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e-mail: sergei.egorov@univ-rouen.fr

Serguei Pergamenshchikov
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1 Introduction

1.1 Motivations

In this paper, we consider a portfolio optimization problem for Lévy financial markets with
non-random time-dependent coefficients. Such problems are very popular in the stochas-
tic financial markets theory. Beginning with the classic work of Merton, where the opti-
mal investment problem for Black-Scholes models was first studied, interest in these prob-
lems is constantly growing to the present day (see, for example, [11,4,5,17] and the refer-
ences therein). It should be emphasized that the financial markets defined by the continu-
ous stochastic processes similar to the geometric Brownian motion are very limited for the
practical applications and they do not allow us to describe situations of abrupt, impulsive
changes in price processes observed during of the crises and instability in financial mar-
kets. It seems that for the first time an optimization portfolio problem for financial markets
with jumps was studied in the paper [8], in which the authors using the stochastic Pontrya-
gin maximum principle constructed optimal investment/consumption strategies. Later, these
problems were studied for more complex market models and in different settings: in [14,
9,24] the authors considered maximization utility problems in general semi-martingale set-
tings, in [25,4,2,19] such problems were considered for stochastic volatility markets, in [6,
10] for the markets defined by the affine processes, in [12,13,3,7] the authors considered
the portfolio optimization problems with constraints. In [5,17] the authors considered pure
consumption problem on Lévy markets with infinite time horizon under proportional trans-
action costs where they used geometric approach and viscosity solutions in similar spirit as
it was done in [1].

The main goal of our work is to study the classical investment and consumption problem
on the finite time interval [0, T ] for the financial market model with jumps under transaction
costs. Moreover, we are interested to find the optimal solutions in the explicit form and
illustrate their behavior by the Monte - Carlo method.

1.2 Main investments

Based on stochastic dynamic programming and Leland - Lepinette approach, we develop
a portfolio optimization method for Levy-type financial markets with transaction costs. To
this end, first, we deduce and study the Hamilton–Jacobi–Bellman (HJB) equation. The
challenge here is that we could not use directly the classical HJB analysis method from
[11], which was due to the additional integral term corresponding to jumps in the market
model. Therefore, we need to develop a special analytical tool to analyse this equation and
to construct optimal strategies. Similar to [12,13,4,2] we study this problem through the
verification theorem method. So, in this paper, probably for the first time, we show a spe-
cial verification theorem in a non-Gaussian financial markets framework. Then, using this
theorem we construct optimal strategies, and, finally, for the power utility functions we pro-
vide the solutions for such optimization problems in an explicit form. Moreover, to take
into account transaction costs in the optimization problems we use the Leland method (see,
for example, [15]) in the difference from the geometric approach developed in [5,17] for
Lévy markets. More precisely, using the explicit form for the obtained optimal strategies we
construct their discretized versions and, then study the asymptotic behavior as the number
of revisions tends to infinity. We provide the conditions on transaction costs for which the
discretized strategy is asymptotically optimal, i.e. when the objective function tends to its
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optimal value. It turns out, that in the case of large transaction costs, to obtain the optimal-
ity property one needs to use the Lepinette approach developed for the asymptotic hedging
problem in [16], i.e. one needs to do portfolio revisions not uniformly as in the Leland
approach, but in time moments of special power form. Finally, we illustrate the obtained
theoretical results by the numeric simulations.

1.3 Organisation of paper

In Section 2 we describe the problem and all necessary definitions. In Section 3 we study
optimal control problem for stochastic systems with jumps through the verification theorem
method. In Section 4 we state the main results. In Section 5 we the optimal strategies. In
Section 6 we give the results of Monte-Carlo simulations. All main results are shown in
Section 7. All auxiliary tool is given in Appendix A.

2 Problem

In this paper, we consider optimal investment and consumption problems for financial mar-
kets of Lévy type with time-dependent coefficients. More precisely, we consider the financial
market on the time interval [0, T ] which consists of a risk-free asset (bond) (Bt)0≤t≤T and
m risky assets (stocks) (Si(t))0≤t≤T , 1 ≤ i ≤ m, defined asdBt = rtBt dt , B0 = 1 ,

dSi(t) = µi(t)Si(t) dt+ Si(t−) dL̃i(t) ,
(2.1)

where the interest rate rt and the drifts (µj(t))1≤j≤m are non random [0, T ]→ R integrated
functions, i.e. ∫ T

0

(
|rt|+

m∑
i=1

|µi(t)|

)
dt <∞ . (2.2)

We assume, that the random market sources (L̃i(t))0≤t≤T are represented as

L̃i(t) =
m∑
j=1

t∫
0

(
σij(u) dWj(u) + ςij(u) dLj(u)

)
, (2.3)

in which the volatilities σt =
(
σij(t)

)
1≤i,j≤m

and ςt =
(
ςij(t)

)
1≤i,j≤m

are m ×m non
random matrices such that for any 1 ≤ i, j ≤ m, 0 ≤ t ≤ T∫ T

0

σ2
ij(u) du <∞ and 0 ≤ ςij(t) ≤ 1 . (2.4)

Moreover, we assume, that (W1(t))0≤t≤T ,...,(Wm(t))0≤t≤T are independent standard Brow-
nian motions and (L1(t))0≤t≤T , . . . , (Lm(t))0≤t≤T are independent pure jumps Lévy pro-
cesses, i.e.

Lj(t) =

∫ t

0

∫
R∗
y
(
νj(ω; dy ,du)− ν̃j(dy ,du)

)
, (2.5)
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where νj(ω; dy ,du) is random jump measure with compensator ν̃j(dy ,du) = Πj(dy) du
and Πj(·) is the corresponding Lévy measure on R∗ = R \ {0} . It should be noted that in
case of independent Lévy processes,∆Lj(t)∆Li(t) = 0 , for any i 6= j. First, to provide the
positivity for the risky price process (2.1) we assume, that Πj (]−∞,−1]) = 0. Moreover,
we assume also that

Πj
(
| ln(1 + y)|1{−1<y<−1/2}

)
<∞ and Πj(y

2) <∞ , (2.6)

where 1A is an indicator function of the set A. These conditions are technical and used in
the market model to guarantee existence of optimal trading strategy. In the sequel we set
µt = (µ1(t) , . . . , µm(t))

′
, Wt = (W1(t) , . . . ,Wm(t))

′ and Lt = (L1(t) , . . . , Lm(t))
′,

where the prime ′ denotes the transposition. Everywhere bellow we use natural filtration
F = (Ft)0≤t≤T , i.e. Ft = σ{Wu , Lu : 0 ≤ u ≤ t} . Similar to [12] in this paper we use
the fractional strategies defined as

θi(t) =
αi(t)Si(t)

Xt
and ct =

ζt
Xt

, (2.7)

where αi(t) is the amount of investment into i-th risky asset purchased by an investor at the
time moment t and Xt is the corresponding wealth process with βt bond units defined as

Xt =
m∑
i=1

αi(t)Si(t) + βtBt , (2.8)

using (2.7) and (2.8) can be proved the following equality 1 −
∑m
i=1 θi(t) = βtBt/Xt.

Moreover, the process ζt in (2.7) is the consumption intensity, i.e. it is non negative inte-
grable process for which the integral

∫ t
0
ζs ds is the total amount of capital consumed by the

investor on time interval [0, t] . Now using the self-financing-consumption principle for the
wealth process (2.8) (see, for example, [11]) and the definition (2.1), we obtain thatdXt = Xt (rt + θ

′

t µ̌t − ct) dt+Xt− θ
′

t− dL̃t ,

X0 = x > 0 ,
(2.9)

where µ̌t = (µt − rt em) , em = (1, . . . , 1)′ ∈ Rm and θt = (θ1(t), . . . , θm(t))′ and
L̃t = (L̃1(t) , . . . , L̃m(t))′ . It should be noted that to provide the positivity of portfolio
value Xt the jump sizes of the process Ľt =

∫ t
0
θ
′

u− ςu− dLu have to be more than −1 , i.e.
∆Ľt > −1 . To this end we assume that the financial strategy θt = (θ1(t) , . . . , θm(t))

′ is a
càdlàg process with values in the set [0, 1]m such that, for any fixed 0 ≤ t ≤ T , almost sure∑m
j=1 θj(t) ≤ 1 . In the sequel we denote by

Θ =

θ = (θ1 , . . . , θm)
′
∈ [0, 1]m :

m∑
j=1

θj ≤ 1

 . (2.10)

Using this set we introduce admissible strategies.

Definition 2.1. A stochastic process υ = (θt, ct)0≤t≤T is called admissible if the first
component (θt)0≤t≤T is a predictable process with values in the set (2.10) and the process
(ct)0≤t≤T is adapted, non negative integrated on [0, T ] , for which the equation (2.9) has
unique strong solution such that Xt− > 0 and Xt > 0 a.s. for 0 ≤ t ≤ T .
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We denote by V the set of admissible strategies. It should be noted that for any υ ∈ V the
wealth process (2.9) can be represented as

Xt = x e
∫ t
0

(rs+θ
′
s
µ̌s) ds−

∫ t
0
cs ds Et(V )

and the Doléan exponential

Et(V ) = eVt−
1
2
〈V 〉

t

∏
0≤s≤t

(1 +∆Vs) e
−∆Vs , (2.11)

where Vt =
∫ t
0
θ
′

s dL̃s and 〈V 〉
t

=
t∫

0

θ
′

s σsσ
′

s θs ds.

Now to formulate an optimal consumption and investment problem we introduce for
some 0 < γ < 1, the objective function as

J(x, υ) := Ex

 T∫
0

ζγt dt+ (XT )γ+

 , (2.12)

where Ex is the conditional expectation given X0 = x and (x)+ is the positive part of x ,
i.e. (x)+ = max(x, 0) and ζt = ctXt is the intensity of consumption.

The goal is to maximize the objective function on the set V , i.e. to find a strategy υ∗ ∈ V ,
such that

J(x, υ∗) = sup
υ∈V

J(x, υ) =: J∗(x) . (2.13)

According to the dynamic programming principle to study this problem we have to study
the value functions defined on the interval [t, T ] as

J∗(t, x) := sup
υ∈V

J(t, x, υ) , (2.14)

where for υ ∈ V

J(t, x, υ) := Ex,t

 T∫
t

(cuXu)γ du+Xγ
T

 .

Here Ex,t is the conditional expectation with respect to Xt = x . Note that in our case
J(t, x, υ) can be equal to∞ for some strategy υ .

Remark 2.2. It should be noted that the definition (2.12) for the objective function can be
applied to any financial strategies not only for admissible ones, i.e. not only to strategies
with positive wealth processes. Indeed, in practice, the capital can be negative for a short
period of time, such as for markets with transaction costs. In such cases, it is also necessary
to calculate the objective function and compare the strategies between them.

Remark 2.3. Note that the optimal consumption and investment problem without terminal
functional for the model (2.1) is studied in [8] through the maximum Pontryagin princi-
ple. The similar problems were considered in [23,24] on the basis of the dual problems
approach.
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3 Verification theorem

In this section we will generalize the controlled process (2.9) and the definition of admissible
strategies. For such framework, we show some verification theorem. Let’s define diffusion
jumps controlled process Xt with values in an open convex set X ⊆ R and control process
υt with values in closed setK ⊆ Rm. LetX = (Xt)0≤t≤T ,Xt, Xt− ∈ X be càdlàg process
of form dXt = a(t,Xt, υt) dt+ b

′
(t,Xt−, υt−) dL̃t ,

X0 = x ∈ X ,
(3.1)

where the process L̃t ∈ Rm is defined in (2.3) with the Lévy measures Πj satisfying the
second condition in (2.6), i.e. Πj(y

2) < ∞. The functions a : [0, T ] × X × K → R and
b : X ×K → Rm are non random, continuous and such that, for any non random v ∈ K, the
equation (3.1) with υt ≡ v has an unique strong solution for which Xt ∈ X and Xt− ∈ X
on the time interval [0, T ] and∫ T

0

(
|a(t,Xt,v)|+ |b(t,Xt,v)|2

)
dt <∞ a.s..

Definition 3.1. A stochastic process υ = (υt)0≤t≤T is called admissible if it is (Ft)0≤t≤T
-adapted, has càdlàg trajectories, takes values in the set K , and such that the equation (3.1)
on time interval [0, T ] has an unique strong solution for which Xt , Xt− ∈ X on the time
interval [0, T ] and

T∫
0

(
|a(t,Xt, υt)|+ |b(t,Xt, υt)|

2
)

dt <∞ a.s.. (3.2)

We denote by V the set of all admissible strategies. Note that the conditions on functions
a and b imply V 6= ∅ , at least the strategy υt ≡ v ∈ V . Now we fix utility functions
U1 : [0, T ] × X × K → R+ and U2 : X → R+ and, then, for any 0 < t ≤ T , we set the
objective functions as

J(t, x, υ) := Et,x

 T∫
t

U1(u,Xu, υu) du+ U2(XT )

 .

Our goal is to find an admissible strategy υ∗ ∈ V , such that, for any 0 ≤ t < T ,

J∗(t, x) := sup
υ∈V

J(t, x, υ) = J(t, x, υ∗) . (3.3)

To apply the dynamic programming method, we will need to introduce the Hamilton func-
tion. To do this, for any [0, T ]× X → R function g(t, x) , twice continuously differentiable
in x and continuously differentiated in t, such that

sup
x∈X

|g(t, x)|
1 + |x| <∞ , (3.4)



Optimal investment and consumption for financial markets with jumps under transaction costs 7

we define

H0(t, x, g,v) = a(t, x,v) gx(t, x) +
1

2
gxx(t, x) trσ

′

t b(t, x,v) b
′
(t, x,v)σt

+ U1(t, x,v) + g(t, x,v) , (3.5)

where g(t, x,v) =
m∑
i=1

∫
R∗
Υg(t, x, b

′
(t, x,v) ςi,t y)Πi(dy), ςi,t = (ς1i(t) , . . . , ςmi(t))

′
and

Υg(t, x, v) = (g(t, x+ v)− g(t, x)− gx(t, x) v) 1{x+v∈X}

for v ∈ R∗. Notations gt , gx , gxx mean corresponding derivatives of function g(t, x) .

Remark 3.2. It should be emphasized that one needs to introduce the indicator 1{x+v∈X}
in the term Υ (t, x, v) since there are no assumptions on measures Πi(·) or function g to
keep the sum x+ v in the set X , for v from R∗. As it is shown in appendix A.1 the function
g is bounded and its Lebesgue integral will be used as jumps compensator for the process
g(t,Xt).

Now, for any x ∈ X and 0 ≤ t ≤ T , we set the Hamilton function as

H(t, x, g) := sup
v∈K

H0(t, x, g,v) . (3.6)

Now we introduce the following Hamilton–Jacobi–Bellman equation aszt(t, x) +H(t, x, z) = 0 , t ∈ [0, T ] ,

z(T, x) = U2(x) , x ∈ X .
(3.7)

Next, we need the following conditions.
H1) There exists solution z ∈ C1,2([0, T ]×X ,R) of the equation (3.7) such that,

inf
0≤t≤T

inf
x∈X

z(t, x) > −∞ and sup
0≤t≤T

sup
x∈X

|z(t, x)|
1 + |x| <∞ . (3.8)

H2) There exists [0, T ] × X → K measurable function v0, such that for the solution
z = z(t, x) of the equation (3.7) the Hamilton function H(t, x, z) = H0(t, x, z,v0(t, x)).

H3) For any x ∈ X , there exists an unique almost surely solution X∗ = (X∗t )0≤t≤T
with values in the set X and X∗t− ∈ X of the equation

dX∗t = a∗(t,X∗t ) dt+ (b∗(t−, X∗t−))
′
dL̃t , X∗0 = x , (3.9)

where a∗(t, x) = a(t, x,v0(t, x)) and b∗(t, x) = b(x,v0(t, x)). Moreover, the process
v0 = (v0(t,X∗t ))0≤t≤T is admissible, i.e. belongs to V .

H4) For any 0 ≤ t ≤ T and x ∈ X ,

Et,x sup
t≤u≤T

|z(u,X∗u)| <∞ . (3.10)

Using the approach proposed in [12], we show the following verification theorem.
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Theorem 3.3. Suppose conditions H1) – H4) are hold. Then, for any 0 ≤ t ≤ T and
x ∈ X ,

z(t, x) = J∗(t, x) = J(t, x, υ∗) ,

where the optimal strategy υ∗ = (υ∗s )t≤s≤T , υ∗s = v0(s,X∗s ) is determined in terms of
H2) – H4) and the function J∗(t, x) is defined in (3.3).

Remark 3.4. Here (3.8) and H4) are technical conditions. In particular, the first condition
in (3.8) will be used to apply Fatou’s lemma for the limit transition in conditional expec-
tations, the last condition provides the finiteness almost sure for the jumps compensator of
z(t,Xt) and H4) will be used to apply dominated convergence theorem to prove optimality
of the process υ∗.

Remark 3.5. Note, that we don’t assume the uniqueness of a solution for the equation (3.7).
But if conditions of Theorem 3.3 hold then z(t, x) will be the unique solution of the equation
(3.7), since the supremum J(t, x, υ∗) is always unique.

Now we apply Theorem 3.3 to the problem (2.13). In this case the controlled process
driven by (2.9) with state space X =]0,∞[, admissible strategy υ = (θt, ct)0≤t≤T with
values in K = Θ × R+, where the set Θ defined by (2.10). So, to study the optimal con-
sumption and investment problem (2.14) we will apply Theorem 3.3 for the utility func-
tions U1(x,v) = (x c)γ and U2(x) = xγ , where x ∈ X , v = (θ, c) ∈ K, the vector
θ = (θ1, . . . , θm)′ and 0 < γ < 1. First note that, the process (2.9) can be obtained as a
special case of the model (3.1)

a(t, x,v) = x (rt + θ
′
µ̌t − c) and b(t, x,v) = x θ . (3.11)

In this case one can check directly, that the HJB equation (3.7) has the following form


zt(t, x) + rt x zx(t, x) + max

θ∈Θ
Γ (t, x, z, θ) + (1− γ)

(
γ

zx(t, x)

) γ
1−γ

= 0 ,

z(T, x) = xγ ,

(3.12)

where Γ (t, x, z, θ) = x zx(t, x) θ
′
µ̌t +x2 zxx(t, x) θ

′
σt σ

′

t θ/2 + z(t, x, θ) and z(t, x, θ) is
defined by g in (3.5) for g = z. Moreover, according to Condition H2) to find an optimal
control function v0 = (θ0, c0) one needs to choose θ0 = θ0(t, x, z) and c0 = c0(t, x, z) as

θ0 = arg max
θ∈Θ

Γ (t, x, z, θ) and c0 =
1

x

(
zx(t, x)

γ

)1/(γ−1)

. (3.13)

Using here the Fourier separation variables method we can conclude, that the solution of the
HJB equation has the following form

z(t, x) = A(t)xγ . (3.14)

It should be noted, that if we substitute z with the form (3.14) in (3.12), we obtain that the
function Γ (t, x, z, θ) = A(t)xγF (t, θ), where

F (t, θ) = γ θ
′
µ̌t +

γ (γ − 1)

2
tr θ
′
σtσ

′

tθ +
m∑
i=1

∫
R∗

ρ
(
θ
′
ςi,ty

)
Πi(dy) , (3.15)
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where ρ(x) = (1 + x)γ − 1 − γx and ςi,t = (ς1i(t) , . . . , ςmi(t))
′ is i-th column of the

matrix ςt. Therefore, from (3.13) we obtain that in this case for the HJB solution (3.14)

θ0 = θ0(t) = arg max
θ∈Θ

F (t, θ) and c0 = c0(t) =

 T∫
t

Ψt,udu+ Ψt,T

−1

, (3.16)

where Ψt,u = e
∫ u
t
h∗
s
ds and h∗s = (F (s, θ∗s) + γ rs) /(1− γ). From (2.9) we obtain, that the

corresponding wealth process (X∗t )0≤t≤T is defined as

X∗t = x e
∫ t
0

(rs+(θ∗
s
)
′
µ̌s) ds−

∫ t
0
c∗
s

ds Et(V
∗) (3.17)

and Et(V ∗) is the Doléan exponential (2.11) for the process V ∗t =
∫ t
0
(θ∗s)

′
dL̃s with its

quadratic characteristic 〈V ∗〉
t

=
t∫

0

(θ∗s)
′
σsσ

′

s θ
∗
s ds.

Remark 3.6. If there exists many solutions in for the maximization problem of the function
F (t, ·) we chose any point.

4 Main results

Fist we study the strategy (3.16).

Theorem 4.1. The strategy υ∗ = (θ∗t , c
∗
t )0≤t≤T defined in (3.16), i.e. θ∗t = θ0 and c∗t =

c0(t), is a solution for the problem (2.13). Moreover, for any 0 ≤ t < T , optimal value
function (2.14) is given

J∗(t, x) = J(t, x, υ∗) = xγ

 T∫
t

Ψt,udu+ Ψt,T

1−γ

. (4.1)

The proof is given in section 7.

Remark 4.2. Note that for the homogenous market model (2.1), i.e. for the constant coeffi-
cients rt , µt , σt , ςt the optimal strategy (3.16) is obtained in [23].

Now we consider the optimization problem (2.1) for the markets with transaction costs
on the basis of the Leland’s approach proposed in [15] for hedging problems. In this case
we use the optimal strategy

α∗t =
(
α∗1(t), . . . , α∗m(t)

)′
=

(
θ∗1(t)X∗t
S1(t)

, . . . ,
θ∗m(t)X∗t
Sm(t)

)′
,

β∗t =
(1−

∑m
j=1

θ∗j (t))X∗t

Bt
and ζ∗t = c∗t X

∗
t , (4.2)

where the fractional strategy θ∗t = (θ∗1(t), . . . , θ∗m(t))
′

is given in (3.13) and the correspond-
ing wealth process X∗t is calculated as

X∗t = x+

t∫
0

(
α∗u−

)′
dSu +

t∫
0

β∗u dBu −
t∫

0

ζ∗u du . (4.3)
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According to the Leland approach we can do only n portfolio revisions of the strategy (4.2)
on the interval [0, T ] at the moments 0 < t1 < . . . < tn = T , i.e. we set

α
(n)
t =

n∑
k=1

α∗tk−1
1]tk−1,tk] , β

(n)
t =

n∑
k=1

β∗tk−1
1]tk−1,tk]

and ζ
(n)
t =

n∑
k=1

ζ∗tk−1
1]tk−1,tk] . (4.4)

Moreover, for each revision the investors must pay the transaction costs proportionally to
the volume of trade at the moment tk defined as

κ

m∑
j=1

Stk |α
(n)
j (tk)− α(n)

j (tk−1)| = κ

m∑
j=1

Stk |α
∗
j (tk−1)− α∗j (tk−2)| ,

where by the convention α∗j (t) = 0 for t < 0. Therefore, the total transaction costs on the
interval [0, T ] is presented as

Dn = κ

m∑
j=1

n∑
k=1

Sj(tk)|α(n)
j (tk)− α(n)

j (tk−1)| , (4.5)

where κ > 0 is a proportional transaction coefficient which is assumed to be a function of
the revisions numbers n, i.e. κ = κn. Note that, in this case α(n)

u− = α(n)
u . Therefore, to take

into account transaction costs we defined the wealth as

X
(n)
T = x+

T∫
0

(α(n)
u )

′
dSu +

T∫
0

β(n)
u dBu −

T∫
0

ζ(n)
u du−Dn . (4.6)

To study properties of the strategy ψ(n) = (α
(n)
t , β

(n)
t , ζ

(n)
t )0≤t≤T we set

J(x, ψ(n)) = Ex

 T∫
0

(
ζ(n)
u

)γ
du+

(
X

(n)
T

)γ
+

 . (4.7)

Now we study asymptotic properties of the strategy ψ(n) as n → ∞. To do this we need to
assume the following conditions.

A1) In the model (2.1) the functions rt, µt and σt are bounded on the interval [0, T ].
A2) The functions rt , µt , σt , ςt in the model (2.1) are such that the optimal strategy

(3.13) satisfies the following inequality

sup
n≥1

sup
0<t1<...<tn=T

∑n
j=1
|θ∗tj − θ

∗
tj−1
|

1 +
∑n
j=1

√
tj − tj−1

<∞ . (4.8)

Note that A2) holds true if the optimal strategy (3.13) is 1/2-Holder function, i.e.

sup
0≤s,t≤T

|θ∗t − θ
∗
s |√

|t− s|
<∞ . (4.9)
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Theorem 4.3. Assume that Conditions A1) – A2) hold true and the transaction coefficient
is a function of n, i.e. κ = κn such that κn = o

(
n−1/2

)
, as n → ∞. Then the strategy

(4.4) - (4.6) with the revision moments (tj = jT/n)1≤j≤n is asymptotically optimal, i.e.

lim
n→∞

J(x, ψ(n)) = J∗(x) , (4.10)

where the optimal functional J∗(x) is defined in (2.13).

Now we study the optimization problem (2.1) for the markets with large transaction costs,
i.e. in the case when the normalized transaction coefficient

√
nκn does not go to zero as

n→∞. We assume only that κ = κn = o(1), i.e. κn → 0 as n→∞. In this case we need
to change the strategy (4.4) making use of Lepinette approach proposed in [16] and used
then for the markets with jumps in [21]. According to this approach we do the portfolio
revisions at the points

tj = t∗(uj)T , uj =
j

n
and t∗(u) = uq , (4.11)

where the power q ≥ 1 is a function of n, i.e. q = qn such that

lim
n→∞

qn = +∞ and lim
n→∞

(
qn
n

+ κn

√
n

qn

)
= 0 . (4.12)

Note that, if κn → 0 as n→∞, then we can take, for example, qn =
√
n+ κnn.

Theorem 4.4. Assume that the conditions A1) – A2) hold true and the transaction coeffi-
cient is a function of n, i.e. κ = κn such that κn = o(1) as n→∞. Then the strategy (4.4)
- (4.6) with the revision time moments defined in (4.11) - (4.12) is asymptotically optimal,
i.e. satisfies the property (4.10).

Moreover, we need to find sufficient conditions providing Condition A2).

Proposition 4.5. Assume that, in the model (2.1) m = 1, the functions rt, µt, σt and ςt are
continuously differentiable and ςt > 0 for all 0 ≤ t ≤ T . Then Conditions A1) – A2) hold
true.

Remark 4.6. It should be noted that Condition A2) hold for any m ≥ 1 for the homoge-
neous market (2.1), i.e. for the constant parameters rt , µt , σt , ςt.

5 Properties of the optimal strategies (3.16) - (3.17)

In this section we study the Doéan exponentials Et(V ) defined in (2.11).

Proposition 5.1. For any non random measurable [0, T ]→ Θ function θ = (θt)0≤t≤T the
Doléan exponential (2.11) is square integrated martingale.

Proof. First note, that the process Vt =
∫ t
0
θ
′

s dL̃s is square integrated martingale. There-
fore, taking into account that dEt(V ) = Et−(V ) dVt, to show this lemma it suffices to check
that sup

0≤t≤T E E2
t (V ) <∞. To this end we represent the Doléan exponential in the mul-

tiplicative form, i.e.

Et(V ) = e
∫ t
0
θ
′
s
σs dWs− 1

2

∫ t
0
θ
′
s
σsσ
′
s
θsds E(d)

t , (5.1)
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where E(d)
t = e

∫ t
0
ς̃
′
s

dLs+
∑

0≤s≤t

(
ln(1+ς̃

′
s
∆Ls)−ς̃

′
s
∆Ls

)
is the jump Doléan exponential

and the non random functions ς̃s = ς
′

s θs = (ς̃1,s, . . . , ς̃m,s)
′
∈ [0, 1]m. Note here, that

this exponential can be represented as production E(d)
t =

∏m
j=1
E(d)
j,t of the independent

exponentials

E(d)
j,t = e

∫ t
0
ς̃
′
j,s

dLj(s)+
∑

0≤s≤t

(
ln
(
1+ς̃

′
j,s
∆Lj(s)

)
−ς̃
′
j,s
∆Lj(s)

)
.

Therefore, to prove this lemma it suffices to show that

max
1≤j≤m

sup
0≤t≤T

E (E(d)
j,t )2 <∞ . (5.2)

To this end, note that we can write that

ln E(d)
j,t = Zj,t +

t∫
0

Πj
(
g(ς̃j,s y)− ς̃j,s y

)
ds , (5.3)

where the process Zj,t =
∫ t
0

∫
R∗

g
(
ς̃j,s y

)
dνj , νj(ω; dy ,ds) = (νj − ν̃j)(ω; dy ,ds) and

g(x) = ln(1 + x). Note here, that for any 0 ≤ ς ≤ 1

Πj (|g(ςy)− ςy|) ≤ Πj
(
1{y<−1/2}(1 + |g(y)|

)
+ 2Πj (1{|y|≤1/2}y

2) +Πj
(
1{y>1/2}(y + g(y)

)
.

Using here the conditions (2.6) we get that

max
1≤j≤m

sup
0≤ς≤1

Πj (|g(ςy)− ςy|) <∞ . (5.4)

Therefore, for (5.2) it suffices to show, that

max
1≤j≤m

sup
0≤t≤T

E e2Zj,t <∞ . (5.5)

It is clear that a.s.

Zj,t = lim
δ→0

Z
(δ)
j,t and Z

(δ)
j,t =

t∫
0

∫
R∗

g
(
ς̃j,s y

)
dν

(δ)
j ,

where ν(δ)
j (ω; dy ,ds) = 1{|y|>δ}νj(ω; dy ,ds). Note, that we can represent the function

ς̃j,s as a limit in the Lebesgue measure on the interval [0, t] of the piece functions

ς̃
(n)
j,s =

n∑
l=1

c
(n)
j,l 1]tl−1,tl]

, 0 ≤ c(n)
j,l ≤ 1 and tl =

l

n
t . (5.6)

It should be emphasized, that in view of the boundedness of the functions ς̃j,s and ς̃(n)
j,s we

can conclude through the dominated convergence theorem that

lim
n→∞

∫ t

0

|ς̃j,s − ς̃
(n)
j,s |ds = 0 . (5.7)
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Now, setting

Z
(δ,n)
j,t =

t∫
0

∫
|y|>δ

g
(
ς̃
(n)
j,s y

)
dνj ,

we can obtain that

E
∣∣∣Z(δ)
j,t − Z

(δ,n)
j,t

∣∣∣ ≤ 2

t∫
0

∫
|y|>δ

∆
(n)
j (y, s)Π(dy) ds (5.8)

and ∆(n)
j (y, s) =

∣∣∣g (ς̃j,s y)− g
(
ς̃
(n)
j,s y

)∣∣∣. Note here, that for 0 < ε < 1 − δ and for any
y > −1 + ε we get that

∆
(n)
j (y, s) ≤ 1

ε
|ς̃j,s − ς̃

(n)
j,s ||y| .

Moreover, note, that for y > −1 we have ∆(n)
j (y, s) ≤ 2| ln(1 + y)|. Therefore, we can

estimate from above the integral in the right side of the inequality (5.8) as

2 t

∫
{−1<y<−1+ε}

| ln(1 + y)|Π(dy) + U∗(ε)

t∫
0

|ς̃j,s − ς̃
(n)
j,s |ds ,

where

U∗(ε) =
1

ε

 ∫
{−1+ε<y<−δ}

|y|Π(dy) +

∫
{y>δ}

y Π(dy)

 .

Now, taking into account the limit (5.7), we obtain that for any 0 < ε < 1− δ

lim sup
n→∞

E
∣∣∣Z(δ)
j,t − Z

(δ,n)
j,t

∣∣∣ ≤ 4 t

∫
{−1<y<−1+ε}

|g(y)|Π(dy) .

Letting here ε→ 0, we obtain through the condition (2.6)

P− lim
n→∞

Z
(δ,n)
j,t = Z

(δ)
j,t .

This implies by the Fatou lemma

E e2Zj,t ≤ lim inf
δ→0

lim inf
n→∞

E e
2Z(δ,n)

j,t . (5.9)

Note here, that

E e
2Z(δ,n)

j,t =
n∏
l=1

E e2ηl and ηl =

tl∫
tl−1

∫
R∗

g
(
c
(n)
j,l y

)
1{|y|>δ}dνj .

We calculate directly, that

E e2ηl = e
(tl−tl−1)$(δ,n)

j,l ,
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where

$
(δ,n)
j,l =

∫
|y|>δ

(
e
2g
(
c(n)

j,l
y
)
− 1− 2g

(
c
(n)
j,l y

))
Πj(dy) .

Using the conditions (2.6) we can estimate this term as

$
(δ,n)
j,l ≤ 2

∫
−1<y<−1/2

(1 + |g(y)|) Πj(dy)

+ 2e

∫
|y|≤1/2

g2(y)Πj(dy) +

∫
y>1/2

(
1 + y2

)
Πj(dy) := $∗ <∞ .

Therefore, using this estimate in (5.9), we get that

E e
2Z(δ,n)

j,t ≤ et$
∗
<∞ .

This implies the upper bound (5.5). Hence Proposition 5.1.

Proposition 5.2. For any non random measurable [0, T ]→ Θ function θ = (θt)0≤t≤T , the
Doléan exponential (2.11) is strictly positive, i.e. inf0≤t≤T Et(V ) > 0 a.s.

Proof. First note, that the functions σji are square integrated and, therefore, through Doob’s
inequality (A.3) we get

E max
0≤t≤T

 t∫
0

θ
′

uσu dWu

2

≤ 4

T∫
0

θ
′

uσuσ
′

uθu du ≤ 4

T∫
0

trσuσ
′

u du <∞ ,

i.e. max0≤t≤T |
∫ t
0
θ
′

uσu dWu| < ∞ a.s. This means, that in view of the representations
(5.1) and (5.3) and the upper bound (5.4) to prove this proposition it suffices to show that

max
1≤j≤m

sup
0≤t≤T

|Zj,t| <∞ a.s. (5.10)

Indeed, we can represent this process as

Zj,t = Z
(1)
j,t + Z

(2)
j,t ,

where

Z
(1)
j,t =

t∫
0

∫
R∗

1{y<−1/2}g
(
ς̃j,s y

)
dνj and Z

(2)
j,t =

t∫
0

∫
R∗

1{y≥−1/2}g
(
ς̃j,s y

)
dνj .

Note here, that in view of the condition (2.6) we get, that for any 0 ≤ t ≤ T

|Z(1)
j,t | ≤

∑
0≤s≤T

1{∆Lj(s)<−1/2}|g(∆Lj(s))|

+Πj
(
|g(y)|1{−1<y<−1/2}

)
<∞ a.s. .
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Moreover, we estimate the term Z
(2)
j,t from above through the inequality (A.2) with p = 2

and using again the conditions (2.6), i.e.

E sup
0≤t≤T

(Z
(2)
j,t )2 ≤ Č2

T∫
0

∫
R∗

1{y≥−1/2}g
2 (ς̃j,s y)dsΠj(dy)

≤ Č2 T Πj
(
|g(y)|1{y≥−1/2}

)
<∞ .

Hence Proposition 5.2.

Proposition 5.3. For any 0 ≤ t ≤ T and x > 0

Et,x sup
t≤s≤T

(X∗s )2 <∞ . (5.11)

Moreover,
inf

0≤t≤T
X∗t > 0 a.s. (5.12)

Proof. Indeed, note that, from (3.17) it is easy to deduce that X∗t ≤ C Et(V ∗) for some
C > 0. Therefore, Doob’s martingale inequality (A.3) and Proposition 5.1 imply

Et,x sup
t≤s≤T

(X∗s )2 ≤ C E sup
t≤s≤T

E2
t (V ∗) ≤ 4C EE2

T (V ∗) <∞

and we get the bound (5.11). Moreover, using again the representation (3.17) we obtain
through Proposition 5.2 the lower bound (5.12).

Now we need to study properties of the discrete investment strategy (4.4).

Proposition 5.4. If the conditions (2.2), (2.4) and (2.6) hold true, then

max
1≤j≤m

sup
n≥1

sup
0<t1<...<tn=T

E

∣∣∣∣∣
∫ T

0

α
(n)
j (t) dSj(t)

∣∣∣∣∣ <∞
and

sup
n≥1

sup
0<t1<...<tn=T

E

∣∣∣∣∣
∫ T

0

β
(n)
t dBt

∣∣∣∣∣ <∞ .

Proof. First note, that the stock price can be represented as

Sj(t) = S0 exp

(∫ t

0

µj(u) du

)
Et(L̃j) (5.13)

where Et(L̃j) is defined in (2.11) with Vt = L̃j and 〈V 〉
t

=
∑m
l=1

∫ t
0
σ2
j,l(s) ds. Note

now, that for any fixed 0 ≤ u ≤ T the process Êu,t(L̃j) = Et(L̃j)/Eu(L̃j) is the Doléan
exponential for u ≤ t ≤ T which is independent from Fu and, therefore, Proposition 5.1
yields

max
1≤j≤m

sup
0≤u<t≤T

E Ê2
u,t(L̃j) = max

1≤j≤m
sup

0≤u<t≤T
E
(
Ê2
u,t(L̃j)|Fu

)
<∞ .
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Taking into account that the functions µj are bounded we can get the same property for the
process Ŝj(t, u) = Sj(t)/Sj(u), i.e.

U∗ = max
1≤j≤m

sup
0≤u<t≤T

E Ŝ2
j (t, u) = max

1≤j≤m
sup

0≤u<t≤T
E
(
Ŝ2
j (t, u)|Fu

)
<∞ .

Moreover, note that from the definition (4.2) we obtain that for any 1 ≤ l ≤ m

E

T∫
0

(α
(n)
j (t))2S2

j (t)σ2
jl(t) dt ≤ E

n∑
k=1

(X∗tk−1
)2

tk∫
tk−1

E
(
Ŝ2
j (t, tk−1)|Ftk−1

)
σ2
jl(t) dt

≤ U∗E sup
0≤t≤T

(X∗t )2

T∫
0

σ2
jl(t) dt

and through the upper bound (5.11) we get, that

max
1≤j,l≤m

sup
n≥1

sup
0<t1<...<tn=T

E

T∫
0

(α
(n)
j (t))2S2

j (t)σ2
jl(t) dt <∞ .

In the same way we can show, that

max
1≤j≤m

sup
n≥1

sup
0<t1<...<tn=T

E

T∫
0

α
(n)
j (t)Sj(t)|µj(t)|dt <∞ .

Therefore, using the definition of the stock price in (2.1) we obtain that

E

∣∣∣∣∣∣
T∫

0

α
(n)
j (t) dSj(t)

∣∣∣∣∣∣ ≤ E

T∫
0

α
(n)
j (t)Sj(t)|µj(t)|dt

+

E

 T∫
0

α
(n)
j (t)Sj(t−) dL̃i(t)

2


1/2

.

Taking into account here, that

E

 T∫
0

α
(n)
j (t)Sj(t−) dL̃i(t)

2

=
m∑
l=1

E

T∫
0

(α
(n)
j (t))2S2

j (t)σ2
jl(t) dt

+
m∑
l=1

Πl(y
2)E

T∫
0

(α
(n)
j (t))2S2

j (t)ς2jl(t) dt ,
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we obtain through the conditions (2.4) the first inequality of this lemma. As to the last
inequality, note that∣∣∣∣∣∣

T∫
0

β
(n)
t dBt

∣∣∣∣∣∣ ≤
n∑
k=1

X∗tk−1

∣∣∣∣∣∣∣
tk∫

tk−1

rt
Bt

Btk−1

dt

∣∣∣∣∣∣∣ =
n∑
k=1

X∗tk−1

∣∣∣∣e∫ tktk−1
ru du

− 1

∣∣∣∣

≤ U∗1 sup
0≤t≤T

X∗t

n∑
k=1

tk∫
tk−1

|ru|du = U∗1 sup
0≤t≤T

X∗t

T∫
0

|rt|dt ,

where

U∗1 = sup
|x|≤x∗

∣∣∣∣ex − 1

x

∣∣∣∣ and x∗ =

∫ T

0

|rt|dt .

Using again the upper bound (5.11) we get the last inequality of this proposition.

6 Numerical example

For Monte Carlo simulations we consider the market (2.1) for m = 1 on the interval [0, T ]
for T = 3 in which Bt = er t with r = 0, 055, σ = 0, 05

St = S0 exp

((
µ− σ2

2

)
t+ σWt + Lt

)∏
s≤t

(1 +∆Ls) e
−∆Ls .

Here µ = 0.06, S0 = 50 , Wt is standard Brownian motion, Lt is a Compound Poisson
process defined by Lt =

∑Nt
j=1 Yj , where Nt is Poisson process with the constant intensity

λ = 17 and the sizes of jumps (Yj)j≥1 are i.i.d. random variables with the density function

p(y) = e
− y2

2 η2

(∫∞
−1/2

e
− z2

2 η2 dz

)−1

1{y>−1/2} and η = 0, 01. Note, that in this case the

Lévy measure Π(dy) = λ pY (y) dy.
In this example we consider the utility functions U1(x,v) = (x c)γ and U2(x) = xγ

with γ = 0.3, where the control variables κ = (v , c) ∈ [0, 1] × R+. We calculate the

strategies (4.2) – (4.4) with the cumulative consumption defined as C(n)
t =

t∫
0

ζ(n)
u du.

The graphs in Figure 1 show the market behavior: b) is the log returns of the risky
asset, c) – e) are trading strategies with and without transaction costs, f ) is investor’s wealth
and him consumption. Here the portfolios are revised n = 100 times with the transaction
costs coefficient κ = 0, 1 ln(100)/

√
100 ≈ 0, 046. Moreover, the graphs in Figure 2 a)

illustrate the convergence (4.10) for the strategy (4.4) and (4.11). To this end, we calculate
the objective function J(x, ψ(n)) through Monte Carlo simulations as

J(x, ψ(n)) ≈ 1

K

K∑
l=1

 T∫
0

ζ(n,l)
u du+

(
X

(n,l)
T

)γ
+

 , K = 50 ,

where (ζ(n,l)
u )0≤u≤T and X(n,l)

T are the consumption and wealth processes calculated at
the l-th simulations, and transaction costs coefficient κn = 0, 5 ln(n)/

√
n and the initial

endowment x = 100.
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a) Price b) Price increments

c) Intensity of consumption d) Number of risk-free asset

e) Number of risky asset f) Capital and cumulative consumption

Fig. 1 Results of simulation of the strategies (4.2) – (4.4)
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a) Convergence of objective functions b) Transaction costs coefficients

Fig. 2 Monte Carlo simulations

As we can see from the simulation results in Figure 1, the behavior of the optimal strat-
egy means that when the risky asset increases one needs to increase the consumption inten-
sity and decrease the investments in the both assets risky and risky free. It should be noted
that such an investor’s policy allows better control over the behavior of the financial port-
folio, so as not to make its terminal value negative. Usually, after the rise in prices, there is
always a decline, and this optimal strategy permits avoiding abrupt changes in the portfolio
dynamics. As we can see all the changes in portfolio dynamics generally occur because of
consumption, not because of the stochastic behavior of the risky assets. The numerical simu-
lations confirm the natural behavior of the optimal strategies, i.e. the more consumption, the
less capital and, moreover, as it is seen in Figure 1, f), this strategy provides an equilibrium-
point between consumption and wealth. Finally, as we see In Figure 2, the convergence
(4.10) is confirmed in these simulations.

7 Proofs

7.1 Proof of Theorem 3.3

Proof. Let υ ∈ V . Then by the definition of an admissible control process, the equation

dXu = a(u,Xu, υu) du+ b
′
(Xu−, υu−) dL̃u , Xt = x ∈ X , u ∈ [t, T ] (7.1)

has an unique P-a.s. strong solution. In view of the condition H1) the HJB equation (3.7)
has a solution z from C1,2 ([0, T ]×R). Therefore, the Ito formula implies

z(u,Xu) = z(t, x) +

u∫
t

zt(s,Xs) ds+

u∫
t

zx(s,Xs−) dXs

+
1

2

u∫
t

zxx(s,Xs)$s ds+
∑
t≤s≤u

(∆z(s,Xs)− zx(s,Xs−)∆Xs) ,
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where $s = trσ
′

s b(s,Xs, κ) b
′
(s,Xs, κ)σs and ∆z(s,Xs) = z(s,Xs) − z(s,Xs−) and

∆Xs = Xs −Xs−. Therefore, using (7.1) we can represent this equation as

z(u,Xu) = z(t, x) +

u∫
t

(
zt(s,Xs) + zx(s,Xs) a(s,Xs, υs) +

1

2
zxx(s,Xs)$s

)
ds

+ Mu +
∑
t≤s≤u

(∆z(s,Xs)− zx(s,Xs−)∆Xs) , (7.2)

where Mu =
u∫
t

zx(s,Xs−)b
′
(s,Xs−, υs−)dL̃s.

The key idea of the proof is the following, we need to compensate the jump term, add
to and subtract from Ito’s formula the integral

∫ u
t
U1(s,Xs, υs) ds and take a conditional

expectation given Xt = x. But we cannot apply the last operation directly since there are
no conditions on finiteness of expectations (in particular, for stochastic integrals). There-
fore we introduce a sequence of stopping times (τn)n>0 , which helps to control the jumps
compensator and provides square integrability of stopped stochastic integral,

τn := inf

u ≥ t :

u∫
t

(
bsz

2
x(s,Xs) + |z(s,Xs, υs)|

)
ds ≥ n

 ∧ T , (7.3)

where bs = b
′
(s,Xs, υs)

(
σsσ

′

s + ςsς
′

s

)
b(s,Xs, υs) and z is given as in (3.5) for g ≡ z.

Note, that Et,xMτn
= 0 and by the properties of the random measures (see, for example,

Theorem 1 on the page 153 in [18]) we get

Et,x
∑

t≤s≤τn

| (∆z(s,Xs)− zx(s,Xs−)∆Xs) | = Et,x

τn∫
t

|z(s,Xs, υs)|ds ≤ n .

Therefore, setting

M∗n = Mτn
+

∑
t≤s≤τn

(∆z(s,Xs)− zx(s,Xs−)∆Xs)−

τn∫
t

z(s,Xs, υs) ds ,

we get Et,xM
∗
n = 0. Furthermore, using the definition (3.5), we can see from (7.2) that

τn∫
t

U1(s,Xs, υs)ds+ zn = z(t, x) +

τn∫
t

(zt(s,Xs) +H0(s,Xs, z, υs)) ds+ M∗n ,

where zn = z(τn, Xτn). Note here, that Condition H1) and the definition (3.6) yield

0 = zt(s,Xs) +H(s,Xs, z(s,Xs)) ≥ zt(s,Xs) +H0(s,Xs, z(s,Xs), υs) ,

i.e.
τn∫
t

U1(s,Xs, υs) ds+ zn ≤ z(t, x) + M∗n. Therefore, for any n ≥ 1

Et,x

 τn∫
t

U1(s,Xs, υs) ds+ zn

 ≤ z(t, x) . (7.4)
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Note here, that according to Definition 3.1 for any υ ∈ V the wealth process Xt and its
left limit Xt− belong to X . Therefore, inf0≤t≤T Xt ∈ X and sup

0≤t≤T Xt ∈ X and, in

view of Lemma A.1 and the condition (3.2) the integral
∫ T
0
|z(s,Xs, υs)|ds < ∞ a.s. This

implies immediately that a.s. τn → T ,

τn∫
t

U1(s,Xs, υs) ds→
T∫
t

U1(s,Xs, υs) ds and zn → z(T,XT ) = U2(XT )

as n → ∞. Moreover, note also, that U1 ≥ 0 and by condition H1) the function z is
uniformly bounded from below. Therefore, the use of the Fatou lemma for the limit transition
in the expectation in (7.4) yields, that for any υ ∈ V

Et,x

 T∫
t

U1(s,Xs, υs) ds+ U2(XT )

 = J(t, x, υ) ≤ z(t, x) , (7.5)

i.e. sup
υ∈V

J(t, x, υ) =: J∗(t, x) ≤ z(t, x). Moreover, it should be noted, that in view of

Conditions H2)–H3), there exists the measurable function v0 : [0, T ] × X → K , such
that H(s, x, z) = H0(s, x, z,v0(s, x)) and the control process v0 = (v0(s,X∗s ))0≤s≤T
is admissible, i.e. υ∗ ∈ V and the wealth process is defined by the equation (3.9). Now,
similarly to (7.4) we can obtain that

Et,x


τ∗
n∫
t

U1(s,Xs, υ
∗
s ) ds+ z∗n

 = z(t, x) ,

where τ∗n is the stopping time defined in (7.3) for the strategy υ∗ and z∗n = z(τ∗n, X
∗
τ∗
n

).
Now, Condition H4) implies that the random variable (z∗n)n≥1 are uniformly integrable,
and therefore, taking into account that a.s. z∗n → z(T,X∗T ) = U2(X∗T ) as n → ∞ we can
obtain through the monotone convergence theorem that

z(t, x) = lim
n→∞

Et,x


τ∗
n∫
t

U1(s,Xs, υ
∗
s ) ds+ z∗n


= Et,x

 T∫
t

U1(s,Xs, υ
∗
s ) ds+ U2(XT )

 = J(t, x, υ∗) .

Therefore, from (7.5) we can conclude that J(t, x, υ∗) = J∗(t, x).

7.2 Proof of Theorem 4.1

Proof. First note that if use the form (3.14) in (3.12) we obtain that the coefficientA satisfies
the following ordinary differential equation

Ȧ(t) + γ rtA(t) +A(t)F ∗(t) + (1− γ)A
γ
γ−1 (t) = 0 , A(T ) = 1 ,
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where the function F ∗(t) = maxθ∈Θ F (t, θ) and F (t, θ) is given in (3.15). One can find
directly, that

A(t) =

 T∫
t

Ψt,udu+ Ψt,T

1−γ

, (7.6)

where Ψt,u is given in (3.16). Therefore, the Condition H1 holds true. Let’s check Condi-
tions H2) – H4). As to Condition H2) note that the optimal control function v0 = (θ0,
c0) is given in (3.13). To check H3) note that the inequality (5.12) implies thatX∗t− > 0 a.s.
for all 0 ≤ t ≤ T i.e. the strategy υ∗ = (θ∗t , c

∗
t )0≤t≤T belongs to V . Finally, the form (3.14)

and the upper bound (5.11) provide Condition H4) and, therefore, Theorem 3.3 implies this
theorem.

7.3 Proof of Theorem 4.3

Proof. First note, that the process (ζ∗t )0≤t≤T defined in (4.2) is càdlàg on the interval [0, T ]
and through the definition (4.4) one can deduce that for any δ > 0

lim
n→∞

∫ T

0

(
ζ(n)
u

)δ
du =

T∫
0

(
ζ∗u
)δ

du =

T∫
0

(
c∗uX

∗
u

)δ
du a.s. (7.7)

Therefore, using the property (5.11) and the dominated convergence theorem we get

lim
n→∞

Ex

T∫
0

(
ζ(n)
u

)γ
du = Ex

T∫
0

(
c∗uX

∗
u

)γ
du . (7.8)

Now we have to show that
P− lim

n→∞
X

(n)
T = X∗T . (7.9)

In view of the definition in (4.4) and taking into account that the processes (α∗t )0≤t≤T and
(β∗t )0≤t≤T have càdlàg trajectories on the interval [0, T ] we get that in probability

lim
n→∞

T∫
0

α(n)
u dSu =

T∫
0

α∗u dSu and lim
n→∞

T∫
0

β(n)
u dBu =

T∫
0

β∗u dBu . (7.10)

Then, in view of the convergence (7.7) for δ = 1, to show (7.9) it is sufficient to prove that

P− lim
n→∞

Dn = 0 , (7.11)

where the total amount of transactions costs Dn is defined in (4.5). To do this, using the
definitions (4.2) and (4.4) and taking into account that 0 ≤ θ∗j (t) ≤ 1, we obtain that for
k ≥ 2

∣∣∣α(n)
j (tk)− α(n)

j (tk−1)
∣∣∣ ≤ ∣∣∣∣∣(θ∗j (tk−1)− θ∗j (tk−2))

X∗tk−1

Sj(tk−1)

∣∣∣∣∣
+

∣∣∣∣∣ X∗tk−1

Sj(tk−1)
−

X∗tk−2

Sj(tk−2)

∣∣∣∣∣ . (7.12)
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Now, for N > x+ max1≤j≤m Sj(0) := N0 we introduce the set

GN =

{
sup

0≤t≤T
X∗t ≤ N

}⋂{
S∗ ≥ N

−1
}⋂{

S∗ ≤ N
}
, (7.13)

where
S∗ = min

1≤j≤m
inf

0≤t≤T
Sj(t) and S∗ = max

1≤j≤m
sup

0≤t≤T
Sj(t) .

Using the representation (5.13) and taking into account, that the functions µj are bounded
on the interval [0, T ], Propositions 5.1 and 5.2 imply that 0 < S∗ ≤ S∗ <∞ a.s. Note also,
that the property (5.11) implies sup

0≤t≤T
X∗t < ∞ a.s. Therefore, limN→∞P(Gc

N ) = 0.

Moreover, note also, that on this set through the Hölder condition (4.9) with some constant
C > 0 we can rewrite the inequality (7.12) as∣∣∣α(n)

j (tk)− α(n)
j (tk−1)

∣∣∣ ≤ X∗tk−1

∣∣θ∗j (tk−1)− θ∗j (tk−2)
∣∣

Sj(tk−1)

+

∣∣∣X∗tk−1
−X∗tk−2

∣∣∣
Sj(tk−1)

+
X∗tk−2

∣∣Sj(tk−2)− Sj(tk−1)
∣∣

Sj(tk−1)Sj(tk−2)

≤ N3
(∣∣θ∗j (tk−1)− θ∗j (tk−2)

∣∣+ ∣∣∣X∗tk−1
−X∗tk−2

∣∣∣+ ∣∣Sj(tk−2)− Sj(tk−1)
∣∣) .

Therefore, on the set GN , using the condition (4.8), we get, that for some C > 0

Dn ≤ C N
4mκn(1 + Tn) +N4 κn

n∑
k=2

∣∣∣X∗tk−1
−X∗tk−2

∣∣∣
+N4 κn

m∑
j=1

n∑
k=2

∣∣Sj(tk−1)− Sj(tk−2)
∣∣ , (7.14)

where Tn =
∑n
k=1

√
tk − tk−1. Now note here, that using the boundedness of the functions

rt and µt we can obtain that on the set GN for some C > 0 and for any 0 < u < t ≤ T

(
Sj(t)− Sj(u)

)2 ≤ C N (t− u)2 + 2

(∫ t

u

Šj(v−)dL̃j(v)

)2

and (
X∗t −X

∗
u

)2 ≤ C N (t− u)2 + 2

(∫ t

u

X̌∗v−(θ∗v)
′
dL̃v

)2

,

where Št = min(St, N) and X̌∗t = min(X∗t , N). Moreover, the Cauchy - Schwarz - Bun-
yakovsky inequality yields(∫ t

u

Šj(v−)dL̃j(v)

)2

≤ 2m
m∑
l=1

(∫ t

u

Šj(v)σjl(v)dWl(v)

)2

+ 2m
m∑
l=1

(∫ t

u

Šj(v−)ςjl(v)dLl(v)

)2
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and (∫ t

u

X̌∗v−(θ∗v)
′
dL̃v

)2

≤ 2m
m∑

j,l=1

(∫ t

u

X̌∗v θ
∗
j (v)σjl(v)dWl(v)

)2

+ 2m
m∑

j,l=1

(∫ t

u

X̌∗v−θ
∗
j (v)ςjl(v)dLl(v)

)2

.

Using here the boundedness of the functions σij and ςij and the inequality (A.2) for p = 2,
we obtain that

E

(∫ t

u

Šj(v−)dL̃j(v)

)2

≤ CN2(t− u)

and

E

(∫ t

u

X̌∗v−(θ∗v)
′
dL̃v

)2

≤ CN2(t− u) .

Therefore, setting

ηjn =

∑n
k=1

(
|
∫ tk
tk−1

Šj(v−)dL̃j(v)|+ |
∫ t
u
X̌∗v−θ

∗
j (v)ςjl(v)dLl(v)|

)
Tn

,

we obtain that for some constant C > 0 the maximum η∗n = max1≤j≤m ηjn can be esti-
mated as

sup
k≥1

E η∗n ≤
m∑
j=1

E ηjn ≤ CN .

Therefore, from (7.14) it follows that on the set GN for some CN > 0

Dn ≤ CNκn(1 + η∗n)(1 + Tn) . (7.15)

From here we obtain that for any ε > 0,

P (Dn ≥ ε) ≤ P
(
CNκn(1 + η∗n)(1 + Tn) ≥ ε

)
+ P(Gc

N )

≤ CNκn(1 + Tn)

ε
+ P(Gc

N ) . (7.16)

Taking into account that tj = jT/n and, that κn = o(n−1/2), we obtain, that

κnTn =
√
Tκn
√
n→ 0 as n→∞ ,

i.e. we get that for any N > 1

lim sup
n→∞

P (Dn ≥ ε) ≤ P(Gc
N ) .

Since P(Gc
N ) → 0 as N → ∞, we get the limit property (7.11). Now, we show the uni-

form integrability of the sequence
(

(X
(n)
T )γ+

)
n>0

. To do this in view of the Vallee-Poussin

criteria it suffices to check that

sup
n≥1

Ex (X
(n)
T )+ <∞ . (7.17)
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Since the term
∫ T
0
ζ(n)
u du+ Dn ≥ 0, we obtain that

Ex (X
(n)
T )+ ≤ x+ E

∣∣∣∣∣
n∑
k=1

β∗tk−1
(Btk −Btk−1

)

∣∣∣∣∣
+

m∑
j=1

E

∣∣∣∣∣
n∑
k=1

α∗j (tk−1)(Sj(tk)− Sj(tk−1))

∣∣∣∣∣ .
Proposition 5.4 implies upper bound (7.17). Therefore,

lim
n→∞

Ex (X
(n)
T )γ+ = Ex (X∗T )γ+ = Ex (X∗T )γ

and we obtain Theorem 4.3.

7.4 Proof of Theorem 4.4

First of all, note that the time moments (4.11) are such that 0 < t1 < . . . < tn = T and in
view of the condition (4.12)

tk − tk−1 = qT

∫ uk

uk−1

xq−1dx ≤ qT

n
→ 0 as n→∞ .

Therefore, the convergences (7.7), (7.8) and (7.10) hold true and, moreover, Proposition 5.4
implies upper bound (7.17). Therefore, to end this proof it suffices to show the convergence
(7.9) for which one has to establish the limit property (7.11). To do this, note that in this
case

tk − tk−1 = qT

∫ uk

uk−1

xq−1dx ≤ qTuq−1
k (uk − uk−1) = qT

uq−1
k

n
.

Therefore, the term Tn in (7.14) can be estimated as

κnTn = κn

n∑
k=1

√
tk − tk−1 ≤

√
qTκn

n−1∑
k=1

u
(q−1)/2
k√

n
+
√
Tκn .

Moreover, the first term

√
qTκn

n−1∑
k=1

u
(q−1)/2
k√

n
=
√

qTnκn

n−1∑
k=1

∫ uk+1

uk

u
(q−1)/2
k dx

≤
√

qTnκn

n−1∑
k=1

∫ uk+1

uk

x(q−1)/2dx

≤
√

qTnκn

∫ 1

u1

x(q−1)/2dx ≤ 2
√
T
κn
√
n
√
q

q + 1
.

Therefore, in view of the last condition in (4.12) κnTn → 0 as n → ∞. Using this in the
bound (7.16) we obtain (7.11). Hence Theorem 4.4.
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A Appendix

A.1 Properties of the mapping Υ .

Lemma A.1. Let X ⊂ R be an open convex set and g is some fixed arbitrary function
from C1,2([0, T ] × X ,R), for which sup

0≤t≤T sup
x∈X
|g(t, x)|/(1 + |x|) < ∞. Then for any

x∗ ≤ x∗ from X there exists a constant C > 0 such that for all $ ∈ R

max
1≤i≤m

sup
0≤t≤T

sup
x∗≤x≤x

∗

∫
R∗

|Υg(t, x,$ y)|Πi(dy) ≤ C(1 +$2) . (A.1)

Proof. First note that, for $ = 0 the function Υg(t, x, 0) ≡ 0 and, therefore, (A.1) holds.
Let $ 6= 0. In this case first note, that there exists some ε > 0 such that the interval
]x∗ − 2ε, x∗ + 2ε[⊂ X . Therefore, x + v ∈ X for any |v| < ε and x ∈ [x∗, x

∗]. We set
ε1 = ε/|$|. It is clear, that x+$y ∈ X for |y| < ε1 and

|Υ (t, x,$ y)| =

∣∣∣∣∣∣
x+$y∫
x

 z∫
x

gxx(t, u) du

dz

∣∣∣∣∣∣ ≤ $2 y
2

2
max

x−2ε≤u≤x+2ε0

|gxx(t, u)| .

Therefore, since Πi(y
2) <∞ we get for some C > 0∫ ε1

−ε1
|Υ (t, x,$ y)|Πi(dy) ≤ C$

2Πi(y
2) .

Moreover, using the condition of this Lemma we can deduce that for some C > 0∫
{|y|≥ε1}

|Υ (t, x,$ y)|Πi(dy) ≤ C
∫

{|y|≥ε1}

(1 + |$y|)Πi(dy) + |g(t, x)|Πi({|y| ≥ ε1})

+ |gx(t, x)| |$|
∫

{|y|≥ε1}

|y|Πi(dy)

≤ C(1 + |$|)(1 + |g(t, x)|+ |gx(t, x)|)

 ∫
{|y|≥ε1}

(1 + |y|)Πi(dy)

 .

Therefore, taking into account that

max
0≤t≤T

max
x−2ε≤u≤x+2ε0

(|g(t, u)|+ (|gx(t, u)|+ |gxx(t, u)|) <∞ ,

we obtain the upper bound (A.1). Hence Lemma A.1.
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A.2 Technical tools

First, we recall the well-known Novikov inequality for purely discontinuous martingales. To
end this we denote by P the predictable field and by B(R∗) the Borel field in R∗.

Lemma A.2. ([22]) Let J be P ⊗ B(R∗) a measurable function for which |J |2 ∗ ν̃t < ∞
a.s. Then for any p ≥ 2 there exists some positive constant Čp > 0 such that for any t > 0

E sup
u≤t
|J ∗ (ν − ν̃)u|

p ≤ Čp
(
E
(
|J |2 ∗ ν̃t

)p/2
+ E |J |p ∗ ν̃t

)
, (A.2)

where ν is a random jump measure with its compensator ν̃.

Lemma A.3 (Martingales inequalities). (See subsections 3.2 in [18]) If the process (Xt)t≥0

is a non negative sub martingale with EXp
t <∞ for some p > 1, then

P
(
X∗t > λ

)
≤

EXp
t

λp
and E ( sup

0≤u≤t
Xu)p ≤

(
p

p− 1

)p
EXp

t . (A.3)

A.3 Proof of Proposition 4.5

Since the functions rt, µt , σt and ςt in the model (2.1) are continuously differentiable, they
are bounded. Hence A1). For m = 1 , the function (3.15) has the following form

F (t, θ) = f(t, θ) + I(ςtθ) , f(t, θ) = a1(t)θ + a2(t)θ2 , (A.4)

where a1(t) = γ(µt − rt), a2(t) = γ (γ − 1)σ2
t /2 ≤ 0 and

I(x) =

∞∫
−1

((1 + x y)γ − 1− γ x y) Π(dy) .

Note, that generally this function is defined only for 0 ≤ x ≤ 1. First we assume that

−1/2∫
−1

1

(1 + y)2−γ Π(dy) <∞ . (A.5)

Then, taking into account here, that Π(y2) < ∞, we can show through the dominated
convergence theorem, that the function I is two times continuously differentiable and for
0 ≤ x ≤ 1

İ(x) = γ

∞∫
−1

(
y

(1 + xy)1−γ − y
)
Π(dy) and Ï(x) =

∞∫
−1

γ(γ − 1)y2

(1 + xy)2−γ Π(dy) ,

where İ and Ï denote the derivatives of the first and second order respectively. Now, we
extend the function I on R, as follows

I1(x) =


Ï(0)x2/2 for x ≤ 0 ;

I(x) for 0 ≤ x ≤ 1 ;

I(1) + İ(1)(x− 1) + Ï(1)(x− 1)2/2 for x ≥ 1 .

(A.6)
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It is clear, that this function is two times continuously differentiable and Ï1(x) < 0 for any
x ∈ R. Note now, that

max
0≤θ≤1

F (t, θ) = max
0≤θ≤1

F1(t, θ) and F1(t, θ) = f(t, θ) + I1(ςtθ) . (A.7)

We can calculate directly

U(t, θ) =
∂F1(t, θ)

∂ θ
= a1(t) + 2a2(t)θ + ςtİ1(θ ςt)

and, moreover, since ςt > 0, then

∂U(t, θ)

∂ θ
=
∂2F1(t, θ)

∂ θ2
= 2a2(t) + ς2t Ï1(θ ςt) < 0 .

Additionally, it is easy to check that U(t, θ) → +∞ as θ → −∞ and U(t, θ) → −∞
as θ → +∞, therefore, for all 0 ≤ t ≤ T there exist unique root θ0(t) of the equation
U(t, θ0(t)) = 0 and by the implicit function theorem we calculate its derivative

θ̇0(t) =
ȧ1(t) + 2ȧ2(t)θ0(t) + ς̇tİ1(θ0(t)ςt) + θ0(t)ςtς̇tÏ1(θ0(t)ςt)

2|a2(t)|+ ς2t |Ï1(θ0(t)ςt)|
. (A.8)

This derivative is continuous on the interval [0, T ], i.e. bounded. The solution of the problem
(A.7) can be represented as θ∗t = V (θ0(t)) and V (x) = min(0,max(x, 1)) is Lipschitz
function, i.e.

sup
x,y∈R

|V (x)− V (y)|
|x− y| ≤ 1 .

Therefore, this implies the condition A2). Consider now the case, when the condition (A.5)
does not hold, i.e.

−1/2∫
−1

1

(1 + y)2−γ Π(dy) = +∞ .

Let now 0 < δ < 1/2. Then we set

Fδ(t, θ) = f(t, θ) + Iδ(ςtθ) and Iδ(x) =

∞∫
−1+δ

((1 + x y)γ − 1− γ x y) Π(dy) .

Similarly, we get, that Iδ is two times continuously differentiable and for 0 ≤ x ≤ 1

İδ(x) = γ

∞∫
−1+δ

(
y

(1 + xy)1−γ − y
)
Π(dy) and Ïδ(x) =

∞∫
−1+δ

γ(γ − 1)y2

(1 + xy)2−γ Π(dy) .

Let now θ∗δ (t) be the argmax of Fδ(t, θ), i.e. max0≤θ≤1 Fδ(t, θ) = Fδ(t, θ
∗
δ (t)). Taking

into account here, that the function Fδ goes to F as δ → 0 uniformly over [0, T ]× [0, 1], we
get that θ∗δ (t) → θ∗t for any t ∈ [0, T ]. Moreover, we introduce the function I1,δ and F1,δ

by replacing in (A.6) and (A.7) the function I with Iδ . Therefore, similarly to the precedent
case, the function θ∗δ (t) = V (θ0,δ(t)), where the function θ0,δ(t) is the root of the partial
derivative of F1,δ , i.e.

Uδ(t, θ0,δ(t)) = 0 and Uδ(t, θ) = a1(t) + a2(t) θ + ςtİ1,δ(θ ςt) . (A.9)
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Note here, that for any 0 ≤ x ≤ 1 and for some positive constant C

|İδ(x)| ≤

−1/2∫
−1+δ

1

(1 + xy)1−γ Π(dy) + C ≤ ιδ(x) + C ,

where

ιδ(x) =

−1/2∫
−1+δ

(1 + xy)−2+γ Π(dy) ≥ Π(−1 + δ,−1/2)→ Π(−1,−1/2) > 0

as δ → 0. Note also, that |Ïδ(x)| > γ(1−γ)ιδ(x)/4. Therefore, we get, that for any x∗ ≥ 1

lim sup
δ→0

sup
|x|≤x∗

|İ1,δ(x)|
|Ï1,δ(x)|

<∞ . (A.10)

Note now, that from (A.9) for θ0,δ(t)ςt > 1 we get, that

Uδ(t, θ0,δ(t)) = a1(t) + a2(t) θ0,δ(t) + ςtİδ(1) + Ïδ(1)(ς2t θ0,δ(t)− ςt) = 0 ,

i.e.

θ0,δ(t) =
a1(t) + ςtİδ(1)− Ïδ(1)ςt
|a2(t)|+ ς2t |Ïδ(1)|

Therefore, taking into account that min0≤t≤T ς
2
t > 0 and |Ïδ(1)| → +∞ as δ → 0, we

get from (A.10), that lim supδ→0
max0≤t≤T |θ0,δ(t)|1{θ0,δ(t)ςt>1} <∞. Moreover, again

from (A.9) for θ0,δ(t)ςt < 0 we get, that

Uδ(t, θ0,δ(t)) = a1(t) + a2(t) θ0,δ(t) + Ïδ(0)ς2t θ0,δ(t) = 0 ,

i.e
θ0,δ(t) =

a1(t)

|a2(t)|+ ς2t |Ïδ(0)|
.

Taking into account, that |Ïδ(0)| → γ(1− γ)Π(y2) > 0 as δ → 0, we get, that

lim sup
δ→0

max
0≤t≤T

|θ0,δ(t)|1{θ0,δ(t)ςt<0} <∞ .

Finally, we get, that lim supδ→0
max0≤t≤T |θ0,δ(t)| <∞. Using this bound together with

(A.10) in (A.8) we obtain the same property for its derivative, i.e.

lim sup
δ→0

max
0≤t≤T

|θ̇0,δ(t)| <∞ .

This implies, that θ∗δ (t) satisfies the Lipschitz condition uniformly over δ, i.e.

M∗ = lim sup
δ→0

sup
0≤s,t≤T

|θ∗δ (t)− θ∗δ (s)|
|t− s| <∞ .

Therefore, for any 0 ≤ s, t ≤ T we deduce that

|θ∗t − θ
∗
s |

|t− s| = lim
δ→0

|θ∗δ (t)− θ∗δ (s)|
|t− s| ≤M∗ .

This implies the condition A2). Hence Proposition 4.5.
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