generally) as shown below. It should be noted that the pixels which 338 

were considered polluted by water bodies (if water fraction >5%) were filtered out in this study. 339 

Calibration was made considering only one year (2016), while evaluation was made over three 340 

years (2014-2016). 341 

Calibration of the effective vegetation scattering albedo (ω) and of soil roughness (HR)  342 

Previous studies suggest the effective vegetation scattering albedo is related to the vegetation 343 

classes, leaf structure, phenology and microwave frequency (Pampaloni and Paloscia, 1986; 344 

Della Vecchia et al., 2009; Kurum, 2013; Wigneron et al., 2004; Baur et al., 2019; Zhang et al., 345 

2019). As presented in introduction, in order to simplify the radiative transfer model, most 346 

previous studies consider ω as independent on polarization and use different constant values at 347 

the global scale (Njoku et al., 2005; Owe et al., 2008; Du et al., 2015). There are also some 348 

researches suggesting IGBP-land cover based values (Gupta and Jangid, 2013; Baur et al., 2019; 349 

Pellarin et al., 2006). Similarly, there is little consistency in the value of the soil roughness 350 

parameter HR at X-band (Jackson,1993; Pellarin et al., 2006; Montpetit et al., 2015; Karthikeyan 351 

et al., 2019). On account of the uncertainty in the value of HR and ω, it was necessary to calibrate 352 

these parameters in the X-MEB model. To do so, in a first step, we considered VODini as 353 

unknown (VODini was set arbitrary to 0.5) and considered that a large uncertainty was 354 

associated with this value and we thus used a weak constraint (σ(VOD) = 0.5). The tested values 355 

of ω and HR were as follows: 356 

ω = {0.05, 0.06, 0.07}; 357 

HR = {0.2, 0.4, 0.6, 0.8, 1.0}; 358 



16 

 

Note that the variation intervals are relatively narrow, because they were already shortened after 359 

some preliminary tests (not shown here to focus on the main results of the calibration step). 360 

Evaluating and assessing the performance of the VOD retrievals is essential for improving its 361 

accuracy and exploring its potential applications in many fields such as monitoring global 362 

biomass (Liu et al., 2013; Liu et al., 2015; Hornbuckle et al., 2016), GPP (Teubner et al., 2018; 363 

Teubner et al., 2019; Kumar et al., 2020), vegetation dynamics (Liu et al., 2018; Zhou et al., 364 

2018), crop yields (Guan et al., 2017; Chaparro et al., 2018; Mateo-Sanchis et al., 2019), 365 

phenology (Jones et al., 2011; Tong et al., 2019) and drought (Rao et al., 2019). However, VOD, 366 

as a radiometric variable, is neither well-defined nor easily-validated (Liu et al., 2011). 367 

Therefore, it is not possible to validate VOD at a continental scale in a direct way because of 368 

the limitation of reference values from in-situ measurements or models (Li et al., 2021). 369 

Previous studies suggest that there are strong relationships in time and space between X-VOD 370 

and some reference variables such as biomass (Wigneron et al., 2007; Tian et al., 2016; Santi 371 

et al., 2009; Liu et al., 2013; Liu et al., 2015; Vittucci et al., 2019), LAI (Kerr et al., 2012; 372 

Kumar et al., 2020) and NDVI (O'Neill et al., 2015; Tian et al., 2016; Jones et al., 2012). 373 

Accordingly, comparing VOD with these related parameters is an alternative and indirect way 374 

to evaluate the VOD performances which has often been used (Fernandez-Moran et al., 2017; 375 

Rodríguez-Fernández et al., 2018). Note that the main limitation of that type of evaluation may 376 

arise from time lags between different vegetation indices which are not related to exactly the 377 

same dynamic vegetation features (biomass, water content, LAI, etc.) (Jones et al., 2014; Tian 378 

et al., 2018, Li et al., 2021). 379 

In the calibration step, to evaluate the retrieved VOD values, we considered both spatial and 380 

temporal correlations. More precisely, during 2016, we computed (i) the spatial correlation 381 

(coefficient of determination, R2) between yearly average values of retrieved VOD and LAI, 382 

NDVI, and AGB (Saatchi, Bouvet-Mermoz, CCI) and (ii) the temporal correlation (Pearson's 383 
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correlation coefficient, R) between 10-day retrieved VOD and LAI or NDVI for each pixel. 384 

Note that the temporal correlation was computed only for pixels where the maximum value of 385 

LAI exceeded 0.5 in order to remove non-vegetation areas. The optimized values of ω and HR 386 

were selected when they provided the highest values in terms of spatial and temporal 387 

correlations. A priority list was used to select most important criteria: spatial correlation > 388 

temporal correlation and Biomass > LAI > NDVI. This means that in the present study we put 389 

more emphasis on retrieving a VOD product which is a good proxy of biomass. Results we 390 

obtained in terms of temporal correlation showed fewer variations than those obtained in terms 391 

of spatial correlation for the tested parameters. Therefore, we only set a minimum threshold 392 

(R > 0.6) for temporal R. If this latter condition was satisfied, we focused on spatial correlation. 393 

This method will also be used in the following (second step) calibration work.  394 

Calibration of two retrieval parameters VODini and σ(VOD)  395 

After calibrating ω and HR, in a second step, we calibrated VODini and σ(VOD). Many studies 396 

have indicated MPDI could be a potential variable for the retrieval of VOD (Pampaloni and 397 

Paloscia, 1985; Paloscia and Pampaloni, 1988; Paloscia and Pampaloni, 1992; Becker and 398 

Choudhury, 1988; Koike et al., 2004; Owe et al., 2008; Meesters et al., 2005) and have 399 

suggested a decreasing trend of VOD with increasing values of MPDI. However, the literature 400 

provided no clear information on the changing rate of the MPDI/VOD relationship and on the 401 

VOD value for very low MPDI value (~ the intercept). In this study, we estimated VODini from 402 

MPDI using a simple exponential equation based on two parameters (intercept and slope); 403 

intercept being considered as a constant. The latter assumptions were derived from an analysis 404 

of the above-mentioned literature results and led to the following equation: 405 

123-4- = +*'��"��' × ���� $9#�� × :;3<
                                             �5
 406 
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where intercept is a value corresponding to very low MPDI values that are associated to very 407 

dense vegetation and thus to very high VOD values. We tested different values of the slope 408 

while the intercept was set to a constant value (Fig. 1). The latter value was computed as follows: 409 

i) from the first step of calibration, the optimum values of ω and HR were obtained; ii) the 410 

corresponding VOD value was further retrieved; iii) the 95th percentile of VOD (VOD95) value 411 

in Africa was computed and set as the intercept (VOD95 = 1.1). An iterative analysis of the 412 

retrieved intercept value confirmed that this setting was optimal.  413 

In this second step, ω and HR were set to the optimized values obtained in the first step. Constant 414 

slope and σ(VOD) were used over all pixels, while VODini had strong spatio-temporal 415 

variations which were related to the MPDI values. The tested values of slope and σ(VOD) were 416 

as follows: 417 

slope = {-20, -40, -80, -160, -320}; 418 

σ(VOD) = {0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}; 419 

Intercept = 1.1; 420 

 421 
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 422 

Fig. 1. Initial VOD (VODini) written as an exponential function of MPDI. 423 

Iterative calibration 424 

At the end of the second step of calibration, we obtained the optimized values of ω, HR, VODini 425 

and σ(VOD). As (ω, HR) and (VODini, σ(VOD)) were calibrated separately, it was necessary to 426 

perform an iterative analysis to finalize these calibrated values. Thus, we used the obtained 427 

values and performed again the first and second step described above until a convergence was 428 

obtained in the calibrated values. In this iterative process, as the sensitivity of the results to HR 429 

was low, we set HR to the constant value of 0.6 obtained during the first iteration. Convergence 430 

in this iterative process was obtained quickly (after two rounds generally). Fig. 2 illustrates the 431 

flow chart of the whole methodology, including the input data (blue rectangles), the calibration 432 

step (green rectangles) and the comparison step (red rectangles). In the evaluation part, we 433 
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extended the study period to 3 years (from year 2014 to 2016) including a dry year (2015) and 434 

a wet year (2014) to ensure making the calibration for a large range of climatic conditions. We 435 

compared IB X-VOD with the other X-VOD products (LPDR X-VOD, VODCA X-VOD and 436 

LPRM X-VOD) by calculating the spatial correlation with the Bouvet/Saatchi/CCI AGB 437 

datasets, LAI and NDVI and the temporal correlation with LAI and NDVI (as we did in the 438 

calibration part). Only the pixels where these four VOD products were available were 439 

considered in the VOD inter-comparison step.  440 
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 441 

Fig. 2. Flow chart presenting the retrieval algorithm of IB X-VOD from AMSR2. 442 
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Results  443 

3.1 Calibration 444 

3.1.1 First step: Calibration of the effective vegetation scattering albedo and soil 445 

roughness 446 

This section presents the results from the first step which focused on the calibration of the 447 

effective vegetation scattering albedo (ω) and soil roughness (HR). Fig. 3 presents the spatial 448 

and temporal correlation with independent datasets (Bouvet/ Saatchi/ CCI AGB, LAI and NDVI) 449 

obtained for several combinations of the values of ω and HR, assumed to be constant over the 450 

whole study area (Africa). It can be seen that the values of ω and HR which produced the highest 451 

spatial correlation values are not quite consistent with those producing the highest temporal 452 

correlation values. It can also be seen that for a given value of ω, changes in HR have a relatively 453 

small impacts on the results. The values ω = 0.06, HR = 0.6 which were estimated to be optimum 454 

values in terms of spatial correlation, were also found to be relatively satisfying in terms of 455 

temporal correlation, so we selected them in this first step. 456 

  457 

     HR      

ω 0.2 0.4 0.6 0.8 1

0.05 0.617 0.614 0.611 0.609 0.608

0.06 0.678 0.678 0.677 0.675 0.673

0.07 0.582 0.598 0.611 0.623 0.635

(a) Spatial R
2
 with Bouvet AGB

     HR 

ω 0.2 0.4 0.6 0.8 1

0.05 0.506 0.503 0.499 0.497 0.495

0.06 0.583 0.582 0.58 0.576 0.573

0.07 0.489 0.506 0.52 0.532 0.543

(b) Spatial R
2
 with Saatchi AGB
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  458 

 459 

  460 

Fig. 3. First step of calibration: spatial correlation (R2) between IB X-VOD and Bouvet AGB 461 

(a), Saatchi AGB (b), CCI AGB (c), LAI (d) and NDVI (e) and temporal correlation (R) 462 

between IB X-VOD and LAI (f), NDVI (g) for different values of (ω, HR); Red > Orange > 463 

Yellow > light green > green > dark green represents the code of colours from the highest R 464 

values to the lowest R values.  465 

      HR 

ω 0.2 0.4 0.6 0.8 1

0.05 0.604 0.601 0.598 0.596 0.595

0.06 0.669 0.669 0.667 0.663 0.661

0.07 0.590 0.604 0.617 0.627 0.634

(c) Spatial R
2
 with CCI AGB

      HR 

ω 0.2 0.4 0.6 0.8 1

0.05 0.748 0.747 0.746 0.745 0.745

0.06 0.779 0.779 0.777 0.775 0.774

0.07 0.741 0.748 0.754 0.759 0.762

(d) Spatial R2 with LAI

      HR 

ω 0.2 0.4 0.6 0.8 1

0.05 0.861 0.865 0.866 0.866 0.864

0.06 0.862 0.867 0.871 0.87 0.869

0.07 0.848 0.855 0.86 0.863 0.863

(e) Spatial R
2
 with NDVI

     HR 

ω 0.2 0.4 0.6 0.8 1.0

0.05 0.668 0.671 0.675 0.679 0.683

0.06 0.654 0.658 0.663 0.667 0.672

0.07 0.634 0.641 0.648 0.654 0.661

(f) Temporal R with LAI

      HR 

ω 0.2 0.4 0.6 0.8 1.0

0.05 0.632 0.634 0.637 0.640 0.642

0.06 0.620 0.624 0.627 0.630 0.634

0.07 0.601 0.606 0.611 0.616 0.622

(g) Temporal R with NDVI
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 466 

3.1.2 Second step: Calibration of VODini  467 

To calibrate VODini during this 2nd step, we set ω = 0.06 and HR = 0.6 as optimized from the 468 

first step and tested different values of slope and σ(VOD). In general, slope and σ(VOD) had 469 

both substantial impacts on VOD (Fig. 4). Optimum values of (slope, σ(VOD)) for spatial 470 

correlation were found in the top-left corner of the tables, while they were found in the lower-471 

right corner of the tables for temporal correlations. Taken all together, we considered σ(VOD) 472 

= 0.1 and slope = -40 as the optimum values for spatial calibration. These values which 473 

correspond to relatively good values in terms of temporal correlations were selected in this 2nd 474 

step. 475 

  476 

  477 

          Slope 

σ(VOD) -20 -40 -80 -160 -320

0.025 0.801 0.810 0.736 0.609 0.742

0.05 0.799 0.811 0.754 0.622 0.738

0.1 0.805 0.814 0.793 0.661 0.671

0.2 0.792 0.808 0.816 0.798 0.683

0.3 0.765 0.788 0.802 0.800 0.742

0.4 0.742 0.766 0.782 0.786 0.763

0.5 0.674 0.687 0.700 0.770 0.761

(a) Spatial R
2
 with Bouvet AGB

         Slope 

σ(VOD) -20 -40 -80 -160 -320

0.025 0.758 0.755 0.632 0.465 0.671

0.05 0.757 0.757 0.661 0.510 0.688

0.1 0.753 0.757 0.721 0.584 0.642

0.2 0.725 0.739 0.743 0.719 0.597

0.3 0.686 0.709 0.720 0.717 0.655

0.4 0.653 0.679 0.694 0.697 0.674

0.5 0.565 0.579 0.592 0.676 0.666

(b) Spatial R
2
 with Saatchi AGB

        Slope 

σ(VOD) -20 -40 -80 -160 -320

0.025 0.821 0.820 0.714 0.608 0.750

0.05 0.822 0.822 0.736 0.625 0.743

0.1 0.820 0.825 0.788 0.662 0.654

0.2 0.796 0.811 0.813 0.789 0.648

0.3 0.763 0.784 0.793 0.787 0.722

0.4 0.735 0.758 0.770 0.771 0.747

0.5 0.653 0.668 0.679 0.753 0.742

(c) Spatial R2 with CCI AGB

        Slope 

σ(VOD) -20 -40 -80 -160 -320

0.025 0.863 0.873 0.821 0.812 0.805

0.05 0.866 0.879 0.836 0.819 0.804

0.1 0.873 0.885 0.866 0.804 0.743

0.2 0.855 0.872 0.872 0.839 0.725

0.3 0.834 0.852 0.857 0.846 0.799

0.4 0.816 0.834 0.841 0.838 0.819

0.5 0.765 0.776 0.782 0.827 0.817

(d) Spatial R2 with LAI
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 478 

   479 

Fig. 4. Second step of calibration: spatial correlation (R2) between IB X-VOD and Bouvet AGB 480 

(a), Saatchi AGB (b), CCI AGB (c), LAI (d) and NDVI (e) and temporal correlation (R) 481 

between IB X-VOD and LAI (f), NDVI (g) for different values of (σ(VOD), slope). Red > 482 

Orange > Yellow > light green > green > dark green represents the code of colours from the 483 

highest R values to the lowest R values.  484 

3.1.3 Iterative calibration 485 

During the previous two steps, ω, HR and VODini, σ(VOD) were calibrated separately. We 486 

performed an iterative analysis to finalize the calibration of these values. Thus, we re-run the 487 

first step using the values of (slope, σ(VOD)) obtained in the second step (Fig. 5). To do so, 488 

and to simplify the analysis, we only considered the parameter ω, as the parameter HR had a 489 

low impact on the results. 490 

      Slope 

σ(VOD) -20 -40 -80 -160 -320

0.025 0.806 0.866 0.837 0.815 0.693

0.05 0.817 0.884 0.843 0.797 0.662

0.1 0.867 0.899 0.868 0.794 0.699

0.2 0.889 0.896 0.885 0.855 0.809

0.3 0.888 0.890 0.885 0.873 0.853

0.4 0.884 0.886 0.883 0.876 0.867

0.5 0.862 0.866 0.867 0.877 0.871

(e) Spatial R
2
 with NDVI

        Slope 

σ(VOD) -20 -40 -80 -160 -320

0.025 0.510 0.524 0.544 0.478 0.344

0.05 0.507 0.537 0.556 0.515 0.400

0.1 0.523 0.601 0.608 0.555 0.477

0.2 0.588 0.654 0.690 0.689 0.671

0.3 0.616 0.663 0.691 0.702 0.698

0.4 0.626 0.660 0.683 0.694 0.695

0.5 0.625 0.634 0.642 0.685 0.687

(f) Temporal R with LAI

          Slope 

σ(VOD) -20 -40 -80 -160 -320

0.025 0.599 0.607 0.563 0.403 0.222

0.05 0.590 0.613 0.585 0.445 0.320

0.1 0.587 0.646 0.637 0.517 0.426

0.2 0.612 0.662 0.678 0.661 0.629

0.3 0.620 0.655 0.669 0.667 0.655

0.4 0.620 0.646 0.658 0.659 0.653

0.5 0.602 0.610 0.616 0.651 0.647

(g) Temporal R with NDVI
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Taken together, it can be seen that ω = 0.06 is the optimum ω value in terms of spatial 491 

correlation and very close to the optimum value in terms of temporal correlations. Therefore, 492 

the iterative process confirmed the selected values obtained in the 1st and 2nd steps were optimal 493 

values (ω = 0.06, HR = 0.6, slope = -40 and σ(VOD) = 0.1).  494 

 495 

Fig. 5. Spatial and temporal correlation from the iterative step. 496 

3.2 IB X-VOD evaluation 497 

In order to evaluate the IB X-VOD product built in this study based on a calibration for year 498 

2016, we considered a 3-year period (from year 2014 to 2016). This section will analyse the IB 499 

X-VOD product from a spatial and temporal perspective. 500 

3.2.1 Spatial analysis 501 

Fig.6a illustrates the spatial distribution of the yearly average IB X-VOD. In general, X-VOD 502 

ranged from 0 to 1.1. It can be seen that high VOD values were mainly distributed around the 503 

equator (Congo and Gabon forests) with mean values close to 1.0. X-VOD gradually fell down 504 

from the equator to higher latitudes both in northern and southern hemispheres. In the northern 505 

hemisphere, X-VOD reduced to 0.6 at 10°N then plummeted to 0 in the Sahara Desert. In 506 

comparison, X-VOD in the southern hemisphere showed a slower reduction tendency. X-VOD 507 

dropped to approximately 0.8 between 5°S and 15°S, and continuously decreased to about 0.4 508 

at 20°S, finally to even less than 0.2 along the southwest coastline of Africa. In Madagascar, 509 

X-VOD was approximately 0.5 except over areas along the east coastline with values close to 510 

 Bouvet AGB Saatchi AGB CCI AGB LAI NDVI LAI NDVI

0.05 0.801 0.738 0.810 0.878 0.900 0.602 0.650

0.06 0.814 0.757 0.825 0.885 0.899 0.601 0.646

0.07 0.818 0.754 0.823 0.881 0.894 0.568 0.629

ω (b)Temporal R with(a) Spatial R
2
 with
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0.8. The spatial patterns of IB X-VOD correspond well to those of Bouvet AGB (Fig.6b), 511 

Saatchi AGB (Fig.6c), CCI AGB (Fig.6d), LAI (Fig.6e), NDVI (Fig.6f) and high values (red 512 

colour) were found mainly in dense forests while low values were distributed in sparse 513 

vegetation and barren. 514 

 515 

 516 
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 517 

Fig. 6. Map of (a) IB X-VOD, (b) Bouvet AGB, (c) Saatchi AGB, CCI AGB (d), (e) LAI, (f) 518 

NDVI. 519 

Considering the IB X-VOD values for each IGBP class (Fig. 7a), we found that the highest X-520 

VOD values correspond to EBF (mean value of 0.93), then followed by MF, WSA (X-VOD > 521 

0.8). DBF, SVA, CVM, CSH, CRO and GRA correspond to moderate X-VOD values (0.4 to 522 

0.8 range). Lower X-VOD values were obtained in OSH and BAR (X-VOD < 0.4). Considering 523 

all IGBP classes, a negative relationship was found between mean X-VOD and mean standard 524 

deviation of VOD (Fig. 7b), except BAR which had low mean value and low standard deviation. 525 

This result indicates the X-VOD values are more consistent for classes corresponding to dense 526 

vegetation, while X-VOD is more variable for classes corresponding to sparser vegetation. 527 
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 528 

 529 

Fig. 7. (a) Mean IB X-VOD for each IGBP class (error bars represent the standard deviation 530 

(std)); (b) Scatter plot of mean X-VOD vs standard deviation of X-VOD for each IGBP class. 531 

We only retained IGBP classes which included more than 30 pixels. 532 

3.2.2 Temporal analysis 533 

This section mainly focuses on the performance of the temporal variations in IB X-VOD. In 534 

general, X-VOD presents strong temporal correlation with LAI and NDVI especially for low 535 

vegetation (Fig. 8). In the African continent, the correlation regularly increased from the equator 536 

to higher latitudes both in the northern and southern atmospheres. The correlation with LAI in 537 
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dense vegetation (between 10° N and 5° S) was relatively low (R ~ 0.2) because of small 538 

seasonality of vegetation and cloud cover for optical indices around the equator. Then it 539 

gradually increased to values of R > 0.6 at the north of 10° N and the south of 5° S. Angola 540 

even produced a mean correlation of 0.9 in the red-coloured southern regions of the map. Higher 541 

temporal correlations with X-VOD were obtained with NDVI than with LAI for all vegetation 542 

classes, except over evergreen broadleaf forest (EBF), where lower correlation values were 543 

obtained (R ~ 0.2) (Fig. 8c d). 544 

More specifically, values of temporal correlation varied significantly among the different 545 

vegetation types. Shrublands (OSH and CSH) produced very high correlations (R ~ 0.9), 546 

followed by DBF, MF, GRA, SVA, CRO and WSA with correlations all exceeding 0.57. The 547 

remaining two classes (EBF and CVM) had low correlation. Mean temporal correlation (for 548 

both relationships VOD / LAI and VOD / NDVI) generally decreased with increasing mean 549 

VOD values (Fig. 8d).  550 

 551 
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 552 

 553 

Fig. 8. Map of the temporal correlation (R) between (a) IB X-VOD and LAI and (b) IB X-VOD 554 

and NDVI; (c) Histogram of R values for each IGBP class; (d) Scatter plot between R and mean 555 

VOD values for each IGBP class. We only retained IGBP classes which included more than 30 556 

pixels. 557 

3.3 Comparison with other X-VOD products 558 

Due to the lack of reference values from in-situ measurements or models, it is a big challenge 559 

to validate the VOD products, especially at a continental scale (Li et al., 2021). In this section, 560 

the performance of IB X-VOD was assessed through an inter-comparison with three other X-561 
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VOD products (LPDR, VODCA and LPRM). The metrics considered here were spatial 562 

correlation computed between X-VOD and the Bouvet AGB, Saatchi AGB, CCI AGB, LAI 563 

and NDVI and the temporal correlation with LAI and NDVI.  564 

Note that the same metrics were used for calibration (section 3.1) and for evaluation (this 565 

section): this may be considered as circular. Let us explain better our approach: our objective 566 

in developing IB X-VOD was to develop a new X-VOD product producing good scores in terms 567 

of spatial and temporal correlation. To evaluate if we reached our goal, we compared the scores 568 

obtained with our new product (IB-X-VOD) and other X-VOD products. There is circularity, 569 

but circularity was intentional in our approach. The obtained score should be the main criteria 570 

of choice for users interested in applications, no matter what calibration approach was used. 571 

Moreover, circularity was limited by considering only one year for calibration (2016) and three 572 

years (2014-2016) for validation. 573 

3.3.1 Spatial performances 574 

Fig. 9 presents spatial scatter plots between mean X-VOD and the mean values of four 575 

vegetation parameters (Bouvet AGB, Saatchi AGB, CCI AGB, LAI, NDVI; average values 576 

computed over 2014 to 2016). It can be seen that AGB and LAI are almost exponentially related 577 

with X-VOD, while NDVI presents a relatively good linearity with X-VOD. In comparison 578 

with other products, IB X-VOD produced higher R2 values of 0.82, 0.76, 0.83 and 0.94 579 

respectively with Bouvet AGB, Saatchi AGB, CCI AGB and NDVI. Even though X-MEB 580 

obtained a lower score with LAI, the value (R2 = 0.88) obtained by IB X-VOD is very close to 581 

the best one (R2 = 0.89) obtained by LPRM. It seems that LPDR VOD is not prone to saturate 582 

in dense vegetation, but it is slightly more scattered, especially when LPDR X-VOD exceeds 583 

2.0 (second column in Fig. 9). Note that LPDR shows a higher VOD range (0-3) than the other 584 

products. The main reason is that LPDR regards the soil as dry bare soil. Consequently, LPDR 585 

X-VOD does not include only vegetation effects but also surface roughness effects, possibly 586 
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leading to this high range of VOD values. However, as there is a lack of reference values from 587 

in-situ measurements to define the absolute range of VOD, scientists only focus on the relative 588 

variations of VOD and the inter-comparison of the absolute values of the VOD ranges is rarely 589 

considered as meaningful. 590 

 591 

 592 

 593 

 594 
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 595 

Fig. 9. Density scatter plot between average IB X-VOD (1st column), LPDR X-VOD (2nd 596 

column), VODCA X-VOD (3rd column), LPRM X-VOD (4th column) and Bouvet AGB (1st 597 

row), Saatchi AGB (2nd row), CCI AGB (3rd row), LAI (4th row), NDVI (5th row) (numbers 598 

were rounded to 2 digits). 599 

 600 

3.3.2 Temporal performances 601 

Similar to the inter-comparison done in terms of spatial correlation in the previous section, an 602 

inter-comparison was achieved in terms of temporal correlation. Generally, IB X-VOD 603 

obtained very good scores considering LAI in Africa, especially over the centre-west (from 604 

approximately 15° S to 7° N and from the western coastline to 30° E, orange pixels). LPDR X-605 

VOD obtained good scores mainly in the east of Africa and Madagascar (green pixels). Best 606 

scores for VODCA X-VOD were mainly located near 10° N latitude (light blue) and those for 607 

LPRM X-VOD were scattered all over Africa (dark blue) (Fig. 10a). The performance of the 608 

four X-VODs varied for different vegetation classes (Fig. 10c). IB X-VOD obtained best scores 609 

in EBF, DBF, MF, CSH, OSH, WSA and SVA (best scores over at least 60% of pixels for each 610 

vegetation class). For GRA, CRO and CVM, classes corresponding to relatively low vegetation 611 

canopies, scores of LPDR X-VOD surpassed the others. Considering NDVI instead of LAI, the 612 

spatial patterns and the distribution of scores amongst the different classes for the different X-613 

VOD products is almost the same (Fig. 10bd).  614 
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Fig. 10. Spatial distribution showing which X-VOD product (IB, LPDR, VODCA, LPRM) 618 

produced the highest temporal correlation with (a) LAI or (b) NDVI; (b) Performances of the 619 

four X-VOD products for each vegetation class with (c) LAI or (d) NDVI.  620 

 621 

Fig. 11 summarizes the overall performance of the four different X-VOD products in terms of 622 

temporal correlation with LAI and NDVI. Average values of temporal correlations with LAI in 623 

Africa exceed 0.5 for the four products with IB X-VOD presenting highest correlation (R ~ 0.6). 624 

In comparison with the relationships with LAI, correlation with NDVI was found to be stronger 625 

(R > 0.6 for all X-VOD products). More specifically, the advantage of IB X-VOD was more 626 

obvious in dense forests (EBF): the temporal correlation with LAI or NDVI reached 0.27 in 627 

EBF, while other products showed a relatively poor performance with very low or even negative 628 

correlations (Fig. 11a). The potential reason could be the use of modelled SM from ERA5-Land 629 

in computing IB X-VOD. It is well known that it is hard to accurately estimate SM in densely 630 

vegetated areas from microwave observations since the signal emitted from the soil is 631 

significantly attenuated by vegetation, particularly at X-band; while the errors of model 632 

simulations are not significantly affected by the dense vegetation. Thus, the ERA5-Land dataset 633 

may provide a more reliable SM input in dense forests than that obtained from remote sensing 634 

observations.  635 

Based on the statistics of dominant products producing the highest temporal correlation with 636 

LAI or NDVI for each pixel in Africa (Fig. 11b), we found that best scores were generally 637 

obtained for IB X-VOD (over 54% of the pixels in Africa vs 29%, 12% and 6% of the pixels, 638 

for, respectively, the LPDR, VODCA and LPRM algorithms). Similar results were obtained 639 

considering NDVI instead of LAI, but the score of IB decreased to the advantage of all the three 640 

other products (43%, 33%, 20%, 10% of the pixels for, respectively, the IB, LPDR, VODCA 641 

and LPRM algorithms). One of the reasons explaining the good results of IB X-VOD could be 642 
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that the modelled temperature datasets from ERA5 Land rather than TB-based temperature 643 

estimates were used in this study. Evaluation studies found model temperature simulations are 644 

more accurate than the temperature estimated by TB, such as the temperature proxy used in the 645 

LPRM model (Cui et al., 2018; Ma et al., 2019) and the latter shows large uncertainty in some 646 

regions, such as the Tibetan Plateau (Zeng et al., 2015). Another reason is that a priori 647 

information (constraints) was used in the X-MEB model inversion. In comparison to the use of 648 

a very weak constraint to the initial VOD during the first calibration step (σ(VOD) = 0.5), we 649 

found the VOD retrieval was improved after we used a strong constraint in the second 650 

calibration step (σ(VOD) = 0.1).651 

 652 
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 653 

Fig. 11. (a) Average values of temporal correlation (R) with LAI or NDVI in the whole Africa 654 

or in EBF; (b) Temporal performance of the four X-VOD products in Africa showing the 655 

percentage of pixels where best temporal correlation was obtained. 656 

Discussion 657 

In this study, the vegetation extinction parameter (VOD) is retrieved from passive microwave 658 

observations using a radiative transfer equation which also considers another important 659 

parameter, soil moisture (Njoku et al., 1977; Paloscia et al., 2001; Mladenova et al., 2014; Pan 660 

et al., 2014; Paloscia et al., 2006). Soil moisture presents high spatial variability in space and 661 

time, due to the heterogeneity of the land surface and the variability of precipitation (Owe et 662 

al., 2001). In this study, we focused exclusively on the retrieval of VOD, and ERA5-Land SM 663 

was selected as a known input of the retrieval algorithm in consideration of its high accuracy, 664 

high frequency and long-time series of records. Therefore, the X-VOD retrievals made in this 665 

study may be sensitive to the quality of the ERA5-Land SM dataset. Errors associated with the 666 

VOD retrievals and originating from the used SM estimate may include the following: i) 667 

modelling errors associated with the estimates of ERA5-Land SM (ubRMSE =  0.05 m3/m3, 668 
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Chen et al., 2021), ii) errors associated with calibrating the soil and vegetation parameters (ω 669 

and HR), iii) inconsistency in the top soil layer corresponding to the sampling depth of the 670 

observations made at X-band and the simulations from ERA5-Land. For instance, the 671 

microwave brightness temperature observations at X band are sensitive to the soil moisture in 672 

the top ~ 1 cm of the soil (Owe et al., 2008), while top-layer ERA5-Land SM used in this study 673 

corresponds to the 0-7 cm soil layer. This inconsistency was partially corrected for by the 674 

calibration of the soil roughness effects which may account for differences in the absolute 675 

values of SM in the 0-7cm and the 0-1cm top soil layers. However, for an optimal correction, 676 

a temporally-dynamic roughness parameter (HR) would be required. More generally, we 677 

considered both ω and HR were constant in time and space. The calibration results indicated 678 

that the VOD retrievals were more sensitive to ω than to HR (Fig. 3). The calibrated value of ω 679 

(= 0.06) in this study agreed well with that of the LPDR and LPRM algorithms (Du et al., 2015; 680 

Owe et al., 2001).  However, previous studies suggested the effective vegetation scattering 681 

albedo varies seasonally and depends on vegetation types (Kurum, 2013; Wigneron et al., 2004; 682 

Feldman et al., 2018; Baur et al., 2019). For instance, Konings et al. (2016) retrieved a map of 683 

ω showing higher values in areas covered by significant woody components, such as forests 684 

and woody savannas, and lower values in less densely vegetated areas. Konings et al. noted too 685 

that there was noticeable variability in the values of ω because of the mixed plant species or 686 

different phenology conditions. In addition, some studies found the effective scattering albedo 687 

varies for the V- and H-polarizations especially at large incidence angles, such as 55° for 688 

AMSR2 (Zhao et al., 2020; Van de Griend et al., 1996). Wang et al. (2015), Fernandez-Moran 689 

et al. (2017) and Karthikeyan et al. (2019) suggested a similar trend for HR: higher values for 690 

dense vegetation and lower values for sparse vegetation. In consideration of these studies, 691 

IGBP-based or pixel-based and polarization-dependent values of ω and HR should be evaluated 692 

in future works. However, the fact that our calibration of ω and HR is not dependent on any 693 
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vegetation classification is an advantage, as it limits the use of ancillary data in the algorithm 694 

and makes the product more robust vs circularity (Wigneron et al., 2021). 695 

The calibration step was conducted using spatial and temporal correlation as criteria. However, 696 

Fig. 3 to 6 indicated that the parameter groups which produced highest spatial correlation are 697 

not quite consistent with those producing highest temporal correlation.  In this study, we gave 698 

priority to spatial correlation. Therefore, we only set a minimum threshold value (R >0.6) for 699 

temporal correlation; if the latter condition was satisfied we focused on spatial correlation. 700 

Finding a good way to consider both spatial and temporal correlations would be a priority in 701 

future studies. 702 

The temporal evaluation of IB X-VOD against LAI and NDVI shows that very high correlations 703 

were obtained for low vegetation, especially for Shrublands (OSH and CSH) and vegetation 704 

covers with a high seasonal variability (DBF, MF, GRA). On the contrary, low correlation was 705 

obtained for EBF. This may result from i) the small seasonal variability of vegetation over dense 706 

canopies which makes it difficult to capture a strong relationship between X-VOD and LAI or 707 

NDVI. It may also be related to ii) the atmospheric effects and cloud cover that affect the 708 

accuracy of the optical indices and consequently decrease the correlation values with X-VOD. 709 

In addition, iii) the changes in vegetation greenness measured by the optical vegetation indices 710 

(NDVI and LAI) are not always in phase with those of the vegetation features (VOD, AGB, 711 

water content) measured from the microwave sensors. For example, the changes of greenness 712 

measured in the optical domain over the Amazon forest resulted from an artefact of the 713 

variations in the sun-sensor geometry that affected the near-infrared reflectance (Morton et al., 714 

2014). Similarly, a large time lag may exist between the vegetation greenness estimated from 715 

optical sensors and the vegetation water content as retrieved from the microwave sensors, 716 

particularly in the tropics (Jones et al., 2014, Tian et al., 2018). 717 
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 In general, IB X-VOD obtained better scores than the other X-VOD products in terms of 718 

temporal correlation with LAI and NDVI. However, for some low vegetation types (GRA, CRO 719 

and CVM) (Fig. 12a), LPDR X-VOD overperformed IB X-VOD. A possible reason is that daily 720 

LPDR X-VOD was smoothed using a 30-day moving median filter (Jones et al., 2011; Du et 721 

al., 2015). This filtering step may help improving the temporal continuity in the X-VOD time 722 

series and reduce short-term noises. In producing IB X-VOD, we did not use a moving filter to 723 

smooth the time series considering that it may also eliminate real features of the vegetation 724 

dynamics (Feldman et al., 2020). Over some other pixels (Fig. 12b), IB X-VOD obtained a 725 

better score with LAI, but not for NDVI. The LAI algorithm applied climatology temporal 726 

smoothing and gap filling techniques to ensure consistency and continuity as well as short-term 727 

projection of the product dynamics (Verger et al., 2014). Thus, the filtering of the high 728 

frequency changes in the vegetation signal made in both LAI and LPDR X-VOD may have 729 

affected the results of the evaluation made here. Moreover, there are also time lags between 730 

VOD and optical vegetation indices (for instance a ~40-day time lag between VOD and LAI 731 

agreeing with the study of Tian et al., (2018) could be noted in Fig. 12ab) which may affect too 732 

our evaluation results and should be investigated further in future studies. 733 

Microwave remote sensing shows competitive performances in many fields (such as monitoring 734 

vegetation water status, biomass, etc.) in comparison to the optical domain (Morton et al., 2014; 735 

Konings et al., 2017b). However, the primary limitation of X-VOD lies in its coarse spatial 736 

resolution (25 km) which makes it more suitable for applications at continental and global scales. 737 

Spatial resolution enhancement of VOD is a necessity in order to provide detailed information 738 

on vegetation at local and field scales, such as for the study of agricultural crops under different 739 

natural and man-made environments. Therefore, a key step in improving the IB X-VOD product 740 

will be to evaluate downscaling methods as proposed in the literature (Santi, 2010; Sabaghy et 741 

al., 2020; Gevaert et al., 2016; Abowarda et al., 2021; Gao et al., 2020). In addition, fine-spatial-742 
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resolution datasets for soil moisture and temperature will be needed to run the X-MEB model. 743 

Many high-resolution soil moisture and temperature products, such as published in Long et al. 744 

(2019, 2020) and Peng et al. (2020) could be used as potential input datasets. 745 

 746 

 747 

748 

Fig. 12. Time series of LAI (magenta), NDVI (red), IB X-VOD (black) and LPDR X-VOD 749 

(blue) for one pixel over crops (CRO) (a) and one grasslands (GRA) pixel (b) from 2014 (1st 750 

Jan) to 2016 (31st Dec) (numbers were rounded to 2 digits). 751 
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 752 

Conclusion and perspectives 753 

The general aim of the present study was to evaluate a new approach for computing X-VOD 754 

from the dual-channel X-band passive microwave observations of AMSR2. Thus, in this 755 

evaluation step, IB X-VOD was computed only over Africa during 2014-2016. Globally-756 

constant values (ω = 0.06 and HR = 0.6) were found to achieve high spatial and temporal 757 

correlations with the reference vegetation parameters (Bouvet/ Saatchi/ CCI AGB, LAI and 758 

NDVI). Comparison with other X-VOD products suggested IB X-VOD had competitive 759 

advantages in terms of both spatial and temporal performances. In particular, spatial correlation 760 

with three biomass datasets (R2 ~ 0.76-0.83) was found to be higher with IB X-VOD than for 761 

the other X-VOD products and temporal correlation with LAI or NDVI, particularly for dense 762 

tropical forests, showed obvious improvement. 763 

In consideration of the good general performance of this new X-VOD product, future activities 764 

will consider, in a first step, to extend the production of IB X-VOD to the global scale and to 765 

the whole observation period of AMSR2 (2012-present). RFI effect needs to be considered 766 

during this spatial extension especially in Europe where RFI at X-band cannot be ignored (Nijs 767 

et al., 2015; Lacava et al., 2012; Njoku et al., 2005). In a second step, we will consider extending 768 

the production (i) to AMSR-E to build a long-term (AMSR-E/ AMSR2) data set, (ii) to dual 769 

polarizations at the X-band and (iii) to the C-band. When building the AMSR-E/ AMSR2 X-770 

VOD time series a great attention will be given to the merging method to avoid time 771 

discontinuities as revealed for other merged products (Li et al., 2020, 2021). To incorporate 772 

both the H and V polarizations in the cost function, the polarization mixing effects need to be 773 

considered as suggested in the literature (Shi et al., 2005; Njoku and Chan, 2006; Lawrence et 774 

al., 2013; Peng et al., 2017). In a third step, spatial resolution enhancement will be conducted 775 
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to provide detailed VOD information at local and field scales. Note that the specific approach 776 

developed here to avoid the ill-posed issue of retrieving simultaneously VOD and SM from 777 

dual channel observations can be extended to other passive (e.g. SMAP and SMOS) or active 778 

(e.g. ASCAT) microwave satellites.  779 

 780 

  781 
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Appendix table and figure 800 

Appendix Table 1. MODIS Land Cover  801 

Land Cover Type Acronym 

Evergreen Needleleaf Forests ENF 

Evergreen Broadleaf Forests EBF 

Deciduous Needleleaf Forests DNF 

Deciduous Broadleaf Forests DBF 

Mixed Forests MF 

Closed Shrublands CSH 

Open Shrublands OSH 

Woody Savannas WSA 

Savannas SAV 

Grasslands GRA 

Permanent Wetlands WET 

Croplands CRO 

Urban and Built-Up Lands URB 

Cropland/Natural Vegetation Mosaics CVM 

Snow and Ice SNO 

Barren BAR 

Water Bodies WAT 

 802 
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 803 

Appendix Fig. 1. Distribution of the IGBP vegetation classes in Africa 804 
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 805 

Appendix Table 2. Summary of datasets used in this study 806 

Variable name 
Producer/ 

Sensor 
Sampling Period Function References 

Brightness 

temperature 
AMSR2 Daily, 0.25° 

1/2016 – 12/2016 Calibration 
JAXA (2013) 

1/2014 – 12/2016 Evaluation 

Download link: https://suzaku.eorc.jaxa.jp/GCOM_W/data/data_w_index.html 

Soil moisture 

(0-7 cm under the 

surface) 

ECMWF 

ERA5 Land 
Hourly, 0.25° 

1/2016 – 12/2016 Calibration 

C3S (2019) 

1/2014 – 12/2016 Evaluation 

Skin temperature 
ECMWF 

ERA5 Land 
Hourly, 0.25° 

1/2016 – 12/2016 Calibration, Vegetation canopy temperature 

1/2014 – 12/2016 Evaluation, Vegetation canopy temperature 

Soil temperature 

(0-7 cm and 28-

100 cm under the 

surface) 

ECMWF 

ERA5 Land 
Hourly, 0.25° 

1/2016 – 12/2016 Calibration, Soil temperature 

1/2014 – 12/2016 Evaluation, Soil temperature 

Download link: https://cds.climate.copernicus.eu/ 

Saatchi AGB Saatchi 1km 2015 Evaluation Saatchi et al. (2011) 

Bouvet-Mermoz 

AGB 
Bouvet-Mermoz 25 m 2010 Evaluation 

Bouvet et al. (2018)   

Mermoz et al. (2015) 

CCI AGB CCI 100 m 2017 Evaluation Santoro et al. (2019) 

Download link: http://data.ceda.ac.uk/neodc/esacci/biomass/data/agb/maps/2017/v1.0/ 

LAI CGLS 10-day, 1km 1/2014 – 12/2016 Evaluation Buchhorn et al. (2017) 

Swinnen et al. (2017) NDVI CGLS 10-day, 1km 1/2014 – 12/2016 Evaluation 

Download link: https://land.copernicus.eu/global/ 

LPDR X-VOD 

University of 

Montana/ 

AMSR2 

Daily, 25km 1/2014 – 12/2016 Inter-comparison Du et al. (2015, 2017) 

Download link: https://nsidc.org/data/ 

LPRM X-VOD 

Vrije 

Universiteit 

Amsterdam and 

NASA/ AMSR2 

Daily, 0.25° 1/2014 – 12/2016 Inter-comparison Owe et al. (2001, 2005, 2008) 

Download link: https://disc.gsfc.nasa.gov/datasets/ 
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VODCA X-VOD 

Technische 

Universität 

Wien/ AMSR2 
Daily, 0.25° 1/2014 – 12/2016 Inter-comparison Moesinger et al. (2020) 

Download link: https://zenodo.org/record/2575599 

Land cover MODIS Yearly, 500m 2015 Analysis Friedl & Sulla-Menashe (2019) 

Download link: https://modis.gsfc.nasa.gov/data/dataprod/mod12.php 
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