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Abstract. We prove that the quantum graph algebra and the quantum moduli algebra
associated to a punctured sphere and complex semisimple Lie algebra g are Noetherian
rings and finitely generated rings over C(q). Moreover, we show that these two properties
still hold on C

[
q, q−1

]
for the integral version of the quantum graph algebra. We also study

the specializations Lϵ
0,n of the quantum graph algebra at a root of unity ϵ of odd order,

and show that Lϵ
0,n and its invariant algebra under the quantum group Uϵ(g) have classical

fraction algebras which are central simple algebras of PI degrees that we compute.
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1 Introduction

This paper is the second part of our work, initiated in [18], on the quantum graph algebra Lg,n(g)
and the quantum moduli algebra Mg,n(g), which are associated to a surface Σg,n+1 of genus g
with n+1 punctures and a complex semisimple Lie algebra g. As in [18], we focus in this paper
on punctured spheres (g = 0, n ≥ 1). From now on we fix g, and when no confusion may arise
we omit it from the notations of the various algebras.

The algebras Lg,n and Mg,n are defined over the field C(q). They were introduced in the
mid 90’s by Alekseev–Grosse–Schomerus [2, 3] and Buffenoir–Roche [29, 30] by a method called
combinatorial quantization. By this method, the pair formed by Lg,n and Mg,n appear naturally
as a q-deformation of the Fock–Rosly [55] lattice model of the algebra of functions on the
“classical” moduli space Mcl

g,n of flat g-connections on the surface Σg,n+1.

In [18], we showed that both L0,n and M0,n have integral forms LA0,n and MA
0,n defined over

the ring A = C
[
q, q−1

]
(in fact we could have taken Q

[
q, q−1

]
or Z

[
q, q−1

]
as ground ring, see

Section 1.1). One can thus consider the specializations of these algebras at q = ϵ ∈ C×, which we
denote by Lϵ0,n and MA,ϵ

0,n respectively. The algebra LA0,n is endowed with an action of the Lusztig
integral form U res

A = U res
A (g) of the quantum group Uq = Uq(g), and MA

0,n is the subalgebra of
invariant elements under this action. Therefore,

MA
0,n :=

(
LA0,n

)Ures
A , M0,n := LUq

0,n = MA
0,n

⊗
A

C(q).

The definition of LA0,n is based on the original combinatorial quantization method, together
with twists of module-algebras and Lusztig’s theory of canonical bases of quantum groups
[83]. This allows us to address the structure and representation theory of LA0,n and MA

0,n

by means of quantum groups, following ideas of classical invariant theory. In particular, we
obtained that L0,n and Lϵ0,n have no nontrivial zero divisors (and therefore do as well the sub-
algebras M0,n, LA0,n, MA

0,n, and
(
Lϵ0,n

)Ures
ϵ , where U res

ϵ is the specialization of U res
A at q = ϵ).
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Also, by extending the quantum coadjoint action of De Concini–Kac–Procesi [39, 40, 42], we
described in the sl2 case an action by derivations of the center Z

(
Lϵ0,n

)
of Lϵ0,n on Lϵ0,n, and

we defined a subalgebra Z
(
Lϵ0,n

)G ⊂ Z
(
Lϵ0,n

)
, which is a finite extension of the ring of regular

functions on the character variety of the sphere with (n+ 1) punctures (see [18, Corollary 7.20
and Theorem 8.8]). Moreover, from these results we derived an action by derivation of Z

(
Lϵ0,n

)G
on MA,ϵ

0,n(sl2).

Representations of a quotient (the semisimplification) of MA,ϵ
g,n were already constructed and

classified in [4]; they involve only the irreducible representations of the finite-dimensional “small”
quantum group uϵ(g). Moreover, [4] deduced from these representations of MA,ϵ

g,n a family of
representations of the mapping class groups of surfaces, that is equivalent to the one associated
to the Witten–Reshetikhin–Turaev TQFT [95, 106]. Recently, representations of another, larger
quotient of MA,ϵ

g,n, and the corresponding representations of the mapping class groups of surfaces,
were constructed in [52, 53]. These representations are equivalent to those previously obtained
by Lyubashenko–Majid [85], and are associated to the TQFT defined in [44, 45]. In the sl2
case, they involve the irreducible and also the principal indecomposable representations of the
small quantum group uϵ(sl2). The related link and 3-manifold invariants coincide with those
of [21, 90].

In general, the representation theory of MA,ϵ
g,n is by now far from being understood. Be-

cause MA,ϵ
g,n deforms the classical moduli space Mcl

g,n, it is natural to expect that its represen-
tation theory provides (2 + 1)-dimensional TQFTs for 3-manifolds endowed with general flat
g-connections, extending the known TQFTs based on quantum groups (where purely topolog-
ical ones correspond to the trivial connection). A family of such invariants, called quantum
hyperbolic invariants, has already been defined for g = sl2 by means of certain 6j-symbols, Deus
ex machina; they are closely connected to classical Chern–Simons theory, provide generalized
volume conjectures, and contain quantum Teichmüller theory (see [9, 10, 11, 12, 13, 14, 15]). It
is part of our present program, initiated in [8], to shed light on these invariants and to generalize
them to arbitrary g by developing the representation theory of MA,ϵ

g,n.

The quantum moduli algebras have also been recognized as central objects from the view-
points of factorization homology [22], multiplicative quiver varieties [58] and (stated) skein the-
ory [16, 33, 36, 54]. In another direction, one may expect that the equivalence proved in [89] be-
tween combinatorial quantisation for the Drinfeld double D(H) of a finite-dimensional semisim-
ple Hopf algebra H, and Kitaev’s lattice model in topological quantum computation, can be
extended to the setup of quantum moduli algebras.

In the present paper, we study L0,n, its integral form LA0,n, and the specialization Lϵ0,n of LA0,n
at q = ϵ a primitive root of unity of odd order. We study also the subalgebras of invariant

elements M0,n = LUq

0,n and
(
Lϵ0,n

)Uϵ . Here, Uϵ is the specialization of UA at q = ϵ, where UA is
the De Concini–Kac integral form of Uq (see Section 1.1). Our results hold for every complex
semisimple Lie algebra g. The main ones are proofs that L0,n, LA0,n and M0,n are Noetherian
and finitely generated rings (see Theorem 1.1), and that the classical fraction algebras of Lϵ0,n
and

(
Lϵ0,n

)Uϵ are central simple algebras of PI degrees lnN and lN(n−1)−m respectively (see
Theorem 1.3). Here, m and N are the rank and the number of positive roots of g.

In the sequel [16] to this paper, in collaboration with M. Faitg, we extend Theorem 1.1 to the
algebras Lg,n and Mg,n, associated to arbitrary finite type surfaces (arbitrary genus and number
of punctures). Also, we show that Mg,n is isomorphic to the g-skein algebra of Σg,n+1, and Lg,n
to the stated skein algebra of the compact surface Σg,n+1 with one boundary component and one
marked point on the boundary component. This was proved for g = sl2 in [54]. In this specific
case g = sl2, the fact that the stated skein algebra of any finite type surface is Noetherian and
finitely generated was proved in [80]. Still in the sl2 case, for related results, e.g., on non-zero
divisors and computation of PI degrees, see [23, 24, 57, 64, 73, 74, 75, 78]. For recent results
on g = sln, see [79, 105].
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By using the analysis developed in the present paper for LA0,n, one can define the integral
form LAg,n as well, and show that it is a Noetherian and finitely generated ring. We do not
have a proof yet of these properties for the algebra MA

0,n, which seems to be much more dif-
ficult to handle. We note that there is a strict inclusion MA,ϵ

0,n ⊂
(
Lϵ0,n

)Uϵ . This is discussed
after Theorem 1.2. In [17], we study further properties of

(
Lϵg,n

)Uϵ , and we consider also the
subalgebra MA,ϵ

g,n.

1.1 Statement of results

Let us recall a few notations and facts from [18]. Let Uq be the simply-connected quantum
group of g, defined over the field C(q). From Uq one can define a Uq-module algebra L0,n,
called (quantum, daisy) graph algebra, where Uq acts by means of a right coadjoint action. The
set of invariant elements of L0,n for this action is an algebra; we denote it M0,n := LUq

0,n and
call it quantum moduli algebra. As a C(q)-module L0,n is just O⊗n

q , where Oq = Oq(G) is the
standard quantum function algebra of the connected and simply-connected Lie group G with
Lie algebra g. The product of L0,n is obtained by twisting both the product of each factor Oq

and the product between them. It is equivariant with respect to a (right) coadjoint action of Uq,
which defines the structure of Uq-module of L0,n.

The module algebra L0,n has an integral form LA0,n, which is defined over A = C
[
q, q−1

]
, and

endowed with an (coadjoint) action of the Lusztig [82] integral form U res
A of Uq. It is obtained

by replacing Oq in the construction of L0,n with the restricted dual OA of the integral form U res
A ,

or equivalently with the restricted dual of the integral form Γ of Uq defined by De Concini–
Lyubashenko [41]. Since U res

A contains the De Concini–Kac [39] integral form UA, and UA has
the same set of invariant elements in LA0,n, we systematically denote the latter

MA
0,n :=

(
LA0,n

)UA
(
=

(
LA0,n

)Ures
A
)
.

We call MA
0,n the integral quantum moduli algebra.

A cornerstone of the theory of M0,n is a map Φn originally due to Alekseev [1], building
on works of Drinfeld [48] and Reshetikhin and Semenov-Tian-Shansky [94]. In [18], we showed
that Φn eventually provides isomorphisms of module algebras and algebras respectively,

Φn : L0,n →
(
U⊗n
q

)lf
, Φn : M0,n →

(
U⊗n
q

)Uq ,

where U⊗n
q is endowed with a right adjoint action of Uq, and

(
U⊗n
q

)lf
is the subalgebra of locally

finite elements with respect to this action. When n = 1 the algebra U lf
q has been studied in

great detail by Joseph–Letzter [61, 62, 63]; we will use simplified proofs of their results, obtained
in [104].

All the material we need about the results discussed above is described in [18], and recalled
in Sections 2.1 and 2.2.

Our first result, proved in Section 3, is the following.

Theorem 1.1. L0,n, M0,n and the integral form LA0,n are Noetherian rings, and finitely gener-
ated rings.

It follows immediately from the theorem that the specializations Lϵ0,n, ϵ ∈ C×, are Noetherian

and finitely generated rings as well. In [18] we proved that all these algebras (and therefore MA
0,n

and MA,ϵ
0,n) have no nontrivial zero divisors.

Because the construction of the integral form LA0,n is based on the Kashiwara–Lusztig theory
of canonical bases, we could have defined LA0,n over the ground ring Z

[
q, q−1

]
, and Theorem 1.1

for LA0,n holds true as well in this generality. Since we are mainly interested in the represen-
tation theory of the specializations Lϵ0,n and MA,ϵ

0,n, which will be addressed in [17], the choice
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of A = C
[
q, q−1

]
is natural. Note however that the proof of Proposition 2.18 uses that C

[
q, q−1

]
is a PID.

We describe the background material on canonical bases in Section 2.2.2; we have tried to
make the exposition pedestrian and self-contained, so as to be more accessible to non experts.

After we finished this work, we discovered that [47] already proved that L0,1(gl(n)) and
L0,n(gl(2)) are Noetherian and finitely generated rings. Our approach here is completely differ-
ent. For L0,n, we adapt the proof given by Voigt–Yuncken [104] of a result of Joseph [61], which
asserts that U lf

q is a Noetherian ring (see Theorem 3.1). For M0,n, we deduce the result from
the one for L0,n, by following a line of proof of the Hilbert–Nagata theorem in classical invariant
theory (see Theorem 3.4).

At present, we do not have a proof that MA
0,n is a Noetherian and finitely generated ring

for arbitrary g and n ≥ 1, though it is natural to expect it is the case. Indeed, when g = sl2,
MA

0,n(sl2) is isomorphic to the skein algebra of a sphere with n + 1 punctures (see [18, Theo-
rem 8.6]), which is finitely generated and Noetherian by results of [32] and [93]. In our general
situation, key arguments in the proof of Theorem 1.1 for M0,n depend on the existence of
a Reynolds operator on the Uq-module L0,n, and one can easily show there is no Reynolds op-
erator on LA0,n. This follows from the corresponding fact for the integral quantum coordinate
ring OA (see Remark 2.19).

From Section 4, we consider the specializations Lϵ0,n of LA0,n at q = ϵ, a primitive root of unity
of odd order l (and coprime to 3 if g has G2 components). In [41], De Concini–Lyubashenko
introduced a central subalgebra Z0(Oϵ) of Oϵ isomorphic to the coordinate ring O(G), and
proved that the Z0(Oϵ)-module Oϵ is projective of rank ldim g. As observed by Brown–Gordon–
Stafford [28], Bass’ cancellation theorem in K-theory and the fact that K0(O(G)) ∼= Z, proved
by Marlin [87], imply that this module is free. Alternatively, this follows also from the fact
that Oϵ is a cleft extension of O(G) by the dual of the Frobenius–Lusztig kernel uϵ(g), as proved
by Andruskiewitsch–Garcia (see [6, Remark 2.18 (b)], and also [25, Section 3.2]; this argument
was explained to us by K.A. Brown).

The Section 4 proves the analogous property for Lϵ0,n. Namely:

Theorem 1.2. Z0(Oϵ)
⊗n is a central subalgebra of Lϵ0,n, and Lϵ0,n is a free Z0(Oϵ)

⊗n-module of
rank ln. dim g, isomorphic to the Z0(Oϵ)

⊗n-module O⊗n
ϵ .

In the sequel we systematically denote Z0

(
Lϵ0,n

)
:= Z0(Oϵ)

⊗n. We prove the first and third
claims of Theorem 1.2 in Proposition 4.1. The arguments use results of De Concini–Kac [39], De
Concini–Procesi [40, 42], and De Concini–Lyubashenko [41], that we recall in Sections 2.3–2.5.
Let us stress that the algebra structures of Lϵ0,n and O⊗n

ϵ are completely different.
Since Z0(Oϵ) ∼= O(G), we may deduce the second claim of Theorem 1.2 from the first and

third claims together with the results of [41, 87], or [6], recalled above. Nevertheless, we give
a self-contained proof that Lϵ0,1 is finite projective of rank ldim g over Z0

(
Lϵ0,1

)
, by adapting

the original arguments of De Concini–Lyubashenko [41, Theorem 7.2]. In particular, we study
the coregular action of the braid group of g on Lϵ0,1; by the way, in the appendix, we provide
different proofs of some technical facts shown in [41]. Of course, it remains an exciting problem

to describe the centralizing extension O(G)⊗n ⊂ Lϵ0,n (and similarly O(G)⊗n ⊂
(
Lϵ0,n

)Uϵ below),
aiming at generalizing the results of [6] and finding a direct, more structural proof of freeness
in Theorem 1.2. Also, we note that bases of Lϵ0,n over Z0

(
Lϵ0,n

)
are complicated. The only case

we know is for Oϵ(sl2), described in [38], and it is far from being obvious (see (4.4)).
In Section 5, we turn to fraction rings. As mentioned above Lϵ0,n has no nontrivial zero

divisors. Therefore, its center Z
(
Lϵ0,n

)
is an integral domain. Denote by Q(Z

(
Lϵ0,n

)
) its frac-

tion field. Denote by
(
Lϵ0,n

)Uϵ the subring of Lϵ0,n formed by the invariant elements of Lϵ0,n
with respect to the right coadjoint action of Uϵ. The center Z(Lϵ0,n) of Lϵ0,n is contained
in

(
Lϵ0,n

)Uϵ (this follows from [18, Proposition 6.19]). Note also that we trivially have an inclusion
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MA,ϵ
0,n ⊂

(
Lϵ0,n

)Uϵ , and these two algebras are distinct in general. For instance, when n = 1,

we have
(
Lϵ0,1

)Uϵ = Z(Lϵ0,1), which is a finite extension of Z0(Oϵ) ∼= O(G) (see Lemma 5.1).
On another hand, MA,ϵ

0,1 is the specialization at q = ϵ of Z
(
LA0,1

)
, a polynomial algebra in rk(g)

variables, which may be identified via Φ1 with the center Z(UA) of the integral form UA.

Consider the rings

Q
(
Lϵ0,n

)
= Q

(
Z
(
Lϵ0,n

)) ⊗
Z(Lϵ

0,n)

Lϵ0,n, Q
((
Lϵ0,n

)Uϵ
)
= Q

(
Z
(
Lϵ0,n

)) ⊗
Z(Lϵ

0,n)

(
Lϵ0,n

)Uϵ .

In general, given a ring A with center Z(A) an integral domain we reserve the notation Q(A)
to the central localization of A, i.e., Q(A) := Q(Z(A))

⊗
Z(A)A. Though the center Z

((
Lϵ0,n

)Uϵ
)

of
(
Lϵ0,n

)Uϵ is larger than Z
(
Lϵ0,n

)
, the notation Q

((
Lϵ0,n

)Uϵ
)
is valid, for Z

((
Lϵ0,n

)Uϵ
)
is an

integral domain finite over Z
(
Lϵ0,n

)
, and hence the central localization of

(
Lϵ0,n

)Uϵ coincides
with Q

((
Lϵ0,n

)Uϵ
)
as defined above. Throughout the paper, unless we mention it explicitly, we

follow the conventions of McConnell–Robson [88] as regards the terminology of ring theory; in
particular, for the notions of central simple algebras and PI degrees, see in [88, Sections 5.3
and 13.3.6–13.6.7].

Denote by m the rank of g, and by N the number of its positive roots. In Section 5, we prove
the following.

Theorem 1.3.

(1) Q
(
Lϵ0,n

)
is a division algebra and a central simple algebra of PI degree lnN .

(2) Q
((
Lϵ0,n

)Uϵ
)
, n≥2, is a division algebra and a central simple algebra of PI degree lN(n−1)−m.

The second claim of (1) means that Q
(
Lϵ0,n

)
is a complex subalgebra of a full matrix algebra

Matd(F), where d = lnN and F is a finite extension of Q(Z
(
Lϵ0,n

)
) such that

F
⊗

Q(Z(Lϵ
0,n))

Q
(
Lϵ0,n

)
= Matd(F).

That Q
(
Lϵ0,n

)
is a division algebra and a central simple algebra follows from Theorem 1.2 and

the fact that Lϵ0,n has no nontrivial zero divisors (proved in [18]). The computation of d = lnN

uses a lower bound coming from the representation theory of Uϵ, and a lower bound for the
degree of Q

(
Z
(
Lϵ0,n

))
as a field extension of Q

(
Z0

(
Lϵ0,n

))
, obtained by using specializations

to q = ϵ of certain central elements in L0,n (for q generic). In this computation a main role is
played by results of De Concini–Kac [39].

We deduce (2) from (1), the double centralizer theorem for central simple algebras, a few
results of [18, 41], and Theorem 1.2 again.

1.2 Basic notations

Given a ring R, we denote by Z(R) its center. When R is commutative and has no nontrivial
zero divisors, Q(R) denotes its fraction field.

Given a Hopf algebra H with product m and coproduct ∆, we denote by Hcop (resp. Hop) the
Hopf algebra with the same algebra (resp. coalgebra) structure as H but the opposite coproduct
∆cop := σ ◦∆ (resp. opposite product m ◦ σ), where σ(x ⊗ y) = y ⊗ x, and the antipode S−1.
We use Sweedler’s coproduct notation, ∆(x) =

∑
(x) x(1) ⊗ x(2), x ∈ H, and we set ∆(1) := id,

∆(2) := ∆, and ∆(n) := (∆⊗ id)∆(n−1) for n ≥ 3 (this is not the convention used in [18]).

The results of this paper hold true for any finite-dimensional complex semisimple Lie alge-
bra g, but unless we state it differently, we will assume g is simple. We will denote its rank
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by m, and its Cartan matrix by (aij). We fix a Cartan subalgebra h ⊂ g and a basis of simple
roots αi ∈ h∗R, and denote by b± the Borel subalgebras associated to it. We denote by N the
number of positive roots of g, and by ρ half the sum of the positive roots.

We denote by d1, . . . , dm the unique coprime positive integers such that the matrix (diaij)
is symmetric, and ( , ) the unique inner product on h∗R such that diaij = (αi, αj). For any
root α, the coroot is α̌ = 2α/(α, α); in particular α̌i = d−1

i αi. The root lattice Q is the Z-lattice
in h∗R defined by Q =

∑m
i=1 Zαi. The weight lattice P is the Z-lattice formed by all λ ∈ h∗R

such that (λ, α̌i) ∈ Z for every i = 1, . . . ,m. So P =
∑m

i=1 Zϖi, where ϖi is the fundamental
weight dual to the simple coroot α̌i, which satisfies (ϖi, α̌j) = δi,j . Note that (λ, α) ∈ Z for
every λ ∈ P , α ∈ Q. We denote by D the cardinality of the quotient lattice P/Q. Then D is the
smallest positive integer such that D(λ, µ) ∈ Z for every λ, µ ∈ P , that is, such that DP ⊂ Q.

We denote by

P+ :=

m∑
i=1

Z≥0ϖi

the cone of dominant integral weights, and we put

Q+ :=
m∑
i=1

Z≥0αi.

Though Q ⊂ P , it is not true that Q+ ⊂ P+, but we have DP+ ⊂ Q+. This last property is
not trivial, and follows from the classical fact that the inverse of the Cartan matrix (aij) has
coefficients in D−1N.

We will use the standard partial order relation ≤ on P , defined by: λ, µ ∈ P satisfy λ ≤ µ
if µ− λ ∈ Q+. In Section 3, we will also use the partial order relation ⪯ on P defined by: λ ⪯ µ
if µ− λ ∈ D−1Q+.

We denote by B(g) the braid group of g; we recall its standard defining relations in Ap-
pendix B.

We denote by G the connected and simply-connected algebraic group with Lie algebra g, and
by TG the maximal torus of G with Lie algebra h; N(TG) is the normalizer of TG,W = N(TG)/TG
is the Weyl group, B± are the Borel subgroups of G with Lie algebra b±, and U± ⊂ B± are
their unipotent subgroups.

We denote by O(G) the coordinate ring of G. It is a commutative Hopf algebra, which can
be identified with the restricted dual of the universal enveloping algebra U(g) (see [76, 84]).
Similarly we denote by O(B±) the coordinate ring of B±.

Let q be an indeterminate, let q1/D be such that
(
q1/D

)D
= q, set A = C

[
q, q−1

]
, qi = qdi ,

qβ = q(β,β)/2 for β ∈ Q, and given integers p, k with 0 ≤ k ≤ p, we put

[p]q =
qp − q−p

q − q−1
, [0]q! = 1, [p]q! = [1]q[2]q · · · [p]q,

[
p
k

]
q

=
[p]q!

[p− k]q![k]q!
,

(p)q =
qp − 1

q − 1
, (0)q! = 1, (p)q! = (1)q(2)q · · · (p)q,

(
p
k

)
q

=
(p)q!

(p− k)q!(k)q!
.

We denote by A0 ⊂ C(q) the ring of functions regular at q = 0; this ring is used only in
Section 2.2.2.

We denote by ϵ a primitive l-th root of unity such that ϵ2di ̸= 1 is also a primitive l-th root
of unity for all i ∈ {1, . . . ,m}. This means that l is odd, and coprime to 3 if g is G2. We put
ϵi := ϵdi .

In this paper, we use the definition of the unrestricted integral form UA(g) given in [41, 42];
in [18] we used the one of [39, 40]. The two are (trivially) isomorphic, and have the same
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specialization at q = ϵ. Also, we denote here by Li the generators of Uq(g) we denoted by ℓi
in [18].

In order to facilitate the comparison with the results of [41], we note that their generators
denoted Ki, Ei and Fi, that we will denote by K̃i, Ẽi and F̃i, can be written as Ki, K

−1
i Ei

and FiKi in our notations. They satisfy the same algebra relations.

2 Background results

2.1 On Uq, Oq, L0,n, M0,n, and Φn

Except when stated differently, we refer to [18, Sections 2–4 and 6], and the references therein
for details about the material of this section. We stress that the simply-connected quantum
group, that we denote Uq below, was denoted Ũq in [18]. Also, the adjoint quantum group Uad

q

was denoted Uq.

The simply-connected quantum group Uq = Uq(g) is the Hopf algebra over C(q) with genera-
tors Ei, Fi, Li, L

−1
i , 1 ≤ i ≤ m, and defining relations

LiLj = LjLi, LiL
−1
i = L−1

i Li = 1, LiEjL
−1
i = q

δi,j
i Ej , LiFjL

−1
i = q

−δi,j
i Fj ,

EiFj − FjEi = δi,j
Ki −K−1

i

qi − q−1
i

,

1−aij∑
r=0

(−1)r
[
1− aij
r

]
qi

E
1−aij−r
i EjE

r
i = 0 if i ̸= j,

1−aij∑
r=0

(−1)r
[
1− aij
r

]
qi

F
1−aij−r
i FjF

r
i = 0 if i ̸= j,

where for λ =
∑m

i=1miϖi ∈ P we set Kλ =
∏m
i=1 L

mi
i , and Ki = Kαi =

∏m
j=1 L

aji
j . The

coproduct ∆, antipode S, and counit ε of Uq are given by

∆(Li) = Li ⊗ Li, ∆(Ei) = Ei ⊗Ki + 1⊗ Ei, ∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi,

S(Ei) = −EiK−1
i , S(Fi) = −KiFi, S(Li) = L−1

i ,

ε(Ei) = ε(Fi) = 0, ε(Li) = 1.

We fix a reduced expression si1 · · · siN of the longest element w0 of the Weyl group of g. It
induces a total ordering of the positive roots,

β1 = αi1 , β2 = si1(αi2), . . . , βN = si1 · · · siN−1(αiN ).

The root vectors of Uq with respect to such an ordering are defined by

Eβk = Ti1 · · ·Tik−1
(Eik), Fβk = Ti1 · · ·Tik−1

(Fik), (2.1)

where Ti is the Lusztig algebra automorphism of Uq associated to the simple root αi [82, 83]
(see also [35, Chapter 8]). The braid group B(g) acts on Uq by means of the Lusztig auto-
morphisms. In the appendix, we recall the relation between Ti and the generator ŵi of the
quantum Weyl group, which we will mostly use. Let us just recall here that the monomials
F r1β1 · · ·F

rN
βN
KλE

tN
βN

· · ·Et1β1 (ri, ti ∈ N, λ ∈ P ) form a basis of Uq, the PBW basis.

Uq is a pivotal Hopf algebra, with pivotal element ℓ := K2ρ =
∏m
j=1 L

2
j . So ℓ is group-like,

and S2(x) = ℓxℓ−1 for every x ∈ Uq.
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The adjoint quantum group Uad
q = Uad

q (g) is the Hopf subalgebra of Uq generated by the

elements Ei, Fi (i = 1, . . . ,m) and Kα with α ∈ Q; so ℓ ∈ Uad
q . When g = sl2, we simply write

the above generators E = E1, F = F1, L = L1, K = K1.

We denote by Uq(n+), Uq(n−) and Uq(h) the subalgebras of Uq generated respectively by
the Ei, the Fi, and the Kλ (λ ∈ P ), and by Uq(b+) and Uq(b−) the subalgebras generated by
the Ei and the Kλ, and by the Fi and the Kλ, respectively. We do similarly with Uad

q , where

now Uad
q (h) is generated by the Kλ with λ ∈ Q.

The Hopf algebra Uad
q is not braided in a strict sense, but it has braided categorical comple-

tions. Let us recall briefly what this means and implies. For details, we refer to [18, Sections 2
and 3] (see also [104, Section 3.10], where Uq below is formulated in terms of multiplier Hopf
algebras).

A Uad
q -module V is said of type 1 if it has finite dimension and the generators Ki are diago-

nalizable on V with eigenvalues in qZi . We denote by C the category of Uad
q -modules of type 1,

by Vect the category of finite-dimensional C(q)-vector spaces, and by FC : C → Vect the forgetful
functor. The category C is semisimple. The simple objects are highest weight Uad

q -modules; we
denote by Vµ the simple module with highest weight µ ∈ P+. In the case g = sl2, we identify P+

with N, and denote by Vn the simple module of dimension n + 1. Note that Vµ is canoni-
cally endowed with a structure of Uq-module of type 1, the generators Li being diagonalizable
with eigenvalues in q

Z/D
i . The categorical completion Uad

q of Uad
q is the set of natural trans-

formations FC → FC . An element of Uad
q is a collection (aV )V ∈Ob(C), where aV ∈ EndC(q)(V )

satisfies FC(f) ◦ aV = aW ◦ FC(f) for any objects V , W of C and any arrow f ∈ HomUad
q
(V,W ).

It is not hard to see that Uad
q inherits from C a natural structure of (completed) Hopf algebra

such that the map

ι : Uad
q −→ Uad

q , x 7−→ (πV (x))V ∈Ob(C) (2.2)

is a morphism of Hopf algebras, where πV : Uad
q → End(V ) is the representation associated to

a module V in C. It is a theorem that this map is injective. From now on, let us extend the
coefficient ring of the modules and morphisms in C to C

(
q1/D

)
. Put Uq = Uad

q

⊗
C(q)C

(
q1/D

)
.

The map ι above extends to an embedding of Uq in Uq. The category C, with coefficients extended
to C

(
q1/D

)
, is braided and ribbon; we postpone a discussion of that fact to Section 2.3, where

it will be developed. As a consequence, we can regard Uq as a quasitriangular and ribbon Hopf
algebra in a generalized sense (see [18]). The R-matrix of Uq is the family of morphisms

R = (RV,W )V,W∈Ob(C),

where RV,W ∈ End(V ⊗W ) is the endomorphism defined by the action of Drinfeld’s universal
R-matrix on V ⊗W . The ribbon element of Uq is defined similarly by Drinfeld’s universal ribbon
element. One defines the categorical tensor product U⊗̂2

q similarly as Uq; in particular it contains
all the infinite series of elements of U⊗2

q having only a finite number of non-zero terms when
evaluated on a given module V ⊗W of C. There is an expansion of R as an infinite series in U⊗̂2

q .
Adapting Sweedler’s coproduct notation ∆(x) =

∑
(x) x(1) ⊗ x(2), we find convenient to write

this series as

R =
∑
(R)

R(1) ⊗R(2). (2.3)

We put R+ := R, R− := (σ ◦R)−1 where σ is the flip map x⊗ y 7→ y ⊗ x. We will not use any
explicit formula of R, but the following factorization formula

R = ΘR̂, (2.4)
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where

Θ = q
∑m

i,j=1(B
−1)ijHi⊗Hj ∈ U⊗̂2

q ,

with B ∈Mm(Q) the matrix with entries Bij := d−1
j aij , and

R̂ =
∑
(R̂)

R̂(1) ⊗ R̂(2) ∈ Uq(n+)⊗̂Uq(n−)

(see [18, Section 3.2], and for details, e.g., [35, Theorem 8.3.9], or [104, Theorem 3.108]). If x, y
are weight vectors of weights µ, ν respectively, then Θ(x ⊗ y) = q(µ,ν)x ⊗ y. Moreover, R̂ has
weight 0 for the adjoint action of Uq(h); that is, complementary components R̂(1) and R̂(2) have
opposite weights.

Recall that we denote by G the connected and simply-connected algebraic group with Lie
algebra g. The quantum function Hopf algebra Oq = Oq(G) is defined as the restricted dual
of Uad

q with respect to the category C, that is, the set of C(q)-linear maps f : Uad
q → C(q) such

that Ker(f) contains a cofinite two sided ideal I (i.e., such that I ⊕M = Uq for some finite-
dimensional vector space M), and

∏r
s=−r(Ki− qsi ) ∈ I for some r ∈ N and every i (see, e.g., [26,

Chapter I.7]).
The space Oq is a Hopf algebra, with structure maps defined dually to those of Uad

q . We
denote by ⋆ its product. The algebras Oq(TG), Oq(U±), Oq(B±) are defined similarly, by replac-
ing Uad

q with Uad
q (h), Uad

q (n±), U
ad
q (b±), respectively. As a vector space, Oq is generated by the

functionals x 7→ w(πV (x)v), x ∈ Uad
q , for every object V ∈ Ob(C) and vectors v ∈ V , w ∈ V ∗.

Such functionals are called matrix coefficients. Because the morphism ι : Uad
q → Uq is injective

(see (2.2)), the Hopf duality pairing ⟨·, ·⟩ : Oq × Uad
q → C(q) is non degenerate. By extending

the coefficient ring from C(q) to C
(
q1/D

)
, we can uniquely extend it to a bilinear pairing

⟨·, ·⟩ :
(
Oq

⊗
C(q)

C
(
q1/D

))
× Uq → C

(
q1/D

)
such that the following diagram is commutative:

Oq ⊗ Uad
q

⟨·,·⟩ //

id⊗ι
��

C(q)

��(
Oq

⊗
C(q)C

(
q1/D

))
⊗ Uq

⟨·,·⟩ // C
(
q1/D

)
.

This pairing is defined by ⟨Y ϕwv , (aX)⟩ = w(aY v) for every (aX) ∈ Uq and Y ϕ
w
v ∈ Oq. It is

non degenerate.
The maps

Φ± : Oq −→ U cop
q , α 7−→ (α⊗ id)

(
R±) = ∑

(R±)

〈
α,R±

(1)

〉
R±

(2) (2.5)

are well-defined morphisms of Hopf algebras. Here we stress that it is the simply-connected
quantum group U cop

q that is the range of Φ±. This will be explained with more details in
Section 2.3.

Let us make two simple observations, for future reference. Firstly, because Oq is spanned
by the matrix coefficients of the objects of C, and C is semisimple with simple objects the
Uad
q -modules Vµ, µ ∈ P+, there is a decomposition of Uq-bimodule

Oq =
⊕
µ∈P+

C(µ), (2.6)
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where C(µ) = V ∗
µ ⊗ Vµ, the space of matrix coefficients of Vµ, is endowed with the left action

on the factor Vµ and the right action on V ∗
µ , and Oq has the left and right coregular actions �

and �, defined by

x� α :=
∑
(α)

α(1)⟨α(2), x⟩, α� x :=
∑
(α)

⟨α(1), x⟩α(2)

for all x ∈ Uq and α ∈ Oq. Here we recall that each Uad
q -module Vµ can be regarded as

a Uq-module, so the above expressions make sense. The decomposition (2.6) is the Peter–Weyl
decomposition of Oq. It will be refined in Section 2.2.2.

Moreover, the algebraOq is generated by the matrix coefficients of the simple Uad
q -modules Vϖk

with highest weights the fundamental weights ϖk, k = 1, . . . ,m; see, e.g., [26, Proposition I.7.8]
for a proof. This relies on the standard fact that, for any µ, ν ∈ P+ we have a direct sum
decomposition of modules (where m(λ) ∈ N)

Vµ ⊗ Vν = Vµ+ν ⊕
⊕

λ<µ+ν

V
⊕m(λ)
λ . (2.7)

In particular, this decomposition implies that, up to scalar multiples, there is a unique non-zero
morphism Vµ+ν → Vµ ⊗ Vν , which is injective and splits. Dually, this means that, applying
the product in Oq followed by the projection onto the subspace C(µ + ν) we get a canonical
projection map

C(µ)⊗ C(ν) → C(µ+ ν). (2.8)

The loop algebra L0,1 = L0,1(g) is defined by twisting the product ⋆ of Oq, keeping the same
underlying linear space. The new product is equivariant with respect to the right coadjoint
action coadr of Uq, defined by

coadr(x)(α) =
∑
(x)

S(x(2))� α� x(1)

for all x ∈ Uq and α ∈ Oq. By equivariant we mean that L0,1 is a Uq-module algebra. Let
us spell out its product and equivariance property. Using the fact that Uq can be regarded as
a subspace of Uq, the actions � and � extend naturally to actions of Uq, and the product of L0,1

is expressed in terms of ⋆ by the formula (see [18, Proposition 4.1]):

αβ =
∑

(R),(R)

(R(2′)S(R(2))� α) ⋆ (R(1′) � β �R(1)), (2.9)

where
∑

(R)R(1) ⊗ R(2) and
∑

(R)R(1′) ⊗ R(2′) are expansions of two copies of R ∈ U⊗̂2
q . Note

that the sum in (2.9) has only a finite number of non-zero terms. By using that

R∆ = ∆copR,

this product can equivalently be expressed as

αβ =
∑

(R),(R)

(β �R(1)R(1′)) ⋆ (S(R(2))� α�R(2′)). (2.10)

This product gives L0,1 (like Oq) a structure of Uq-module algebra for the actions �, �, but also
for coadr (which is not the case of Oq). Spelling this out for coadr, this means

coadr(x)(αβ) =
∑
(x)

coadr(x(1))(α)coad
r(x(2))(β).
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The relations between Oq, L0,1 and Uq are encoded by the map

Φ1 : Oq −→ Uq, α 7−→ (α⊗ id)(RR′), (2.11)

where R′ = σ ◦R, and as usual σ : x⊗ y 7→ y ⊗ x. Note that

Φ1 = m ◦
(
Φ+ ⊗

(
S−1 ◦ Φ−)) ◦∆. (2.12)

We call Φ1 the RSD map, for Drinfeld, Reshetikhin and Semenov-Tian-Shansky introduced it
first (see [48, 86, 94]). It is a fundamental result of the theory (see [20, 34, 61]) that Φ1 affords
an isomorphism of Uq-modules Φ1 : Oq → U lf

q . For full details on that result we refer to [104,

Section 3.12]. Here, U lf
q is the set of locally finite elements of Uq, endowed with the right adjoint

action adr of Uq. It is defined by

U lf
q := {x ∈ Uq | rkC(q)(adr(Uq)(x)) <∞}

and

adr(y)(x) =
∑
(y)

S(y(1))xy(2)

for every x, y ∈ Uq. The action adr gives in fact U lf
q a structure of right Uq-module algebra.

It is also a right coideal, that is ∆
(
U lf
q

)
⊂ U lf

q ⊗ Uq. Moreover, Φ1 affords an isomorphism of
Uq-module algebras Φ1 : L0,1 → U lf

q . It is a fact that Φ1 affords an isomorphism between the
centers Z(L0,1) of L0,1 and Z(Uq) of Uq [18, Proposition 6.24]. Since Φ1 is an isomorphism of
Uq-modules and Z(Uq) = U

Uq
q , it follows that Z(L0,1) = LUq

0,1.
Let us recall a few fundamental results about U lf

q that we will meet again later. Denote
by T ⊂ Uq the multiplicative Abelian group formed by the elements Kλ, λ ∈ P , and by T2 ⊂ T
the subgroup formed by the elements Kλ, λ ∈ 2P . Consider the subset T2− ⊂ T2 formed by the
elements K−λ, λ ∈ 2P+. Clearly, T2 = T−1

2− T2− and Card(T/T2) = 2m.

Theorem 2.1.

(1) U lf
q =

⊕
λ∈2P+

adr(Uq)(K−λ).

(2) Uq = T−1
2−U

lf
q [T/T2], so Uq is a free T−1

2−U
lf
q -module of rank 2m.

(3) The ring U lf
q is (left and right) Noetherian.

These results were proved by Joseph–Letzter in [63, Theorem 4.10], [62, Theorem 6.4], and
[61, Theorem 7.4.8], respectively (see also [61, Sections 7.1.6, 7.1.13 and 7.1.25]). For (1) and (3),
we refer also to [104, Theorems 3.113 and 3.137], which provides simpler proofs. For instance,
in the sl2 case, we have

Uq(sl2) = Uq(sl2)
lf [K]⊕ Uq(sl2)

lf [K].L.

The actual values of Φ1 are complicated in general, however, there is a simple important one,
that we describe now. Let V−λ be the type 1 simple Uad

q -module of lowest weight −λ ∈ −P+

(i.e., the highest weight Uad
q -module V−w0(λ) of highest weight −w0(λ), where w0 is the longest

element of the Weyl group; note that −w0 permutes the simple roots). Let v ∈ V−λ be a lowest
weight vector, and v∗ ∈ V ∗

−λ be such that v∗(v) = 1 and v∗ vanishes on a Uad
q (h)-invariant

complement of v. Define ψ−λ ∈ Oq by ⟨ψ−λ, x⟩ = v∗(xv), x ∈ Uq. From the definition (2.11), it
is quite easy to see that

Φ1(ψ−λ) = K−2λ. (2.13)

In particular, Φ1(ψ−ρ) = ℓ−1, where as usual ℓ is the pivotal element of Uq.
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Remark 2.2. Since L0,1 = Oq as a vector space, we still denote by C(µ), µ ∈ P+, the linear
subspace generated by the matrix coefficients of Vµ, the Uad

q -module of type 1 and highest
weight µ. It can be proved (see [61, Section 7.1.22], or [104, p. 156], where different conventions
are used) that Φ1 yields an isomorphism of Uq-modules

Φ1 : C(−w0(µ)) → adr(Uq)(K−2µ). (2.14)

Therefore, the summands in (1) are finite-dimensional Uq-modules, and the action adr is com-
pletely reducible on U lf

q . In fact, U lf
q is the socle of adr on Uq.

Remark 2.3. Because ℓ =
∏m
j=1 L

2
j and Φ1(ψ−ρ) = ℓ−1, a natural question is the factoriza-

tion of ψ−ρ in L0,1 (see Corollary 2.23). This question is considered in [60], where L0,1(g)
for g = gl(r + 1) is analysed and quantum minors are extensively studied. Let us review here
some of their results in relation with ψ−ρ.

First note that for g = sl(r + 1) the irreducible representation V−ρ of lowest weight −ρ is
isomorphic to the representation of highest weight Vρ because −w0(ρ) = ρ. By the Weyl formula,
the dimension of this representation is

∏
α>0

(2ρ, α)

(ρ, α)
= 2N .

In [71], a presentation of Uq(gl(r+ 1)) is given, which differs from our presentation of Uq(sl(r+ 1))
only by its subalgebra Uq(h), generated by r + 1 elements K1, . . . ,Kr+1. The inclusion

Uq(sl(r + 1)) ⊂ Uq(gl(r + 1))

is such that Ki = K2
iK

−2
i+1, i = 1, . . . , r. The quantum minors, properly defined in [60], of the

matrix of matrix elements of the natural representation of Uq(gl(r + 1)) are denoted detq(A≥k)
for k = 1, . . . , r + 1. We have detq(A≥1) = 1 in the case of sl(r + 1). Then [60] proves that
detq(A≥k) = (Kk · · ·Kr+1)

2, and there exists an element K ∈ Uq(gl(r + 1)) such that

K−2ρ = detq(A≥1)
−rdetq(A≥2) · · · detq(A≥r+1).

This has to be interpreted as K−2ρ = Φ1(detq(A≥2) · · · detq(A≥r+1)) in the case of sl(r+1). As
a result, this gives the equality

ψ−ρ = detq(A≥2) · · · detq(A≥r+1).

The (quantum) graph algebra L0,n = L0,n(g) is the braided tensor product of n copies of L0,1

(considered as a Uq-module algebra). As a linear space and Uq-bimodule with actions � and �, it
coincides with L⊗n

0,1 , and thus with O⊗n
q . It is also a right Uq-module algebra, with the following

action of Uq (extending coadr on L0,1):

coadrn(y)
(
α(1) ⊗ · · · ⊗ α(n)

)
=

∑
(y)

coadr(y(1))
(
α(1)

)
⊗ · · · ⊗ coadr(y(n))

(
α(n)

)
(2.15)

for all y ∈ Uq and α
(1) ⊗ · · · ⊗α(n) ∈ L0,n. The product of L0,n can be expressed as follows. For

every 1 ≤ a ≤ n, define ia : L0,1 → L0,n by ia(x) = 1⊗(a−1) ⊗ x ⊗ 1⊗(n−a); ia is an embedding
of Uq-module algebras. We will use the notations

L(a)
0,n := Im(ia), (α)(a) := ia(α). (2.16)
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Take (α)(a), (α′)(a) ∈ L(a)
0,n and (β)(b), (β′)(b) ∈ L(b)

0,n with a < b. Then the product of L0,n is given
by the following formula (see [18, Section 6]):(

(α)(a) ⊗ (β)(b)
)(
(α′)(a) ⊗ (β′)(b)

)
=

∑
(R1),...,(R4)

(
α
(
S
(
R3

(1)R
4
(1)

)
� α′ �R1

(1)R
2
(1)

))(a)
⊗
((
S
(
R1

(2)R
3
(2)

)
� β �R2

(2)R
4
(2)

)
β′
)(b)

, (2.17)

where Ri =
∑

(Ri)R
i
(1) ⊗ Ri(2), i ∈ {1, 2, 3, 4}, are expansions of four copies of R ∈ U⊗̂2

q , and on
the right-hand side the product is componentwise that of L0,1. Later we will use the fact that
the product of L0,n is obtained from the standard (componentwise) product of L⊗n

0,1 by a process
that may be inverted. Indeed, (2.17) can be rewritten as(

(α)(a) ⊗ (β)(b)
)(
(α′)(a) ⊗ (β′)(b)

)
=

∑
(F )

(α)(a)
(
(α′)(a) · F(2)

)
⊗
(
(β)(b) · F(1)

)
(β′)(b), (2.18)

where F =
∑

(F ) F(1) ⊗ F(2) := (∆ ⊗ ∆)(R′), and the symbol “·” stands for the right action
of U⊗̂2

q on L0,1 that may be read from (2.17). The tensor F is known as a twist. Then, by
replacing F with its inverse F̄ = (∆⊗∆)

(
R′−1

)
, one can express the product of L⊗n

0,1 in terms
of the product of L0,n by

(α)(a)(α′)(a) ⊗ (β)(b)(β′)(b) =
∑
(F̄ )

(
(α)(a) ⊗

(
(β)(b) · F̄(1)

))((
(α′)(a) · F̄(2)

)
⊗ (β′)(b)

)
. (2.19)

We call quantum moduli algebra and denote by M0,n = LUq

0,n the subalgebra of L0,n formed by
the Uq-invariant elements.

The map Φ1 can be extended to L0,n as follows. Consider the following action of Uq on the
tensor product algebra U⊗n

q , which extends adr on Uq:

adrn(y)(x) =
∑
(y)

∆(n)(S(y(1)))x∆
(n)(y(2))

for all y ∈ Uq, x ∈ U⊗n
q . This action gives U⊗n

q a structure of right Uq-module algebra. In [1],
Alekseev introduced a morphism of Uq-module algebras Φn : L0,n → U⊗n

q which extends Φ1.
In [18, Proposition 6.7], we showed that Φn affords isomorphisms

Φn : L0,n →
(
U⊗n
q

)lf
, Φn : M0,n →

(
U⊗n
q

)Uq , (2.20)

where
(
U⊗n
q

)lf
is the set of adrn-locally finite elements of U⊗n

q . We call Φn the Alekseev map; we
do not recall here the definition of Φn, for we will not use it. It is a key argument of the proof
of (2.20) that the set of locally finite elements of U⊗n

q for (adr)⊗n ◦∆(n) coincides with
(
U lf
q

)⊗n
;

this follows from the main result of [72]. Using that the map

ψn = Φn ◦
(
Φ−1
1

)⊗n
:
(
U lf
q

)⊗n →
(
U⊗n
q

)lf
(2.21)

intertwines the actions (adr)⊗n ◦∆(n−1) and adrn, we deduced that Im(Φn) =
(
U⊗n
q

)lf
.

Remark 2.4. We have
(
U lf
q

)⊗n ̸=(
U⊗n
q

)lf
and in fact there is not even an inclusion. Indeed,

let Ω =
(
q − q−1

)2
FE + qK + q−1K−1 be the Casimir element of Uq(sl2). We trivially

have ∆(Ω) ∈
(
U⊗2
q

)lf
but

∆(Ω) =
(
q − q−1

)2(
K−1E ⊗ FK + F ⊗ E

)
+Ω⊗K +K−1 ⊗ Ω−

(
q + q−1

)
K−1 ⊗K

and therefore ∆(Ω) /∈
(
U lf
q

)⊗2
, since K /∈ U lf

q (see, e.g., Theorem 2.1 (2)). This reflects the fact
that U lf

q is only a right coideal of Uq (and not a subcoalgebra).
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As in Remark 2.2, denote by C(µ), µ ∈ P+, the linear subspace of L0,1 generated by the
matrix coefficients of Vµ. For every tuple [µ] = (µ1, . . . , µn) ∈ Pn+ put

C([µ]) = C(µ1)⊗ · · · ⊗ C(µn). (2.22)

Then L0,n =
⊕

[µ]∈Pn
+
C([µ]). Each space C([µ]) is a finite-dimensional Uq-module under the

action coadrn, whence it is completely reducible. Therefore, L0,n = M0,n ⊕ I as Uq-modules,
where I is the sum of nontrivial isotypical components of L0,n. The C(q)-linear projection map

R : L0,n → M0,n, Ker(R) = I (2.23)

is called the Reynolds operator. For all α ∈ M0,n, β ∈ L0,n it satisfies R(αβ) = αR(β).
This property will be crucial in the sequel, so let us recall a (classical) proof of it. We can
write β = R(β) + γ with γ ∈ I, and then we have to show αγ ∈ I. We can reduce to the case
where γ is contained in a simple summand V of I. Multiplication by the invariant element α
yields a surjective map V → αV , which is a morphism of Uq-modules. Since V is simple, it is
either the 0 map, or an isomorphism. In either cases it follows αV ⊂ I (in fact the first case
cannot happen, for L0,n has no nontrivial zero divisors, as explained after (2.25)).

We can formulate the Reynolds operator in the following way. Recall that Oq has a unique
left (or right, or 2-sided) Haar integral, that is a linear map h : Oq → C(q) such that

h(1) = 1 and (id⊗ h)∆(α) = h(α)1, ∀α ∈ Oq.

(See, e.g., [35, Proposition 13.3.6].) It vanishes on all matrix coefficients except the one of the
trivial representation, to which it gives the value 1. Denote by ∆L : L0,n → L0,n ⊗Oq the right
coaction dual to the action coadrn of Uq on L0,n. Then, in analogy with the formula of the
averaging operator C∞(G) → C∞(G)G, f → [f ] =

∫
G f

(
g−1 · g

)
dµ(g), for a locally compact

group G with Haar measure dµ(g), it is straightforward that

R = (id⊗ h)∆L. (2.24)

Note that the complete reducibility of L0,n discussed after (2.22) follows also from Theo-
rem 2.1 (1), since by (2.21) we have an isomorphism of Uq-modules

L0,n
Φn−→

(
Uq(g)

⊗n)lf ψ−1
n−→ U lf

q (g)
⊗n,

where lf means respectively locally finite for the action adrn of Uq(g) on Uq(g)
⊗n, and locally

finite for the action adr of Uq(g) on Uq(g). An explicit basis of M0,n is described in [18, Propo-
sition 6.22].

Finally, let us point out here two important consequences of (2.20). First, Φn yields isomor-
phisms between centers, Z(L0,n) ∼= Z(Uq)

⊗n and Z
(
LUq

0,n

) ∼= Z
((
U⊗n
q

)Uq
)
, where one can show

that [18, Lemma 6.29]

Z
((
U⊗n
q

)Uq
) ∼= ∆(n)(Z(Uq))

⊗
C(q)

Z(Uq)
⊗n. (2.25)

Second, L0,n (and therefore M0,n) has no nontrivial zero divisors because of the isomorphisms
Φn : L0,n →

(
U⊗n
q

)lf ⊂ U⊗n
q and U⊗n

q
∼= Uq

(
g⊕n

)
, and the fact that Uq

(
g⊕n

)
has no nontrivial

zero divisors (proved, e.g., in [39]).

2.2 Integral forms and specializations

Let A = C
[
q, q−1

]
. We call integral form of a (Hopf) C(q)-algebra H a (Hopf) A-subalgebra AH

such that the canonical map AH
⊗

AC(q) → H is an isomorphism. Note that the standard
notion of integral form of C(q)-algebra uses Z

[
q, q−1

]
instead of C

[
q, q−1

]
; our choice is made

for simplicity (C
[
q, q−1

]
is a principal ideal domain, whereas Z

[
q, q−1

]
is not).
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2.2.1 Definitions

The unrestricted integral form of Uq is the A-subalgebra UA = UA(g) introduced by De Concini–
Kac–Procesi in [42, Section 12] (and in a differently normalized form in [39, 40]). It is the
smallest A-subalgebra of Uq which contains the elements (i = 1, . . . ,m)

Ēi =
(
qi − q−1

i

)
Ei, F̄i =

(
qi − q−1

i

)
Fi, Li, L−1

i (2.26)

and is stable under the action of B(g) given by the Lusztig automorphisms (see (2.1)). Recall
the root vectors Eβk , Fβk defined in (2.1). Let us put qβ := q(β,β)/2. The algebra UA is a free
A-module with basis the monomials Ēp1β1 · · · Ē

pN
βN
KλF̄

nN
βN

· · · F̄n1
β1

, where λ ∈ P and we set

Ēβk =
(
qβk − q−1

βk

)
Eβk , F̄βk =

(
qβk − q−1

βk

)
Fβk .

We denote U lf
A := UA ∩ U lf

q . The unrestricted integral form of Uad
q is defined similarly, as the

smallest A-subalgebra Uad
A ⊂ UA which contains the elements Ēi, F̄i and K

±1
i , for i = 1, . . . ,m,

and is stable under the Lusztig action of B(g).
For β a positive root, we define the divided powers

E
(k)
β =

Ekβ
[k]qβ !

, F
(k)
β =

F kβ
[k]qβ !

, k ∈ N.

The Lusztig restricted integral form of Uad
q [82, 83] (see also [35, Chapter 9.3]) is the A-sub-

algebra U res
A generated by the elements (i = 1, . . . ,m, k ∈ N∗)

E
(k)
i =

Eki
[k]qi !

, F
(k)
i =

F ki
[k]qi !

, Ki, K−1
i .

The algebra U res
A is a free A-module with Poincaré–Birkhoff–Witt (PBW) basis

E
(p1)
β1

· · ·E(pN )
βN

m∏
i=1

Kσi
i [Ki; ti]qiF

(nN )
βN

· · ·F (n1)
β1

,

where σi ∈ {0, 1}, ni, pi, ti ∈ N, and we set [Ki; 0]qi := 1 and

[Ki; t]qi =
t∏

s=1

Kiq
−s+1
i −K−1

i qs−1
i

qsi − q−si
.

The integral forms UA(h), UA(b±) and U
res
A (h), U res

A (b±) associated to the subalgebras h, b± ⊂ g
are the subalgebras of UA and U res

A , respectively, defined in the obvious way. For instance,
the “Cartan” subalgebra U res

A (h) = Uq(h) ∩ U res
A is generated as a A-module by the elements∏m

i=1K
σi
i [Ki; ti]qi .

Denote by CA the category of U res
A -modules of type 1, i.e., free A-modules of finite rank which

have a basis where the elements Ki act diagonally with eigenvalues of the form qki , k ∈ Z (in
general, finiteness of the rank imposes eigenvalues of the form ±qki , k ∈ Z). The category CA is
a rigid and tensor category. It is not semisimple, and this makes the study of CA a complicated
task; for this, see [18], and Section 2.2.2 below. Every type 1 finite-dimensional simple Uq-
module Vµ, µ ∈ P+, has a U

res
A -invariant full A-sublattice, that we denote by AVµ. These U res

A -
modules form the simple objects of CA. Moreover, CA⊗C

[
q1/D, q−1/D

]
is a ribbon category (see

Section 2.3).
The integral quantum function Hopf algebra OA = OA(G) is the (type 1) restricted dual

of U res
A , that is, the A-span of the matrix coefficients x 7→ vi(πV (x)vi), x ∈ U res

A , for every mod-
ule V in CA, where (vi) is an A-basis of V and

(
vi
)
the dual A-basis of the dual module V ∗ (com-

pare with the definition of Oq). We can also regard OA as the set of A-linear maps f : U res
A → A
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such that Ker(f) contains a cofinite two sided ideal I, and
∏r
s=−r(Ki − qsi ) ∈ I for some r ∈ N

and every i. Because of the inclusions of U res
A (h), U res

A (n±), U
res
A (b±) in U res

A , there are Hopf
epimorphisms from OA to the A-duals of these subalgebras, that we denote by OA(TG), OA(U±)
and OA(B±), respectively.

The algebra OA has been introduced by Lusztig in [82, 83]. It is an integral form of Oq, so
Oq = OA

⊗
AC(q).

OA is also the restricted dual of the integral form Γ = Γ(g) of Uad
q introduced by De Concini–

Lyubashenko in [41, Sections 2 and 3]; Γ is the A-subalgebra of Uad
q generated by the elements

(i = 1, . . . ,m)

E
(k)
i =

Eki
[k]qi !

, F
(k)
i =

F ki
[k]qi !

, (Ki; t)qi =

t∏
s=1

Kiq
−s+1
i − 1

qsi − 1
, K−1

i ,

where k ∈ N, t ∈ N (setting (Ki; 0)qi = 1 by convention). Note that the definition of Γ is
less symmetric than that of U res

A . However, Γ contains the elements Ki, and the commutation
relations between the generators E

(k)
i , F

(k)
i imply that the symmetrized elements [Ki; t]qi belong

to Γ. In fact, let us denote Γ(h) = Uq(h) ∩ Γ and Γ(b±) = Uq(b±) ∩ Γ. It is proved in [41,
Theorem 3.1] that Γ(h) contains U res

A (h) and that the elements
∏m
i=1K

−σ(ti)
i (Ki; ti)qi , ti ∈ N,

where σ(t) is the integer part of t/2, is an A-basis of Γ(h). A PBW basis of Γ is formed by the
monomials

E
(p1)
β1

· · ·E(pN )
βN

m∏
i=1

K
−σ(ti)
i (Ki; ti)qiF

(nN )
βN

· · ·F (n1)
β1

.

The inclusion U res
A ⊂ Γ is strict, for the elements (Ki; t)qi , t ̸= 0, do not belong to U res

A .
However, the restriction functor CΓ → CA is obviously an equivalence, where CΓ is the category of
Γ-modules of type 1, i.e., free A-modules of finite rank which have a basis where the elements Ki

act diagonally with eigenvalues of the form qki , k ∈ Z. Therefore, we can identify the two
categories, and OA with the (type 1) restricted dual of Γ. We will thus consider the U res

A -
modules AVµ, µ ∈ P+, equally as Γ-modules. We will sometimes use Γ instead of U res

A in
order to make direct the connection with results of De Concini–Lyubashenko about the integral
pairings π±A considered in Section 2.3.

The integral form LA0,1 of L0,1 is defined as the U res
A -module OA endowed with the product

of L0,1. The integral form LA0,n of L0,n is the braided tensor product of n copies of LA0,1; in
particular, LA0,n = O⊗n

A as U res
A -modules. That the products of L0,1 and L0,n are well defined

over A was shown in [18, Proposition 6.9].
The integral quantum moduli algebra is

MA
0,n :=

(
LA0,n

)Ures
A =

(
LA0,n

)UA .

Finally, given q = ϵ ∈ C× we define the specializations Uϵ, Γϵ, Oϵ, Lϵ0,n and MA,ϵ
0,n as the C-

algebras obtained by tensoring UA, Γ, OA, LA0,n and MA
0,n respectively with Cϵ, the A-module C

where q acts by multiplication by ϵ. Each one can also be defined as the quotient by the ideal
generated by q − ϵ. We find convenient to use the notations(

U⊗n
A

)UA

ϵ
:=

(
U⊗n
A

)UA
⊗
A

Cϵ,
(
U⊗n)lf

ϵ
:=

(
U⊗n
A

)lf ⊗
A

Cϵ. (2.27)

Let us stress here that when ϵ is a root of unity, taking the locally finite part and taking the
specialization at ϵ are non commuting operations. Indeed, as shown by Theorem 2.27 below,
Uϵ is finite over Z0(Uϵ) and therefore all its elements are locally finite for adr; on another
hand U lf

ϵ = U lf
A

⊗
ACϵ does not contain the elements Li.
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Similarly, taking invariants and taking the specialization at ϵ are non commuting operations
when ϵ is a root of unity: indeed, it is easily checked that in this case

(
U⊗n
A

)UA

ϵ
and

(
U⊗n
ϵ

)Uϵ ,
or MA,ϵ

0,n = MA
0,n

⊗
ACϵ and

(
Lϵ0,n

)Uϵ , are distinct spaces. When ϵ is a root of unity, we will not
consider the algebras MA,ϵ

0,n in this paper.

Arguments similar to those mentioned at the end of Section 2.1 imply that the algebras
LA0,n, MA

0,n and Lϵ′0,n, M
A,ϵ′

0,n , ϵ′ ∈ C×, have no nontrivial zero divisors (see [18, Propositions 6.11
and 6.30]).

2.2.2 Canonical bases and modified quantum groups

Because the category CA is not semisimple, it is not clear from the above definition of OA whether
or not it is a finitely generated algebra, if MA

0,n is a direct summand of the A-module LA0,n, or
if the projection map (2.8) may be refined to a morphism between underlying A-modules.

Such properties, using the appropriate formalism developed by Kashiwara–Lusztig, indeed
hold true, and will play a key role later. We state them precisely in Proposition 2.10, Theo-
rem 2.15 and Proposition 2.12. These results are consequences of the existence of an A-basis
of OA with favourable properties, which implies in particular that OA is a free A-module.
In order to introduce this A-basis it is necessary to consider a variant of Uad

q introduced by
Lusztig [83], called modified quantum group, and use the Kashiwara–Lusztig theory of canonical
bases [65, 66, 67, 83]. We are going to recall the background material step by step.

The Lusztig modified quantum group is the C(q)-algebra U̇ obtained by replacing Uad
q (h) with

the direct sum of infinitely many one-dimensional algebras, generated by orthogonal idempo-
tents 1λ indexed by the elements λ of the weight lattice P [83, Chapter 23]. Namely, as a vector
space U̇ =

⊕
λ′,λ′′∈P λ′U̇λ′′ , where

λ′U̇λ′′ = Uad
q

/( ∑
α∈Q

(
Kα − q(α,λ

′)
)
Uad
q +

∑
α∈Q

Uad
q

(
Kα − q(α,λ

′′)
))
.

Denote by πλ′,λ′′ : U
ad
q → λ′U̇λ′′ the canonical projection. The product of U̇ is given by

πλ′1,λ′′1 (s)πλ′2,λ′′2 (t) = πλ′1,λ′′2 (st) if λ′′1 = λ′2 and zero otherwise. Set 1λ := πλ,λ(1). The alge-
bra U̇ has not unit, but the family (1λ)λ∈P can be regarded as a substitute of it. Denote by ∆
the collection of maps

∆λ′1,λ
′
2,λ

′′
1 ,λ

′′
2
: λ′1+λ′2U̇λ′′1+λ

′′
2
→ λ′1

U̇λ′′1
⊗ λ′2

U̇λ′′2

such that

∆λ′1,λ
′
2,λ

′′
1 ,λ

′′
2
πλ′1+λ′2,λ′′1+λ′′2 = (πλ′1,λ′′1 ⊗ πλ′2,λ′′2 )∆Uad

q
, (2.28)

where ∆Uad
q

is the coproduct of Uad
q . We can regard ∆ as a (categorically completed) coproduct

∆: U̇ → U̇⊗̂2. There is a natural structure of Uad
q -bimodule on U̇, defined by

t′πλ′,λ′′(s)t
′′ = πλ′+ν′,λ′′−ν′′(t

′st′′) (2.29)

for all s ∈ Uad
q and all elements t′, t′′ ∈ Uad

q of respective weights ν ′, ν ′′. This structure affords
a triangular decomposition of U̇: given bases {b±} of Uad

q (n±), the set of elements b+1λb
−

(or b−1λb
+, or b+b−1λ), where λ ∈ P , is a basis of U̇.

Given any Uad
q -module X of type 1, and any weight subspace Xλ ⊂ X of weight λ ∈ P , one

can define the action of an element u1λ ∈ U̇, u ∈ Uad
q , on X as the projection onto Xλ followed

by the action of u. This way, one can identify the category C with the one of finite-dimensional
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unital U̇-modules, where unital means that all elements 1λ act as 0 but a finite number of them,
and

∑
λ∈P 1λ acts as the identity. It is proved in [83, Section 29.5.1], that

Oq =

{
f : U̇ → C(q)

∣∣∣∣ f is C(q)-linear and vanishes on some

two-sided ideal of finite codimension of U̇

}
.

There is an analogous realization of OA, of the form (see [83, Sections 23.2 and 29.5.2],
and [84])

OA =

{
f : U̇A → A

∣∣∣∣ f is A-linear and vanishes on some

two-sided ideal of finite corank of U̇A

}
,

where U̇A is the A-subalgebra of U̇ generated by the elements E
(k)
i 1λ and F

(k)
i 1λ, for all i ∈

{1, . . . ,m}, k ∈ N and λ ∈ P . It is a U res
A -subbimodule of U̇, and the coproduct restricts to a map

∆: U̇A → U̇A
⊗̂2. The above identification of the category C with the one of finite-dimensional

unital U̇-modules yields an identification of the category CA of U res
A -modules of type 1 with the

category of U̇A-modules of finite rank.
The key advantage of this realization of OA is that U̇A can be equipped with a canonical

A-basis Ḃ. The construction of Ḃ is described in [83, Chapter 25]. It relies on the Kashiwara–
Lusztig canonical basis of U res

A (n−). This last basis, denoted byB−, is defined in [83, Chapter 14],
and [65] (a review can be found in [35, Chapter 14]). It enjoys the following nice properties.
Denote by − : C(q) → C(q) the field involution such that q = q−1, and by − : Uad

q → Uad
q the

homomorphism of C-algebras such that

Ēi = Ei, F̄i = Fi, K̄λ = K−λ, fx = f̄ x̄

for all f ∈ C(q), x ∈ Uad
q (Ēi and F̄i above, which will not appear elsewhere, should not be

confused with the normalized elements in (2.26)). The map − yields a C-algebra homomor-
phism − : U̇ → U̇. Then, we have

(1) the elements of B− are weight vectors under the adjoint action of Uad
q (h);

(2) for every b ∈ B−, b̄ = b;

(3) for every b, b′ ∈ B−, bb′ =
∑

b′′∈B− N bb′
b′′ b

′′ where N bb′
b′′ ∈ Z

[
q, q−1

]
;

(4) for every b, b′ ∈ B−, ∆(b) =
∑

b′,b′′∈B− Cbb′b′′b
′ ⊗ b′′ where Cbb′b′′ ∈ Z

[
q, q−1

]
;

(5) for every µ ∈ P+, denoting by vµ the highest weight vector of the U res
A -module AVµ, the

elements bvµ which are non-zero, where b ∈ B−, form an A-basis of AVµ.

When g is simply laced, the coefficients N bb′
b′′ and Cbb′b′′ belong to N

[
q, q−1

]
[83, Theorem 14.3.13].

In the case of g = sl2, the elements of B− are just the divided powers F (k), k ∈ N. Formulas in
terms of PBW basis elements are known also for g = sl3 and sl4, and an algorithm exists in the
general case (see [43] and the references therein).

Correspondingly to B−, the set B+ = ω(B−) is a basis of U res
A (n+), where ω : U

ad
q → Uad

q is
the (C(q)-linear) Cartan automorphism, defined by

ω(Ei) = Fi, ω(Fi) = Ei, ω(Ki) = K−1
i

for i = 1, . . . ,m. The triangular decomposition of U̇ implies that the elements b+1λb
′−,

where b+ ∈ B+, b′− ∈ B− and λ ∈ P , form a basis of U̇. They form in fact an A-basis
of U̇A, and its elements are fixed by the involution − : U̇ → U̇.

Lusztig has constructed another A-basis of U̇A, denoted Ḃ, and called the canonical basis
of U̇A. It satisfies numerous properties that we now review. Its elements are denoted by b♢λ b′,
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where b, b′ ∈ B− and λ ∈ P , and are related to the elements b+b′−1λ, where b+ := ω(b)
and b′− := b′, by a specific trigonal change of basis with coefficients in A. Although we always
have b+1λ, b

′−1λ ∈ Ḃ, to our knowledge explicit formulas of the elements of Ḃ as linear combi-
nations of elements b+1λb

′− or b′−1λb
+ are known only for g = sl2 or sl3 (see [83, Section 25.3]

and [37]). In the former case, identifying P with Z and Q with 2Z the canonical basis Ḃ is
formed by the elements

E(k)1−nF
(l) and F (l)1nE

(k), k, l, n ∈ N, n ≥ k + l,

where E(k)1−nF
(l) = F (l)1nE

(k) for n = k + l.
We are going to review Lusztig’s construction of Ḃ, its canonical partition Ḃ =

⋃
λ∈P+

Ḃ[λ],
the dual basis Ḃ∗, and Kashiwara’s approach to Ḃ∗ [66, 67]. The latter is stated in Theorem 2.6
below. At first we need to recall the notions of based module and balanced triple; for details on
these notions we refer to [83, Chapter 27] and [66] (see also [68], [104, Sections 3.15 and 3.16],
or [35, Chapter 14] for overviews).

Denote by A0 ⊂ C(q) the ring of rational functions regular at q = 0. By applying the
involution −, put A∞ = A0. Since A0 is the localization of C[q] at q = 0, we may regard A∞ as
the localization of C

[
q−1

]
at q = ∞.

Let us recall briefly the definition of crystal basis (see [65]). Denote by Uad
q (g)i the subalgebra

of Uad
q (g) generated by Ei, Fi and K

±1
i ; thus Uad

q (g)i is isomorphic to Uqi(sl2). Let M be a Uad
q -

module of type 1. Denote M ζ the subspace of M of weight ζ ∈ P . For every i = 1, . . . ,m, we
can regardM as a Uad

q (g)i-module, soM ∼=
⊕

j Vλj for some simple Uad
q (g)i-modules Vλj . These

being generated by primitive weight vectors, the PBW basis of Uad
q (g)i yields

M =
⊕
ζ∈P

⊕
0≤n≤(α̌i,ζ)

F
(n)
i

(
Ker(Ei) ∩M ζ

)
.

The Kashiwara operators ẽi, f̃i are the endomorphisms of M defined by, for every v ∈ Ker(Ei)∩
M ζ and 0 ≤ n ≤ (α̌i, ζ),

f̃i
(
F

(n)
i v

)
= F

(n+1)
i v, ẽi

(
F

(n)
i v

)
= F

(n−1)
i v.

A crystal basis of M at q = 0 consists of a pair (L,B), where

� L is a free A0-sublattice of M such that the canonical map L
⊗

A0
C(q) → M is an

isomorphism;

� B is a basis of the C-vector space L/qL;
� L =

⊕
ζ∈P Lζ and B =

∐
ζ∈P

(
B ∩ Lζ/qLζ

)
, where Lζ = L ∩M ζ ;

� for every i = 1, . . . ,m the Kashiwara operators ẽi, f̃i preserve L, and the induced maps
on L/qL send B into B∪{0}, and satisfy b′ = f̃i(b) if and only if b = ẽi(b

′) for every b, b′ ∈ B.

Crystal bases at q = ∞ are defined similarly, by replacing A0 with A∞ and q with q−1.
A based module consists of a pair (M,B) where M is a Uad

q -module of type 1 endowed with
a C(q)-basis B such that the following conditions hold:

(i) For every weight ζ ∈ P , the set B ∩M ζ is a basis of the weight subspace M ζ ⊂M .

(ii) The A-module AM generated by B is stable under U res
A .

We will denote by LM the A0-submodule of M generated by B, and by L̄M the A∞-
submodule of M generated by B.

(iii) The C-linear involution − : M → M defined by fb = fb for all f ∈ C(q) and b ∈ B is
compatible with the action of Uad

q in the sense that xm = x̄m̄ for all x ∈ Uad
q , m ∈M .
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(iv) The A∞-submodule L̄M of M together with the image of B in L̄M/q−1L̄M forms a crystal
basis of M at q = ∞.

If (M,B) is a based module, we will denote by B the image of B in L̄M/q−1L̄M . From the
notion of balanced triple that we recall now, denoting by B the image of B in LM/qLM , we see
that (LM ,B) is a crystal basis at q = 0.

Indeed, consider more generally a C(q)-vector space V , finite-dimensional or not, a sub-A-
module AV , a sub-A0-module A0V and a sub-A∞-module A∞V satisfying the conditions (all
isomorphisms being the canonical maps)

V ∼= C(q)
⊗
A

AV, V ∼= C(q)
⊗
A0

A0V, V ∼= C(q)
⊗
A∞

A∞V.

Consider the C-vector space E := AV ∩ A0V ∩ A∞V . Then (AV,A0V,A∞V ) is a balanced triple
[65, 66] if the canonical maps

A
⊗
C
E → AV, A0

⊗
C
E → A0V, A∞

⊗
C
E → A∞V (2.30)

are isomorphisms. Equivalently, (AV,A0V,A∞V ) is balanced if and only if the canonical map
E → A0V/qA0V is an isomorphism, if and only if the canonical map E → A∞V/q

−1
A∞V is an

isomorphism [66, Lemma 2.1.1].
Given a based module (M,B), the elements of B are weight vectors and b = b for every b ∈ B.

Also, if an element m ∈ AM satisfies m = m and m ∈ B + q−1L̄M , then m ∈ B (see [83,
Section 27.1.5] for details on this fact). It follows that the canonical quotient map

AM ∩ LM ∩ L̄M → L̄M/q−1L̄M (2.31)

is an isomorphism of C-vector spaces. This provides another way of viewing based modules:
by (2.31),

(
AM,LM , L̄M

)
is a balanced triple, and by (2.30) the A-lattice AM is completely

determined by the crystal base
(
L̄M ,B

)
. We will say that

(
L̄M ,B

)
(or the corresponding crystal

base (LM ,B) at q = 0) is melted into the based module (M,B).
We will indifferently apply the notion of based module to finite-dimensional unital U̇-modules,

since they are equivalent to Uad
q -modules of type 1.

Every module Vµ, µ ∈ P+, supports a structure of based module (see [83, Section 14.4.10]
and [65]); the corresponding basis, called canonical basis and that we will denote byBµ, is formed
by the elements bvµ ∈ AVµ which are non-zero, where b ∈ B− and vµ is the canonical highest
weight vector of Vµ, corresponding to the coset of 1 ∈ Uad

q (n−) in the Verma module construction
of Vµ. Note that the involution ¯ : Vµ → Vµ defined by (iii) above is indeed an automorphism,
for the space Vµ with action of Uad

q defined by x · v := x̄v, for all x ∈ Uad
q , v ∈ Vµ, has highest

weight µ, and is thus isomorphic to Vµ via the map ¯. The crystal base
(
Llow
µ ,Blow

µ

)
at q = 0 is

formed by the A0-sublattice Llow
µ of Vµ generated by Bµ (which is eventually the same as the A0-

sublattice generated by the vectors of the form f̃i1 ◦ · · · ◦ f̃ik(vµ), where i1, . . . , ik ∈ {1, . . . ,m}),
and Blow

µ is the set of non-zero images of these vectors in Llow
µ /qLlow

µ .
There is the following uniqueness result [65, Theorem 3].

Theorem 2.5. Let M be a Uad
q -module of type 1, and (L,B) a crystal base at q = 0 of M .

Then there exists a C(q)-isomorphism M →
⊕

j Vλj by which (L,B) is A0-isomorphic to⊕
j

(
Llow
λj
,Blow

λj

)
.

The based modules form a category. Given based modules (M,B) and (M ′, B′), a morphism
of Uad

q -modules f : M →M ′ is a morphism of based modules if

(a) f(b) ∈ B′ ∪ {0} for any b ∈ B;

(b) B ∩Ker(f) is a basis of Ker(f).
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The direct sum of based modules (M,B) and (M ′, B′) is a based module (M ⊕M ′, B ∪ B′);
and a submodule M ′ of a based module (M,B) spanned over C(q) by a subset B′ of B forms
a based module (M ′, B′). The quotient module M/M ′ together with the image of B \B′ is then
a based module.

The tensor product of based modules (M,B), (M ′, B′) is also defined. Namely, consider
the C-linear map Ψ: M ⊗M ′ →M ⊗M ′ defined by

Ψ(m⊗m′) = R̂−1(m̄⊗ m̄′),

where R̂ = Θ−1R, see (2.4) (note that, as we use the coproduct opposite to [83] our quasi-R-
matrix is R̂−1). It can be checked that Ψ is an involution compatible with the action of U̇ in the
sense of (iii) above in the definition of based module. Moreover, denote by LM,M ′ the C[q−1]-
submodule of M ⊗M ′ spanned by the basis elements b ⊗ b′, where b ∈ B, b′ ∈ B′. It is shown
in [83, Section 27.3], that for every pair (b, b′) ∈ B×B′ there is a unique element b♢ b′ ∈ LM,M ′

such that

(a) Ψ(b♢ b′) = b♢ b′,

(b) b♢ b′ − b⊗ b′ ∈ q−1LM,M ′ .

Moreover, B♢ = {b♢ b′, b ∈ B, b′ ∈ B′} is a basis ofM⊗M ′, a C[q−1]-basis of LM,M ′ , a C
[
q, q−1

]
-

basis of the C
[
q, q−1

]
-module ALM,M ′ of M ⊗M ′ generated by the elements b⊗ b′, where b ∈ B,

b′ ∈ B′, and (M ⊗M ′, B♢) is a based module.
This construction of B♢ is associative. Since (Vµ,Bµ) is for every µ ∈ P+ a based module,

it follows that any tensor product M of a finite number of the simple modules Vµ is naturally
a based module. The corresponding basis is called the canonical basis of M . These canonical
basis have been computed explicitly in [56] in the case g = sl2.

Consider now the Uad
q -module ωVµ with underlying space Vµ, µ ∈ P+, and action defined

by x.ωv := ω(x)v, for every x ∈ Uad
q and v ∈ Vµ (as usual ω : Uad

q → Uad
q is the Cartan auto-

morphism). Note that there are isomorphisms ωVµ ∼= V−w0(µ)
∼= V ∗

µ (endowed with the standard
left action of Uad

q ). Let us denote by ωvµ the vector vµ regarded in ωVµ (i.e., its canonical
lowest weight vector), and by ωBµ := {b.ωωvµ, b ∈ B+} \ {0} its canonical basis; note that
ωBµ = {ω(b)vµ, b ∈ ω(B−)} \ {0} = {bvµ, b ∈ B−} \ {0} = Bµ. Then ωVµ′ ⊗ Vµ′′ has the
canonical basis Bµ′,µ′′ := {b′ ♢ b′′, b′ ∈ ωBµ′ , b

′′ ∈ Bµ′′}. Since b′ ♢ b′′ is canonically determined
by the elements b′, b′′ ∈ B− such that b′ = ω(b′).ω

ωvµ′ , b
′′ = b′′vµ′′ , following Lusztig we denote

it by (b′ ♢ b′′)µ′,µ′′ .
Denote by vw0(µ) the canonical lowest weight vector of Vµ, and by ωvw0(µ) the vector vw0(µ)

regarded in ωVµ. It is a crucial observation that ωvw0(µ′)⊗vw0(µ′′) is a cyclic vector of ωVµ′ ⊗Vµ′′
(see, e.g., [83, Proposition 23.3.6]; note that ωvw0(µ′) ⊗ vw0(µ′′) plays the role of ξ−µ′ ⊗ ηµ′′ :=
ωvµ′ ⊗ vµ′′ in [83], because we use opposite coproducts on Uad

q but the factors ωVµ′ and Vµ′′ are
ordered in the same way).

We can now state the definition of the canonical basis Ḃ of U̇: each element u of Ḃ belongs
to U̇A1ζ for some (unique) ζ ∈ P , and it is then uniquely determined by the property that, for
every µ′, µ′′ ∈ P+ such that w0(µ

′′ − µ′) = ζ, we have

u(ωvw0(µ′) ⊗ vw0(µ′′)) = (b′ ♢ b′′)µ′,µ′′ (2.32)

for some (b′ ♢ b′′)µ′,µ′′ ∈ Bµ′,µ′′ [83, Section 25.2]. We write u = b′ ♢ζ b′′, and as in [84] we denote
by Ḃµ′,µ′′ the finite subset of Ḃ which is in bijection with Bµ′,µ′′ under the map u 7→ u(ωvw0(µ′)⊗
vw0(µ′′)). So

Ḃ =
⋃

µ′,µ′′∈P+

Ḃµ′,µ′′ . (2.33)
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Note in particular that Ḃ is formed by weight vectors for the left and right action of Uad
q (h)

(defined as usual by (2.29)).
In a sense, one can view U̇ as the projective limit of an inverse system formed by the(

Uad
q ⊗ Uad

q

)
-modules ωVµ′ ⊗ Vµ′′ , where µ

′, µ′′ ∈ P+; then Ḃ is the basis resulting from the
corresponding inverse system of basis {Ḃµ′,µ′′}µ′,µ′′ .

Lusztig has produced a partition of Ḃ as follows. First, consider the situation of a based
module (M,B). For every λ ∈ P+ denote by M [λ] the sum of the simple submodules of M
isomorphic to Vλ (i.e., its isotypical component). Set

M [≥ λ] =
⊕
λ′≥λ

M [λ′]. (2.34)

Then, for every base element b ∈ B there is a unique λ ∈ P+ such that b ∈ M [≥ λ] and λ is
maximal with this property [83, Section 27.2]. Denote by B[λ] the set of all b ∈ B that give rise
to λ ∈ P+ in this way. Clearly, the sets B[λ], λ ∈ P+, form a partition of B.

Now, given b ∈ Ḃ, let ζ ∈ P be the unique weight such that b ∈ U̇A1ζ , and let µ′, µ′′ ∈ P+ be
such that w0(µ

′′ − µ′) = ζ, and (α̌i, µ
′) is large enough for all i = 1, . . . ,m so that u(ωvw0(µ′) ⊗

vw0(µ′′)) is non-zero. This element belongs to the canonical basis Bµ′,µ′′ of ωVµ′ ⊗ Vµ′′ , and
therefore to one of the subsets Bµ′,µ′′ [λ], for a unique λ ∈ P+. It is a result that λ does
not depend on the choice of µ′, µ′′ (see [83, Section 29.1.1]). Hence there is a well-defined
map Ḃ → P+, b 7→ λ. Denoting by Ḃ[λ] the fiber of this map, we thus obtain a partition

Ḃ =
∐
λ∈P+

Ḃ[λ]. (2.35)

The sets Ḃ[λ] are called 2-sided cells. They are finite sets and have the following remarkable
properties. For every λ ∈ P+ denote by U̇[≥ λ] and U̇[> λ] the subspaces of U̇ spanned
by

∐
λ′≥λ Ḃ[λ′] and

∐
λ′>λ Ḃ[λ′] respectively. Then U̇[≥ λ] (respectively U̇[> λ]) consists of

the elements u ∈ U̇ such that if u acts on Vµ by a non-zero linear map, then µ ≥ λ (respec-
tively µ > λ) [83, Lemmas 29.1.3 and 29.1.4]. Both U̇[≥ λ] and U̇[> λ] are two-sided ideals of U̇.
Moreover, the algebra homomorphism πλ : U̇[≥ λ] → End(Vλ) given by the U̇-module structure
on Vλ descends to an algebra and Uad

q -bimodule isomorphism (keeping the same notation) [83,
Proposition 29.2.2]

π̄λ : U̇[≥ λ]/U̇[> λ] → End(Vλ). (2.36)

For instance, when g = sl2 the 2-sided cell Ḃ[n] associated to the simple Uad
q (sl2)-module of

type 1 and dimension n+ 1 is the set of cardinality (n+ 1)2 given by [83, Section 29.4.3]

Ḃ[n] =
{
E(k)1−nF

(l), n ≥ k + l
}
∪
{
F (l)1nE

(k), n ≥ k + l
}
, (2.37)

with the identification E(k)1−nF
(l) = F (l)1nE

(k) when n = k + l. As we are mainly interested
inOA, we are going to describe the dual partition of Ḃ∗, see Theorem 2.6. The duality with (2.35)
is discussed after that theorem.

First, we follow the approach of Kashiwara [66, 67]. For every λ ∈ P+, denote by V
r
λ the dual

space of Vλ endowed with its natural structure of right Uad
q -module, defined by (fx)(v) = f(xv)

for every f ∈ V r
λ , x ∈ Uad

q , v ∈ Vλ. Clearly, V r
λ is a simple module of highest weight λ.

Let φ : Uad
q → Uad

q be the anti-automorphism of C(q)-algebra given by φ(Ei) = Fi, φ(Fi) = Ei,
φ(Kλ) = Kλ. By using φ, any right Uad

q -module can be considered as a left Uad
q -module. In

particular, by the Verma module construction of Vλ it follows

V r
λ
∼= Uad

q

/( ∑
µ∈P+

(
Kµ − q(λ,µ)

)
Uad
q +

m∑
i=1

E
1+(α̌i,λ)
i Uad

q

)
,
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and φ affords an isomorphism of the right module V r
λ with the left module Vλ. We will denote

by fλ the unique highest weight vector of V r
λ satisfying ⟨fλ, vλ⟩ = 1.

The space V r
λ ⊗ Vλ can be identified with End(Vλ)

∗, and thus acquires by duality a natural
structure of Uad

q -bimodule
(
or equivalently left Uad

q ⊗
(
Uad
q

)op
-module

)
; the left and right actions

are given by

x(f ⊗ v)y = fy ⊗ xv (2.38)

for every x, y ∈ Uad
q , f ∈ V r

λ , v ∈ Vλ. The space V r
λ ⊗ Vλ also acquires by duality a natural

“upper” crystal structure over Uad
q ⊗

(
Uad
q

)op
, as we explain now. Denote by ⟨ , ⟩λ : Vλ × Vλ →

C(q) the unique symmetric bilinear form such that

⟨vλ, vλ⟩λ = 1 and ⟨φ(x)u, v⟩λ = ⟨u, xv⟩λ (2.39)

for every u, v ∈ Vλ and x ∈ Uad
q . Recall the crystal base

(
Llow
µ ,Blow

µ

)
at q = 0 introduced before

Theorem 2.5. In Kashiwara’s terminology [65, 66], the pair
(
Llow
λ ,Blow

λ

)
is the lower crystal

base of Vλ at q = 0. Applying the involution − : Vλ → Vλ, one obtains the lower crystal base(
Llow
λ ,Blow

λ

)
at q = ∞. Because the canonical bases are determined by the crystal bases (see

the discussion about (2.31)), we call (Vλ,Bλ) the lower based module of Vλ, and Bλ the lower
canonical basis of Vλ.

Put

AV
up
λ := {v ∈ Vλ, ⟨v,AVλ⟩λ ⊂ A}, Lup

λ :=
{
v ∈ Vλ, ⟨v,Llow

λ ⟩λ ⊂ A0

}
,

Lup
λ :=

{
v ∈ Vλ, ⟨v,Llow

λ ⟩λ ⊂ A∞
}
. (2.40)

Then
(
AV

up
λ ,Lup

λ ,L
up
λ

)
is a balanced triple [66, Lemma 4.2.1]. Denote by Bup

λ the basis of Lup
λ /qL

up
λ

dual to Blow
λ by the induced pairing ⟨ , ⟩λ : Lup

λ /qL
up
λ ×Llow

λ /qLlow
λ → C. The pair

(
Lup
λ ,B

up
λ

)
is

the upper crystal base of Vλ at q = 0. The weight spaces of the A0-modules Llow
λ and Lup

λ are
related by(

Lup
λ

)µ
= q

(λ,λ)
2

− (µ,µ)
2

(
Llow
λ

)µ
, µ ∈ P. (2.41)

Correspondingly, denoting
(
Bup
λ

)µ
:= Bup

λ ∩
(
Lup
λ

)µ
and

(
Blow
λ

)µ
:= Blow

λ ∩
(
Llow
λ

)µ
, we have

(see [65] and [66, equation (4.2.9)])(
Bup
λ

)µ
= q

(λ,λ)
2

− (µ,µ)
2

(
Blow
λ

)µ
.

The A-module AV
up
λ is characterized by the following two properties [66, equations (4.2.10)–

(4.2.12)]:(
AV

up
λ

)λ
= C

[
q, q−1

]
vλ,

(
AV

up
λ

)µ
=

{
v ∈ Vλ | U res

A

(
n+

)λ−µ
v ∈ C

[
q, q−1

]
vλ
}
,

where U res
A

(
n+

)γ
=

{
u ∈ U res

A

(
n+

)
| ∀ν ∈ P, KνuK

−1
ν = q(ν,γ)u

}
. Denote by Bup

λ the inverse
image of Bup

λ by the isomorphism AV
up
λ ∩ Lup

λ ∩ Lup
λ → Lup

λ /qL
up
λ . By (2.30), the set Bup

λ is
a basis of AV

up
λ ; we call it the upper canonical basis of Vλ. In the appendix, we describe in

details the sl2 case.
Similarly, the right module V r

λ with its canonical basis Br
λ = {fλb, b ∈ B+} \ {0} has the

lower crystal base
(
Lrλlow,Brλlow

)
, and it supports a balanced triple

(
AV

r
λ
up,Lrλup,Lrλup

)
defined

again by duality. We denote by (Lrλup,Brλup) and Br
λ
up the corresponding crystal base and upper

canonical basis of V r
λ , respectively.

It follows that
(
AV

r
λ
up

⊗
A AV

up
λ ,Lrλup

⊗
A0

Lup
λ ,Lrλup

⊗
A∞

Lup
λ

)
is a balanced triple; equiv-

alently V r
λ ⊗ Vλ with the bimodule structure (2.38) and the basis Br

λ
up ⊗ Bup

λ is a based(
Uad
q ⊗ (Uad

q )op
)
-module.
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Denote again by ⟨·, ·⟩ : Oq×U̇ → C(q) the pairing of Uad
q -bimodules induced by the canonical

pairing ⟨ , ⟩ : Oq ×Uad
q → C(q), and let Φλ : V

r
λ ⊗ Vλ → Oq, λ ∈ P+, be the “matrix coefficient”

map, i.e.,

⟨Φλ(f ⊗ v), x⟩ = ⟨f, xv⟩λ (2.42)

for every f ∈ V r
λ , x ∈ Uad

q , v ∈ Vλ. The map Φ :=
⊕

λ∈P+
Φλ is an isomorphism of Uad

q -
bimodules, so let us use it to identify Oq with

⊕
λ∈P+

V r
λ ⊗ Vλ (which is the content of the

Peter–Weyl decomposition (2.6)). Define

L(Oq) =
⊕
λ∈P+

(
Lrλup

⊗
A0

Lup
λ

)
, B(Oq) :=

∐
λ∈P+

Brλup ⊗ Bup
λ ,

L(Oq) =
⊕
λ∈P+

(
Lrλup

⊗
A∞

Lup
λ

)
, B(Oq) :=

∐
λ∈P+

Brλup ⊗ Bup
λ .

Theorem 2.6.

(i) The triple
(
OA,L(Oq),L(Oq)

)
is balanced. Therefore, denoting by G the inverse of the

canonical map OA ∩ L(Oq) ∩ L(Oq) → L(Oq)/qL(Oq), we have

OA =
⊕

b∈B(Oq)

AG(b).

(ii) The basis G(B(Oq)) := {G(b), b ∈ B(Oq)} coincides with the dual canonical basis Ḃ∗,
i.e., the elements a∗ ∈ OA, for every a ∈ Ḃ, defined by a∗(a′) = δa,a′ for every a′ ∈ Ḃ.
Therefore,

OA =
⊕
b∈Ḃ

Ab∗.

The statement (i) is [66, Theorem 1], and (ii) is [67, Theorem 10.1 and Proposition 10.2.2]
and [83, Section 29.5]. The basis G(B(Oq)) = Ḃ∗ is called the global basis, or canonical basis,
of Oq. The proof of Theorem 2.6 (ii) in [67] (see also [68]) exhibits an isomorphism of crystals
over Uad

q ⊗
(
Uad
q

)
op,

ψ : B(Oq) → B
(
U̇
)
, (2.43)

where
(
L
(
U̇
)
,B

(
U̇
))

is the crystal base of U̇ associated to the canonical basis Ḃ. The isomor-
phism ψ satisfies ⟨G(b), G(b′)⟩ = δψ(b),b′ for every b ∈ B(Oq), b

′ ∈ B
(
U̇
)
. The unit 1 of OA

is (10)
∗; the constant structures of OA are studied in [83, 84].

The canonical basis of OA when g = sl2. Denote by a, b, c, d the matrix coefficients in
the canonical basis (v+, v− := Fv+) of V1, the simple Uad

q (sl2)-module of type 1 and dimension
two, read from the top left to the bottom right. In that case of V1 the upper canonical basis B

r
1
up

and Bup
1 coincide with the lower ones (this is not true in general, see Example 2.17). The

basis Ḃ∗(sl2) is formed by the monomials csapbr where p, r, s ∈ N, and csdpbr where p, r, s ∈ N
and p > 0; this is stated in [66, Proposition 9.1.1] (in [41, Proposition 1.3], similar monomials
are shown to form an A-basis of OA(SL2), but without reference to the canonical basis; see the
comments before (4.3) below). More precisely, recall the 2-sided cells (2.37). We verified by
a tedious though straightforward computation that we have the duality pairing〈

csdpbr, E(i)1−kF
(j)

〉
= δp+r+s,kδr,iδs,j ,

〈
csdpbr, F (j)1kE

(i)
〉
= 0,〈

csapbr, E(i)1−kF
(j)

〉
= 0,

〈
csapbr, F (j)1kE

(i)
〉
= δp+r+s,kδr,iδs,j .
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Therefore,

Ḃ[n]∗ := {csapbr, p, r, s ∈ N, p+ r + s = n}
∪ {csdpbr, p, r, s ∈ N, p > 0, p+ r + s = n}.

A description of Ḃ∗ in the case of g = sln can be found in [49]. Moreover, denote by Vn the
simple Uad

q (sl2)-module of type 1 and dimension n+1, by (vk) the canonical basis of Vn, by
(
vk
)

the dual basis, and by πn : U̇(sl2) → End(Vn) the representation morphism. By using the above
pairing, it is readily checked that for every 0 ≤ l,m ≤ n, we have

vl(πn(·) vm)

=
∑

0≤i,j,k
i+j≤k≤n
j−i=l−m

δ−k,n−2(m+j)

[
m+ j
j

]
q

[
n−m+ i− j

i

]
q

(
E(i)1−kF

(j)
)∗

+
∑

0≤i,j,k
i+j<k≤n
j−i=l−m

δk,n−2(m−i)

[
m− i+ j

j

]
q

[
n−m+ i

i

]
q

(
F (j)1+kE

(i)
)∗
. (2.44)

In particular, we see in this case of g = sl2 that in general the matrix coefficients of simple U res
A -

modules of type 1 are not elements of the dual canonical basis Ḃ∗. Moreover, these matrix
coefficients do not form a basis of OA. For instance, it follows from (2.44) that the matrix of
matrix coefficients of V2 has the following form:a2 [2]qab b2

ca [2]qbc+ 1 db
c2 [2]qcd d2

 . (2.45)

The matrix coefficient v∗0 ⊗ v0 being equal to [2]qbc + 1, this shows bc cannot be expressed as
a linear combination over A of matrix coefficients of simple modules.

The refined Peter–Weyl theorem. Let us discuss the U res
A -bimodule structure of OA,

and its relation with the partition (2.35). For every λ ∈ P+, put

A

•

C(λ) :=
⊕
b∈Ḃ[λ]

Ab∗ (2.46)

and

OA(≤ λ) :=
⊕
λ′≤λ

A

•

C(λ′), OA(< λ) :=
⊕
λ′<λ

A

•

C(λ′).

In particular, in the sl2 case the A-module A

•

C(nϖ1) has basis Ḃ[n]∗ given above, of cardinal-
ity (n+ 1)2.

Recall that U̇[≥ λ] and U̇[> λ] are two-sided ideals of U̇, and the algebra (whence Uad
q -

bimodule) isomorphism π̄λ : U̇[≥ λ]/U̇[> λ] → End(Vλ) (see (2.36)). In [83, Section 29.3], Lusz-
tig groups this isomorphism and its properties under the general term of refined Peter–Weyl
theorem. We are going to reinterpret it in terms of OA. First observe that

Lemma 2.7. The A-modules OA(≤ λ) and OA(< λ) are U res
A -bimodules, and the surjective map

dλ : OA(≤ λ) −→ Hom
(
U̇A[≥ λ]/U̇A[> λ], A

)
, α 7−→ ⟨α, · ⟩ (2.47)

descends to an isomorphism of U res
A -bimodules d̄λ on OA(≤ λ)/OA(< λ).
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Proof. For every α ∈ OA(≤ λ), x, y ∈ U res
A , and b ∈ Ḃ[µ] with µ ⩽̸ λ, we have xby ∈ U̇A[≥ µ].

Since U̇A[≥ µ] =
⊕

η≥µ AḂ[η] and η ≥ µ implies η ⩽̸ λ, it follows that ⟨xby, α⟩ = 0, i.e.,
(x � α � y)(b) = 0. This shows x � α � y ∈ OA(≤ λ). The same proof applies as well to
OA(< λ), whence the first claim. Since U̇[≥ λ] and U̇[> λ] are two-sided ideals of U̇, Ḃ is
a basis of U̇A, and the A-modules U̇A[≥ λ] and U̇A[> λ] are spanned by

∐
λ′≥λ Ḃ[λ′] and∐

λ′>λ Ḃ[λ′], both are two-sided ideals of U̇A, and U̇A[≥ λ]/U̇A[> λ] inherits the quotient U res
A -

bimodule structure. Clearly, the map dλ is well defined, it is a morphism of U res
A -bimodules, and

its kernel contains OA(< λ). Bijectivity of d̄λ comes by comparing the cardinality of canonical
bases: OA(≤ λ)/OA(< λ) has the basis formed by the cosets of the elements of the basis (Ḃ[λ])∗

of A
•

C(λ′), and U̇A[≥ λ]/U̇A[> λ] the basis formed by the cosets of the elements of Ḃ[λ], all
cosets being non-zero and pairwise distinct. ■

Since U̇A preserves the canonical basis Bλ of AVλ, π̄λ descends to an isomorphism of U res
A -

bimodules π̄λ : U̇A[≥ λ]/U̇A[> λ] → End(AVλ). We thus get exact sequences of U res
A -bimodules

0 // U̇A[> λ] // U̇A[≥ λ]
π̄λ // End(AVλ) −→ 0

and

0 // OA(< λ) // OA(≤ λ)
(π̄−1

λ )∗◦dλ // (End(AVλ))
∗ // 0. (2.48)

They split as sequences of A-modules but not as sequences of bimodules. In fact,

(End(AVλ))
∗ := Hom(End(AVλ), A)

∼= Hom(ωAVλ
⊗
A

AVλ, A) = AV
up
λ

⊗
A

(ωAVλ)
up, (2.49)

with the “ up ” structure defined in (2.40), and corresponding basis Bup
λ ⊗ (ωBλ)

up. Moreover,
the exact sequence (2.48) shows that this A-module of matrix coefficients, regarded as an A-
submodule of OA by means of the coefficient map Φ :=

⊕
λ∈P+

Φλ (see (2.42)), is contained

in OA(≤ λ). This for all λ′ ≤ λ yields
⊕

λ′≤λ (End(AVλ′))
∗ ⊂ OA(≤ λ). Now, using the

isomorphism π̄λ, we get

rankA(OA(≤ λ)) =
∑
λ′≤λ

Card
(
Ḃ[λ′]

)
=

∑
λ′≤λ

rank(AVλ′)
2

and therefore

dimC(q)
(
OA(≤ λ)

⊗
A

C(q)
)
=

∑
λ′≤λ

dim(Vλ′)
2 =

∑
λ′≤λ

dim((C(λ′)), (2.50)

where as usual C(λ′) denotes the space of matrix coefficients of Vλ′ (see (2.22)). It follows

OA(≤ λ)
⊗
A

C(q) =
⊕
λ′≤λ

C(λ′), OA(< λ)
⊗
A

C(q) =
⊕
λ′<λ

C(λ′). (2.51)

However, in general A
•

C(λ)
⊗

AC(q) is not equal to C(λ), A
•

C(λ) is not an A-sublattice of C(λ),
and A

•

C(λ) is not a U res
A -bimodule (it is because of this discrepancy that we have introduced

the dot notation “ • ”). For instance, we can see the first two facts in the case of g = sl2, by
inverting the system of identities (2.44) for all 0 ≤ l, m ≤ n (or more simply by considering the
identity v∗0 ⊗ v0 = [2]qbc + 1 from (2.45)). For the third fact, we have 12E ∈ Ḃ[2] (see (2.37)),
so ((12E)∗ � E)(10)=⟨∆((12E)∗), E ⊗ 10⟩=⟨(12E)∗, E10⟩=⟨(12E)∗, 12E⟩=1 since E10 = 12E.
Therefore, (12E)∗ � E /∈ A

•

C(2).
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From the formulas (2.44) and Appendix A, we can observe the isomorphism (2.49) in the
case of g = sl2. More simply, by projecting the matrix (2.45) onto (End(AV2))

∗ the entries are
unchanged except the (1, 1) entry, which becomes [2]qbc. All factors [2]q in the middle column dis-
appear if one uses matrix coefficients in the upper canonical basis of V2, which is vup0 := v0, v

up
1 :=

[2]−1
q v1, v

up
2 := v2 in the notations of (2.44), since we have vl(π2(·) vm) = [δm,1 + 1]q

〈
vupl , ·vupm

〉
for l,m ∈ {0, 1, 2}, where ⟨ , ⟩ is the pairing (2.39). Thus, in this particular example of
(End(AV2))

∗ we see explicitly the identification of the basis (π̄∗2)
−1◦d2(Ḃ[2]∗) andBup

2 ⊗ (ωB2)
up.

Summing up this discussion, the Lusztig refined Peter–Weyl theorem of [83, Section 29.3],
implies the following.

Theorem 2.8. As an A-module we have a direct sum decomposition

OA =
⊕
λ∈P+

A

•

C(λ), (2.52)

as U res
A -bimodules we have a (directed by inclusion, and non direct) sum

OA =
∑
λ∈P+

OA(≤ λ), (2.53)

and the composition factors of OA are the bimodules

(End(AVλ))
∗ ∼= (ωAVλ ⊗ AVλ)

∗ (2.54)

for every λ ∈ P+, each of multiplicity 1.

Remark 2.9. The above filtration and its composition factors appear in disguised manner as
good filtration in [5] and [91] (see also [103]).

Because Ḃ is formed by weight vectors for the left and right action of Uad
q (h) (see (2.33)),

the same is true of Ḃ∗ and (2.52) can thus be refined into a weight space decomposition

OA =
⊕
µ,ν∈P

⊕
λ∈P+

(
A

•

C(λ)
)
µ,ν
. (2.55)

Now recall the property (2.33). Consider in particular the finite subsets Ḃ0,ϖi and Ḃϖi,0

associated to the fundamental weights ϖi, i = 1, . . . ,m. The map u 7→ u(ωv0 ⊗ vw0(ϖi)), u ∈ U̇,
allows one to identify Ḃ0,ϖi with the canonical basis Bϖi

of ωV0 ⊗ Vϖi
∼= Vϖi , and therefore

with a uniquely determined finite subset Bϖi of the canonical basis B− of Uad
q (n−); similarly,

one can identify Ḃϖi,0 with a uniquely determined finite subset ωBϖi of the canonical basis B+

of Uad
q (n+). The elements of Ḃ0,ϖi and Ḃϖi,0 are respectively of the form b−1ϖi and b+1−ϖi ,

where b− ∈ Bϖi and b
+ ∈ ωBϖi , and we have (see [84, Proposition 3.3 and Section 3.4]):

Proposition 2.10. The algebra OA is finitely generated. A system of generators is provided by
the elements a∗ ∈ Ḃ∗, where a ∈

⋃m
i=1(Ḃ0,ϖi ∪ Ḃϖi,0).

Note that the above system of generators of OA has 2
∑m

i=1 dim(Vϖi) elements. In fact, recall
that φ : Uad

q → Uad
q is the anti-automorphism given by φ(Ei) = Fi, φ(Fi) = Ei, φ(Kλ) = Kλ.

Denote by v−ϖi and f−ϖi the canonical lowest-weight vectors of the highest weight mod-
ules V−w0(ϖi) and V

r
−w0(ϖi)

, respectively, and put the superscript “ up ” for the upper canonical
basis vectors.
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Lemma 2.11. For every b− ∈ Bϖi and b
+ ∈ ωBϖi, we have

(b−1ϖi)
∗ = Φϖi((fϖiφ(b

−))up ⊗ vϖi), (2.56)(
b+1−ϖi

)∗
= Φ−w0(ϖi)

((
f−ϖiφ

(
b+

))up ⊗ v−ϖi

)
. (2.57)

In other words, (b−1ϖi)
∗ and

(
b+1−ϖi

)∗
are the matrix coefficients lying on the first and

last columns of the matrix representations in the upper canonical bases of the spaces Vϖi,
i = 1, . . . ,m.

Proof. This can be checked by using the isomorphism (2.43). The key observation is that

⟨Φλ(fλ ⊗ vλ), 1µ⟩ = ⟨fλ, 1µvλ⟩λ = δλ,µ

for every λ ∈ P+, µ ∈ P , and therefore Φλ(fλ ⊗ vλ) = 1∗λ. Then the computation proceeds
by using the equivariance of Φ under the action of Uad

q ⊗ (Uad
q )op, the fact that ⟨·, ·⟩ dual-

izes the bimodules structures on Oq and U̇, and the description of the associated Kashiwara
operators on B(Oq) and B

(
U̇
)
. Here is an alternative argument. By the very definition of

the sets Ḃ[λ] we have b−1ϖi ∈ Ḃ[ϖi], b
+1−ϖi ∈ Ḃ[−ω0(ϖi)]. We wish to check if their du-

als (b−1ϖi)
∗, (b+1−ϖi)

∗ coincide with the elements of OA on the right sides of (2.56) and (2.57).
As already noticed after (2.48), by the isomorphism OA(≤ λ)/OA(< λ) ∼= End(AVλ)

∗ every ma-
trix coefficient of AVλ belongs to OA(≤ λ). Now, the A-modules OA(≤ ϖi) and OA(≤ −w0(ϖi))
are generated by Ḃ[ϖi]

∗ and Ḃ[−w0(ϖi)]
∗, respectively. Because ((π̄∗λ)

−1 ◦ dλ)(Ḃ[λ]∗) coincides
with Bup

λ ⊗ (ωBλ)
up, the conclusion follows. ■

Note that the same argument implies that, for every λ ∈ P+, any matrix coefficient of Vλ
in the upper canonical basis and vanishing on the elements of Ḃ[λ′] for λ′ < λ must belong
to Ḃ[λ]∗. For instance, in the sl2 case, OA(≤ 2) has canonical basis Ḃ[0]∗

∐
Ḃ[2]∗, so the matrix

coefficients of V2 vanishing on 10 belong to Ḃ[2]∗. This can be observed in (2.45), using the
comments in the paragraph before (2.52).

Though the A-module AVµ
⊗

A AVν has no decomposition like (2.7), we can refine the map
C(µ)⊗C(ν) → C(µ+ν) in (2.8) to an A-linear map defined on A

•

C(µ)
⊗

A A

•

C(ν). Indeed, there
is a unique injective morphism of U res

A -modules Tµ,ν : AVµ+ν → AVµ
⊗

A AVν , which is given by
Tµ,ν(vµ+ν) = vµ ⊗ vν [83, Proposition 25.1.2 (a)–(b)]. It defines a morphism of based modules

(Vµ+ν ,Bµ+ν) → (Vµ ⊗ Vν ,Bµ ♢Bν),

whereBµ ♢Bν := {b♢ b′, b ∈ Bµ, b
′ ∈ Bν} [83, Proposition 27.1.7]. Hence, Tµ,ν is a split A-linear

map, i.e., there exists a A-linear map Sµ,ν : AVµ
⊗

A AVν → AVµ+ν such that Sµ,ν ◦ Tµ,ν = id.
Note that Sµ,ν is not a U res

A -morphism. Similarly, the unique morphism of U res
A -modules

ωTµ,ν :
ω
AVµ+ν → ω

AVµ
⊗

A
ω
AVν is a split injection. Define ρµ′,µ′′ : U̇A → ω

AVµ′
⊗

A AVµ′′ by

ρµ′,µ′′(u) = u

(
ωvw0(µ′)

⊗
A

vw0(µ′′)

)
,

and ρµ′,µ′′,ν′,ν′′ : U̇A
⊗̂2 → ω

AVµ′
⊗

A AVµ′′
⊗

A
ω
AVν′

⊗
A AVν′′ by

ρµ′,µ′′,ν′,ν′′(u) = u

(
ωvw0(µ′)

⊗
A

vw0(µ′′)

⊗
A

ωvw0(ν′)

⊗
A

vw0(ν′′)

)
.

Define τµ′,µ′′,ν′,ν′′ :
ω
AVµ′+ν′

⊗
A AVµ′′+ν′′ → ω

AVµ′
⊗

A AVµ′′
⊗

A
ω
AVν′

⊗
A AVν′′ by

τµ′,µ′′,ν′,ν′′ =
(
1⊗ R̂−1 ⊗ 1

)
(ωTµ′,ν′ ⊗ Tµ′′,ν′′).
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It is an injective morphism of U res
A -modules. In [84, Section 1.13], Lusztig proved that τµ′,µ′′,ν′,ν′′

is a split A-linear map ([84] uses R̂ instead of R̂−1, since our coproducts on Uad
q are opposite),

and that it satisfies

τµ′,µ′′,ν′,ν′′ρµ′+µ′′,ν′+ν′′ = ρµ′,µ′′,ν′,ν′′∆, (2.58)

where ∆ is the coproduct of U̇A, see (2.28).
Now take µ := µ′ = µ′′, ν := ν ′ = ν ′′ ∈ P+, and put τµ,ν := τµ,µ,ν,ν . It follows from the

classical decomposition (2.7) over C(q), and (2.8) and (2.51), that the product of OA yields
a map m : OA(≤ µ)

⊗
AOA(≤ ν) → OA(≤ µ+ ν).

Denote the projection map pµ+ν : OA(≤ µ+ ν) → A

•

C(µ+ ν), define A
•
τµ,ν := pµ+ν ◦m, and

put

π′λ : OA(≤ λ) // OA(≤ λ)/OA(< λ)
(π̄∗

λ)
−1◦d̄λ // (End(AVλ))

∗ ,

where the first map is the quotient map. Consider the diagram

A

•

C(µ)⊗ A

•

C(ν)

π′
µ⊗π′

ν

��

A
•
τ µ,ν //

A

•

C(µ+ ν)

π′
µ+ν

��
(End(AVµ))

∗ ⊗ (End(AVν))
∗ τ tµ,ν // (End(AVµ+ν))

∗,

where τ tµ,ν is the transpose of Lusztig’s map τµ,ν .

Proposition 2.12. The map A
•
τµ,ν : A

•

C(µ)
⊗

A A

•

C(ν) → A

•

C(µ+ ν) is split as an A-linear map
and the above diagram is commutative.

Proof. The commutativity of the diagram comes from equation (2.58). The epimorphism π′λ
is injective on A

•

C(λ), and maps the canonical basis elements to the elements of the upper
canonical basis Bup

λ ⊗ (ωBλ)
up. By Lusztig’s results recalled above, the epimorphism τ tµ,ν splits

as an A-linear map. Therefore, the same is true of A
•
τµ,ν . ■

We stress that A
•
τµ,ν plays for OA the same role as the map (2.8) for Oq.

Finally, we consider for any n ≥ 1 the invariant elements of O⊗n
A endowed with the ac-

tion coadrn of U res
A , see (2.15)

(
recall that L0,n = O⊗n

q as Uad
q -module

)
.

First note that, by definition, OA(G
n) is the restricted dual of the Hopf algebra U res

A

(
g⊕n

)
,

associated to its category of type 1 modules. By ordering the summands of g⊕n we get an
isomorphism U res

A

(
g⊕n

) ∼= U res
A (g)⊗n, and any type 1 simple U res

A (g)⊗n-module is isomorphic
to V[λ] :=

⊗n
i=1 Vλi endowed with the componentwise action, for some [λ] := (λ1, . . . , λn) ∈ Pn+

(this is a classical fact; see, e.g., [51, Theorem 3.10.2]). Therefore, we have an isomorphism
OA(G

n) ∼= O⊗n
A . With the same notation [λ] := (λ1, . . . , λn) ∈ Pn+, let us put

A

•

C([λ]) :=
n⊗
i=1

A

•

C(λi) =
⊕

b∈
⊗n

i=1 Ḃ[λi]∗

Ab,

OA(≤ [λ]) :=
n⊗
i=1

OA(≤ λi) =
⊕

[λ′]∈Pn
+,λ

′
i≤λi

A

•

C([λ′]).

We thus obtain a decomposition into based (U res
A ⊗ (U res

A )op)⊗n-modules

O⊗n
A =

∑
[λ]∈Pn

+

OA(≤ [λ]).
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Now coadrn = (coadr)⊗n ◦ ∆(n−1) gives structures of U res
A -modules to O⊗n

A and OA(≤ [λ]). In
order to make it a based module, we give it the “♢” product of the canonical bases of the
factors OA(≤ λi), i.e.,

Ḃ[[λ]]∗ := ♢ni=1

( ∐
λ′i≤λi

Ḃ[λ′i]
∗
)
.

We thus obtain a decomposition into based U res
A -modules

O⊗n
A =

∑
[λ]∈Pn

+

(OA(≤ [λ]), Ḃ[[λ]]∗), (2.59)

with composition factors
⊗n

i=1 (End(AVλi))
∗. By the properties of “♢” products of bases of

based modules, the underlying A-module is

O⊗n
A =

⊕
[λ]∈Pn

+

A

•

C([λ]). (2.60)

Finally, we state the last property of based modules we need. Let (M,B) be a based module.
Recall the notations introduced around (2.34). It is proved in [83, Proposition 27.1.8] that for
every λ ∈ P+ the submodule M [≥ λ] is a sub-based module of M , and that it has the basis

B ∩M [≥ λ] =
⋃
λ′≥λ

B[λ′]. (2.61)

Consider M [̸= 0] :=
⊕

λ ̸=0M [λ], the largest proper submodule of M that contains no non-zero
invariant element. Recall that the space of coinvariants of M is

MUad
q

=M/M [̸= 0] =M/C(q)
{
um− ε(u)m, m ∈M, u ∈ Uad

q

}
that is, the largest quotient of M with trivial action, where ε : Uad

q → C(q) is the counit. It
follows from (2.61) that M [ ̸= 0] is a sub-based module of M , with the basis

⋃
λ ̸=0B[λ], and we

have (this is, [83, Proposition 27.2.6]):

Proposition 2.13. The quotient map π : M → MUad
q

is a morphism of based modules, where

MUad
q

is endowed with the basis BUad
q

:= π(B[0]).

Keeping the same notations, let AM ⊂ M be the A-module generated by B, and let

AM
∗ ⊂M∗ be the A-module generated by B∗. They are U res

A -modules. Denote by (AM
∗)U

res
A

the submodule of U res
A -invariant elements of AM

∗, regarded as a right module in the natural
way.

Lemma 2.14. We have a direct sum decomposition of A-modules

AM
∗ = (AM

∗)U
res
A

⊕
A

AN, (2.62)

where AN ⊂ AM
∗ is the A-submodule generated by

⋃
λ ̸=0B[λ]∗.

Proof. By Proposition 2.13, the transpose map πt : (MUad
q
)∗ →M∗ is a monomorphism map-

ping the dual basis B∗
Uad
q

to the subset B[0]∗ of B∗. The image of πt is (M∗)U
ad
q . If we set

AMUres
A

= π(AM), then πt((AMUres
A
)∗) = (AM

∗)U
res
A is generated by B[0]∗, which concludes the

proof. ■
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Note that, since B[0] is in general not invariant under the action of U res
A , AN need not be

stable under this action.

We are now ready to draw consequences of this discussion and the previous results. As usual
denote by

(
O⊗n
A

)Ures
A the subspace of invariant elements of O⊗n

A for the action coadrn. In the case
n = 1, it is just the center Z(OA).

Theorem 2.15.
(
O⊗n
A

)Ures
A is a direct summand of the A-module O⊗n

A for any n ≥ 1.

Proof. By equation (2.59), it is enough to show that for every [λ] ∈ Pn+ the invariant elements
of OA(≤ [λ]) form a direct summand, and these summands are compatible with non-empty
intersections OA(≤ [λ])∩OA(≤ [λ′]). Using that OA(G

n) ∼= O⊗n
A and viewing Pn+ as the weight

lattice of Gn, it is enough to prove these claims for n = 1. Given λ ∈ P+ put

Pλ = {λ′ ∈ P+, λ
′ ⩽̸ λ},

and denote by U̇A[Pλ] the A-submodule of U̇A generated by
∐
λ′∈Pλ

Ḃ[λ′]. Also, let us put
U̇[Pλ] = U̇A[Pλ]

⊗
AC(q). The complement P+ \ Pλ is finite, and if λ′ ∈ Pλ and λ′′ ≥ λ′, then

λ′′ ∈ Pλ. By the results of [83, Section 29.2], U̇[Pλ] is a two-sided ideal, and the quotient algebra
U̇/U̇[Pλ] is finite-dimensional with unit the coset of

∑
λ′≤λ 1λ′ , and it is semisimple, isomorphic

to
⊕

λ′≤λ End(Vλ′) (whereas U̇A/U̇A[Pλ] has indecomposable modules, see Example 2.17). It
inherits from U̇ a canonical basis, formed by the non-zero cosets of elements of Ḃ, and with this
basis U̇/U̇[Pλ] is a based module for the right adjoint action adr. Similarly as for (2.47), we
have a morphism of U res

A -modules

d̃λ : OA(≤ λ) −→ Hom
(
U̇A/U̇A[Pλ], A

)
, α 7−→ ⟨α, · ⟩,

which is an isomorphism by (2.50) and the computation dim
(
U̇/U̇[Pλ]

)
=

∑
λ′≤λ dim(Vλ′)

2

in [83, Section 29.2]. Applying Proposition 2.13 and (2.62) to the based module M = U̇/U̇[Pλ],
we obtain that the invariant elements of OA(≤ λ) form a direct summand. Finally, for any
λ, λ′∈P+ we have OA(≤λ) ∩ OA(≤λ′) ∼= Hom

(
U̇A/

(
U̇A[Pλ] + U̇A[Pλ′ ]

)
, A

)
. Applying Propo-

sition 2.13 and (2.62) to the based module M := U̇/(U̇[Pλ] + U̇[Pλ′ ]), we obtain that the
invariant elements (AM

∗)U
res
A of OA(≤ λ)∩OA(≤ λ′) form a direct A-summand. Since the latter

is a based U res
A -submodule of OA(≤ λ) and OA(≤ λ′), this summand is also a direct A-summand

of OA(≤ λ)U
res
A and OA(≤ λ′)U

res
A . This shows the A-modules OA(≤ λ)U

res
A for all λ ∈ P+ match

to form the A-summand (OA)
Ures
A of OA, and thus concludes the proof. ■

Remark 2.16. Let (M,B), (M ′, B′) be based modules, with tensor product (M ⊗M ′, B♢),
and B♢[0] ⊂ B♢ the subset in bijection with the canonical basis of the space of coinvari-
ants (M ⊗M ′)Uad

q
(see Proposition 2.13). This subset is described in [83, Proposition 27.3.8] in

terms of B and B′. Since U̇/U̇[Pλ] is semisimple with known summands, and the construction
of the “♢” product of canonical bases is associative, one can recursively compute the subset of
the canonical basis of

⊗n
i=1 U̇/U̇[Pλi ] (endowed with the action dual to coadrn) which is in bijec-

tion with the canonical basis of the space of coinvariants. Therefore, a complete (though highly
nontrivial) characterization of the basis of

(
O⊗n
A

)Ures
A can be obtained. Examples can be found

in [83, Section 27.3.10]. In the case g = sl2, the canonical basis of the dual space End
(
V ⊗n
1

)∗
has been identified in [56] with the canonical basis of the Temperley–Lieb algebra TLn(q).

Example 2.17. The simplest case is already instructive. Namely, consider V1 and V2, the
simple Uad

q (sl2)-modules of type 1 and dimension two and three.

On V1, we have the lower canonical basis vectors v+ and v−, such that Kv+ = qv+, Ev+ = 0,
v− = Fv+. The canonical lower and upper bases of V1 are both {v+, v−}. Using the rela-
tion (2.32), we see that the elements of Ḃ0,1 and Ḃ1,0 are 11, F11 and 1−1, E1−1, respectively;
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the dual linear forms generate OA(SL2), they are the matrix coefficients a, c, d and b respectively.
By (2.37), we have Ḃ[1] = Ḃ0,1

∐
Ḃ1,0.

Next consider V2. On V2, we have the canonical highest weight vector v0 of weight 2,
and lower canonical basis B2 = {v0, v1, v2}, where v1 = Fv0 and v2 = F (2)v0. We have
Bup

2 =
{
v0, [2]

−1
q v1, v2

}
(see Appendix A). We can identify the ambient space of the right mod-

ule V r
2 with that of V2; its highest weight vector is then v0, and its canonical lower and upper

bases are Br
2 = {v0, v1, v2} and Br

2
up =

{
v0, [2]

−1
q v1, v2

}
.

Consider now the module ωV1 ⊗ V1. We have

R̂ =
∞∑
n=0

(
q − q−1

)n
[n]q!

qn(n−1)/2En ⊗ Fn,

so the matrix of the involution Ψ = R̂−1 ◦¯ in the basis v+ ⊗ v+, v+ ⊗ v−, v− ⊗ v+, v− ⊗ v− is

(
R̂−1 ◦¯

)
ωV1,V1

=


1 0 0 0
0 1 0 0
0 0 1 0

q−1 − q 0 0 1

 .

Therefore, the canonical basis B1,1 is formed by the vectors v+ ♢ v+ = v+⊗v++q−1v−⊗v− and
v+ ♢ v− = v+⊗v−, v− ♢ v+ = v−⊗v+, v− ♢ v− = v−⊗v−. Consider the partitionB1,1 = B1,1[2]∪
B1,1[0]. We haveB1,1[2] = {v− ♢ v+, v+ ♢ v+, , v+ ♢ v−}, which is a basis of the three-dimensional
submoduleW2 of V1⊗V1. SinceB1,1 is an A-basis of

ω
AV1

⊗
A AV1, it follows that the epimorphism

τ t1,1 : A
•

C(1)
⊗

A A

•

C(1) → A

•

C(2) splits (see Proposition 2.12). The vector v− ♢ v− is cyclic, so
B1,1[0] = {v− ♢ v−}. By the definitions, we have v+ ♢ v+ = (1♢0 1)1,1, v+ ♢ v− = (1♢0 F )1,1,
v− ♢ v+ = (F ♢0 1)1,1, v− ♢ v− = (F ♢0 F )1,1, so the corresponding elements of Ḃ1,1 ⊂ Ḃ are
respectively 10, 1−2F , 12E, and F12E = E1−2F .

The invariant submoduleW0 of
ωV1⊗V1 is generated by v′ = v−⊗v−−q−1v+⊗v+. The U res

A -
modules ωAV1

⊗
A AV1 and W2⊕W0 are not equal, though they are by extending scalars to C(q).

Indeed, we have

v+ ⊗ v+ = [2]−1
q (qv+ ♢ v+ − v′) /∈W2 ⊕W0.

The module of coinvariants is (ωV1 ⊗ V1)Uad
q

= C(q){π(v− ⊗ v−)}, where as usual π : ωV1⊗V1 →
(ωV1 ⊗ V1)Uad

q
is the quotient map. The transpose map πt : ((ωV1 ⊗ V1)Uad

q
)∗ → (ωV1 ⊗ V1)

∗ sends
(v− ♢ v−)∗ to the unique Uad

q -invariant linear map

ev1 :
ωV1 ⊗ V1 → C(q)

such that ev1(v− ⊗ v−) = 1.

Note that, since elements of U̇A[λ > 2] act trivially on modules with all isotypical components
of highest weight ≤ 2, ωAV1

⊗
A AV1 is an indecomposable module over U̇A/U̇A[λ > 2] (that is,

U̇A/U̇A[P2] in the notations of Theorem 2.15).

2.2.3 Some consequences on LA
0,n and MA

0,n

Recall from Section 2.2.1 the definition of the integral forms LA0,n and MA
0,n.

Proposition 2.18. LA0,n and MA
0,n are free A-modules, and MA

0,n is a direct summand of the
A-module LA0,n. Moreover, LA0,n is a finitely generated ring.
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Proof. Since LA0,n = O⊗n
A as U res

A -modules, by (2.60) it has the basis
⋃

[λ]∈Pn
+
Ḃ[[λ]]∗. Therefore,

LA0,n is a free A-module. Since A is a principal ideal domain, it follows that MA
0,n is a free

A-submodule [77, Appendix 2.2]. By Theorem 2.15, there is a direct sum decomposition as
A-module

LA0,n = MA
0,n ⊕ AN, (2.63)

and the proof identifies a basis of MA
0,n as a subset of

⋃
[λ]∈Pn

+
Ḃ[[λ]]∗.

Next, consider the question of finite generation. By the formula (2.17), it is enough to
verify this for LA0,1, but LA0,1 = OA as an A-module, and OA is finitely generated by the matrix
coefficients of the fundamental U res

A -modules AVϖk
, k ∈ {1, . . . ,m} (see (2.56) and (2.57)). Any

monomials in these generators can be written as a A-linear combination of monomials in the
same generators but with the product of LA0,1, instead of the product ⋆. This follows from the
integrality properties of the R-matrix, and the formula inverse to (2.9) (see in [18, Section 3.3
and the formulas (4.6)–(4.8)]). ■

Remark 2.19.

(a) As noted in (2.62), the A-module AN in the decomposition (2.63) is in general not a U res
A -

module. Therefore, the A-linear projection map RA : LA0,n → MA
0,n such that Ker(RA) =

AN is not a Reynolds operator, for it does not satisfy the identity RA(αβ) = αRA(β) for
all α ∈ MA

0,n, β ∈ LA0,n.

(b) Recall (2.24). In coherence with (a) above, there is no normalized Haar measure on OA

taking values in A. Indeed, by extending scalars over C(q) it should otherwise coincide
with the Haar measure h : Oq → C(q), but in the notations of Example 2.17 (see also the
comments after (2.44)), since h(v∗0 ⊗ v0) = 0 we have h(bc) = −1/

(
q + q−1

)
, whence h

cannot be defined on OA.

(c) The Haar measure yields a well-defined A0-linear map h : L(Oq) → A0 (and analo-
gously A0-linear and A∞-linear maps h : L♢

(
O⊗n
q

)
→ A0 and h̄ : L̄♢

(
O⊗n
q

)
→ A∞ for

any n ≥ 1, where
(
L♢

(
O⊗n
q

)
,B[[λ]]∗

)
is the crystal basis at q = 0 underlying the based

Uad
q -module (2.59)). Indeed, by (2.41) the lattice Lrλup

⊗
A0

Lup
λ is generated by the matrix

coefficients in the canonical bases of V r
λ and Vλ. Since the normalisation by powers of q is

vacuous on the trivial module V ∗
0 ⊗ V0, and h vanishes on V ∗

λ ⊗ Vλ for λ ∈ P+ \ {0}, the
claim follows.

2.3 Perfect pairings

We will need to restrict the morphisms Φ+, Φ− in (2.5) on the integral forms OA(B+), OA(B−).
We collect their properties in Theorem 2.20 and the discussion thereafter. In order to state it,
we recall first a few facts about R-matrices and related pairings.

Recall that CA is the category of U res
A -modules of type 1. In [82, 83], Lusztig proved that

CA
⊗

AC[q±1/D] is braided and ribbon, with braiding given by the collection of endomorphisms

R = (RV,W )V,W∈Ob(CA).

Actually, RV,W is represented by a matrix with coefficients in qZ/DC
[
q±1

]
on the tensor product

of the lower canonical bases of V and W (see [83, Corollary 24.1.5]).

This can be rephrased as follows in Hopf algebra terms. Denote by UΓ the categorical com-
pletion of Γ, i.e., the Hopf algebra of natural transformations FCA → FCA , where FCA : CA → A-
Modf is the forgetful functor towards the category A-Modf of finite rank A-modules. Then
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UΓ
⊗

AC[q±1/D] is quasi-triangular and ribbon with R-matrix

R ∈ U⊗̂2
Γ

⊗
A

C
[
q±1/D

]
.

As in (2.3), we can write

R± =
∑
(R)

R±
(1) ⊗R±

(2).

There are pairings of Hopf algebras naturally related to the R-matrix R, considered as an
element of U⊗̂2

q . What follows is standard (see, e.g., [69, 70, 81]), for details we refer to [104,
Proposition 3.73, Lemma 3.75, Theorem 3.92, Propositions 3.106 and 3.107]:

� There is a unique pairing of Hopf algebras ρ : Uq(b−)
cop ⊗ Uq(b+) → C

(
q1/D

)
such that,

for every α, λ ∈ P and l, k ∈ Uq(h),

ρ(Kλ,Kα) = q(λ,α), ρ(Fi, Ej) = δi,j
(
qi − q−1

i

)−1
,

ρ(l, Ej) = ρ(Fi, k) = 0. (2.64)

� The Drinfeld pairing τ : Uq(b+)
cop ⊗ Uq(b−) → C

(
q1/D

)
is the bilinear map defined by

τ(X,Y ) = ρ(S(Y ), X); it satisfies

τ(Kλ,Kα) = q−(λ,α), τ(Ej , Fi) = −δi,j
(
qi − q−1

i

)−1
,

τ(l, Fi) = τ(Ej , k) = 0. (2.65)

� ρ and τ are perfect pairings; this means that they yield isomorphisms of Hopf algebras
i± : Uq(b±) → Oq(B∓)op (with coefficients a priori extended to C

(
q1/D

)
, but see below)

defined by, for every X ∈ Uq(b+), Y ∈ Uq(b−),

⟨i+(X), Y ⟩ = τ(S(X), Y ), ⟨i−(Y ), X⟩ = τ(X,Y ).

Since Oq(B∓)op is equipped with the inverse of the antipode of Oq(B∓), which is induced
by the antipode SOq of Oq, it follows that i± ◦ S = S−1

Oq
◦ i±.

� Denote by p± : Oq(G) → Oq(B±) the canonical projection map, i.e., the Hopf algebra
homomorphism dual to the inclusion map Uq(b±) ↪→ Uq(g). For every α, β ∈ Oq(G), we
have

⟨α⊗ β,R⟩ = τ
(
i−1
+ (p−(β)), i

−1
− (p+(α))

)
. (2.66)

Note that it is the use of weights α, λ ∈ P that forces the pairings ρ, τ to be defined over C
(
q1/D

)
,

instead of C(q). Then, let us consider the restrictions π+q of ρ, and π−q of τ defined by the
formulas (2.64) and (2.65), where now α ∈ Q and k ∈ Uad

q (h). They take values in C(q), and
define pairings

π+q : Uq(b−)
cop ⊗ Uad

q (b+) → C(q), π−q : Uq(b+)
cop ⊗ Uad

q (b−) → C(q).

By the same arguments as for ρ and τ (e.g., in [104, Proposition 3.92]), it follows that π±q are
perfect pairings. Note also that π−q = κ ◦ π+q ◦ (κ ⊗ κ), where κ : Uq → Uq is the C-linear
automorphism extending − : Uad

q → Uad
q in Section 2.2.2, so defined by

κ(Ei) = Fi, κ(Fi) = Ei, κ(Kλ) = K−λ, κ(q) = q−1. (2.67)
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In [41], De Concini–Lyubashenko described integral forms of π±q as follows. Denote bym∗ : OA →
OA(B+) ⊗ OA(B−) the map dual to the multiplication map Γ(b+) ⊗ Γ(b−) → Γ, so m∗ =
(p+ ⊗ p−) ◦ ∆OA

. Let UA(G
∗) be the smallest A-subalgebra of UA(b−)

cop ⊗ UA(b+)
cop which

contains the elements

1⊗K−1
i Ēi, F̄iKi ⊗ 1, L±1

i ⊗ L∓1
i , i = 1, . . . ,m,

and is stable under the diagonal action of B(g). The reason for the notation UA(G
∗) will be

explained at the beginning of Section 2.5. Note that UA(G
∗) is free over A, a Hopf subalgebra,

and that a basis is given by the elements

F̄n1
β1

· · · F̄nN
βN
Kn1β1+···+nNβNKλ ⊗K−λK−p1β1−···−pNβN Ē

p1
β1

· · · ĒpNβN , (2.68)

where λ ∈ P and n1, . . . , nN , p1, . . . , pN ∈ N.
Now, let v be a lowest weight vector of the lowest weight Γ-module AV−λ, λ ∈ P+. As after

Theorem 2.1, denote by v∗ ∈ AV
∗
−λ the dual vector, and by ψ−λ ∈ OA the matrix coefficient

defined by ⟨ψ−λ, x⟩ = v∗(xv) for every x ∈ Γ. Consider the maps j±q : Oq(B±) → Uq(b∓)
cop

defined by

⟨α+, X⟩ = π+q
(
j+q (α+), X

)
, ⟨α−, Y ⟩ = π−q (j

−
q (α−), Y ),

where α± ∈ Oq(B±), X ∈ Uad
q (b+), and Y ∈ Uad

q (b−).

The following theorem summarizes results proved in [41, Sections 3 and 4]. Denote byOA
[
ψ−1
−ρ

]
the localization of OA by the element ψ−ρ; this localization is well defined, for the set {ψn−ρ}n∈N
is a left and right multiplicative Ore subset of OA (see Corollary 2.23 below for an analogous
statement for LA0,1). For the sake of clarity, let us spell out the correspondence of notations
between statements: π+q , π

−
q , Uq(b∓)

cop, UA(b∓)
cop, OA(B±), UA(G

∗) and Φ are denoted in [41]

respectively by π′′, π̄′′, Uq(b∓)op, Rq[B±]
′′, Rq[B±], A

′′ and µ′′ (the definition of j±A is implicit
in [41, Section 4.2]).

Theorem 2.20.

(1) π±q restricts to a perfect Hopf pairing between the unrestricted and restricted integral forms,
π±A : UA(b∓)

cop ⊗ Γ(b±) → A.

(2) j±q yields an isomorphism of Hopf algebras j±A : OA(B±)→UA(b∓)
cop, satisfying ⟨α±, x±⟩=

π±A
(
j±A (α±), x±

)
for every α± ∈ OA(B±), x± ∈ Γ(b±).

(3) The map Φ :=
(
j+A ⊗ j−A

)
◦m∗ : OA → UA(G

∗) ⊂ UA(b−)
cop ⊗ UA(b+)

cop is an embedding
of Hopf algebras, and it extends to an isomorphism Φ: OA

[
ψ−1
−ρ

]
→ UA(G

∗).

For our purposes, it is necessary to reformulate this result. Consider the morphisms of Hopf
algebras Φ± : OA(B±) → UA(b∓)

cop, α 7→ (α⊗ id)(R±).

Lemma 2.21. We have Φ± = j±A .

Proof. By definitions, for every X ∈ Uq(b+)
cop, Y ∈ Uad

q (b−), we have ⟨i+(S−1(X)), Y ⟩ =
π−q (X,Y ), and similarly for every X ∈ Uad

q (b+), Y ∈ Uq(b−)
cop, we have ⟨i−(S−1(Y )), X⟩ =

π+q (Y,X). By keeping these notations for X and Y , we deduce j−q (i+(S
−1(X))) = X and

j+q (i−(S
−1(Y ))) = Y , i.e., j±q = S ◦ i−1

∓ . Because S−1
Oq

◦ i± = i± ◦ S, it follows that

j±q ◦ SOq = S−1 ◦ j±q . (2.69)

Also, for every α− ∈ Oq(B−), we have〈
α−,Φ

+(i−(Y ))
〉
= ⟨i−(Y )⊗ α−, R⟩ = τ

(
i−1
+ (α−), Y

)
= π−q (j

−
q (SOq(α−)), Y ) = ⟨α−, S(Y )⟩,
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where the first equality is by definition of Φ+ (see (2.5)), the second is (2.66), the third follows
from (2.69), and the last from the definition of j−q . Similarly, for every α+ ∈ Oq(B+), we have

⟨α+,Φ
−(i+(X))⟩ = ⟨i+(X)⊗ α+, R

−⟩ =
〈
α+ ⊗ S−1

Oq
◦ i+(X), R

〉
= ⟨α+ ⊗ i+(S(X)), R⟩

= τ
(
S(X), i−1

− (α+)
)
= π+q

(
S
(
i−1
− (α+)

)
, S(X)

)
= π+q

(
j+q (α+), S(X)

)
= ⟨α+, S(X)⟩.

These computations imply Φ± = S◦i−1
∓ = j±q , and the result follows by taking integral forms. ■

2.4 Integral form and specialization of Φn

Recall the isomorphism of Uq-module algebras Φ1 : L0,1 → U lf
q , and that U lf

A = UA ∩ U lf
q . We

have:

Corollary 2.22. The map Φ1 affords an embedding of U res
A -module algebras Φ1 : LA0,1 → U lf

A.

Proof. The only thing to be proved is that Φ1(OA) ⊂ U lf
A , since LA0,1 = OA as A-module. But

Lemma 2.21 and (2.12) imply Φ1 = m◦
(
id⊗S−1

)
◦Φ, and Φ mapsOA into UA(b−)

cop⊗UA(b+)cop
by Theorem 2.20. The conclusion follows. ■

Let us denote

d = ψ−ρ ∈ LA0,1.

(The linear forms ψ−λ have been introduced before Theorem 2.20.) When g = sl2 the el-
ement d is one of the “standard” generators of L0,1(sl2) (see (4.5) below). In this case we
have shown in [18, Lemma 5.7] that LA0,1 has a well-defined localization LA0,1

[
d−1

]
, and that

Φ1 : LA0,1
[
d−1

]
→ Uad

A = T−1
2−U

lf
A is an isomorphism of algebras. A generalization of these facts

to any g is provided by the following statement. As usual ℓ = K2ρ, the pivotal element.

Corollary 2.23.

(1) The set {dn}n∈N is a left and right multiplicative Ore set in LA0,1. We can therefore define

the localization LA0,1
[
d−1

]
.

(2) Φ1 extends to an embedding of U res
A -module algebras Φ1 : LA0,1

[
d−1

]
→ U lf

A [ℓ], and U
lf
A [ℓ] =

T−1
2−U

lf
A.

Proof. (1) Because LA0,1 has no nontrivial zero divisors, d is a regular element. We have to show
that for all x ∈ LA0,1 there exists elements y, y′ ∈LA0,1 and d′, d′′ ∈ {dn}n∈N such that xd′=dy
and d′′x = y′d. In fact, d′ = d′′ = d in the present situation. Indeed by (2.13), we have
Φ1(x)Φ1(d) = Φ1(x)K−2ρ = K−2ρad

r(K2ρ)(Φ1(x)), and adr(K2ρ)(Φ1(x)) = Φ1(coad
r(K2ρ)(x)).

Therefore, the left Ore condition is satisfied with y = coadr(K2ρ)(x). Similarly, one finds y′.
(2) The first claim follows immediately from Corollary 2.22 and Φ1(d) = ℓ−1, which is a reg-

ular element of UA. For the second claim, since K−2ρ =
∏m
j=1 L

−2
j , localizing in d we obtain

L2
j =

∏
k ̸=j

L−2
k Φ1

(
d−1

)
= Φ1

(∏
k ̸=j

ψ−ϖk
d−1

)
∈ Φ1

(
LA0,1

[
d−1

])
.

Therefore, T−1
2− ⊂ Φ1

(
LA0,1

[
d−1

])
, which implies the assertion (2). ■

We expect that the inclusion Φ1(OA) ⊂ U lf
A is an equality, but have no proof yet. However,

recall Joseph–Letzter’s Theorem 2.1 (1) and (2).
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Proposition 2.24. We have

UA = T−1
2−U

lf
A [T/T2] = Φ1

(
LA0,1

[
d−1

])
[T/T2],

and therefore Φ1 : LA0,1
[
d−1

]
→ T−1

2−U
lf
A is an isomorphism. Moreover,

Φ1(OA) =
⊕
λ∈2P+

adr(U res
A )(K−λ).

Proof. The inclusions T ⊂ UA, U
lf
A ⊂ UA and Φ1

(
LA0,1

[
d−1

])
⊂ T−1

2−U
lf
A imply

Φ1

(
LA0,1

[
d−1

])
[T/T2] ⊂ T−1

2−U
lf
A [T/T2] ⊂ UA.

For the inverse inclusion, it is enough to show that any PBW basis vector of UA lies in
Φ1

(
LA0,1

[
d−1

])
[T/T2]. This will follow at once if this is true of all root vectors Ēβk , F̄βk . Let

us show this explicitly for the simple root vectors Ēi and F̄i. For every positive root α, define
elements ψα−λ, ψ

−α
−λ ∈ OA by the formulas

⟨ψα−λ, x⟩ = v∗(xEαv), ⟨ψ−α
−λ , x⟩ = v∗(Fαxv),

where x ∈ Γ. It is shown in [41, Lemma 4.5] that

Φ(ψ−λ) = K−λ ⊗Kλ, Φ
(
ψαi
−ϖj

)
= −δi,jqiL−1

i ⊗ LiK
−1
i Ēi,

Φ
(
ψ−αi
−ϖj

)
= δi,jq

−1
i F̄iKiL

−1
i ⊗ Li.(

Note that the generators denoted by Ei and Fi in [41] are respectively K−1
i Ei and FiKi in our

notations, which explains the factors qi, q
−1
i in the formulas below; also κ in (2.67) maps Ēi, F̄i

to −F̄i, −Ēi, whence the sign for the expression of Φ
(
ψαi
−ϖj

)
.
)
Since Φ1 = m ◦

(
id ⊗ S−1

)
◦ Φ,

we have

Φ1(ψ−λ) = K−2λ, Φ1

(
ψαi
−ϖj

)
= δi,jL

−2
i Ēi, Φ1

(
ψ−αi
−ϖj

)
= δi,jq

−1
i F̄iKiL

−2
i . (2.70)

Therefore,

Ēi, F̄i, L
±1
i ∈ T−1

2−Φ1

(
LA0,1

)
[T/T2] = Φ1

(
LA0,1

[
d−1

])
[T/T2].

These elements do not generate UA; it is necessary to consider general root vectors. By the stabil-
ity of UA(G

∗) under B(g) and the isomorphism OA

[
ψ−1
−ρ

]
→ UA(G

∗) of Theorem 2.20 (3), for ev-
ery positive root βk, we have 1⊗K−1

βk
Ēβk , F̄βkKβk ⊗ 1 ∈ Φ

(
OA

[
ψ−1
−ρ

])
= Φ

(
LA0,1

[
d−1

])
. There-

fore, F̄βkKβk , S
−1

(
Ēβk

)
Kβk ∈ Φ1

(
LA0,1

[
d−1

])
, and F̄βk , S

−1(Ēβk) ∈ Φ1

(
LA0,1

[
d−1

])
[T/T2]. The

sets S−1
(
Ēβk

)
UA(h) generate the subalgebra UA(b+) of UA (in fact, let us quote that a formula

of S−1(Ēβk) is given in [107]). From the triangular decomposition UA = UA(n−)UA(h)UA(n+),
the inclusion UA ⊂ Φ1

(
LA0,1

[
d−1

])
[T/T2] follows, whence the equality too. In particular, UA is

a free Φ1

(
LA0,1

[
d−1

])
-module with a basis formed by representatives of the cosets in T/T2. By

the uniqueness of this free decomposition, we find Φ1

(
LA0,1

[
d−1

])
= T−1

2−U
lf
A . Therefore, Φ1 in

Corollary 2.23 (2) is surjective.
For the third claim, recall the isomorphism Φ1 : C(−w0(µ)) → adr(Uq)(K−2µ) (see (2.14)),

and that ψ−µ is the matrix coefficient dual to the vector ωv−µ⊗v−µ ∈ EndA(V−w0(µ)). This vector
is cyclic by (2.32), so by equivariance Φ1 : AC(−w0(µ)) → adr(U res

A )(K−2µ) is an isomorphism
of U res

A -modules. The second claim follows from this and (2.60) for n = 1. ■

Recall from (2.20) the isomorphisms of Uq-module algebras Φn : L0,n →
(
U⊗n
q

)lf
and of al-

gebras Φn : M0,n → (U⊗n
q )Uq , and from (2.27) the notations for specializations. Corollary 2.22

can be extended to Φn as follows:
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Corollary 2.25. The map Φn affords embeddings of module algebras Φn : LA0,n →
(
U⊗n
A

)lf
and

Φn : Lϵ
′
0,n →

(
U⊗n)lf

ϵ′
, q = ϵ′ ∈ C×.

Proof. For the first claim, the only thing to prove is the inclusion Φn
(
LA0,n

)
⊂ U⊗n

A . It follows
from Corollary 2.22 and the expression of Φn in terms of Φ1 and R-matrices (in particular, the
fact that they preserve integrality, see [18, Lemma 6.10]). For the specialization at q = ϵ′ ∈ C×,
we have to justify that Φn is injective. One uses the fact, to be developed in Theorem 2.29 below,
that Φ: Oϵ → Uϵ(G

∗) is an embedding. The algebra Uϵ(G
∗) has the basis elements (2.68), and

the map m ◦
(
id ⊗ S−1

)
sends this basis to a free family of Uϵ. Therefore, Φ1 : Lϵ0,1 → Uϵ

is injective. Since Φn differs from Φ⊗n
1 by a linear isomorphism (induced by the conjugation

action of R-matrices on the components A

•

C([λ]) of LA0,n in (2.60), see [18, equation (6.10)]),
Φn : Lϵ0,n → U⊗n

ϵ is an embedding as well. ■

Remark 2.26.

(1) It is a natural problem to determine the image of Φn. One may expect that it would
be

(
T−1
2−U

lf
A

)⊗n
, because this is true for n = 1, as well as for any n in the sl2 case, as shown

in [18]. Unfortunately, this is not so. This comes from the fact, e.g., for n = 2, that the
matrix elements of R02R01R

′
01R

−1
02 do not belong to

(
T−1
2−U

lf
A

)⊗2
as can be shown by an

explicit computation in the sl(3) case.

(2) In the case of g = sl2, we defined in [18] an algebra locLA0,n generalizing LA0,1
[
d−1

]
above,

containing LA0,n as a subalgebra, and such that Φn extends to locLA0,n and yields an iso-
morphism Φn : locLA0,n → Uad

A (sl2)
⊗n. The definition of locLA0,n involves elements ξ(i) ∈ LA0,n

(i = 1, . . . , n) such that Φn
(
ξ(i)

)
=

(
K−1

)(i) · · · (K−1
)(n)

. It may be of interest to study
a similar extension of Φn for general g.

2.5 Structure theorems for Uϵ and Oϵ

As usual, we denote by ϵ a primitive l-th root of unity, where l is odd, and coprime to 3 if g has
G2-components.

Recall the subgroups TG, U± and B± of G. Let G0 = B+B− (the big cell of G), and define
the subgroup

G∗ =
{(
u+t, u−t

−1
)
, t ∈ TG, u± ∈ U±

}
⊂ Bop

+ ×Bop
− ,

where Bop
± is the group B± with opposite multiplication. The group G∗ can be naturally iden-

tified with the Poisson–Lie dual of G with its standard structure.
Recall also that there is an injective homomorphism γ−1

q ◦ hq : Z(Uq) → Uq(h), defined by
means of the quantum Harish-Chandra homomorphism (see, e.g., [35, Section 9.1.C], or [104,
Section 3.13]). The image of γ−1

q ◦ hq is the set Uq(h)
W̃ of invariant elements under W̃ , the

subgroup of W ⋉ P ∗
2 generated by the conjugates σWσ of W by elements σ ∈ P ∗

2 . Here, P ∗
2 is

the group of homomorphisms P → Z/2Z, and the semidirect product W ⋉ P ∗
2 acts on Uq(h) by

the standard action of the Weyl group W , and by the action of P ∗
2 given by σ ·Kλ := σ(λ)Kλ.

Consider the inverse map h−1
q ◦ γq : Uq(h)W̃ → Z(Uq). The elements of the domain and target,

when expanded in the PBW basis, have coefficients in C(q). It was shown in [42, Section 21.1]
that if an element of Uq(h)

W̃ has no coefficient with a pole at q = ϵ, then its image by h−1
q ◦ γq

has no coefficient with a pole at q = ϵ. We therefore have a well-defined injection

Uϵ(h)
W̃ → Z(Uϵ).

We denote its image by Z1(Uϵ). For instance, when Uϵ = Uϵ(sl2), Z1(Uϵ) is the polynomial

algebra generated by the Casimir element Ω =
(
ϵ− ϵ−1

)2
FE + ϵK + ϵ−1K−1.
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Denote by Z0(Uϵ) ⊂ Uϵ the smallest subalgebra containing the elements Eli, F
l
i , K

l
α, for i ∈

{1, . . . ,m}, α ∈ P , and stable under B(g); it is also the subalgebra generated by Elβk , F
l
βk
, L±l

i ,
for k ∈ {1, . . . , N} and i ∈ {1, . . . ,m} [42, Section 18]. We will denote by Z0(Uϵ(n−)), Z0(Uϵ(h))
and Z0(Uϵ(n+)) the subalgebras of Z0(Uϵ) generated by the elements F lβk , K

l
λ (λ ∈ P ), and Elβk ,

respectively. In [39, Sections 1.8, 3.3 and 3.8] and [42, Theorem 14.1 and Sections 20–21], the
following results are proved:

Theorem 2.27.

(1) Uϵ has no nontrivial zero divisors, Z0(Uϵ) is a central Hopf subalgebra of Uϵ, and Uϵ
is a free Z0(Uϵ)-module of rank ldim g. Moreover, the classical fraction algebra Q(Uϵ) =
Q(Z(Uϵ))

⊗
Z(Uϵ)

Uϵ is a central simple algebra of PI degree lN , and Uϵ is a maximal order
of Q(Uϵ).

(2) Maxspec(Z0(Uϵ)) is a group isomorphic to G∗ above, and the multiplication map yields an
isomorphism Z0(Uϵ)

⊗
Z0(Uϵ)∩Z1(Uϵ)

Z1(Uϵ) → Z(Uϵ).

By this theorem, the dimension of Q(Uϵ) over its center Q(Z(Uϵ)) is l
2N , and its dimension

over Q(Z0(Uϵ)) is l
dim g = lm+2N . Therefore, the field Q(Z(Uϵ)) is an extension of Q(Z0(Uϵ)) of

degree lm.
Note that, because Z0(Uϵ) is an affine and commutative algebra, the maximal spectrum

Maxspec(Z0(Uϵ)), viewed as the set of characters of Z0(Uϵ), acquires by duality a structure of
affine algebraic group. Thus, the first claim of (2) in the theorem means precisely that this
group can be identified with G∗. See, for instance, [18, Section 7.2.1] for an explicit description
in the sl2 case.

In addition, Maxspec(Z0(Uϵ)) and G
∗ have natural Poisson structures which correspond one

to the other under the isomorphism of (2), and we have the following identifications (see [42, Sec-
tion 21.2]). The dual isomorphism O(G∗)→Z0(Uϵ) identifies O(TG) with Z0(Uϵ)∩Uϵ(h)=C[lP ],
where as usual Uϵ(h) = UA(h)

⊗
ACϵ. Therefore, we can identify C[P ] with O

(
T̃G

)
, the coordi-

nate ring of the lm-fold covering space T̃G → TG. The quantum Harish-Chandra isomorphism
identifies Z1(Uϵ) with C[2P ]W ∼= O

(
T̃G/(2)

)W
, where we denote by (2) the subgroup of 2-torsion

elements in T̃G. Consider the map

σ : B+ ×B− −→ G0, (b+, b−) 7−→ b+b
−1
− .

The restriction of σ to G∗ is an unramified covering map of degree 2m. Composing σ : G∗ → G0

with the quotient map under conjugation, G0 ↪→ G → G//G, we get dually an embedding
of O(G//G) = O(G)G in O(G∗). Collecting these observations, we see that the isomorphism of
Theorem 2.27 (2) affords identifications

Z0(Uϵ) ∩ Z1(Uϵ) ∼= O(G)G

as a subalgebra of Z0(Uϵ) ∼= O(G∗), and

Z0(Uϵ) ∩ Z1(Uϵ) = C[2lP ]W ∼= O
(
T̃G/(2l)

)W ∼= O(TG/(2))
W

as a subalgebra of Z1(Uϵ) ∼= O
(
T̃G/(2)

)W
.

We will use the following obvious though crucial fact. Note that Uad
A is naturally a subalgebra

of U res
A , and therefore acts on U res

ϵ -modules. Denote by Z0

(
Uad
A

)
⊂ Uad

A the subalgebra generated
by the elements Ēlβk , F̄

l
βk
, K±l

i , for k ∈ {1, . . . , N} and i ∈ {1, . . . ,m}.

Lemma 2.28. For every U res
A -module V of type 1, the action of Z0

(
Uad
A

)
on the specialization

Vϵ := V
⊗

ACϵ is trivial.
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Proof. This comes from Eli = [l]qi !E
(l)
i , F li = [l]qi !F

(l)
i and the fact that Ki acts on V by powers

of qi. Specializing to q = ϵ ends the proof. ■

A result similar to Theorem 2.27 holds true for Oϵ. Namely, take the specializations at q = ϵ
in Theorem 2.20. Denote by Z0(Uϵ(G

∗)) the subalgebra of Uϵ(G
∗) generated by the elements

(k ∈ {1, . . . , N}, i ∈ {1, . . . ,m})

1⊗K−lβkE
l
βk
, F lβkKlβk ⊗ 1, L±l

i ⊗ L∓l
i .

It is a central Hopf subalgebra. Recall that the coordinate ring O(G) can be identified as
a Hopf algebra with U(g)◦, where as usual U(g)◦ denotes the restricted dual of the enveloping
algebra U(g) over C. In [41, Section 6], De Concini–Lyubashenko introduced an epimorphism of
Hopf algebras η : Γϵ → U(g) (essentially a version of Lusztig’s “Frobenius” epimorphism in [82]),
defined by

η
(
E

(p)
i

)
=


e
p/l
i

(p/l)!
if l divides p,

0 otherwise,

η
(
F

(p)
i

)
=


f
p/l
i

(p/l)!
if l divides p,

0 otherwise,

η(Ki) = 1, η((Ki; p)qi) =


hi(hi − 1) · · · (hi − (p/l) + 1)

(p/l)!
if l divides p,

0 otherwise,
(2.71)

where p ∈ N, and ei, fi and hi, i ∈ {1, . . . ,m}, denote the standard generators of U(g). The
kernel of η is generated by the elements Ei, Fi, Ki − 1, and (Ki; p)qi where l does not divide p.
Put

Z0(Oϵ) := η∗(O(G)), (2.72)

where η∗ : U(g)◦ → Γ◦
ϵ is the monomorphism dual to η. Let us define special matrix coefficients,

analogous to those introduced in Theorem 2.20. Denote by vϖi and vw0(ϖi) a highest weight
vector and a lowest weight vector of the Γ-module AVϖi . Denote also by v∗w0(ϖi)

and v∗ϖi
a highest

and lowest weight vector of the dual module Γ-module AV
∗
ϖi

∼= AV−w0(ϖi). Define the matrix
coefficients bϖi , cϖi ∈ OA by

bϖi(x) = v∗ϖi
(xvw0(ϖi)), cϖi(x) = v∗w0(ϖi)

(xvϖi)

for all x ∈ Γ. We consider them as elements of Oϵ. Denote by Z1(Oϵ) the subalgebra of Oϵ

generated by the elements bkϖi
cl−kϖi

for 1 ≤ i ≤ m and 0 ≤ k ≤ l.

Theorem 2.29.

(1) Z0(Oϵ) is a central Hopf subalgebra of Oϵ⊂Γ◦
ϵ , and Q(Z(Oϵ)) is an extension of Q(Z0(Oϵ))

of degree lm.

(2) ψ−lρ ∈ Z0(Oϵ), and Z0(Oϵ) is generated by matrix coefficients of irreducible Γ-modules of
highest weight lλ, λ ∈ P+. Moreover, the multiplication map yields an isomorphism

Z0(Oϵ)
⊗

Z0(Oϵ)∩Z1(Oϵ)

Z1(Oϵ) → Z(Oϵ),

and the map Φ in Theorem 2.20 affords an algebra embedding Z0(Oϵ) → Z0(Uϵ(G
∗)) and

algebra isomorphisms Z0(Oϵ)
[
ψ−1
−lρ

]
→ Z0(Uϵ(G

∗)) and Oϵ

[
ψ−1
−lρ

]
→ Uϵ(G

∗).



Unrestricted Quantum Moduli Algebras, II 41

(3) Oϵ has no nontrivial zero divisors, and it is a free Z0(Oϵ)-module of rank ldim g. Moreover,
the classical fraction algebra Q(Oϵ) = Q(Z(Oϵ))

⊗
Z(Oϵ)

Oϵ is a central simple algebra of PI
degree lN , and Oϵ is a maximal order of Q(Oϵ).

For the proof, see [41]: Proposition 6.4 for the first claim of (1) (where Z0(Oϵ) and Z0(Uϵ(G
∗))

are denoted F0 and A0 respectively), the appendix of Enriquez and [50] for the second claim of (1)
and (2), Propositions 6.4 and 6.5 for the other claims of (2), Theorem 7.2 (where Oϵ is shown
to be projective over Z0(Oϵ)) and [28] (which provides the additional K-theoretic arguments to
deduce that Oϵ is free), or [6, Remark 2.18 (b)], for the second claim of (3), and Corollary 7.3
and Theorem 7.4 for the third claim. The fact that Oϵ has no nontrivial zero divisors follows
from the embedding Oϵ → Uϵ(G

∗) via Φ.

As above for Uϵ, it follows directly from (3) that Q(Z(Oϵ)) has degree lm over Q(Z0(Oϵ)).
For a more complete description of Z(Oϵ) we refer to [50] and Enriquez’ appendix in [41], as
well as [27].

We do not know a basis of Oϵ over Z0(Oϵ) for general G, but see [38] for the case of SL2. We
will recall the known results in this case of SL2 before Lemma 4.5.

Finally, there is a natural action of the braid group B(g) on Oϵ, that we will use. Namely,
let ni ∈ N(TG) be a representative of the reflection si ∈ W = N(TG)/TG associated to the
simple root αi. In [98, 102], Soibelman–Vaksman introduced functionals ti : Oq → C(q) which
quantize the elements ni. They correspond dually to generators of the quantum Weyl group of g;
in the appendix, we recall their main properties, in particular, they map OA to A (see also [35,
Section 8.2], and [41, 69, 70, 81, 102]). Denote by � the natural right action of functionals
on OA, namely (using Sweedler’s notation)

α� h =
∑
(α)

h(α(1))α(2)

for every α ∈ OA and h ∈ OA → A. Let us identify Z0(Oϵ) with O(G) by means of (2.72). We
have [41, Proposition 7.1]:

Proposition 2.30. The maps �ti on Oϵ preserve Z0(Oϵ), and satisfy (f � ti)(a) = f(nia) and
(f ⋆ α)� ti = (f � ti)(α� ti) for every f ∈ Z0(Oϵ), a ∈ G, α ∈ Oϵ.

We provide an alternative, non computational, proof of this result in Appendix C.

3 Noetherianity and finiteness

In this section, we prove Theorem 1.1. Recall that by Noetherian we mean right and left
Noetherian. We begin with

Theorem 3.1. The algebras L0,n, LA0,n and Lϵ′0,n, ϵ′ ∈ C×, are Noetherian.

By Proposition 2.18, each of the algebras in this theorem is finitely generated.

Theorem 3.1 for L0,1 and any g follows immediately from Joseph–Letzter’s Theorem 2.1,
claim (3), by identifying L0,1 with U lf

q via Φ1. The method of proof uses filtration arguments.
An alternative proof in the case of sl(n), which works also for LA0,1, was obtained by Domokos–
Lenagan in [47], by exhibiting special sequences of generators of LA0,1 satisfying polynormal
relations, as we define now.
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Definition 3.2 (see [104, Proposition 3.133]). Let R be a Noetherian Abelian ring, and B
a finitely generated R-algebra with product ◦. We call polynormal a set of relations between
generators u1, . . . , uM of B, of the form

ui ◦ uj − qijuj ◦ ui =
j−1∑
s=1

M∑
t=1

(
αstijus ◦ ut + βstijut ◦ us

)
(3.1)

for all 1 ≤ j < i ≤M , where αstij , β
st
ij ∈ R, and the elements qij ∈ R are invertible.

Note that this definition is more restrictive than the more standard one, e.g., in [26, Def-
inition II.4.1]. If such a set of relations exists in B, then B can be endowed with an algebra
filtration such that the associated graded algebra is a quotient of a skew-polynomial algebra [26,
Proposition I.8.17]. By classical results, we have (see, e.g., [88, Theorems 1.2.9, 1.6.9 and Ex-
amples 1.6.11], or [104, Lemmas 3.130–3.131]):

Theorem 3.3. If the algebra filtration is well founded, then B is a Noetherian ring.

In [47], Theorem 3.1 is also proved for any n ≥ 1 in the case of g = sl2 by considering LA0,n(sl2)
as an iterated overring of L0,1(sl2).

The proof of Theorem 3.1 that we develop for any g and n ≥ 1 is also based on polynormal
relations. In our proof, the generating set of L0,n that we will consider is evident, as they are
matrix coefficients in the modules Vϖk

, k ∈ {1, . . . ,m}; the task is then to exhibit a set of
polynormal relations between them, that hold in a certain graded algebra associated to L0,n.
Indeed, as explained above this will imply that the graded algebra is Noetherian, and that L0,n

is Noetherian as well. In the case of LA0,n, the proof is formally similar, but it needs the use of
canonical bases discussed in Section 2.2.2.

Proof of Theorem 3.1. First, we develop the proof for L0,n, and then for LA0,n; the result for

Lϵ′0,n= LA0,n/(q − ϵ′)LA0,n

follows immediately by lifting ideals by the quotient map LA0,n→ Lϵ′0,n.
We adapt the proof of Theorem 2.1 (3) given in [104, Theorem 3.137]. Let us begin by recalling

these arguments. In doing this, let us stress that [104] takes on Oq and L0,1 the product opposite
to ours, and below in (3.7) and (3.8) we respect their convention.

As usual, let C(µ) be the vector space generated by the matrix coefficients of Vµ, the sim-
ple Uad

q -module of highest weight µ ∈ P+. Denote by C(µ)λ ⊂ C(µ) the subspace of weight λ
for the left coregular action of Uq(h); so α ∈ C(µ)λ if Kν � α = q(ν,λ)α, ν ∈ P . Consider the
semigroup

Λ = {(µ, λ) ∈ P+ × P, λ is a weight of Vµ}.

Recall that the partial order ⪯ on P is defined by µ ⪯ µ′ if and only if µ′−µ ∈ D−1Q+. Define ⪯
on Λ by: (µ, λ) ⪯ (µ′, λ′) if and only if µ′−µ ∈ D−1Q+ and λ′−λ ∈ D−1Q+. If (µ, λ) ⪯ (µ′, λ′)
and (µ, λ) ̸= (µ′, λ′), we write (µ, λ) ≺ (µ′, λ′). Since L0,1 and Oq are isomorphic vector spaces,
we have L0,1 =

⊕
µ∈P+

C(µ) =
⊕

(µ,λ)∈ΛC(µ)λ. Consider the family of subspaces

Fµ,λ
2 :=

⊕
(µ′,λ′)⪯(µ,λ)

C(µ′)λ′ , F≺µ,λ
2 :=

⊕
(µ′,λ′)≺(µ,λ)

C(µ′)λ′ , (µ, λ) ∈ Λ.

We have

L0,1 =
⋃

(µ,λ)∈Λ

Fµ,λ
2 . (3.2)



Unrestricted Quantum Moduli Algebras, II 43

Indeed, clearly

L0,1 =
∑

(µ,λ)∈Λ

Fµ,λ
2 ,

so (3.2) follows from the following fact: for every (µ, λ), (µ′, λ′) ∈ Λ, the element (µ′′, λ′′) :=
(µ+ µ′, λ+ λ′) is such that

Fµ,λ
2 + Fµ′,λ′

2 ⊂ Fµ′′,λ′′

2 .

Note that in general, since Q+ ⊈ P+ (but P+ ⊂ D−1Q+), it is not true that there exists an
element (µ′′, λ′′) satisfying such an inclusion if one replaces ⪯ with the standard “product”
partial order ≤ on Λ, defined by (µ, λ) ≤ (µ′, λ′) if and only if µ′ − µ ∈ Q+ and λ′ − λ ∈ Q+.
Note also that ⪯ is finer than ≤, in the sense that if µ ≤ µ′, then µ ⪯ µ′. Again, this would not
be true if we had replaced D−1Q+ by P+ in the definition of ⪯.

The family F2 :=
{
Fµ,λ
2

}
(µ,λ)∈Λ is a filtration of the vector space L0,1, which is clearly well

founded (i.e., every subset of Λ contains a minimal element, or equivalently any decreasing
infinite sequence of elements in Λ is eventually constant).

Consider the associated graded vector space GrF2(L0,1) :=
⊕

(µ,λ)F
µ,λ
2 /F≺µ,λ

2 . By identify-
ing an element x ∈ C(µ)λ with its coset x̄ ∈ Fµ,λ

2 /F≺µ,λ
2 , we get an equality of vector spaces

GrF2(L0,1) =
⊕

(µ,λ)∈ΛC(µ)λ. Now, one has the following facts:
(i) Taking the product in L0,1, we have

αβ ∈ Fµ1+µ2,λ1+λ2
2 for α ∈ C(µ1)λ1 , β ∈ C(µ2)λ2 . (3.3)

This follows from (2.7) and the fact that, for every ν ∈ P+ and every summand of the for-
mula (2.9), denoting by −r ∈ −Q+ the weight of the R-matrix component R(2) we have

Kν �
(
(R(2′)S(R(2))� α) ⋆ (R(1′) � β �R(1))

)
= q(ν,λ1+λ2−r)(R(2′)S(R(2))� α) ⋆ (R(1′) � β �R(1)).

(Details of a similar computation are given below (3.12).) It follows from (3.3) that F2 is an
algebra filtration of L0,1, and then GrF2(L0,1) is a graded algebra.

(ii) Denote by α ◦ β the product in GrF2(L0,1) of α, β ∈ L0,1. The space C(µ1 + µ2) has
multiplicity one in C(µ1) ⊗ C(µ2) (again by (2.7)), therefore if α ∈ C(µ1)λ1 and β ∈ C(µ2)λ2 ,
then α ◦ β is the projection of αβ onto C(µ1 + µ2)λ1+λ2 . Denote by ⋆̄ the product ⋆ of Oq

followed by the projection onto the component C(µ+ ν). Then, we have

C(µ) ◦ C(ν) = C(µ) ⋆̄ C(ν) = C(µ+ ν). (3.4)

This follows from the formula (2.9), and the fact that it is given by an invertible twist of the
product ⋆.

(iii) For every µ ∈ P+, fix a basis of weight vectors eµ1 , . . . , e
µ
d(µ) of Vµ. Denote by e1µ, . . . , e

d(µ)
µ ∈

V ∗
µ the dual basis, and by w

(
eµi
)
the weight of eµi . Consider the matrix coefficients µϕ

i
j(x) :=

eiµ
(
πV (x)

(
eµj
))
, x ∈ Uq. By using the formula (2.9) and the explicit form of the R-matrix, one

can check that

µϕ
i
j ◦ νϕkl =

∑′

j′,l′

cikjlj′,l′ µϕ
i
j′ ⋆̄ νϕ

k
l′

= q(w(e
µ
j ),w(e

ν
l )−w(e

ν
k))µϕ

i
j ⋆̄ νϕ

k
l +

∑′

j′,l′

j′ ̸=j, l′ ̸=l

dikjlj′,l′ µϕ
i
j′ ◦ νϕkl′ , (3.5)
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where
∑′

j′,l′ is the sum over indices with weights satisfying

w
(
eµj
)
+ w

(
eνl
)
= w

(
eµj′

)
+ w

(
eνl′
)
, w

(
eµj′

)
≤ w

(
eµj
)

and w
(
eνl′
)
≥ w

(
eνl
)
,

and the coefficient cikjlj,l , equal to q(w(e
µ
j ),w(e

ν
l )−w(e

ν
k)), is computed from the term Θ in the R-

matrix factorization (2.4). In general, all the coefficients cikjlj′,l′ and d
ikjl
j′,l′ belong to C(q) (see [18,

Proposition 4.1]); in particular q(w(e
µ
j ),w(e

ν
l )−w(e

ν
k)) ∈ qZ since w(eνl ) − w(eνk) ∈ Q. The second

equality follows by repeated use of the first and (3.4). Similarly, by using (2.10) one gets

νϕ
k
l ◦ µϕij =

∑′

i′,k′

ekilji′,k′ µϕ
i′
j ⋆̄ νϕ

k′
l

= q(w(e
µ
i ),w(e

ν
k)−w(e

ν
l ))µϕ

i
j ⋆̄ νϕ

k
l +

∑′

i′,k′

i′ ̸=i, k′ ̸=k

ekilji′,k′ µϕ
i′
j ⋆̄ νϕ

k′
l

= q(w(e
µ
i ),w(e

ν
k)−w(e

ν
l ))µϕ

i
j ⋆̄ νϕ

k
l +

∑′

i′,k′,j′,l′

i′ ̸=i, k′ ̸=k

fkilji′,k′ µϕ
i′
j′ ◦ νϕ

k′
l′ ,

where ekilji′,k′ , f
kilj
i′,k′ ∈ C(q), and

∑′

i′,k′ is the sum over indices with weights satisfying

w
(
eµi
)
+ w(eνk) = w

(
eµi′

)
+ w(eνk′), w

(
eµi′

)
≤ w

(
eµi
)
,

w(eνk′) ≥ w(eνk), ekilji,k = q(w(e
µ
i ),w(e

ν
k)−w(e

ν
l )).

The third equality comes from the second and (3.5); the sum is over indices with weights
satisfying

w
(
eµi
)
+ w(eνk) = w

(
eµi′

)
+ w(eνk′),

w
(
eµi′

)
< w

(
eµi
)
, w(eνk′) > w(eνk), w

(
eµj′

)
≤ w

(
eµj
)
, w(eνl′) ≥ w(eνl ).

By eliminating the leading term µϕ
i
j ⋆̄ νϕ

k
l , one deduces

νϕ
k
l ◦ µϕij − qijkl µϕ

i
j ◦ νϕkl =

∑′

i′,k′,j′,l′

i′ ̸=i, k′ ̸=k

fkilji′,k′ µϕ
i′
j′ ◦ νϕ

k′
l′ −

∑′

j′,l′

j′ ̸=j, l′ ̸=l

qijkld
ikjl
j′,l′ µϕ

i
j′ ◦ νϕkl′ , (3.6)

where qijkl = q(w(e
µ
j )+w(e

µ
i ),w(e

ν
k)−w(e

ν
l )).

(iv) We can always reorder the weight vectors eµ1 , . . . , e
µ
d(µ) so that w

(
eµi
)
> w

(
eµj
)
implies

i < j; then (3.6) reads

νϕ
k
l ◦ µϕij − qijkl µϕ

i
j ◦ νϕkl =

d(µ)∑
r=i

k∑
s=1

l−1∑
u=1

d(µ)∑
v=j+1

δijklrsuv µϕ
r
v ◦ νϕsu

−
d(µ)∑
r=i+1

k−1∑
s=1

qijklγ
ijkl
rs µϕ

r
j ◦ νϕsl , (3.7)

where γijklrs , δijklrsuv ∈ C(q) are such that γijklrs = 0 unless w(eµr ) < w(eµi ) and w(e
ν
s) > w(eνk), and

δijklrsuv = 0 unless w(eνu) > w(eνl ), w(e
µ
v ) < w(eµj ), w(e

µ
r ) ≤ w(eµi ) and w(eνs) ≥ w(eνk). Now,

from (3.7) one can extract a defining set of polynormal relations for GrF2(L0,1), as in (3.1).

Indeed, like L0,1 the algebra GrF2(L0,1) is generated by the matrix coefficients ϖk
ϕji of the

fundamental representations Vϖk
. One can list these matrix coefficients, say M in number, in

an ordered sequence u1, . . . , uM such that the following condition holds: if w(eϖs
k ) < w(eϖr

i ),
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or w(eϖs
k ) = w(eϖr

i ) and w(eϖs
l ) < w(eϖr

j ), then ua := ϖrϕ
i
j and ub := ϖsϕ

k
l satisfy b < a. Then

denoting µϕ
i
j , νϕ

k
l in (3.7) by uj , ui, respectively, and assuming uj < ui, one finds that all

terms us := µϕ
r
v, µϕ

r
j in the sums are < uj . Therefore, for all 1 ≤ j < i ≤M it takes the form

ui ◦ uj − qijuj ◦ ui =
j−1∑
s=1

M∑
t=1

αstijus ◦ ut (3.8)

for some qij ∈ qZ and αstij ∈ C(q). As explained after (3.1), it follows that GrF2(L0,1) is
a Noetherian ring, and since the filtration F2 is well founded, it implies that L0,1 is Noetherian
too.

We are going to extend all these facts to L0,n, n > 1. First, we need to refine the filtration F2

on L0,1. Consider the action of Uq(h) on C(µ)λ given by

Kν .α := coad
(
K−1
ν

)
(α), ν ∈ P, α ∈ C(µ)λ. (3.9)

Denote by C(µ)λ,γ ⊂ C(µ)λ the subspace of weight γ for this action; so α ∈ C(µ)λ,γ if Kν .α =
q(ν,γ)α. Consider the semigroup

ΛP = {(µ, λ, γ) ∈ P+ × P 2, λ is a weight of Vµ for �, γ is a weight of Vµ for .}

with the partial order (µ, λ, γ) ⪯ (µ′, λ′, γ′) if and only if µ′ − µ, λ′ − λ, γ′ − γ ∈ D−1Q+. Define

[ΛP ] =
{
([µ], [λ], [γ]) ∈ Pn+ × Pn × Pn

| (µi, λi, γi) ∈ ΛP , [µ] = (µi)
n
i=1, [λ] = (λi)

n
i=1, [γ] = (γi)

n
i=1

}
.

Let us put the following lexicographic order on [ΛP ], starting from the tail: ([µ′], [λ′], [γ′]) ⪯
([µ], [λ], [γ]) if (µ′n, λ

′
n, γ

′
n) ≺ (µn, λn, γn), or (µn, λn, γn) = (µ′n, λ

′
n, γ

′
n) and (µ′n−1, λ

′
n−1, γ

′
n−1) ≺

(µn−1, λn−1, γn−1), . . . , or (µk, λk, γk) = (µ′k, λ
′
k, γ

′
k) for all 1 < k ≤ n and (µ′1, λ

′
1, γ

′
1) ⪯

(µ1, λ1, γ1). (As usual, we write ([µ′], [λ′], [γ′]) ≺ ([µ], [λ], [γ]) for ([µ′], [λ′], [γ′]) ⪯ ([µ], [λ], [γ])
and ([µ′], [λ′], [γ′]) ̸= ([µ], [λ], [γ]).)

Now recall that L0,n = L⊗n
0,1 = O⊗n

q as vector spaces. For every ([µ], [λ], [γ]) ∈ [ΛP ], consider
the subspace C([µ])[λ],[γ] ⊂ L0,n defined by

C([µ]) = C(µ1)⊗ · · · ⊗ C(µn), C([µ])[λ],[γ] = C(µ1)λ1,γ1 ⊗ · · · ⊗ C(µn)λn,γn .

Then L0,n =
⊕

[µ]∈Pn
+
C([µ]) and C([µ]) =

⊕
([λ],[γ])C([µ])[λ],[γ]. For every ([µ], [λ], [γ]) ∈ [ΛP ]

define

F [µ],[λ],[γ]
3 =

⊕
([µ′],[λ′],[γ′])⪯([µ],[λ],[γ])

C([µ′])[λ′],[γ′], (3.10)

F≺[µ],[λ],[γ]
3 =

⊕
([µ′],[λ′],[γ′])≺([µ],[λ],[γ])

C([µ′])[λ′],[γ′].

Clearly, L0,n is the union of the subspaces F [µ],[λ],[γ]
3 over all ([µ], [λ], [γ]) ∈ [ΛP ], so these form

a vector space filtration of L0,n. Let us denote it F3, and define

GrF3(L0,n)[µ],[λ],[γ] = F [µ],[λ],[γ]
3 /F≺[µ],[λ],[γ]

3 .

This space is canonically identified with C([µ])[λ],[γ], so the graded vector space associated to F3 is

GrF3(L0,n) =
⊕

([µ],[λ],[γ])∈[ΛP ]

GrF3(L0,n)[µ],[λ],[γ] =
⊕

([µ],[λ],[γ])∈[ΛP ]

C([µ])[λ],[γ]. (3.11)
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We claim that F3 is an algebra filtration with respect to the product of L0,n, and there-
fore GrF3(L0,n) is a graded algebra.

For notational simplicity, let us prove it for n = 2, the general case being strictly similar.
Recall the R-matrix factorization (2.4). Take tuples ([µ], [λ], [γ]) = ((µ1, µ2), (λ1, λ2), (γ1, γ2))
and ([µ′], [λ′], [γ′]) = ((µ′1, µ

′
2), (λ

′
1, λ

′
2), (γ

′
1, γ

′
2)) in [ΛP ], and elements α ⊗ β ∈ C([µ])[λ],[γ]

and α′ ⊗ β′ ∈ C([µ′])[λ′],[γ′]. Recall from (2.17) that the product of L0,2 is given by the for-
mula

(α⊗ β)(α′ ⊗ β′)

=
∑

(R1),...,(R4)

α
(
S(R3

(1)R
4
(1))� α′ �R1

(1)R
2
(1)

)
⊗

(
S(R1

(2)R
3
(2))� β �R2

(2)R
4
(2)

)
β′. (3.12)

For every ν ∈ P and any of the components R1
(2), . . . , R

4
(2), denoting by −rj ∈ −Q+ the weight

of Rj(2), we have

Kν �
(
S
(
R1

(2)R
3
(2)

)
� β �R2

(2)R
4
(2)

)
=

∑
(β)

β(1)
(
R2

(2)R
4
(2)

)(
KνS

(
R1

(2)R
3
(2)

)
� β(2)

)
= q−(ν,r1+r3)

∑
(β)

β(1)
(
R2

(2)R
4
(2)

)(
S
(
R1

(2)R
3
(2)

)
Kν � β(2)

)
= q(ν,λ2−r1−r3)

∑
(β)

β(1)
(
R2

(2)R
4
(2)

)(
S
(
R1

(2)R
3
(2)

)
� β(2)

)
= q(ν,λ2−r1−r3)

(
S
(
R1

(2)R
3
(2)

)
� β �R2

(2)R
4
(2)

)
.

By similar computations for the action coad(K−1
ν ), and for all terms in the right-hand side of

(3.12), and using (3.3) componentwisely, we find that

α
(
S
(
R3

(1)R
4
(1)

)
� α′ �R1

(1)R
2
(1)

)
⊗
(
S
(
R1

(2)R
3
(2)

)
� β �R2

(2)R
4
(2)

)
β′ ∈ F [µ]+[µ′],[λ′′],[γ′′]

3 ,

where

λ′′ = (λ1 + λ′1 + r3 + r4, λ2 + λ′2 − r1 − r3),

γ′′ = (γ1 + γ′1 + r1 + r2 + r3 + r4, γ2 + γ′2 − r1 − r2 − r3 − r4).

Since r1 + r2 + r3 + r4 = 0 implies r1 = r2 = r3 = r4 = 0, by the order we have put on [ΛP ], we
deduce

(α⊗ β)(α′ ⊗ β′) ∈ F [µ]+[µ′],[λ]+[λ′],[γ]+[γ′]
3 .

Note that the filtration F3, taking the action (3.9) into account, is crucial for this argument to
work. Similar arguments work for any n ≥ 2. This proves that GrF3(L0,n) is a graded algebra.
We denote its product by ◦n.

Next, we show that (3.4) implies the analogous property for the product ◦n. For simplicity of
notations let us again assume that n = 2. Recall that the product ◦2 is defined on homogeneous
elements α⊗ β ∈ GrF3(L0,n)[µ],[λ] and α′ ⊗ β′ ∈ GrF3(L0,n)[µ′],[λ′] by

α⊗ β ◦n α′ ⊗ β′ = (α⊗ β)(α′ ⊗ β′) + F≺[µ+µ′],[λ+λ′]
3 .

Clearly, (3.4) gives (C(µ1) ◦ C(µ′1))⊗ (C(µ2) ◦ C(µ′2)) = C([µ+ µ′]), and (3.12) gives

C([µ]) ◦n C([µ′]) ⊂ (C(µ1) ◦ C(µ′1))⊗ (C(µ2) ◦ C(µ′2)).
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The converse inclusion holds true as well, as one can see by expressing, reciprocally, the (compo-
nentwise) product of L⊗n

0,1 in terms of the product of L0,n via the formula (2.19). In conclusion,

C([µ]) ◦n C([µ′]) = C([µ+ µ′]).

We are left to show that (3.7) generalizes to L0,n. First, note that for every 1 ≤ a ≤ n
the embedding ia : L0,1 → L0,n in (2.16) is a morphism of the filtered algebras (L0,1,F2) and
(L0,n,F3), in the sense that

ia
(
Fµ,λ
2

)
⊂

∑
γ∈P

F [µa],[λa],[γa]
3 ,

where by definition [µa] = (0, . . . , 0, µ, 0, . . . , 0) with µ on the a-th entry, and similarly [λa] =
(0, . . . , 0, λ, 0, . . . , 0) and [γa] = (0, . . . , 0, γ, 0, . . . , 0). Therefore, the relation (3.7) yields in
GrF3(L0,n) similar relations between elements of the form (matrix coefficient)⊗1, or 1⊗(matrix
coefficient).

We now consider the case of “mixed” products. We give the details when n = 2, the general
case being similar. Let us write the twist F in (2.18) as

F =
∑
(F )

F(1) ⊗ F(2) =
∑
(F )

F(1)1 ⊗ F(1)2 ⊗ F(2)1 ⊗ F(2)2,

that is, we set F(1)1 := R2
(2)R

4
(2), F(1)2 := R1

(2)R
3
(2), F(2)1 := R1

(1)R
2
(1), F(2)2 := R3

(1)R
4
(1).

Put d(µ) := dim(Vµ), µ ∈ P+, and

∆(2)
(
µ2ϕ

k2
l2

)
=

d(µ2)∑
p,s=1

µ2ϕ
k2
p ⊗ µ2ϕ

p
s ⊗ µ2ϕ

s
l2 , ∆(2)

(
µ′1
ϕ
k′1
l′1

)
=

d(µ′1)∑
p′,s′=1

µ′1
ϕ
k′1
p′ ⊗ µ′1

ϕp
′

s′ ⊗ µ′1
ϕs

′

l′1
.

From (3.12), one obtains

(
1⊗ µ2ϕ

k2
l2

)(
µ′1
ϕ
k′1
l′1

⊗ 1
)
=

∑
(F )

d(µ2)∑
p,s=1

d(µ′1)∑
p′,s′=1

(
µ′1
ϕp

′

s′
(
µ′1
ϕ
k′1
p′ (F(2)1)µ′1ϕ

s′

l′1
(S(F(2)2))

))
⊗
(
µ2ϕ

p
s

(
µ2ϕ

k2
p (F(1)1)µ2ϕ

s
l2(S(F(1)2))

))
. (3.13)

It is immediate that

µ′1
ϕp

′

s′ ⊗ µ2ϕ
p
s ∈ C(µ′1)

w(e
µ′1
s′ ),w(e

µ′1
s′ )−w(e

µ′1
p′ )

⊗ C(µ2)w(eµ2s ),w(e
µ2
s )−w(eµ2p ).

As in (iv) above, for every µ ∈ P+ we order the weight vectors eµ1 , . . . , e
µ
m so that w

(
eµi
)
> w

(
eµj
)

implies i < j. With such an ordering the factorization R = ΘR̂ (see (2.4)) implies

µ2ϕ
k2
p (F(1)1)µ2ϕ

s
l2(S(F(1)2)) = 0 unless k2 ≥ p and s ≥ l2,

and

µ′1
ϕ
k′1
p′ (F(2)1)µ′1ϕ

s′

l′1
(S(F(2)2)) = 0 unless k′1 ≤ p′ and s′ ≤ l′1.

Since s > l2, we have w
(
eµ2s

)
≤ w

(
eµ2l2

)
, and if w

(
eµ2s

)
< w

(
eµ2l2

)
, then µ2ϕ

p
s ∈ F

<µ2,w(e
µ2
l2

)

2 . In this
last situation, the summands µ′1ϕ

p′

s′ ⊗ µ2ϕ
p
s in the sum above vanish in GrF3(L0,2). In order to find

all the non-zero summands, we have to consider also the weights with respect to the action (3.9).
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Since k2 ≥ p implies w
(
eµ2k2

)
≤ w

(
eµ2p

)
, we have w

(
eµ2s

)
− w

(
eµ2p

)
≤ w

(
eµ2l2

)
− w

(
eµ2k2

)
. There-

fore, the summands which are non-zero in GrF3(L0,2) have both weights w
(
eµ2s

)
= w

(
eµ2l2

)
and

w
(
eµ2p

)
= w

(
eµ2k2

)
. Doing similarly with the weights of µ′1ϕ

p′

s′ , we find that also w
(
e
µ′1
s′
)
= w

(
e
µ′1
l′1

)
and w

(
e
µ′1
p′
)
= w

(
e
µ′1
k′1

)
. When all these conditions on weights are satisfied, the corresponding

components F(1)1, F(1)2, F(2)1, F(2)2 have zero weight. Therefore, the sum reduces to∑
(F )

µ2ϕ
k2
k2
(F(1)1)µ2ϕ

l2
l2
(S(F(1)2))µ′1ϕ

k′1
k′1
(F(2)1)µ′1ϕ

l′1
l′1
(S(F(2)2)

=
〈
µ2ϕ

k2
k2

⊗ µ2ϕ
l2
l2
⊗ µ′1

ϕ
k′1
k′1

⊗ µ′1
ϕ
l′1
l′1
,Θ13Θ

−1
14 Θ24Θ

−1
23

〉
= q

(w(e
µ2
k2

)−w(eµ2l2 ),w(e
µ′1
k′1

)−w(eµ
′
1

l′1
))
.

Denoting by q′k2l2k′1l′1
this scalar, it follows

(
1⊗ µ2ϕ

k2
l2

)
◦2

(
µ′1
ϕ
k′1
l′1

⊗ 1
)
= q′k2l2k′1l′1 µ′1

ϕ
k′1
l′1

⊗ µ2ϕ
k2
l2

= q′k2l2k′1l′1

(
µ′1
ϕ
k′1
l′1

⊗ 1
)
◦2

(
1⊗ µ2ϕ

k2
l2

)
.

This is the relation analogous to (3.7) for mixed products in GrF3(L0,2).

Recall that in (3.8) we denoted by u1, . . . , uM the ordered list of matrix coefficients ϖk
ϕji .

Let us order in a lexicographic way the elements ui ⊗ uj , i.e., as a sequence u
(2)
1 , . . . , u

(2)
M2

such that the following condition holds: if ϖl′ϕ
t′
s′ < ϖk′ϕ

j′

i′ , or ϖl′ϕ
t′
s′ = ϖk′ϕ

j′

i′ and ϖl
ϕts < ϖk

ϕji ,
then u

(2)
a := ϖk

ϕji ⊗ ϖk′ϕ
j′

i′ and u
(2)
b := ϖl

ϕts ⊗ ϖl′ϕ
t′
s′ satisfy u

(2)
b < u

(2)
a . Then, for this ordering

the polynormal relations (3.8) hold true for all 1 ≤ u
(2)
j < u

(2)
i ≤M2. As described after (3.1), it

follows that GrF3(L0,n) is Noetherian. The filtration F3 being well founded, it implies that L0,n

is Noetherian too.
Finally, we consider the A-algebra LA0,n, and prove it is Noetherian. We proceed in exactly

the same way as for L0,n, changing the generators and replacing key arguments of the steps
(i)–(iv) by the corresponding results over A. Let us describe these modifications step by step.

First, consider the case n = 1. Recall the A-lattices A
•

C(λ) (see (2.46)), and the decomposition
(2.55) of OA into weight subspaces. In particular, have a decomposition into weight subspaces
for the left coregular action,

A

•

C(λ) =
⊕
λ′∈P

A

•

C(λ)λ′ .

Define

AFµ,λ
2 :=

⊕
(µ′,λ′)⪯(µ,λ)

A

•

C(µ′)λ′ .

Recall that every A-module of matrix coefficients (End(AVµ))
∗, µ ∈ P+, is contained in OA(≤ µ),

and by inverting over C(q) the corresponding linear triangular system between basis elements,
and using that the order relation ⪯ is finer than ≤, we obtain an inclusion⊕

µ′⪯µ
A

•

C(µ′) ⊂
⊕
µ′⪯µ

C(µ′)

(see (2.48)–(2.51)). It follows that AFµ,λ
2 = Fµ,λ

2 ∩ OA, and therefore, like F2 the familyAF2 :={
AFµ,λ

2

}
(µ,λ)∈Λ is a well-founded filtration of OA. Put AF≺µ,λ

2 = F≺µ,λ
2 ∩ OA, and consider the

graded A-module Gr
AF2

(
LA0,1

)
associated to AF2. By (2.52)–(2.54) and the fact that OA = LA0,1

as an A-module, we have the A-module decomposition

Gr
AF2

(
LA0,1

)
=

⊕
(µ,λ)∈Λ

AC(µ)λ,
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where AC(µ)λ is the submodule of weight λ (for the left coregular action) of

AC(µ) := (End(AVµ))
∗.

Then, we can proceed as before. By step (i), we deduce that AF2 is an algebra filtration of LA0,1.
By Proposition 2.12, the A-module A

•

C(µ1 + µ2) has multiplicity one in A

•

C(µ1)⊗ A

•

C(µ2). In
fact, by step (ii), AC(µ1+µ2) has multiplicity one in AC(µ1)

⊗
A AC(µ2), so exactly in the same

way as (3.4), we obtain in Gr
AF2

(
LA0,1

)
the equality

AC(µ) ◦ AC(ν) = AC(µ+ ν).

In step (iii), we fixed a basis of each space C(µ), consisting of a set of matrix coefficients
{
µϕ

i
j

}
with respect to dual basis of weight vectors of the modules Vµ and V ∗

µ . In step (iv), the
basis elements of Vµ and V ∗

µ were ordered by means of the weights, and we used the fact that
the matrix coefficients in the spaces C(ϖ1), . . . , C(ϖm) form a generating set of the algebra
GrF2(L0,1). The only property of the matrix coefficients used in the computations was that they
are weight vectors for the left coregular action (and later, in the case n > 1, for the action (3.9)).

We can proceed exactly in the same manner by working with the A-modules of matrix
coefficients AC(µ). If one wishes to work at the lever of OA, recall that any set of generators
of OA generates LA0,1 as well (see the proof of Proposition 2.18). Then, one can replace the
basis

{
µϕ

i
j

}
of each space C(µ) with the canonical basis Ḃ[µ]∗ of A

•

C(µ), and take the generating
set of OA formed by the elements in Ḃ[ϖi]

∗, i = 1, . . . ,m (see Proposition 2.10 and the comments
thereafter). By the integrality properties satisfied by the R-matrix and the twists, all the
computations in the proof of steps (iii) and (iv) can be done using such basis elements, and
eventually take place over A (see [18, Propositions 4.10 and 6.9]). Therefore, we obtain a relation
like (3.8) with coefficients αstij ∈ A. Since A is a Noetherian ring, again this proves Gr

AF2

(
LA0,1

)
,

whence LA0,1, are Noetherian rings.
This being done, the adaptation of the proof when n > 1 is immediate. The filtration F3 has

to be replaced with AF3 :=
{
AF [µ],[λ],[γ]

3

}
([µ],[λ],[γ])

, where AF [µ],[λ],[γ]
3 is the A-module defined by

AF [µ],[λ],[γ]
3 =

⊕
([µ′],[λ′],[γ′])⪯([µ],[λ],[γ])

A

•

C([µ′])[λ′],[γ′],

where

A

•

C([µ])[λ],[γ] = A

•

C(µ1)λ1,γ1
⊗
A

· · ·
⊗
A

A

•

C(µn)λn,γn ,

and A

•

C(µ)λ,γ is the subspace of A

•

C(µ)λ of weight γ for the action (3.9). Then the proof
proceeds in exactly the same way, replacing in (3.13) and all subsequent computations the
matrix coefficients by the generators of OA provided by Proposition 2.10. This concludes the
proof. ■

Theorem 3.4. The algebra M0,n = LUq

0,n is Noetherian and generated over C(q) by a finite
number of elements.

Our method of proof follows closely that of the Hilbert–Nagata theorem (see [46]). Let us
recall one version of this theorem. Let K be an arbitrary field, A a commutative algebra over K
finitely generated by elements a1, . . . , an, and G a group of algebra automorphisms of A.

Theorem 3.5. If the action of G on A is completely reducible on finite-dimensional representa-
tions, then the ring AG of invariants of A with respect to G is Noetherian and a finitely generated
algebra over K.
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We recall here the main steps of the proof that we will adapt in order to prove Theorem 3.4:

(a) From the complete reducibility of the action of G on A, one can define a linear map

R : A → AG

namely the projection onto the space of invariant elements along the sum of nontrivial
isotypical components of A. This linear map is the Reynolds operator; we already discussed
it in (2.23) in the case of Uq acting on L0,n. By the same arguments we developed there,
it satisfies R(hf) = hR(f) for every f ∈ A, h ∈ AG.

(b) Let I be an ideal of AG. Then I = R(AI) = AI ∩ AG. Because AI is an ideal of A,
and A is Noetherian, there exist elements b1, . . . , bs, that can be chosen in I ⊂ AG, such
that AI = Ab1 + · · ·+ Abs. Since I = R(AI) = R(Ab1 + · · · + Abs) = AGb1 + · · · + AGbs,
I is finitely generated over AG. Therefore, AG is Noetherian.

(c) Let B be an algebra graded over N (for simplicity of notations): B =
⊕+∞

n=0Bn, with
Bm.Bn ⊂ Bm+n. The augmentation ideal of B is B+ :=

⊕+∞
n=1Bn. If B

+ is a Noetherian
ideal of B, then B is a finitely generated algebra over B0. This is [99, Lemma 2.4.5] (in
that statement B is commutative, but this hypothesis is not necessary for the proof).

(d) Assume that AG is graded over N (for simplicity of notations): AG =
⊕+∞

n=0A
G
n with

AG0 = K. Then AG+ =
⊕+∞

n=1A
G
n is an ideal of AG, which is Noetherian by (b) above.

Applying (c), we deduce that AG is a finitely generated algebra over K.

Proof of Theorem 3.4. Consider the filtration F of L0,n by the subspaces

F [µ] =
⊕

[µ′]⪯[µ]

C([µ′]), µ ∈ Pn+,

where Pn+ is given the lexicographic partial order induced from [Λ]. It is easily seen that F is
an algebra filtration: the coregular actions �, � fix globally each component C(µ) of L0,1, so
the claim follows from (2.9), (2.17) and the fact that C(µ) ⋆ C(ν) ⊂ C(µ+ ν) for all µ, ν ∈ P+.
Denote by GrF (L0,n) the corresponding graded algebra. As a vector space, we have

GrF (L0,n) =
⊕

[µ]∈Pn
+

C([µ]). (3.14)

Because each space C([µ]) is stabilized by the coadjoint action of Uq, (3.14) has a key advantage
on the refined decomposition (3.11). Indeed, since L0,n is a Uq-module algebra, the action of Uq
is well defined on GrF (L0,n) and gives it a structure of Uq-module algebra. As vector spaces, we
have

GrF (L0,n)
Uq =

⊕
[µ]∈Pn

+

C([µ])Uq .

Now we can adapt the different steps (a)–(d) recalled above:

(a′) The action of Uq on GrF (L0,n) is completely reducible. This follows from (3.14) and the
fact that the spaces C(µ) are finite-dimensional and thus completely reducible Uq-modules.
We can therefore define the Reynolds operator as in (a),

R : GrF (L0,n) → GrF (L0,n)
Uq .

(b′) GrF (L0,n) is Noetherian, because (3.14) shows it is filtered by F3, and the associated
graded algebra GrF3(GrF (L0,n)) = GrF3(L0,n) is Noetherian by Theorem 3.1. As in (b),
we deduce that GrF (L0,n)

Uq is Noetherian. But GrF (L0,n)
Uq = GrF

(
LUq

0,n

)
, which implies

that LUq

0,n is Noetherian.
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(c′) (and (d′)) Then we can apply the steps (c)–(d). As a result GrF (L0,n)
Uq is finitely gener-

ated, say by k non-zero elements x̄1, . . . , x̄k, which we may assume homogeneous.

(e′) We can now deduce that LUq

0,n is generated by elements xi with leading terms the x̄i’s. In-
deed, let x ∈ LUq

0,n, and [µ] ∈ Pn+ such that x ∈ F [µ]\F≺[µ], where F≺[µ] :=
⊕

[µ′]≺[µ]C([µ
′]).

In GrF (L0,n)
Uq

[µ]=F [µ]/F≺[µ], we have

x̄=
∑

(i1,...,ik)∈I

λ(i1,...,ik)x̄
i1
1 · · · x̄ikk

for some finite set I⊂Nk, scalars λ(i1,...,ik) ∈ C(q), and monomials x̄i11 · · · x̄ikk of degree [µ].
By definition of the product in GrF (L0,n)

Uq ,

x̄i11 · · · x̄ikk = xi11 · · ·xikk + F≺[µ],

so xi11 · · ·xikk ∈ F [µ] \ F≺[µ], whence x̄i11 · · · x̄ikk = xi11 · · ·xikk and

x−
∑

(i1,...,ik)∈I

λ(i1,...,ik)x
i1
1 · · ·xikk ∈ F≺[µ].

The conclusion follows by decreasing induction on [µ], since at last we terminate at
F [0] ∼= C(q).

By combining the steps (a′) to (e′), we get that M0,n is a Noetherian and finitely generated
ring. ■

Remark 3.6.

(1) Because LUq

0,1 is the center of L0,1, (e
′) proves it is finitely generated. Of course this follows

also from the isomorphism L0,1
∼= U lf

q and the fact that the center of U lf
q is the center of Uq

(by Theorem 2.1), plus the well-known description of the latter.

(2) In the sl2 case the filtration F on LUq

0,n should be related via the Wilson loop isomorphism
(defined in [18, Section 8.2]) to the filtration of skein algebras of spheres with n + 1
punctures used in [93].

4 Proof of Theorem 1.2

As usual we let ϵ be a primitive l-th root of unity with l odd and l > di for all i ∈ {1, . . . ,m}.
We now consider the specialization Lϵ0,n of L0,n at q = ϵ, defined in Section 2.2.1. Recall the
isomorphism of algebras η∗ : O(G) → Z0(Oϵ) (see (2.71)), and that Lϵ0,n = O⊗n

ϵ as a vector

space. Consider the linear subspace of Lϵ0,n defined by Z0

(
Lϵ0,n

)
:= Z0(Oϵ)

⊗n. This space is
naturally a subalgebra of O⊗n

ϵ (endowed with the componentwise product ⋆). In fact, we also
have the following.

Proposition 4.1.

(1) Z0

(
Lϵ0,n

)
is a central subalgebra of the algebra Lϵ0,n, and the Z0

(
Lϵ0,n

)
-modules Lϵ0,n and

O⊗n
ϵ , with actions defined by the respective products of these algebras, do coincide.

(2) Lϵ0,n is a free Z0

(
Lϵ0,n

)
-module of rank ln. dim g.

(3)
(
η∗−1

)⊗n
: Z0

(
Lϵ0,n

)
→ O(G)⊗n is an isomorphism of algebras, and Z0

(
Lϵ0,n

)
is a Noethe-

rian ring.

(4) The Z0

(
Lϵ0,n

)
-module Lϵ0,n is finite and Noetherian. Therefore, Lϵ0,n is a Noetherian ring.
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Note that the proof we give in (4) of the fact that Lϵ0,n is Noetherian is independent from the
proof of Theorem 3.1.

Proof. (1) Let us show that Z0

(
Lϵ0,n

)
is a central subalgebra of Lϵ0,n. In the case n = 1, the

formula (2.9) implies that αβ = α ⋆ β for all α ∈ Z0(Oϵ) and β ∈ Lϵ0,1. Indeed, by (2.9) we have

αβ =
∑

(R),(R)

(R(2′)S(R(2))� α) ⋆ (R(1′) � β �R(1))

=
∑

(R),(R),(α),(β)

α(1) ⋆ (β(1)(R(1)α(3)(S(R(2)))β(3)(R(1′)α(2)(R(2′)))β(2)),

where all components α(1), α(2), α(3) ∈ Z0(Oϵ), since Z0(Oϵ) is a Hopf subalgebra of Oϵ. But∑
(R)

R(1)α(3)(S(R(2))) = S−1(Φ−(SOϵ(α(3)))) ∈ Z0(Uϵ),

since Φ−(SOϵ(α(3))) ∈ Z0(Uϵ) by Theorem 2.29 (2). Similarly,
∑

(R)R(1′)α(2)(R(2′)) ∈ Z0(Uϵ).

In general, these elements belong to Z0(Uϵ) and not Z0

(
Uad
ϵ

)
because of the “diagonal” factor Θ

of the R-matrix in (2.4). By Lemma 2.28, Z0

(
Uad
A

)
acts by the trivial character ε (the counit) on

specializations of Γ-modules. The action of Z0(UA) is the counit ε multiplied with some powers
of ϵ1/D. However, [18, Propositions 4.1 and 4.10] show that such powers of ϵ1/D eventually
disappear in the sum above; this is because the sum can be rewritten in terms of copies of the
quasi R-matrix R̂ in (2.4) and the pivotal element ℓ, instead of copies of R. Therefore,

αβ =
∑

(α),(β)

α(1) ⋆ (ε(β(1))ε(α(3))ε(β(3))ε(α(2))β(2)) = α ⋆ β. (4.1)

This shows Lϵ0,1 and Oϵ coincide as modules over Z0

(
Lϵ0,1

)
= Z0(Oϵ). Next, we show that the

subalgebras Z0(Oϵ)
(a) are central in Lϵ0,n for all a = 1, . . . , n. This fact will conclude the proof

that Lϵ0,n and O⊗n
ϵ coincide as Z0

(
Lϵ0,n

)
-modules, because the subalgebras Z0(Oϵ)

(a) generate

the space Z0

(
Lϵ0,n

)
in

(
Lϵ0,1

)⊗n
, and hence in Lϵ0,n (this follows from the comment before (2.18)).

In order to show that Z0(Oϵ)
(a) is central in Lϵ0,n for all a = 1, . . . , n, it is enough to show

Z0(Oϵ)
(a) commutes with the elements of Lϵ0,n supported by the tensor factors

(
Lϵ0,1

)(b)
with

b ̸= a. Since (α)(a) ⊗ (β)(b) = ((α)(a) ⊗ 1)(1⊗ (β)(b)) by the definition, we have to show that(
1⊗(β)(b)

)(
(α)(a)⊗1

)
= (α)(a)⊗(β)(b) whenever α∈Z0(Oϵ). We have (denoting

∑
(α),(α),(α),(α)

by
∑

(α)4 , ∆(α(1)) =
∑

(α) α(1)(1) ⊗ α(1)(2) etc.):(
1⊗ (β)(b)

)(
(α)(a) ⊗ 1

)
=

∑
(Ri)

(
S
(
R3

(1)R
4
(1)

)
� α�R1

(1)R
2
(1)

)(a)
⊗
(
S
(
R1

(2)R
3
(2)

)
� β �R2

(2)R
4
(2)

)(b)
=

∑
(Ri),(α)4,(β)2

(α(2))
(a) ⊗ (β(2))

(b)

× β(1)
(
α(1)(2)

(
R2

(1)

)
R2

(2)α(3)(1)

(
S
(
R4

(1)

))
R4

(2)

)
× β(3)

(
α(3)(2)

(
R3

(1)

)
R3

(2)α(1)(1)

(
R1

(1)

)
S
(
R1

(2)

))
.

By Theorem 2.29 (2), it follows that

α(1)(2)

(
R2

(1)

)
R2

(2) = Φ+(α(1)(2)) ∈ Z0(Uϵ),

and similarly

α(3)(1)

(
S
(
R4

(1)

))
R4

(2), α(3)(2)

(
R3

(1)

)
R3

(2), α(1)(1)

(
R1

(1)

)
S
(
R1

(2)

)
∈ Z0(Uϵ).
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Denote by z any such element; Z0

(
Uad
ϵ

)
acts by the trivial character (the counit ε) on special-

izations of Γ-modules. By using [18, Proposition 6.2], arguing as above (4.1), we obtain that the
expression of z in terms of the corresponding α(i)(j) involves ε(z) = ε(α(i)(j)) only

(
no root ϵ1/D

)
.

It follows

β(1)
(
α(1)(2)

(
R2

(1)

)
R2

(2)α(3)(1)

(
S
(
R4

(1)

))
R4

(2)

)
= ε(α(1)(2)α(3)(1))β(1)(1) = ε(α(1)(2))ε(α(3)(1))ε(β(1)),

β(3)
(
α(3)(2)

(
R3

(1)

)
R3

(2)α(1)(1)

(
R1

(1)

)
S
(
R1

(2)

))
= ε(α(3)(2))ε(α(1)(1))ε(β(3)).

Therefore,
(
1 ⊗ (β)(b)

)(
(α)(a) ⊗ 1

)
= (α)(a) ⊗ (β)(b). It follows that Lϵ0,n = O⊗n

ϵ as modules

over Z0

(
Lϵ0,n

)
; for instance when n = 2, given α′, β′ ∈ Z0

(
Lϵ0,1

)
we have (α′ ⊗ β′)(α ⊗ β) =

(α′⊗1)(1⊗β′)(α⊗1)(1⊗β) immediately by (2.17), and (1⊗β′)(α⊗1) = α⊗β′ = (α⊗1)(1⊗β′)
as above. Then (α′ ⊗ β′)(α ⊗ β) = α′α ⊗ β′β. In particular, Z0

(
Lϵ0,n

)
is a central subalgebra

of Lϵ0,n.
(2) Since Lϵ0,n and O⊗n

ϵ coincide as modules over Z0

(
Lϵ0,n

)
= Z0(O⊗n

ϵ ), the claim follows
from Theorem 2.29, that is, from [41, Theorem 7.2], which shows that Oϵ is a finitely gener-
ated projective module of rank ldim g over Z0(Oϵ), and from the arguments of [28] (using that
K0(O(G)) = Z by [87]), which imply that this module is free. Alternatively, it follows from the
fact that Oϵ is a cleft extension of O(G) (see [6, Remark 2.18 (b)], and [25, Section 3.2]).

(3) The linear isomorphism
(
η∗−1

)⊗n
: Z0

(
Lϵ0,n

)
→ O(G)⊗n is an isomorphism of alge-

bras because Z0

(
Lϵ0,n

)
is central in Lϵ0,n. It implies that Z0

(
Lϵ0,n

)
is a Noetherian ring, since

O(G)⊗n = O(Gn) and Gn is an affine algebraic variety.

(4) The fact that Lϵ0,n is a finitely generated Z0

(
Lϵ0,n

)
-module follows from (2); an alterna-

tive proof of this fact will be provided at the end of the proof of Theorem 4.9. Since Lϵ0,n is

finite over Z0

(
Lϵ0,n

)
and Z0

(
Lϵ0,n

)
is Noetherian, Lϵ0,n is a Noetherian Z0

(
Lϵ0,n

)
-module (e.g.,

by [7, Proposition 6.5]). It follows that Lϵ0,n is a Noetherian ring (e.g., by [88, Chapter 1,
Section 1.3]). ■

Recall that we denote U lf
ϵ = U lf

A

⊗
ACϵ (see (2.27)), and Z0(Uϵ) ⊂ Uϵ is the central poly-

nomial subalgebra generated by Elβk , F
l
βk
, L±l

i , for k ∈ {1, . . . , N} and i ∈ {1, . . . ,m}. Since
Φ1 : Lϵ0,1 → U lf

ϵ is an embedding of algebras (see Corollary 2.25), it identifies Z0

(
Lϵ0,1

)
with a cen-

tral subalgebra of U lf
ϵ . Put Z0

(
U lf
ϵ

)
:= Φ1(Z0

(
Lϵ0,1

)
). Recall Theorem 2.1, Proposition 2.24, and

let T (l), T
(l)
2− and T

(l)
2 be the subsets of T , T2− and T2 formed by the elements Kλl with λ ∈ P ,

λ ∈ −2P+ and λ ∈ 2P , respectively.

Proposition 4.2. We have Uϵ = T−1
2−U

lf
ϵ [T/T2] = Φ1

(
Lϵ0,1

[
d−1

])
[T/T2], and therefore the map

Φ1 : Lϵ0,1
[
d−1

]
→ T−1

2−U
lf
ϵ is an isomorphism.

Moreover, Z
(
U lf
ϵ

)
= U lf

ϵ ∩ Z(Uϵ), and

Z0(Uϵ) = T
(l)−1
2− Z0

(
U lf
ϵ

)[
T (l)/T

(l)
2

]
, Z(Uϵ) = T

(l)−1
2− Z

(
U lf
ϵ

)[
T (l)/T

(l)
2

]
.

Proof. The first claim follows immediately from Proposition 2.24 by specialization at q = ϵ. For
the second claim, the inclusion U lf

ϵ ∩Z(Uϵ) ⊂ Z
(
U lf
ϵ

)
is clear, and for the converse inclusion we

only have to show that the elements of Z
(
U lf
ϵ

)
commute with T . They commute with T2 ⊂ U lf

ϵ ,
so the conjugation action by elements of T on Z

(
U lf
ϵ

)
has order at most 2. Let x ∈ Z

(
U lf
ϵ

)
with decomposition x =

∑
i cixi with all ci ∈ C and xi PBW basis vectors, and let λ ∈ P . We

have KλxK−λ =
∑

i ciq(xi)xi, where q(xi) ∈ ϵZ satisfies q(xi)
2 = 1 for all i. Because ϵ has odd

order the only possibility is q(xi) = 1, whence KλxK−λ = x. The conclusion follows.

The inclusion Z0

(
U lf
ϵ

)
⊂ Z0(Uϵ) follows from the definition Z0

(
Lϵ0,1

)
= Z0(Oϵ), the for-

mula Φ1 = m ◦
(
id⊗ S−1

)
◦ Φ, and the fact that Φ affords an embedding Z0(Oϵ) → Z0(Uϵ(G

∗))
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(see Theorem 2.29 (2)). Since T (l) ⊂ Z0(Uϵ), we obtain

T
(l)−1
2− Z0

(
U lf
ϵ

)[
T (l)/T

(l)
2

]
⊂ Z0(Uϵ).

The proof of the converse inclusion is similar to that in Proposition 2.24. The isomorphism
Z0(Oϵ)

[
ψ−1
−lρ

]
→ Z0(Uϵ(G

∗)) of Theorem 2.29 (2) implies

F lβkK
l
βk

⊗ 1, 1⊗K−l
βk
Elβk ∈ Φ

(
Z0(Oϵ)

[
ψ−1
−lρ

])
for every positive root βk. Since ψ−lρ = Φ−1

1 (K−2lρ) = ψl−ρ (the l-th power of ψ−ρ in Lϵ0,1), and

Φ1

(
Z0

(
Lϵ0,1

)[
ψ−l
−ρ

])
= T

(l)−1
2− Z0

(
U lf
ϵ

)
,

it follows that

F lβkK
l
βk
, S−1

(
Elβk

)
K l
βk

∈ T
(l)−1
2− Z0

(
U lf
ϵ

)
.

Hence F lβk , S
−1

(
Elβk

)
∈ T

(l)−1
2− Z0

(
U lf
ϵ

)[
T (l)/T

(l)
2

]
. The sets S−1

(
Elβk

)
Z0(Uϵ(h)), k = 1, . . . , N ,

generate the subalgebra Z0(Uϵ(b+)) of Z0(Uϵ), so from the triangular decomposition Z0(Uϵ) =
Z0(Uϵ(n−))Z0(Uϵ(h))Z0(Uϵ(n+)) this proves the inclusion Z0(Uϵ) ⊂ T

(l)−1
2− Z0

(
U lf
ϵ

)[
T (l)/T

(l)
2

]
.

From the isomorphism

Z0(Uϵ)
⊗

Z0(Uϵ)∩Z1(Uϵ)

Z1(Uϵ) → Z(Uϵ)

(see Theorem 2.27), and the fact that Z(Uq) ⊂ U lf
q

(
whence Z1(Uϵ) ⊂ Z

(
U lf
ϵ

))
, the equality

Z(Uϵ) = T
(l)−1
2− Z

(
U lf
ϵ

)[
T (l)/T

(l)
2

]
follows at once. ■

Remark 4.3. Let us explain how this can be used to give an interpretation of the isomorphism
Z0

(
Lϵ0,1

) ∼= O(G). Recall the notations introduced around Theorem 2.27. Since G∗ = U+TGU−,
we have O(G∗) = O(U+)O(TG)O(U−), and the map σ yields an identification

O
(
G0

)
= O(U+)O(TG/(2))O(U−). (4.2)

We can identify O
(
G0

)
with the subalgebra (σ|G∗)∗

(
O
(
G0

))
⊂ O(G∗). Consider the exterior

power V = ∧Ng endowed with the action ∧NAd of G. Put on g a basis consisting of one
element eα per root space gα, along with a basis of h. Let v ∈ V be the exterior power of
the eα’s for α negative, and v∗ a dual vector such that v∗(v) = 1 and v∗ vanishes on a TG-
invariant complement of v. It is classical that G \ G0 has defining equation δ(g) = 0, where δ
is the matrix coefficient δ(g) = v∗(πV (g)v) (see, e.g., [59, p. 174]). Hence O

(
G0

)
= O(G)

[
δ−1

]
.

On G0 we have δ(u+tu−) = χ−2ρ(t), where χ−2ρ is the character of TG associated to the
root −2ρ. Now we can make the connection with Uϵ. The isomorphism Z0(Uϵ) ∼= O(G∗) of
Theorem 2.27 (2) identifies Z0(Uϵ(h)) = C

[
T (l)

]
with O(TG) by mapping Kλl to the character

of TG associated to λ. Therefore, it maps C
[
T
(l)
2

]
to O(TG/(2)), and T

(l)−1
2− Z0

(
U lf
ϵ

)
to O

(
G0

)
by (4.2) and Proposition 4.2. Since O

(
G0

)
= O(G)

[
δ−1

]
and T

(l)−1
2− Z0

(
U lf
ϵ

)
= Z0

(
U lf
ϵ

)[
ℓl
]
, it

follows that Z0

(
U lf
ϵ

)
and O(G) coincide after localization by ℓl and δ respectively. By using

the Bruhat decomposition of G as in (4.6) in the proof of Theorem 4.9 below, one can deduce
Z0

(
U lf
ϵ

) ∼= O(G), whence Z0

(
Lϵ0,1

) ∼= O(G) by injectivity of Φ1.

Let us make the following observation. Since Lϵ0,n = LA0,n
⊗

ACϵ, with LA0,n = O⊗n
A as an

A-module, and a generating system of O⊗n
A is also a generating system of LA0,n, it follows

from Proposition 2.10 and the identities (2.56)–(2.57) that Lϵ0,n is generated by elements of
the form α1 ⊗ · · · ⊗ αn, where α1, . . . , αn belong to the set Cgen of matrix coefficients lying on
the first and last columns of the matrix representations of U res

A in the canonical bases of the
modules AVϖi , i = 1, . . . ,m. Denote by α⋆k, k ∈ N, the k-th power of an element α ∈ OA.



Unrestricted Quantum Moduli Algebras, II 55

Lemma 4.4. For all α ∈ Cgen, α
⋆l ∈ Z0

(
Lϵ0,1

)
.

Proof. Recall that the Frobenius epimorphism η : U res
A

⊗
ACϵ → U(g) in (2.71) has kernel

the ideal I generated by the elements Ei, Fi, Ki − 1, and (Ki; p)qi where l does not divide p,
i = 1, . . . ,m. It follows that an element of Oϵ belongs to Z0(Oϵ) = η∗(O(G)) if and only if it
vanishes on I. But this is immediate to check for the elements of the form α⋆l with α ∈ Cgen,
using that Ki is grouplike and the pure summands of ∆(Ei) and ∆(Fi) have one component
equal to 1 or K±1

i and the other component equal to Ei or Fi. For instance,

ψ⋆lϖi
(Ki − 1) = ψϖi(Ki)

l − 1 = ϵl(αi,ϖi) − 1 = 0.

Similarly, for every α ∈ Cgen, we find

α⋆l(Ei) = α⊗l(∆(l)(Ei)
)
= 0 and α⋆l(Fi) = α⋆l(Ki − 1) = 0. ■

We need below explicit descriptions of the centers of Oϵ(SL2) and Lϵ0,1(sl2) and their Z0-
subalgebras. Denote by a, b, c, d the standard generators of Oq(SL2), i.e., the matrix coefficients
in the basis of weight vectors v0, v1 = F.v0 of the 2-dimensional irreducible representation V1
of Uq(sl2). As above, denote by x⋆k, k ∈ N, the k-th power of an element x ∈ OA(SL2). The
algebra OA(SL2) is generated by a, b, c, d; the monomials a⋆i ⋆ b⋆j ⋆ d⋆r and a⋆i ⋆ c⋆k ⋆ d⋆r,
i, j, k, r ∈ N, k > 0, form an A-basis of OA(SL2). The algebra Z0(Oϵ(SL2)) is generated by
a⋆l, b⋆l, c⋆l, d⋆l; the monomials a⋆il ⋆ b⋆jl ⋆ d⋆rl and a⋆il ⋆ c⋆kl ⋆ d⋆rl form a basis of Z0(Oϵ(SL2)),
and Z(Oϵ(SL2)) is generated by Z0(Oϵ(SL2)) and the elements b⋆(l−k) ⋆c⋆k, k = 0, . . . , l (see [41,
Proposition 1.4 and the appendix]). We have the relation

a⋆l ⋆ d⋆l − b⋆l ⋆ c⋆l = 1 (4.3)

and the Frobenius isomorphism of Parshall–Wang (see [92, Chapter 7]) coincides with the map

FrPW : O(SL2) → Z0(Oϵ(SL2))

induced by η∗; it sends the standard generators a, b, c, d of O(SL2) = O1(SL2) respectively
to a⋆l, b⋆l, c⋆l, d⋆l. Finally, we have seen that Oϵ(SL2) is a free Z0(O(SL2))-module of rank l3

(see Theorem 2.29 (3)). In [38], it is shown that a basis of this module is formed by the mono-
mials ambncs

′
and bncs

′′
dr, with the integers m, n, r, s′, s′′ in the range

1 ≤ m ≤ l − 1, 0 ≤ n, r ≤ l − 1, m ≤ s′ ≤ l − 1, 0 ≤ s′′ ≤ l − r − 1. (4.4)

Now consider LA0,1(sl2). Recall that LA0,1 = OA as UA-modules. The algebra LA0,1(sl2) is also
generated by a, b, c, d; a set of defining relations is (see [18, Section 5]):

ad = da, db = q2bd, cd = q2dc, ab− ba = −
(
1− q−2

)
bd,

cb− bc =
(
1− q−2

)(
da− d2

)
, ac− ca =

(
1− q−2

)
dc, ad− q2bc = 1. (4.5)

The element ω := qa + q−1d is central. Let Tk, k ∈ N, be such that Tk(x)/2 is the k-th
Chebyshev polynomial of the first type in the variable x/2. We have (see [18, Proposition 7.2],
for the generalization to Lϵ0,n(sl2)):

Lemma 4.5. Let I be the ideal of C
[
ω, bl, cl, dl

]
generated by

(
Tl(ω)− dl

)
dl − blcl − 1, we have

Z(Lϵ0,1(sl2)) = C
[
ω, bl, cl, dl

]
/I and Z0(Lϵ0,1(sl2)) = C

[
Tl(ω), b

l, cl, dl
]
/I.

Here bl, cl, dl are the l-th powers of b, c, d computed using the product of LA0,1(sl2), not the
product ⋆ of Z0(Oϵ(SL2)). The above generator of I can be interpreted as a determinant, and ω
as a quantum trace on V1. The following has also been observed in [75].
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Lemma 4.6. Viewed as elements of OA(SL2), Tl(ω)− dl = a⋆l and xl = x⋆l, x ∈ {b, c, d}.

Proof. Let α and ϖ be the simple root and fundamental weight of sl2. In the notations
of (2.70), we have b = ψ−α

−ϖ, c = ψα−ϖ, d = ψ−ϖ; the formulas of Φ give

Φ1

(
b⋆l

)
=

(
q − q−1

)l
F l, Φ1

(
c⋆l

)
=

(
q − q−1

)l
ElK−l, Φ1

(
d⋆l

)
= K−l.

These coincide respectively with Φ1

(
bl
)
, Φ1(c

l), Φ1

(
dl
)
(see [18, equation (5.3)]). By passing to

the localization OA(SL2)
[
d−1

]
, and using Parshall–Wang’s relation (4.3), one deduces easily

Φ1

(
a⋆l

)
= K l +

(
q − q−1

)2l
F lEl = Tl(Ω)−K−l,

where Ω =
(
ϵ− ϵ−1

)2
FE + ϵK + ϵ−1K−1 is the Casimir element, and Tl(x)/2 is the l-th Cheby-

shev polynomial of the first type in the variable x/2. We have Φ1(ω) = Ω, so Φ1

(
a⋆l

)
= Tl(ω)−dl.

The conclusion follows from the injectivity of Φ1. ■

This lemma proves that we have a commutative diagram

O(SL2)
FrPW //

Fr ((

Z0(Oϵ(SL2))

��

� � // Oϵ(SL2)

��
Z0(Lϵ0,1(sl2))

� � // Lϵ0,1(sl2),

where FrPW is Parshall–Wang’s Frobenius isomorphism recalled above, Fr is the Frobenius iso-
morphism introduced in [18, Definition 7.1], and the vertical arrows are the identifications as
vector spaces (the middle one proved by Proposition 4.1).

Remark 4.7. By Lemma 4.5, the monomials Tl(ω)
ibjldrl and Tl(ω)

ickldrl, for i, j, k, r ∈ N
and k > 0, form an A-basis of Z0(Lϵ0,1(sl2)). It is straightforward (though cumbersome) to
express these basis elements in terms of the basis elements a⋆il ⋆ b⋆jl ⋆ d⋆rl and a⋆il ⋆ c⋆kl ⋆ d⋆rl

of Z0(Oϵ(SL2)), and conversely; this can be done by using Lemma 4.6, the formula (2.9) or
the inverse one (expressing ⋆ in terms of the product of L0,1, see [18, equation (4.6)]), and the
formula of the coproduct ∆: Lϵ0,1(sl2)) → Lϵ0,2(sl2)) restricted to Z0(Lϵ0,1(sl2)) (given in [18,
Lemma 7.5]).

Since LA0,1 = OA as an A-module, the functionals ti in Proposition 2.30 can be seen as maps
ti : LA0,1 → A. Though the algebra structures of Oϵ and Lϵ0,1 are very different, Lϵ0,1 satisfies
a result analogous to Proposition 2.30:

Proposition 4.8. The maps �ti preserve Z0

(
Lϵ0,1

)
, and they satisfy (f � ti)(a) = f(nia)

and (fα)� ti = (f � ti)(α� ti) for every f ∈ Z0

(
Lϵ0,1

)
, a ∈ G, α ∈ Lϵ0,1.

Proof. The first two claims follow from Proposition 2.30 and the definition Z0

(
Lϵ0,1

)
= Z0(Oϵ).

The last claim follows from the case g = sl2, as in the proof of [41, Proposition 7.1]. In
fact, it is enough to show that t(fg) = t(f)t(g) for every f ∈ Z0(Lϵ0,1(sl2), g ∈ Lϵ0,1(sl2); for
completeness we explain this in Appendix C, see (C.3). A word of caution is needed: the proof
of (C.3) uses that ∆: Oϵ → Oϵ⊗Oϵ is a morphism of algebras. The analogous property for Lϵ0,1
is that ∆ yields a morphism of algebras ∆: Lϵ0,1 → Lϵ0,2. Since the algebra structure of Lϵ0,2 is
not the product one on Lϵ0,1 ⊗ Lϵ0,1, it is not true in general that∑

(f),(g)

(f(1) ⊗ f(2))(g(1) ⊗ g(2)) =
∑

(f),(g)

f(1)g(1) ⊗ f(2)g(2)
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for every f, g ∈ Lϵ0,1. However, it holds whenever f ∈ Z0

(
Lϵ0,1

)
, since ∆(Z0

(
Lϵ0,1

)
) ⊂ Z0

(
Lϵ0,1

)
⊗

Z0

(
Lϵ0,1

)
and therefore f(2) ∈ Z0

(
Lϵ0,1

)
= Z0(Oϵ) commutes in Lϵ0,2 with any g(1) ∈ Lϵ0,1 = Oϵ.

It is enough to prove the identity t(fg) = t(f)t(g) when f ranges in a set of generators of the
algebra Z0(Lϵ0,1(sl2)). So one can take f among, say, Tl(ω)− dl = a⋆l and xl = x⋆l, x ∈ {b, c, d}
(using Lemma 4.5). By (2.9) and Proposition C.1, we have

t(fg) =
∑

(R),(R)

t
(
R(2′)S(R(2))� f

)
t
(
R(1′) � g �R(1)

)
.

Expanding coproducts and using that R−1 = (S ⊗ id)(R), we deduce

t(fg) =
∑

(f),(R),(R)

t
(
f(1)

) 〈
f(2), R(2′)S(R(2))

〉
t
(
R(1′) � g �R(1)

)
=

∑
(f),(R),(R)

t
(
f(1)

)
t(
〈
f(2), R(2′)

〉
R(1′) � g �

〈
f(3), S(R(2))

〉
R(1))

=
∑
(f)

t(f(1))t
(
S−1(Φ−(f(2)))� g � S−2(Φ−(f(3)))

)
=

∑
(f)

t(f(1))
〈
g, S−2(Φ−(f(3)))wS

−1(Φ−(f(2)))
〉

=
∑
(f)

t(f(1))ε
(
S−2(Φ−(f(3)))

)
ε
(
S−1(Φ−(f(2)))

)
t(g),

where w ∈ UΓ is the quantum Weyl group element dual to t (see Appendix B), and in the
last equality we used that Φ− maps Z0(Oϵ) into Z0(Uϵ) (see Theorem 2.29 (2)), which acts on
specializations of Γ-modules by the trivial character (the counit) ε : Uϵ → C. By (B.6)–(B.7),
we have t

(
a⋆l

)
= t

(
d⋆l

)
= 0 and t

(
b⋆l

)
= 1, t

(
c⋆l

)
= −1. Now the computation of t(fg)

follows easily. For instance, taking f = bl = b⋆l, by using ∆
(
b⋆l

)
= a⋆l ⊗ b⋆l + b⋆l ⊗ d⋆l

and ∆
(
d⋆l

)
= c⋆l ⊗ b⋆l + d⋆l ⊗ d⋆l, we get

t(blg) = ε
(
S−2

(
Φ−(b⋆l)))ε(S−1

(
Φ−(c⋆l)))t(g) + ε

(
S−2

(
Φ−(d⋆l)))ε(S−1

(
Φ−(d⋆l)))t(g).

Since b⋆l ∈ Oϵ(U+), Φ−(b⋆l) = 0. Also, it is immediate from the definition of Φ− that
Φ−(d⋆l) = Φ−(d)l = Ll; alternatively, one can bypass this computation by observing that Φ−

sets an isomorphism from Oϵ(TG) = Oϵ(B+) ∩ Oϵ(B−) to C
[
L±1

]
= Uϵ(b+) ∩ Uϵ(b−), mapping

a generator d to L or L−1. We have ε
(
Ll
)
= 1, and therefore

t
(
blg

)
= t(g) = t

(
bl
)
t(g).

The other cases f = Tl(ω)− dl, cl, dl are similar. ■

Theorem 4.9. Lϵ0,n is a free Z0

(
Lϵ0,n

)
-module of rank ln. dim g, and

(
Lϵ0,n

)Uϵ is a Noetherian

ring and a finite, whence Noetherian, Z0

(
Lϵ0,n

)
-module.

Proof. We already proved the first claim in Proposition 4.1, and that Lϵ0,n is a Noetherian

Z0

(
Lϵ0,n

)
-module. For the second claim, it follows that the Z0

(
Lϵ0,n

)
-submodule

(
Lϵ0,n

)Uϵ is

necessarily finitely generated. But Z0

(
Lϵ0,n

)
being Noetherian,

(
Lϵ0,n

)Uϵ is then a Noetherian

Z0

(
Lϵ0,n

)
-module and a Noetherian ring.

For the sake of clarity, let us provide a self-contained proof of the first claim, not invoking
directly [28, 41] or [6, 25], but applying the same arguments directly to Lϵ0,n. Since Lϵ0,n and L⊗n

0,1

coincide as modules over Z0

(
Lϵ0,n

)
= Z0

(
Lϵ0,1

)⊗n
by Proposition 4.1, the result will follow from
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the case n = 1. Then we argue in four steps. First, using Theorem 2.1 we show that a certain
localization of Lϵ0,1 is a free module of rank ldim g. Then, assuming that Lϵ0,1 is finitely generated
and projective, we explain why it has constant rank ldim g (this is very classical). Thirdly, we
prove that Lϵ0,1 is finitely generated and projective as in [41, Theorem 7.2]. Finally, we obtain
that it is a free module as in [28].

Recall Proposition 4.2: Uϵ is a free Φ1

(
Lϵ0,1

[
d−l

])
-module of rank 2m

(
note that Lϵ0,1

[
d−l

]
=

Lϵ0,1
[
d−1

])
, Z0(Uϵ) is free over

T
(l)−1
2− Z0

(
U lf
ϵ

)
= Φ1

(
Z0

(
Lϵ0,1

)[
d−l

])
of rank 2m. Since Uϵ is also free of rank ldim g over Z0(Uϵ) (see Theorem 2.27 (1)), it is free
over Φ1

(
Z0

(
Lϵ0,1

)[
d−l

])
of rank 2mldim g. The decomposition being unique, Φ1

(
Lϵ0,1

[
d−l

])
is

free of rank ldim g over Φ1

(
Z0

(
Lϵ0,1

)[
d−l

])
, and injectivity of Φ1 implies that Lϵ0,1

[
d−l

]
is free of

rank ldim g over Z0

(
Lϵ0,1

)[
d−l

]
.

Assume now that Lϵ0,1 is finitely generated and projective. Let us show that its rank is ldim g.

The localization
(
Lϵ0,1

)
P
of Lϵ0,1 at any prime ideal P of Z0

(
Lϵ0,1

)
is a free module over Z0

(
Lϵ0,1

)
P

[96, Proposition 2.12.15]; the ranks of such modules are finite in number [96, Proposition 2.12.20].
If these ranks are all equal, then, by definition, it is the rank of Lϵ0,1 over Z0

(
Lϵ0,1

)
. This happens

if Z0

(
Lϵ0,1

)
has no nontrivial (i.e., ̸= 1) idempotent [96, Corollary 2.12.23], which is the case since

it has no nontrivial zero divisors. To compute the rank, suppose P does not contain dl = ψl−ρ.
Such ideals P are in 1-1 correspondence with the prime ideals of Z0

(
Lϵ0,1

)[
d−l

]
by the natural ring

monomorphism Z0

(
Lϵ0,1

)
→ Z0

(
Lϵ0,1

)[
d−l

]
. The set S = Z0

(
Lϵ0,1

)
\ P is multiplicatively closed,

and we have also a ring morphism Z0

(
Lϵ0,1

)[
d−l

]
→ S−1Z0

(
Lϵ0,1

)
, which is also an injection

(there are no zero divisors in Z0

(
Lϵ0,1

)
, whence in S). Then

(
Lϵ0,1

)
P
= S−1Lϵ0,1 = Lϵ0,1

[
d−l

] ⊗
Z0

(
Lϵ
0,1

)
[d−l]

S−1Z0

(
Lϵ0,1

)

shows that
(
Lϵ0,1

)
P

has over Z0

(
Lϵ0,1

)
P

= S−1Z0

(
Lϵ0,1

)
the same rank ldim g as Lϵ0,1

[
d−l

]
over

Z0

(
Lϵ0,1

)[
d−l

]
. This proves our claim.

In order to show that Lϵ0,1 is finitely generated and projective over Z0

(
Lϵ0,1

)
, it is enough

to show it is finite locally free, i.e., there are elements di ∈ Z0

(
Lϵ0,1

)
such that the localiza-

tions Lϵ0,1
[
d−1
i

]
are finite free Z0

(
Lϵ0,1

)[
d−1
i

]
-modules, and Maxspec

(
Z0

(
Lϵ0,1

))
is covered by the

open sets U(di) made of the ideals not containing di (see [100, Lemma 77.2]).

We have seen above that Lϵ0,1
[
d−l

]
is free of rank ldim g over Z0

(
Lϵ0,1

)[
d−l

]
. By Remark 4.3,

Z0

(
Lϵ0,1

)[
d−l

] ∼= Z0

(
U lf
ϵ

)[
ℓl
]
is isomorphic to O

(
G0

)
, and O

(
G0

)
= O(G)

[
δ−1

]
. Now, given

w ∈ W with a reduced expression si1 · · · sik , put tw = ti1 · · · tik . Let w be represented by nw =
ni1 · · ·nik in N(TG). By Proposition 4.8, we have (f � tw)(x) = f(nwx) for every f ∈ Z0

(
Lϵ0,1

)
,

x ∈ G. Then

Z0

(
Lϵ0,1

)[
d−l

]
� tw ∼= O

(
n−1
w G0

) ∼= O(G)
[
(δ � tw)

−1
]
. (4.6)

If b1, . . . , br
(
r := ldim g

)
is a basis of Lϵ0,1

[
d−l

]
over Z0

(
Lϵ0,1

)[
d−l

]
, then Lϵ0,1

[
d−l

]
� tw is free

over Z0

(
Lϵ0,1

)[
(d � tw)

−l] ∼= O
(
n−1
w G0

)
with basis b1 � tw, . . . , br � tw. Consider the Bruhat

decomposition of G: any g ∈ G can be written in the form g = b1nb2, where b1, b2 ∈ B−, n ∈W .
Hence g = nn−1b1nb2 ∈ nB+B− = nG0, and therefore

G =
⋃
w∈W

(B−nwB−) =
⋃
w∈W

(
nwG

0
)
.
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For every w ∈ W , put dlw := dl � tw. Under the isomorphism of Z0

(
Lϵ0,1

)
with O(G), we thus

get that Maxspec
(
Z0

(
Lϵ0,1

))
is covered by the open sets U

(
dlw

) ∼= nwG
0, and Lϵ0,1

[
d−lw

]
is finite

free over Z0

(
Lϵ0,1

)[
d−lw

]
. Therefore, Lϵ0,1 is finitely generated and projective over Z0

(
Lϵ0,1

)
.

Finally, let us explain why Lϵ0,1 is free over Z0

(
Lϵ0,1

)
, following the arguments of [28]. Let R

be a commutative Noetherian ring, put X = Maxspec(R), and let P be an R-module. Denote
by RI , PI the localizations of R, P at a maximal ideal I ∈ X. Define the f-rank of P as
f-rank(P ) = infI∈X{ f-rankRI

(PI)}, where f-rankRI
(PI) = sup

{
r ∈ N, R⊗r

I ⊂ PI
}
∈ N ∪ {+∞}

(i.e., the maximal dimension of a free summand of PI). Bass’ Cancellation theorem asserts that
if P is projective and f-rank(P ) > dim(X), and P ⊕Q ∼=M ⊕Q for some R-modules Q and M
such that Q is finitely generated and projective, then P ∼= M (see [19, Section IV.3.5, p. 167
and p. 170], taking A = R, or [88, Section 11.7.13]). Let us apply this to R = O(G) and P = Lϵ0,1.
We proved above that f-rankRI

(PI) = ldim g, a constant, and we have ldim g > dim g = dim(G).
By a result of Marlin [87], G being semisimple and simply connected the Grothendieck ring
K0(O(G)) is isomorphic to Z. Therefore, Lϵ0,1 ⊕ Q ∼= O(G)r for some free O(G)-module Q
and r ∈ N. Then Bass’ cancellation implies Lϵ0,1 is free over Z0(L0,1) ∼= O(G). ■

5 Proof of Theorem 1.3

We begin with the following lemma, interesting by itself.

Lemma 5.1. Z
(
Lϵ0,n

)
is a finite Z0

(
Lϵ0,n

)
-module and a Noetherian ring. Therefore, the ring

Z
(
Lϵ0,n

)
is integral over Z0

(
Lϵ0,n

)
.

Proof. We know by Proposition 4.1 that Z0

(
Lϵ0,n

)
is a Noetherian ring, and Lϵ0,n is a finite

Noetherian Z0

(
Lϵ0,n

)
-module. Therefore, the submodule Z

(
Lϵ0,n

)
is finitely generated. Being

finite over Z0

(
Lϵ0,n

)
, it is necessarily a Noetherian ring (e.g., by [7, Proposition 7.2]).

Let x ∈ Z
(
Lϵ0,n

)
. The Z0

(
Lϵ0,n

)
-submodule Z0

(
Lϵ0,n

)
[x] of Lϵ0,n is finitely generated by

the same argument. Using the fact that an element x is integral over Z0

(
Lϵ0,n

)
if and only

if Z0

(
Lϵ0,n

)
[x] is a finitely generated Z0

(
Lϵ0,n

)
-module (e.g., by [7, Proposition 5.1]), this proves

the last claim. ■

We will use the following notations. Let A be a ring with no nontrivial zero divisors. The
center Z = Z(A) is a commutative integral domain. We denote by Q(Z) its field of fractions,
and put

Q(A) := Q(Z)
⊗
Z

A.

It is an algebra over its center Q(Z). Since Lϵ0,n has no nontrivial zero divisors [18, Pro-
position 6.30], we can take A = Lϵ0,n, or A =

(
Lϵ0,n

)Uϵ .

By the lemma, Z
(
Lϵ0,n

)
is finite over Z0

(
Lϵ0,n

)
, so the ring Z

(
Lϵ0,n

)⊗
Z0(Lϵ

0,n)
Q
(
Z0

(
Lϵ0,n

))
is

a field. Necessarily it coincides with Q(Z
(
Lϵ0,n

)
), and therefore

Q
(
Lϵ0,n

)
= Q

(
Z
(
Lϵ0,n

)) ⊗
Z(Lϵ

0,n)

Lϵ0,n = Q
(
Z0

(
Lϵ0,n

)) ⊗
Z0(Lϵ

0,n)

Lϵ0,n. (5.1)

Recall that we denote by N the number of positive roots of g.

Theorem 5.2. Q
(
Lϵ0,n

)
is a division algebra and a central simple algebra of PI degree lNn.
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Proof. It follows from (5.1) and Theorem 4.9 that Q
(
Lϵ0,n

)
is a vector space of dimension ln. dim g

over Q
(
Z0

(
Lϵ0,n

))
, and therefore has finite dimension over its center Q(Z

(
Lϵ0,n

)
). Because

Lϵ0,n has no nontrivial divisors [18, Proposition 6.30] and Q
(
Lϵ0,n

)
is finite-dimensional over

Q
(
Z
(
Lϵ0,n

))
, Q

(
Lϵ0,n

)
is a division algebra, whence a central simple algebra. By classical

theory (see, e.g., [88, Section 13.3.5], or [96, Corollary 2.3.25]), there is a finite extension F
of Q

(
Z
(
Lϵ0,n

))
, a splitting field, such that

F
⊗

Q(Z(Lϵ
0,n))

Q
(
Lϵ0,n

)
=Md(F),

where d ∈ N, the PI degree of Q
(
Lϵ0,n

)
, satisfies

d2 =
[
Q
(
Lϵ0,n

)
: Q

(
Z
(
Lϵ0,n

))]
=

[Q
(
Lϵ0,n

)
: Q

(
Z0

(
Lϵ0,n

))
][

Q(Z
(
Lϵ0,n

)
) : Q

(
Z0

(
Lϵ0,n

))] . (5.2)

We have to show d2 = l2nN . We will obtain this equality by proving firstly that d2 ≥ l2nN , and
then d2 ≤ l2nN .

In order to show that d2 ≥ l2nN , it is enough to exhibit an irreducible representation V of Lϵ0,n
of dimension k := lnN . Indeed, the representation map ρV : Lϵ0,n → EndC(V ) being surjective,
given basis elements v1, . . . , vk2 ∈ End(V ), and elements α1, . . . , αk2 ∈ Lϵ0,n such that ρ(αi) = vi
for every i ∈

{
1, . . . , k2

}
, necessarily α1, . . . , αk2 form a free family of Q

(
Lϵ0,n

)
. For, if there

was a nontrivial relation
∑

i ziαi = 0, with zi ∈ Q
(
Z0

(
Lϵ0,n

))
, by clearing denominators and

then applying the representation map ρV , we would get a nontrivial relation in EndC(V ) be-
tween v1, . . . , vk2 .

Now, by Theorem 2.27 (1) (see [42, Section 20]), the dimension of a generic irreducible rep-
resentation space of Uϵ is lN . Because Uϵ = T−1

2−U
lf
ϵ [T/T2] by Proposition 4.2, an irreducible

representation of Uϵ yields an irreducible representation of U lf
ϵ . Moreover, the tensor product

of n irreducible representation spaces of U lf
ϵ of dimension lN is an irreducible representation

space of
(
U lf
ϵ

)⊗n
of dimension lnN (see, e.g., [51, Theorem 3.10.2]). Applying the linear iso-

morphism ψn = Φn ◦
(
Φ−1
1

)⊗n
in (2.21) thus provides an irreducible representation of Lϵ0,n of

dimension lnN .
It remains to show d2 ≤ l2nN , which by

[
Q
(
Lϵ0,n

)
: Q

(
Z0

(
Lϵ0,n

))]
= ln(2N+m) is equiva-

lent to
[
Q(Z

(
Lϵ0,n

)
) : Q

(
Z0

(
Lϵ0,n

))]
≥ lmn. For this, it is enough to exhibit an extension of

Q
(
Z0

(
Lϵ0,n

))
contained in Q

(
Z
(
Lϵ0,n

))
and of degree lmn. There is a very natural one, which we

denote by Q
(
Ẑ0

(
Lϵ0,n

))
and is constructed as follows. Consider for every λ ∈ P+ the matrices

Mλ :=
(
AVλϕ

el
ek

)
k,l

∈ End(AVλ)⊗ LA0,n, M
(i)
λ :=

((
AVλϕ

el
ek

)(i))
k,l

∈ End(AVλ)⊗ LA0,n,

where i = 1, . . . , n, and as usual
AVλϕ

el
ek

is a matrix coefficient of AVλ, {ek} the canonical basis
of AVλ, and

(
Vλϕ

el
ek

)(i)
:= 1⊗(i−1) ⊗ Vλϕ

el
ek

⊗ 1⊗(n−i). Set

λω := Tr(πVλ(ℓ)Mλ), λω
(i) := Tr

(
πVλ(ℓ)M

(i)
λ

)
,

where Tr is the standard trace on End(Vλ). Clearly, λω ∈ LA0,1, λω(i) ∈ LA0,n. By [18, Propo-
sitions 4.8 and 6.24], the family of elements

∏n
i=1 λiω

(i), where λ1, . . . , λn ∈ P+, is a basis
of Z(L0,n); moreover the Alekseev map Φn affords an isomorphism from Z(L0,n) to Z(Uq)

⊗n,
and Φn

(
λω

(i)
)
= (Φ1(λω))

(i). For n = 1, specializing q to ϵ it follows

Z1(Uϵ) = Vect{Φ1(λω), λ ∈ P+}, (5.3)

where Z1(Uϵ) is defined before Theorem 2.27. Then, for every i = 1, . . . , n define

Z0,(i)

(
Lϵ0,n

)
:= Z0

(
Lϵ0,n

)[{
λω

(i), λ ∈ P+

}]
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and let Ẑ0

(
Lϵ0,n

)
⊂ Z

(
Lϵ0,n

)
be the algebra generated by Z0,(1)

(
Lϵ0,n

)
, . . . ,Z0,(n)

(
Lϵ0,n

)
. The

fields Q
(
Z0,(i)

(
Lϵ0,n

))
are n linearly disjoint extensions of Q

(
Z0

(
Lϵ0,n

))
, so

[
Q
(
Ẑ0

(
Lϵ0,n

))
: Q

(
Z0

(
Lϵ0,n

))]
=

n∏
i=1

[
Q
(
Z0,(i)

(
Lϵ0,n

))
: Q

(
Z0

(
Lϵ0,n

))]
.

Now, by Proposition 4.2, we know that Φ1 affords isomorphisms Q
(
Z0

(
Lϵ0,1

)) ∼= Q
(
Z0

(
U lf
ϵ

))
and Q(Z

(
Lϵ0,1

)
) ∼= Q

(
Z
(
U lf
ϵ

))
, and moreover

Q(Z0(Uϵ)) = Q
(
Z0

(
U lf
ϵ

))(
T (l)/T

(l)
2

)
, Q(Z(Uϵ)) = Q

(
Z
(
U lf
ϵ

))(
T (l)/T

(l)
2

)
. (5.4)

Computing via the field embedding Φ⊗n
1 : Q

(
Ẑ0

(
Lϵ0,n

))
→ Q

(
Z
(
U⊗n
ϵ

))
, we deduce[

Q
(
Z0,(i)

(
Lϵ0,n

))
: Q

(
Z0

(
Lϵ0,n

))]
=

[
Φ⊗n
1

(
Q
(
Z0,(i)

(
Lϵ0,n

)))
: Φ⊗n

1

(
Q
(
Z0

(
Lϵ0,n

)))]
=

[
Q
(
Z0

(
U lf
ϵ

)⊗n)[{
(Φ1(λω))

(i), λ ∈ P+, i = 1, . . . , n
}]

: Q
(
Z0

(
U lf
ϵ

)⊗n)]
=

[
Q
(
Z0(Uϵ)

⊗n)[{(Φ1(λω))
(i), λ ∈ P+, i = 1, . . . , n

}]
: Q

(
Z0(Uϵ)

⊗n)] = lm.

The second and third equalities follow from (5.4) and the properties of Φ1 recalled before it, and
the last equality follows from Theorem 2.29 (2) and (5.3). As a result, we have[

Q
(
Ẑ0

(
Lϵ0,n

))
: Q

(
Z0

(
Lϵ0,n

))]
= lmn,

whence[
Q
(
Z
(
Lϵ0,n

))
: Q

(
Z0

(
Lϵ0,n

))]
≥ lmn.

Since
[
Q
(
Lϵ0,n

)
: Q

(
Z0

(
Lϵ0,n

))]
= ln(m+2N), by (5.2) we obtain d2 ≤ l2nN , which concludes the

proof. ■

Remark 5.3. It follows
[
Q
(
Z
(
Lϵ0,n

))
: Q

(
Z0

(
Lϵ0,n

))]
= lmn by the degree computation above,

whence Q
(
Z
(
Lϵ0,n

))
= Q

(
Ẑ0

(
Lϵ0,n

))
. In [17], we prove that Z

(
Lϵ0,n

)
= Ẑ0

(
Lϵ0,n

)
.

Theorem 5.4. Q
((
Lϵ0,n

)Uϵ
)
, n ≥ 2, is a division algebra and a central simple algebra of PI

degree lN(n−1)−m.

Proof. The center of
(
Lϵ0,n

)Uϵ contains Z
(
Lϵ0,n

)
, so the finite-dimensionality of Q

(
Lϵ0,n

)
over

Q
(
Z
(
Lϵ0,n

))
implies the finite-dimensionality of Q

((
Lϵ0,n

)Uϵ
)
over its center. Since it has no

non-zero divisors, this proves Q
((
Lϵ0,n

)Uϵ
)
is a division algebra.

Now denote by ∆(n) : Oϵ → O⊗n
ϵ , n ≥ 2, the n-fold coproduct, i.e., ∆(2) := ∆, the standard

coproduct of Oϵ, and ∆(n) := (id⊗∆) ◦∆(n−1) for n ≥ 3. Identifying Lϵ0,n with O⊗n
ϵ as a vector

space, we consider ∆(n) as a map ∆(n) : Lϵ0,1 → Lϵ0,n. It is an algebra morphism [18, Proposi-
tion 6.18], injective because

(
ε⊗(n−1) ⊗ id

)
∆(n) = id. Then it extends uniquely to the fraction al-

gebra Q
(
Lϵ0,1

)
. As noted above, Q

(
Lϵ0,1

)
= Q

(
Z0

(
Lϵ0,1

))⊗
Z0(Lϵ

0,1)
Lϵ0,1. Since Z0

(
Lϵ0,1

)
= Z0(Oϵ)

is a Hopf subalgebra of Oϵ [41, Proposition 6.4], ∆(n) maps Z0

(
Lϵ0,1

)
to Z0

(
Lϵ0,1

)⊗n
. Then, ex-

tending the scalars of ∆(n)
(
Q
(
Lϵ0,1

))
by the field Q

(
Z
(
Lϵ0,n

))
, consider the algebra

QZ
(
∆(n)

(
Lϵ0,1

))
:= Q

(
Z
(
Lϵ0,n

)) ⊗
∆(n)(Z0(Lϵ

0,1))

∆(n)
(
Lϵ0,1

)
= Q

(
Z
(
Lϵ0,n

)) ⊗
∆(n)(Q(Z0(Lϵ

0,1)))

∆(n)
(
Q
(
Lϵ0,1

))
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= Q
(
Z
(
Lϵ0,n

)) ⊗
∆(n)(Q(Z0(Lϵ

0,1)))

∆(n)
(
Q
(
Z
(
Lϵ0,1

)))
⊗

∆(n)(Q(Z(Lϵ
0,1)))

∆(n)
(
Q
(
Lϵ0,1

))
.

By Proposition 5.2, ∆(n)
(
Q
(
Lϵ0,1

))
is a ∆(n)

(
Q
(
Z
(
Lϵ0,1

)))
-central simple algebra. The left factor

is a field, so QZ
(
∆(n)

(
Lϵ0,1

))
is a central simple algebra over it (see, e.g., [96, Theorem 1.7.27],

or [101, Lemma 4.9]). Note that the left factor can also be written as

Q̃
(
Z
(
Lϵ0,n

))
:= Q

(
Z
(
Lϵ0,n

)) ⊗
∆(n)(Z0(Lϵ

0,1))

∆(n)
(
Z
(
Lϵ0,1

))
for it contains Q̃

(
Z
(
Lϵ0,n

))
, it is contained in its fraction field, and Q̃

(
Z
(
Lϵ0,n

))
is a field because

Z
(
Lϵ0,1

)
is finite over Z0

(
Lϵ0,1

)
and has no nontrivial zero divisors. Note that[

Q̃(Z
(
Lϵ0,n

)
) : Q

(
Z
(
Lϵ0,n

))]
= lm.

We proved in [18, Proposition 6.19] that the ring
(
LA0,n

)UA is the centralizer of ∆(n)
(
LA0,1

)
in LA0,n;

the same arguments show that
(
Lϵ0,n

)Uϵ is the centralizer of ∆(n)
(
Lϵ0,1

)
in Lϵ0,n. So the algebra

Q
((
Lϵ0,n

)Uϵ
)
:= Q

(
Z
(
Lϵ0,n

)) ⊗
Z(Lϵ

0,n)

(
Lϵ0,n

)Uϵ

is the centralizer of QZ
(
∆(n)

(
Lϵ0,1

))
in Q

(
Lϵ0,n

)
. Since the latter is simple, we can apply the

double centralizer theorem (see, e.g., [96, Theorem 7.1.9], or [101, Theorem 7.1]): Q
((
Lϵ0,n

)Uϵ
)

is a simple algebra, we have

[
Q
((
Lϵ0,n

)Uϵ
)
: Q

(
Z
(
Lϵ0,n

))]
=

[
Q
(
Lϵ0,n

)
: Q

(
Z
(
Lϵ0,n

))][
QZ

(
∆(n)

(
Lϵ0,1

))
: Q

(
Z
(
Lϵ0,n

))] = l2nN−(2N+m),

and the centralizer of Q
((
Lϵ0,n

)Uϵ
)
is QZ

(
∆(n)

(
Lϵ0,1

))
. In particular, Q

((
Lϵ0,n

)Uϵ
)
has center

Q
((
Lϵ0,n

)Uϵ
)
∩QZ

(
∆(n)

(
Lϵ0,1

))
, which is easily shown to be Q̃

(
Z
(
Lϵ0,n

))
. It then follows

[
Q
((
Lϵ0,n

)Uϵ
)
: Q̃

(
Z
(
Lϵ0,n

))]
=

[
Q
((
Lϵ0,n

)Uϵ
)
: Q

(
Z
(
Lϵ0,n

))][
Q̃
(
Z
(
Lϵ0,n

))
: Q

(
Z
(
Lϵ0,n

))]
= l2nN−(2N+m).l−m = l2(N(n−1)−m).

Therefore, Q
((
Lϵ0,n

)Uϵ
)
is a central simple algebra of PI degree lN(n−1)−m. ■

A Low and up crystal structures in the sl2 case

Let k ∈ N, and denote by Vk the simple Uad
q (sl2) module of dimension k + 1. It has a basis

v0, . . . , vk such that

K.vj = qk−2jvj , F.vj = [j + 1]qvj+1 if j < k, F.vk = 0,

E.vj = [k − j + 1]qvj−1 if j > 0, E.v0 = 0.

This basis defines the full A-sublattice AVk, which is left invariant by U res
A , and we have

F (a).vj =

[
j + a
a

]
q

vj+a, E(a).vj =

[
k − j + a

a

]
q

vj−a, a ≥ 0.
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The action of the Kashiwara operator ẽ, f̃ on Vk are given by f̃(vj) = vj+1, ẽ(vj) = vj−1.
The crystal basis

(
Llow,Blow

)
at q = 0 is formed by the A0-sublattice Llow generated

by v0, . . . , vk, and Blow by the images v̄0, . . . , v̄k of these vectors in Llow/qLlow.
The bilinear form ⟨ ⟩k defined by (2.39) is easily computed

⟨vi, vj⟩k =
〈
F (i).v0, F

(j).v0
〉
k
=

〈
v0, E

(i)F (j).v0
〉
k
=

[
k
i

]
q

δi,j .

By definition,

AV
up
k = {v ∈ Vk, ⟨v,AVk⟩k ⊂ A} =

k⊕
j=0

Avupj ,

where

vupj =

[
k
j

]−1

q

vj .

The upper crystal basis (Lup,Bup) at q = 0 is formed by the A0-sublattice Lup generated
by vup0 , . . . , vupk , and Bup by the images v̄up0 , . . . , v̄upk of these vectors in Lup/qLup.

Using that [n]q ∈ q1−n(1 + qA0), we obtain[
k
j

]
q

∈ qj
2−kj(1 + qA0).

As a result, we get v̄upj = qkj−j
2
v̄j , which is exactly the relation (2.41) relating the low and up

crystal bases, with λ = kϖ1, µ = (k − 2j)ϖ1.

B Quantum Weyl group

We recall some of the formulas of [31]. Let eq(z) be the formal power series in z with coefficients
in C(q) defined by

eq(z) =

+∞∑
n=0

zn

(n)q2 !
.

We first consider the case of g = sl2. As explained in [18, Section 3], the Cartan element H ∈ g
defines an element of Uq(sl2). Viewed as elements of Uq(sl2) we have L = qH/2. The se-
ries Θ = qH⊗H/2 defines an element of Uq(sl2)⊗̂2, its image under multiplication being qH

2/2.
The R-matrix can be expressed as R = ΘR̂ where R̂ = eq−1

((
q − q−1

)
E ⊗ F

)
is a well defined

element of Uq(sl2)⊗̂2. Consider the Lusztig [82] braid group automorphism of Uq(sl2), defined by

T (L) = L−1, T (E) = −FK−1, T (F ) = −KE. (B.1)

For every x ∈ Uq(sl2) it satisfies: ∆(T (x)) = R̂−1(T ⊗ T )(∆(x))R̂. Define the quantum Weyl
group element ŵ ∈ Uq(sl2) by Saito’s formula [97]:

ŵ = eq−1(F )q−H
2/4eq−1(−E)q−H

2/4eq−1(F )q−H/2. (B.2)

For every x ∈ Uq(sl2), it satisfies

T (x) = ŵxŵ−1, ∆(ŵ) = R̂−1(ŵ ⊗ ŵ), (B.3)
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ŵ2 = qH
2/2ξθ, (B.4)

where θ ∈ Uq(sl2) is the ribbon element, and ξ ∈ Uq(sl2) is the central group element whose
value on the type 1 simple module Vk of Uad

q (sl2) of dimension k + 1 is the scalar endomor-

phism (−1)kidVk .
In order to compare our setting to the one of [41], we need an explicit formula of ŵ. Using

the basis vj of Vk of Appendix A, (B.1), (B.3) and (B.4), we obtain

ŵvj = (−1)jq−j(k−j−1)−kvk−j . (B.5)

In [41], another quantum Weyl group element w is defined. It is dual to the Vaksman–Soibelman
functional t : Oq(SL2) → C(q) of [98, 102], that is, t(α) = ⟨α,w⟩ for all α ∈ Oq(SL2). By
comparing (B.5) with the formulas defining the action of t in [41, Section 1.7], we find w = ξŵK
and the basis vectors wpr of [41], where p ∈ (1/2)N and r ∈ {−p,−p+1, . . . , p−1, p}, are related
to the vectors vj above as follows: vj = λjw

p
r , where k = 2p, j = p− r, λ0 = 1, λ1 = [k]q−k, and

λj =
[k]!

[j]![k − (j − 2)]!
qj(j+1)−j(k+2), j ≥ 2.

Explicit formulas of the evaluation of t on basis vectors of Oq(SL2) can be computed. We get

t
(
ã⋆m ⋆ b̃⋆n ⋆ d̃⋆p

)
= δm,pq

−np
p∏
i=1

(
1− q−2i

)
, (B.6)

t
(
ã⋆m ⋆ c̃⋆n ⋆ d̃⋆p

)
= (−1)nδm,pq

−n(p+1)
p∏
i=1

(
1− q−2i

)
, (B.7)

where ã = a, b̃ = qb, c̃ = q−1c, d̃ = d and as usual a, b, c, d are the standard generators
of Oq(SL2), i.e., the matrix coefficients in the basis of weight vectors v0, v1 of the 2-dimensional
irreducible representation V1 of Uq(sl2) such that K.v0 = qv0 and v1 = F.v0. Here we have
introduced the generators ã, . . . , d̃ to facilitate the comparison with the formulas in [41]; these
generators come naturally in their setup because they use different generators Ei and Fi of Uq(g),
which in our notations can be written respectively as K−1

i Ei and FiKi.
The formulas (B.6)–(B.7) can be shown by two independent methods. The first uses a defi-

nition of t as a GNS state associated to an infinite-dimensional representation of Oq(SL2), as
recalled in [41, Section 1.6]. The second is to write, e.g.,

t
(
ã⋆m ⋆ b̃⋆n ⋆ d̃⋆p

)
=

〈
ã⊗m ⊗ b̃⊗n ⊗ d̃⊗p,∆(m+n+p)(w)

〉
(B.8)

and to use explicit expressions of ∆(m+n+p)(w) when represented on V
⊗(m+n+p)
1 . In general, one

can check that

∆(n)(ω̂) =
(
∆(n−1) ⊗ id

)(
R̂−1

)((
∆(n−2) ⊗ id

)(
R̂−1

)
⊗ id

)
· · ·

((
∆⊗ id

)(
R̂−1

)
⊗ id⊗(n−3)

)
×
(
R̂−1 ⊗ id⊗(n−2)

)
ω̂⊗n.

By (B.5) or (B.6)–(B.7), we see that ŵ (or w) and t are well defined on the integral forms,

ŵ ∈ UΓ, t : OA(SL2) → A.

We now consider the case where g is of rank m ≥ 2. To each simple root αi, 1 ≤ i ≤ m, is asso-
ciated the subalgebra of Uq generated by Ei, Fi, Li, L

−1
i . It is a copy of Uqi(sl2), where qi = qdi .

Let ŵi be the corresponding quantum Weyl group element in Uq = Uq(g), defined by Saito’s
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formula (B.2), replacing H, E, F by Hi, Ei and Fi. Also, denote by νi : Oq → Oqi(SL2) the
projection map dual to the inclusion Uqi(sl2)

⊗
C(qi)C(q) ↪→ Uq, and put ti = t ◦ νi. Let wi be

the corresponding quantum Weyl group element in Uq, i.e., ti(α) = ⟨α,wi⟩ for all α ∈ Oq. On
integral forms they yield well-defined elements ŵi, wi ∈ UΓ and ti : OA → A (see [41, Proposi-
tion 5.1], and [84] for a different construction). They satisfy the defining relations of the braid
group B(g) of g [70]:

ŵiŵjŵi = ŵjŵiŵj if aijaji = 1,

(ŵiŵj)
k = (ŵjŵi)

k for k = 1, 2, 3 if aijaji = 0, 2, 3,

and similarly by replacing ŵi with wi, or with ti (see [98] for the latter). The Weyl group
W = W (g) = N(TG)/TG is generated by the reflections si associated to the simple roots αi.
Denote by ni ∈ N(TG) a representative of si. Let w ∈W and denote by w = si1 . . . sik a reduced
expression. Because of the braid group relations the elements ŵ = ŵi1 · · · ŵik , w = wi1 · · ·wik
and the functional tw = ti1 · · · tik do not depend on the choice of reduced expression. The
Lusztig [82] braid group automorphism Tw : Γ → Γ associated to w satisfies (see [41])

Tw(x) = ŵxŵ−1, x ∈ Γ.

Let w0 be the longest element in W . We have

∆(ŵ0) = R̂−1(ŵ0 ⊗ ŵ0), (B.9)

where as usual R = ΘR̂.

C Regular action on Oϵ

The following result is proved in [41, Section 1.10]. For completeness, let us give a (different)
proof. Recall from (2.72) that we may identify Z0(Oϵ) with O(G).

Proposition C.1. For every f ∈ Z0(Oϵ), g ∈ Oϵ, we have

ti(f) = f(ni), (C.1)

ti(f ⋆ g) = ti(f)ti(g). (C.2)

Proof. It is sufficient to prove the results for SL2 because νi : Oϵ → Oϵi(SL2) is a morphism
of Hopf algebras and νi(Z0(Oϵ)) ⊂ Z0(Oϵi(SL2)). In this case, (C.1) can be proved by us-
ing (B.6)–(B.7), evaluating t on basis elements of Z0(Oϵ(SL2)) as is done in [41, Lemma 1.5 (a)].
Such a basis is formed by monomials like in (B.6)–(B.7), with all exponents divisible by l; then
for instance

t
(
ã⋆ml ⋆ b̃⋆nl ⋆ d̃⋆pl

)
= δp,0δm,0 = ambndp(n),

where a, . . . , d are the generators of O(G) = O1(G) corresponding to a, . . . , d, and we take

n =

(
0 1

−1 0

)
as representative of the reflection s generating the Weyl group W (sl2). Here is an alternative
proof of (C.1): (C.2) shows that t is a homomorphism on Z0(Oϵ(SL2)), so by proving (C.2) at
first one is reduced to check (C.1) on the generators a⋆l, . . . , d⋆l, which is easy by means of (B.8)
and (B.9).
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We provide a proof of (C.2) that we find more conceptual than the one in [41, Lemma 1.5 (b)]
(which uses again (B.6)–(B.7)). As above, let us denote w = ξŵK. For any f, g ∈ Oϵ, we have

t(f ⋆ g) = (f ⊗ g)(∆(w)) = (f ⊗ g)
(
R̂−1(w ⊗ w)

)
=

∑
(R̂−1)

f
((
R̂−1

)
(1)
w
)
g
((
R̂−1

)
(2)
w
)

=
∑

(R̂−1),(f)

f(1)
((
R̂−1

)
(1)

)
f(2)(w)g

((
R̂−1

)
(2)
w
)
=

∑
(f)

f(2)(w)g
(
(f(1) ⊗ id)

(
R̂−1

)
w
)
.

Assume now f ∈ Z0(Oϵ(SL2)). Since Z0(Oϵ(SL2)) is a Hopf subalgebra of Oϵ(SL2), we have
f(1) ∈ Z0(Oϵ(SL2)). From Theorem 2.29 (2), we deduce

(f(1) ⊗ id)
(
R̂−1

)
∈ Uϵ(n−) ∩ Z0

(
Uad
ϵ

)
.

Denote by z this element. Note that from its expression we have ϵ(z) = ϵ(f(1)). Now g(zw) =∑
(g) g(1)(z)g(2)(w), but g(1) is a linear combination of matrix elements of Γ-modules, on which

Z0

(
Uad
ϵ

)
acts by the trivial character. Therefore,

g(zw) =
∑
(g)

ϵ(z)g(1)(1)g(2)(w) = ϵ(z)g(w) = ϵ(f(1))g(w),

and eventually

t(f ⋆ g) =
∑
(f)

f(2)(w)ϵ(f(1))g(w) = t(f)t(g).

This concludes the proof. ■

For the sake of completeness, let us show how this result implies:

Proof of Proposition 2.30 (i.e., [41, Proposition 7.1]). We have f�ti =
∑

(f) ti(f(1))f(2),
f ∈ Z0(Oϵ). Since Z0(Oϵ) is a Hopf subalgebra of Oϵ, f(2) ∈ Z0(Oϵ) and therefore the maps
�ti : Oϵ → Oϵ preserve Z0(Oϵ). Moreover, (f � ti)(a) =

∑
(f) f(1)(ni)f(2)(a) = f(nia), a ∈ G,

by (C.1).
It remains to show that (f ⋆ α)� ti = (f � ti)(α� ti) for every f ∈ Z0(Oϵ), α ∈ Oϵ. We have

(f ⋆ g)� ti =
∑
(f⋆g)

ti
(
(f ⋆ g)(1)

)
(f ⋆ g)(2) =

∑
(f),(g)

ti
(
f(1) ⋆ g(1)

)
f(2) ⋆ g(2)

=
∑

(f),(g)

t
(
νi(f(1))νi(g(1))

)
f(2) ⋆ g(2)

=
∑

(f),(g)

t
(
νi(f(1))

)
t
(
νi(g(1))

)
f(2) ⋆ g(2), (C.3)

using that νi is a homomorphism in the third equality, and (C.2) in the last one. The result is
just (f � ti)(g � ti). ■
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[33] Bullock D., Frohman C., Kania-Bartoszyńska J., Topological interpretations of lattice gauge field theory,
Comm. Math. Phys. 198 (1998), 47–81, arXiv:q-alg/9710003.
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