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ABSTRACT. We prove that the quantum graph algebra and the quantum moduli algebra
associated to a punctured sphere and complex semisimple Lie algebra g are Noetherian rings
and finitely generated rings over C(g). Moreover, we show that these two properties still
hold on Clg, q_l} for the integral version of the quantum graph algebra. We also study the
specializations L§ ,, of the quantum graph algebra at a root of unity € of odd order, and show
that £, and its invariant algebra under the quantum group U.(g) have classical fraction
algebras which are central simple algebras of PI degrees that we compute.
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1. INTRODUCTION

This paper is the second part of our work, initiated in [28], on the quantum graph algebra
Lyn(g) and the quantum moduli algebra M, ,,(g), which are associated to a surface g 11
of genus g with n + 1 punctures and a complex semisimple Lie algebra g. As in [28] we focus
in this paper on punctured spheres (¢ = 0, n > 1). From now on we fix g, and when no
confusion may arise we omit it from the notations of the various algebras.
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The algebras L;, and M, are defined over the field C(q). They were introduced in
the mid '90s by Alekseev-Grosse-Schomerus [2, 3] and Buffenoir-Roche [29, 30] by a method
called combinatorial quantization. By this method, the pair formed by £, ,, and M, ,, appear
naturally as a g-deformation of the Fock-Rosly [54] lattice model of the algebra of functions
on the “classical” moduli space M;ln of flat g-connections on the surface 3y 1.

In [28] we showed that both Lo, and My, have integral forms Eén and ./\/lén defined
over the ring A = Clq, q_l]; one can thus consider the specializations of these algebras at
q = € € C*, which we denote by L, and ng,e respectively. The algebra Eén is endowed
with an action of the Lusztig integral form U}* = U}**(g) of the quantum group U, = U,(g),
and Mén is the subalgebra of invariant elements under this action. Therefore

Mén = (‘Cén)U:‘eS ) MO,n = 'COU,ZI = Mén ®a C(q)

The definition of EO », 1s based on the original combinatorial quantization method, together
with twists of module-algebras and Lusztig’s theory of canonical basis of quantum groups [73].
This allows us to address the structure and representation theory of L{in and MOA,H by means
of quantum groups, following ideas of classical invariant theory. In particular, we obtained
that Lo, and £f,, have no non trivial zero divisors (and therefore do as well the subalgebras
Mo n, EO ns Mén, and (Ean)Ufm, where U!*’ is the specialization of U}*® at ¢ = €). Also, by
extendlng the quantum coadjoint action of De Concini-Kac-Procesi [39, 40, 41], we described
in the s/(2) case an action by derivations of the center Z(Lj,,) of £j,, on L ,,, and we defined

a subalgebra Z (Ean)g C Z(Lj,,) which is a finite extension of the ring of regular functions
on the character variety of the sphere with (n+1) punctures (see Corollary 7.20 and Theorem

8.8 of [28]). Moreover, from these results we derived an action by derivation of Z( Bm)g on

M (s1(2)).

Representations of a quotient (the semisimplification) of M’;ﬁ were already constructed
and classified in [4]; they involve only the irreducible representations of the finite dimensional
“small” quantum group u.(g). Moreover, [4] deduced from these representations of M;{;ﬁ a
family of representations of the mapping class group of surfaces, that is equivalent to the
one associated to the Witten-Reshetikin-Turaev TQFT [93, 85]. Recently, representations
of another, larger quotient of Mgn, and the corresponding representations of the mapping
class groups of surfaces, were constructed in [50, 51]. These representations are equivalent
to those previously obtained by Lyubashenko-Majid [75], and are associated to the TQFT
defined in [46, 47]. In the sl(2) case they involve the irreducible and also the principal
indecomposable representations of the small quantum group u¢(sl(2)). The related link and
3-manifold invariants coincide with those of [77] and [19].

In general, the representation theory of ./\/lA ¢ is by now far from being understood. Because

/\/lgl,’E deforms the classical moduli space ./\/l gn» 1t 1s natural to expect that its representa-
tion theory provides (2 + 1)-dimensional TQFTs for 3-manifolds endowed with general flat
g-connections, extending the known TQFTs based on quantum groups (where purely topo-
logical ones correspond to the trivial connection). A family of such invariants, called quantum
hyperbolic invariants, has already been defined for g = sl(2) by means of certain 6;-symbols,
Deus ex machina; they are closely connected to classical Chern-Simons theory, provide gen-
eralized Volume Conjectures, and contain quantum Teichmiiller theory (see [12]-[18]). It is
part of our present program, initiated in [8], to shed light on these invariants and to generalize
them to arbitrary g by developing the representation theory of MA :

The quantum moduli algebras have also been recognized as central objects from the view-
points of factorization homology [20], multiplicative quiver varieties [56] and (stated) skein
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theory [22, 52, 34, 26]. In another direction, one may expect that the equivalence proved in
[76] between combinatorial quantisation for the Drinfeld double D(H) of a finite-dimensional
semisimple Hopf algebra H, and Kitaev’s lattice model in topological quantum computation,
can be extended to the setup of quantum moduli algebras.

In the present paper we study Lo, its integral form Eén, and the specialization L,

of Eén at ¢ = € a primitive root of unity of odd order. We study also the subalgebras of

invariant elements My, = ngjl and ( an)Ue. Here, U, is the specialization of U4 at ¢ = ¢,
where Uy is the De Concini-Kac integral form of U, (see Section 1.1). Our results hold for
every complex semisimple Lie algebra g. The main ones are proofs that Lo, E(‘in and Mo,
are Noetherian and finitely generated rings (Theorem 1.1), and that the classical fraction
algebras of Lf,, and (Ean)UE are central simple algebras of PI degrees I™ and [N(n—D—m
respectively (Theorem 1.3). Here, m and N are the rank and the number of positive roots of
g.

In the sequel [26] to this paper, in collaboration with M. Faitg, we extend Theorem 1.1
to the algebras £, , and M, ,, associated to arbitrary finite type surfaces (arbitrary genus
and number of punctures). Also, we show that M,,, is isomorphic to the g-skein algebra of
Ygn+1, and Ly, to the stated skein algebra of the compact surface §g7n+1 with one boundary
component and one marked point on the boundary component. This was proved for g = sl(2)
in [52].

By using the analysis developed in the present paper for £

O.n» One can define the integral

form Eﬁn as well, and show that it is a Noetherian and finitely generated ring. We do not

have a proof yet of these properties for the algebra Mén, which seems to be much more
difficult to handle. We note that there is a strict inclusion

A, Ue
MO,; - ( B,n) :

This is discussed after Theorem 1.2. In [27] we study further properties of (C;’n)Ue, and we
consider also the subalgebra ./\/l‘;,;fb .

1.1. Statement of results. Let us recall a few notations and facts from [28]. Let U, be the
simply-connected quantum group of g, defined over the field C(g). From U, one can define a
U,-module algebra Ly, called (quantum, daisy) graph algebra, where U, acts by means of a
right coadjoint action. The set of invariant elements of Lo, for this action is an algebra; we
denote it

MO,n = ﬁg} ;11

and call it quantum moduli algebra. As a C(g)-module Ly, is just O?”, where O, = O, (G)
is the standard quantum function algebra of the connected and simply-connected Lie group
G with Lie algebra g. The product of Lo, is obtained by twisting both the product of each
factor O, and the product between them. It is equivariant with respect to a (right) coadjoint
action of Uy, which defines the structure of Uz-module of Lg .

The module algebra £y ,, has an integral form Eén, which is defined over A = C[q, ¢~ '], and
endowed with an (coadjoint) action of the Lusztig [72] integral form U}*® of U,. It is obtained
by replacing O, in the construction of Ly, with the restricted dual O4 of the integral form
Uj*, or equivalently with the restricted dual of the integral form I' of U, defined by De
Concini-Lyubashenko [43]. Since U4* contains the De Concini-Kac [39] integral form Uy,

and U4 has the same set of invariant elements in L’g"n, we systematically denote the latter

MG, = (L) A (= (L8,)47).
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We call Mén the integral quantum moduli algebra.

A cornerstone of the theory of My, is a map ®,, originally due to Alekseev [1], building on
works of Drinfeld [37] and Reshetikhin and Semenov-Tian-Shansky [83]. In [28] we showed
that ®,, eventually provides isomorphisms of module algebras and algebras respectively,

Byt Lo — (U @2 Moy — (UE)Ys

where Uq®" is endowed with a right adjoint action of U,, and (U(;@”)lf is the subalgebra of

locally finite elements with respect to this action. When n = 1 the algebra Uéf has been
studied in great detail by Joseph-Letzter [59, 60, 58]; we will use simplified proofs of their
results, obtained in [92].

All the material we need about the results discussed above is described in [28], and recalled
in Section 2.1-2.2.
Our first result, proved in Section 3, is:

Theorem 1.1. Ly,, My, and the integral form Eén are Noetherian rings, and finitely
generated Tings.

It follows immediately from the theorem that the specializations £j ,,, ¢ € C\ {0,1}, are
Noetherian and finitely generated rings as well. In [28] we proved that all these algebras (and
therefore Mén and ./\/lé;f) have no non-trivial zero divisors.

After we finished this work we discovered that [44] already proved that Lo 1(gl(n)) and
Lo, (gl(2)) are Noetherian and finitely generated rings. Our approach here is completely
different. For Ly, we adapt the proof given by Voigt-Yuncken [92] of a result of Joseph [58],
which asserts that Uéf is a Noetherian ring (Theorem 3.1). For Mg, we deduce the result
from the one for Ly, by following a line of proof of the Hilbert-Nagata theorem in classical
invariant theory (Theorem 3.2).

The result for Eén follows the same line, but uses also in a crucial way the Kashiwara-
Lusztig theory of canonical bases of quantum groups. We describe the background material
on this theory in Section 2.2.2; we have tried to make the exposition pedestrian and self-
contained, so as to be accessible to non experts.

At present we do not have a proof that Mén is a Noetherian and finitely generated ring
for arbitrary g and n > 1, though it is natural to expect it is the case. Indeed, in the case
g =sl(2), Mén(sl(Z)) is isomorphic to the skein algebra of a sphere with n+1 punctures (see
Theorem 8.6 in [28]), which is finitely generated and Noetherian by results of [11] and [79], or
by the particular case g = sl(2) of the results in [26]. In our general situation, key arguments
in the proof of Theorem 1.1 for My, depend on the existence of a Reynolds operator on the
Ug-module Lo, and one can easily show there is no Reynolds operator on Eén. This follows
from the corresponding fact for the integral quantum coordinate ring Q4 (see Remark 2.14).

From Section 4 we consider the specializations L, of L'én at ¢ = ¢, a primitive root
of unity of odd order [ (and coprime to 3 if g has G2 components). In [43], De Concini-
Lyubashenko introduced a central subalgebra Zy(O) of O, isomorphic to the coordinate
ring O(G), and proved that the Zo(O,)-module O, is projective of rank (%™, As observed
by Brown-Gordon-Stafford [25], Bass’ Cancellation theorem in K-theory and the fact that
Ko(O(G)) = Z, proved by Marlin [81], imply that this module is free. Alternatively, this
follows also from the fact that O, is a cleft extension of O(G) by the dual of the Hopf algebra
uc(g), as proved by Andruskiewitsch-Garcia (see [5], Remark 2.18(b), and also Section 3.2 of
[21]; this argument was explained to us by K. A. Brown).

The section 4 proves the analogous property for £ ,,. Namely:
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Theorem 1.2. Zy(O)®" is a central subalgebra of Lf,,, and L§,, is a free Zo(Oc)®" -module
of rank I8 isomorphic to the Zo(O)®™-module OF™.

In the sequel we systematically denote
Z0(L ) = Z0(0)*".

We prove the first and third claims of Theorem 1.2 in Proposition 4.1. The arguments use
results of De Concini-Kac [39], De Concini-Procesi [40, 41], and De Concini-Lyubashenko
[43], that we recall in Section 2.3-2.5. Let us stress that the algebra structures of Lf,, and
O%" are completely different.

Since Zp(O¢) = O(G), we may deduce the second claim of Theorem 1.2 from the first and
third claims together with the results of [43] and [81], or [5], recalled above. Nevertheless we
give a self-contained proof that £ ; is finite projective of rank 19M8 over Z (Eal), by adapting
the original arguments of Theorem 7.2 of De Concini-Lyubashenko [43]. In particular we
study the coregular action of the braid group of g on Lj; by the way, in the Appendix
we provide different proofs of some technical facts shown in [43]. Of course, it remains
an exciting problem to describe the centralizing extension O(G)*" C Lf,, (and similarly
O(G)*" C (.Can)UE below), aiming at generalizing the results of [5] and finding a direct,
more structural proof of freeness in Theorem 1.2.

Also, we note that basis of £ ,, over Zy(Lj,,) are complicated. The only case we know is
for Oc(sl(2)), described in [45], and it is far from being obvious (see (111)).

In Section 5 we turn to fraction rings. As mentioned above Lf, has no non-trivial zero
divisors. Therefore its center Z(Lj,,) is an integral domain. Denote by Q(Z2(Lj,,)) its

fraction field. Denote by ( (6)7,L)IJe the subring of £j,, formed by the invariant elements of
L5, with respect to the right coadjoint action of Ue. The center Z(Lj ,,) of Lf,, is contained

in (£5,)"
inclusion Mé e ( fm)UE, and these two algebras are distinct in general. For instance, when
n =1 we have (5871)(]5 = Z(L§,), which is a finite extension of Zy(O,) = O(G) (see Lemma
5.1). On another hand, ./\/lé 1 is the specialization at ¢ = € of Z (L'OAJ), a polynomial algebra

(this follows from [28], Proposition 6.19). Note also that we trivially have an

in rk(g) variables, which may be identified via ®; with the center Z(Uy4) of the integral form
Ug.
Consider the rings

Q(Lo,n) = Q(Z(Lo0)) ©z(c5.,) Lon
and
QULHY) = Q(2(L5,)) ®z(cs,.) (L£60)"°
In general, given a ring A with center Z(A) an integral domain we reserve the notation Q(A)
to the central localization of 4, ie. Q(A) := Q(Z(A))®z4)A. Though the center Z(( B’H)Ue)
of (Ean)Ue is larger than Z(Lj,,), the notation Q(( Em)Uﬁ) is valid, for Z(( gm)Uﬁ) is an
integral domain finite over Z(Lj,,), and hence the central localization of (Ef]yn)UE coincides

with Q(( Byn)UE) as defined above. Throughout the paper, unless we mention it explicitly we
follow the conventions of Mc Connell-Robson [82] as regards the terminology of ring theory;
in particular, for the notions of central simple algebras and PI degrees, see in [82] the sections
5.3 and 13.3.6-13.6.7.

Denote by m the rank of g, and by N the number of its positive roots. In section 5 we
prove:



6 STEPHANE BASEILHAC, PHILIPPE ROCHE

Theorem 1.3. (1) Q(L5,,) is a division algebra and a central simple algebra of PI degree
"N

(2) Q(( Bm)UE), n > 2, is a division algebra and a central simple algebra of PI degree
lN(nfl)fm'

The second claim of (1) means that Q(L ,,) is a complex subalgebra of a full matrix algebra
Maty(F), where d = I and F is a finite extension of Q(Z2(L5,,)) such that

F®qzcy,) QLon) = Mata(F).

That Q(L§,,) is a division algebra and a central simple algebra follows from Theorem 1.2
and the fact that £, has no non trivial zero divisors (proved in [28]). The computation

of d = 1™ uses a lower bound coming from the representation theory of U, and a lower
bound for the degree of Q(Z(L,,)) as a field extension of Q(Z0(Lj,,)), obtained by using
specializations to ¢ = € of certain central elements in Ly ,, (for ¢ generic). In this computation
a main role is played by results of De Concini-Kac [39].

We deduce (2) from (1), the double centralizer theorem for central simple algebras, a few
results of [28] and [43], and Theorem 1.2 again.

Acknowledgements. We are grateful to M. Faitg for many valuable discussions on the
subject, especially concerning the filtration arguments in the proof of Theorem 1.1, and the
use of the partial order < in the proof of Theorem 1.1. We also thank K. A. Brown for
pointing out the references [5] and [21] (see the comments before Theorem 1.2).

1.2. Basic notations. Given a ring R, we denote by Z(R) its center. When R is commu-
tative and has no non-trivial zero divisors, Q(R) denotes its fraction field.

Given a Hopf algebra H with product m and and coproduct A, we denote by H? (resp.
H,)) the Hopf algebra with the same algebra (resp. coalgebra) structure as H but the opposite
coproduct A°? := g o A (resp. opposite product m o o), where o(z ® y) = y ® x, and the
antipode S™1. We use Sweedler’s coproduct notation, A(x) = Z(m) T(1) ® T(2), * € H, and

we set AW = id, A® .= A and A™ := (A®id)A™Y for n > 3 (this is not the convention
used in [28]).

The results of this paper hold true for any finite dimensional complex semisimple Lie
algebra g, but unless we state it differently, we will assume g is simple. We will denote its
rank by m, and its Cartan matrix by (a;;). We fix a Cartan subalgebra h C g and a basis of
simple roots «; € b, and denote by by the Borel subalgebras associated to it. We denote by
N the number of positive roots of g, and by p half the sum of the positive roots.

We denote by di, ..., d, the unique coprime positive integers such that the matrix (d;a;;)
is symmetric, and (, ) the unique inner product on by such that d;a;; = (o, o). For any
root « the coroot is & = 2a/(a, a); in particular «o; = di_lai. The root lattice @ is the
Z-lattice in by defined by @ = >, Z«;. The weight lattice P is the Z-lattice formed by
all X € by such that (A, o) € Z for every i = 1,...,m. So P =Y " | Zw,;, where w; is the
fundamental weight dual to the simple coroot «;, which satisfies (w;, @j) = d; ;. Note that
(A, ) € Z for every A\ € P, a € Q. We denote by D the cardinal of the quotient lattice P/Q.
Then D is the smallest positive integer such that D(\, u) € Z for every A\, € P, that is,
such that DP C Q.

We denote by Py := > 7", Z>ow; the cone of dominant integral weights, and we put
Q4+ = >."" Z>pa;. Though Q C P, it is not true that Q@+ C Py, but we have DP; C Q.
This last property is not trivial, and follows from the classical fact that the inverse of the
Cartan matrix (a;;) has coefficients in D™'N.
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We will use the standard partial order relation < on P, defined by: A\, u € P satisfy A < u
if u — X e Q4. In section 3, we will also use the partial order relation < on P defined by:
A=pifu—reD1Q,.

We denote by B(g) the braid group of g; we recall its standard defining relations in the
Appendix (Section 6.2).

We denote by G the connected and simply-connected algebraic group with Lie algebra
g, and by T the maximal torus of G with Lie algebra b; N(T¢) is the normalizer of Tg,
W = N(T¢)/Tq is the Weyl group, By are the Borel subgroups of G with Lie algebra b,
and Uy C B4 are their unipotent subgroups.

We denote by O(G) the coordinate ring of G. It is a commutative Hopf algebra, which
can be identified with the restricted dual of the universal enveloping algebra U(g) (see [66],
and also [74]). Similarly we denote by O(B4) the coordinate ring of By.

We let ¢ be an indeterminate, set A = C[g,q¢" '], ¢ = q%, qp = ¢PP12 for B € Q, and
given integers p, k with 0 < k < p we put

_a - k| = o R
Pl = el Olg! =1, [plg! = [1q[2]g---[Plg [k]q_ [p—

¢ -1 p (p)g!
Pa= 0 O =1 Bt = W 0 ( P ) - o
We denote by Ay C C(g) the ring of functions regular at ¢ = 0; this ring is used only in
Section 2.2.2.

We denote by € a primitive [-th root of unity such that 24 # 1 is also a primitive [-th root
of unity for all 4 € {1,...,m}. This means that [ is odd, and coprime to 3 if g is Ga.

In this paper we use the definition of the unrestricted integral form Ux(g) given in [41],
[43]; in [28] we used the one of [39], [40]. The two are (trivially) isomorphic, and have the
same specialization at ¢ = e. Also, we denote here by L; the generators of U,(g) we denoted
by ¢; in [28].

In order to facilitate the comparison with the results of [43] we note that their generators
denoted K;, E; and F;, that we will denote by f(i, E; and 15,;, can be written as Kj, Ki_lEi
and F;K; in our notations. They satisfy the same algebra relations.

2. BACKGROUND RESULTS

2.1. On Uy, Oy, Lon, Moy, and ®,. Except when stated differently, we refer to [28],
Sections 2-4 and 6, and the references therein for details about the material of this section.
We stress that the simply-connected quantum group, that we denote U, below, was denoted

Uq in [28]. Also, the adjoint quantum group U;d was denoted Uy.
The simply-connected quantum group U, = U,(g) is the Hopf algebra over C(gq) with
generators F;, F;, L;, Li_l, 1 <4 < m, and defining relations

_ _ _ i B —68;
Lilj=LiL; , LiL;' = L;'Li =1, LiEjL; ' = ¢ Ej , LiF;L; " = q¢; "' F}

K, — K
EZ'F]' — F]EZ = 5i7j 7_21
qi — g,
1—a;;
}:@4y[1_%} E YRR =0 ifi#
r=0 " qi
1—a;;

r=0 qi
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where for A = Y myw; € P we set Ky = [[", L7, and K; = K,, = H;nzl L?ji. The

coproduct A, antipode S, and counit ¢ of U, are given by
A(Li) =L;®L;, A(E,) =FE K, +1QE;, A(Fl) = F;
S(E) = -EK; ', S(F)=—-KF,, S(L;) =
e(E;) =e(F;) =0, e(L;) = 1.
We fix a reduced expression s;, ...s;, of the longest element wq of the Weyl group of g. It
induces a total ordering of the positive roots,

@1+ K, '®F
Lt

Bi = iy, B2 = 8iy (Qiy)y - -+, BN = Sy« Siy_y (Qiy)-
The root vectors of U, with respect to such an ordering are defined by
(1) Eﬁkzﬂl"‘ﬂk—l(Eik) ) Fﬂk:Tir"Tik—l(Fi )

where T; is the Lusztig algebra automorphism of U, associated to the simple root «; ([73, 72],

see also [35], Ch. 8). The braid group B(g) acts on U, by means of the Lusztig automor-

phisms. In the Appendix we recall the relation between T; and the generator w; of the

quantum Weyl group, which we will mostly use. Let us just recall here that the monomials

Fgll .. ngKAEgJVV .. Egll (ri,t; € N, A € P) form a basis of Uy, the PBW basis.

Uy, is a pivotal Hopf algebra, with pivotal element

=Ky, = H;nzl L?.

So ¢ is group-like, and S%(z) = £z0™! for every z € Uy.

The adjoint quantum group U;d = U;d(g) is the Hopf subalgebra of U, generated by the
elements F;, F; (1 =1,...,m) and K, with a € Q; so £ € U;‘d. When g = sl(2), we simply
write the above generators £ = Fy, F=F;, L =1, K = K.

We denote by Uy(ny), Us(n_) and U,(h) the subalgebras of U, generated respectively by
the Ej;, the Fj, and the K) (A € P), and by Uy(b;) and U,(b_) the subalgebras generated
by the E; and the K, and by the F; and the K}, respectively (they are the two-sided ideals
generated by Uy(ny)). We do similarly with U;d, where now U;d(f)) is generated by the K
with A € Q.

The Hopf algebra U;d is not braided in a strict sense, but it has braided categorical
completions. Let us recall briefly what this means and implies. For details we refer to the
sections 2 and 3 of [28] (see also [92], Section 3.10, where U, below is formulated in terms of
multiplier Hopf algebras).

A U;d—module V is said of type 1 if it has finite dimension and the generators K; are

diagonalizable on V' with eigenvalues in ql-Z . We denote by C the category of U;d—modules of
type 1, by Vect the category of finite dimensional C(g)-vector spaces, and by F¢ : C — Vect
the forgetful functor. The category C is semisimple. The simple objects are highest weight
Ugd—modules; we denote by V), the simple module with highest weight € Py. In the case
g = sl(2) we identify P with N, and denote by V;, the simple module of dimension n + 1.
Note that V), is canonically endowed with a structure of U;-module of type 1, the generators

/D

L; being diagonalizable with eigenvalues in in . The categorical completion Ugd of U;d is
the set of natural transformations F¢z — Fe¢. An element of Ugd is a collection (ay)yeop(c);
where ay € Endgq) (V) satisfies Fe(f) o ay = aw o Fe(f) for any objects V, W of C and any
arrow f € H Ongd(‘/, W). It is not hard to see that [Ugd inherits from C a natural structure

of (completed) Hopf algebra such that the map

. ad ad
(2) v U — Uy

r > (mv(z))veone)
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is a morphism of Hopf algebras, where 7y : U;d — End(V) is the representation associated
to a module V in C. It is a theorem that this map is injective. From now on, let us extend
the coefficient ring of the modules and morphisms in C to (C(ql/ Dy, Put

U, = U8 ¢ Clg"/P).

The map ¢ above extends to an embedding of U, in U,. The category C, with coefficients
extended to C(ql/ b ), is braided and ribbon; we postpone a discussion of that fact to Section
2.3, where it will be developed. As a consequence, we can regard U, as a quasitriangular and
ribbon Hopf algebra in a generalized sense (see [28]). The R-matrix of Uy is the family of
morphisms

R = (Rv,w)v,weon(c)
where Ry € End(V ®@W) is the endomorphism defined by the action of Drinfeld’s universal
R-matrix on V ® W. The ribbon element of U, is defined similarly by Drinfeld’s universal
ribbon element. One defines the categorical tensor product [U?Q similarly as Ug; in particular
it contains all the infinite series of elements of U?Q having only a finite number of non-zero
terms when evaluated on a given module V' ® W of C. There is an expansion of R as an
infinite series in [U;@Q. Adapting Sweedler’s coproduct notation A(z) = Z(x) z(1) ® T(z) we
find convenient to write this series as
(3) R = Z R1) @ Rg).

(R)

We put R :== R, R~ := (0o R)_1 where o is the flip map x ® y — y ® x. We will not use
any explicit formula of R, but the following factorization formula

(4) R=OR

where .
o= qZZszl(B_l)ini®Hj c Ung

with B € M,,(Q) the matrix with entries B;; := dj_laij, and

R=> R4 ® Ry € Uy(ny)&Uy(n_)
(R)
(see [28], Section 3.2, and for details eg. [35], Theorem 8.3.9, or [92], Theorem 3.108). If z, y
are weight vectors of weights pu, v respectively, then O(x ® y) = ¢"")z ®y. Moreover, R has
weight 0 for the adjoint action of U,(h); that is, complementary components R(l) and R(g)
have opposite weights.

Recall that we denote by G the connected and simply-connected algebraic group with Lie
algebra g. The quantum function Hopf algebra Oy = O4(G) is defined as the restricted dual
of U;d with respect to the category C, that is, the set of C(g)-linear maps f: U;d — C(q)
such that Ker(f) contains a cofinite two sided ideal I (ie. such that I & M = U, for some
finite dimensional vector space M), and [].__, (K; —¢}) € I for some r € N and every i (see
eg. [23], Chapter 1.7).

The space O, is a Hopf algebra, with structure maps defined dually to those of Ugd.
We denote by * its product. The algebras Oy (1), Oy(U+), Oy(B+) are defined similarly, by
replacing Uq“d with U;d(h), U;d(ni), Ugd(bi) respectively. As a vector space, Oy is generated
by the functionals  — w(my (x)v), © € Ugd, for every object V' € Ob(C) and vectors v € V,
w € V*. Such functionals are called matriz coefficients. Because the morphism ¢ : U;d — Uy
is injective (see (2)), the Hopf duality pairing (.,.): Oy X Ugd — C(q) is non degenerate. By
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extending the coefficient ring from C(g) to C(¢*/?), we can uniquely extend it to a bilinear
pairing
()1 (O Bc() C(g"/P)) x Uy = C(g"P)

such that the following diagram is commutative:

0Oy ® U4 S C(q)

N |

()
(Oq ®c(q) C(QI/D)) QUqg — C(QI/D)
This pairing is defined by
vy (ax)) = w(ayv)
for every (ax) € Uy and y ¢, € Oy. It is non degenerate.
The maps
ot O, — U
- + + \ pt
(5) a > (a®id)(R*) =) (o, RE)RG
(RE)
are well-defined morphisms of Hopf algebras. Here we stress that it is the simply-connected
quantum group U; that is the range of ®*. This will be explained with more details in
Section 2.3.
Let us make two simple observations, for future reference. Firstly, because O, is spanned
by the matrix coefficients of the objects of C, and C is semisimple with simple objects the
U;d—modules Vi, i € Py, there is a decomposition of U,-bimodule

(6) 0= P Cw),

weEP}

where C(p) = V,; ® V), the space of matrix coefficients of V,,, is endowed with the left action
on the factor V,, and the right action on V: , and Oy has the left and right coregular actions
<l and B>, defined by

T o= Za(1)<a(2),x), adr:= Z(a(l),m)a@)
(o) (o)

for all x € U; and a € Q4. Here we recall that each U;d—module V,, can be regarded as a
Us-module, so the above expressions make sense. The decomposition (6) is the Peter- Weyl
decomposition of O,. It will be refined in Section 2.2.2.

Moreover, the algebra O, is generated by the matrix coefficients of the simple U;d—modules
Ve, with heighest weights the fundamental weights @y, k& = 1,...,m; see eg. Proposition
1.7.8 of [23] for a proof. This relies on the standard fact that, for any u,v € P, we have a
direct sum decomposition of modules (where m(\) € N)

(7) V@V, =V P vV,
A<p+v

In particular, this decomposition implies that, up to scalar multiples, there is a unique non
zero morphism V1, — V,, ® V,,, which is injective and splits. Dually, this means that,
applying the product in O, followed by the projection onto the subspace C'(u + v) we get a
canonical projection map

(8) Cp)@C)—= Cp+v).
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The loop algebra Lo1 = Lo,1(g) is defined by twisting the product % of Oy, keeping the same
underlying linear space. The new product is equivariant with respect to the right coadjoint
action coad” of Uy, defined by

coad" (z)(a) = Z S(z2) > a<dzq)
(=)
for all x € U; and a € O,. By equivariant we mean that Lo is a U;-module algebra. Let us
spell out its product and equivariance property. Using the fact that U, can be regarded as a

subspace of Ug, the actions <1 and > extend naturally to actions of U, and the product of
Lo,1 is expressed in terms of * by the formula ([28], Proposition 4.1):

(9) aB= Y (Ra)S(Re)>a)*(Ray> B < Ra),
(R).(R)

where Z(R) R(1y® R(3) and Z(R) R(11)® Ryry are expansions of two copies of R € U?Q. Note
that the sum in (9) has only a finite number of non zero terms. By using that RA = A“PR,
this product can equivalently be expressed as

(10) 05,3 = Z (5 < R(l)R(ll)) * (S(R(Q)) >aJd R(2/)).
(R),(R)

This product gives Lo 1 (like Oy) a structure of Uz-module algebra for the actions >, <1, but
also for coad” (which is not the case of Q). Spelling this out for coad”, this means

coad” (z)(afB) = Z coad" (x(1))(a)coad" (x(2))(B)-
(z)

The relations between Oy, Lo,1 and U, are encoded by the map

(11> (I)li Oq — Uq

o — (a ®id)(RR/)
where R = oo R, and as usual 0: # ® y — y ® z. Note that
(12) ®y :mo(@+®(5_1oq)_))oA.

We call ®; the RSD map, for Drinfeld, Reshetikhin and Semenov-Tian-Shansky introduced
it first (see [37, 83],[80]). It is a fundamental result of the theory (see [32, 58, 10]) that ®;
affords an isomorphism of U;-modules

D1: 0, = UY.

For full details on that result we refer to Section 3.12 of [92]. Here, Uéf is the set of locally
finite elements of U, endowed with the right adjoint action ad” of U,. It is defined by
U = {x € Uy | rhe(g)(ad" (Ug)(x)) < oo}

and
ad”(y)(x) = > Sya))zye)
()
for every x,y € U,. The action ad” gives in fact Uéf a structure of right U;-module algebra.
It is also a right coideal, that is A(Uéf ) C Uéf ® Uy. Moreover, ®; affords an isomorphism of
Ug-module algebras

(13) ®y: Loy — UL
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It is a fact that ®; affords an isomorphism between the centers Z(Lg 1) of Lo and Z(U,) of
U, (28], Proposition 6.24). Since ®; is an isomorphism of U;-modules and Z(U,) = Uqu, it
follows that Z(Lo1) = Lo4.

Let us recall a few fundamental results about U, éf that we will meet again later. Denote by
T C U, the multiplicative Abelian group formed by the elements K), A € P, and by To C T
the subgroup formed by the elements Ky, A € 2P. Consider the subset To_ C T5 formed by
the elements K_, A € 2P,. Clearly Ty = T, 'Ty_ and Card(T/Ty) = 2™.

Theorem 2.1. (1) Uéf = ®aeap, ad" (Ug) (K_y).
(2) Uy = TQ_jUéf[T/Tg], so Ug is a free TQ__lUéf—module of rank 2™.
(8) The ring Uéf is (left and right) Noetherian.

These results were proved by Joseph-Letzter in Theorem 4.10 of [60], Theorem 6.4 of [59],
and Theorem 7.4.8 of [58], respectively (see also the sections 7.1.6, 7.1.13 and 7.1.25 in [58]).
For (1) and (3) we refer also to Theorem 3.113 and 3.137 in [92], which provides simpler
proofs. For instance, in the s/(2) case we have

Uqg(s(2)) = Uy(sl(2) [K] & Uy (s1(2)) [K].L.

The actual values of ®; are complicated in general (see Theorem 2.15 and the comments
thereafter). However, there is a simple important one, that we describe now. Let V_, be the
type 1 simple U;d—module of lowest weight —\ € —P, (ie. the highest weight U;d—module
V_wo(n) of highest weight —wo(A), where wy is the longest element of the Weyl group; note
that —wq permutes the simple roots). Let v € V_ be a lowest weight vector, and v* € V*, be
such that v*(v) = 1 and v* vanishes on a U;d(f))—invariant complement of v. Define ¢¥_, € O,
by (¢_x,z) = v*(av), z € Uy. From the definition (11) it is quite easy to see that

(14) Dy (_yn) = K_gy.

In particular ®;(¢)_,) = £, where as usual £ is the pivotal element of U,.

Remark 2.2. Since £y = O, as a vector space, we still denote by C(u), 1 € P, the linear
subspace generated by the matrix coefficients of V,, the U;d—module of type 1 and highest
weight p. It can be proved (see Section 7.1.22 in [58], or page 156 of [92], where different
conventions are used) that ®; yields an isomorphism of U;,-modules

(15) D1 C(—wo(n) - ad’ (Uy)(K-a,).

Therefore, the summands in (1) are finite-dimensional Uj,-modules, and the action ad” is
completely reducible on Uéf . In fact, Uéf is the socle of ad” on U,.

Remark 2.3. Because £ = [[7"; L? and ®;(¢_,) = £, a natural question is the factoriza-
tion of ¢h_, in Ly 1 (see Corollary 2.18). This question is considered in [61], where Lo 1(g) for
g = gl(r + 1) is analysed and quantum minors are extensively studied. Let us review here
some of their results in relation with ¢_,.
First note that for for g = si(r + 1) the irreducible representation V_, of lowest weight —p
is isomorphic to the representation of highest weight V, because —wg(p) = p. By the Weyl
(2p,2)

formula the dimension of this representation is J] - o) = 2N, In [70] a presentation of

Uq(gl(r+1)) is given, which differs from our presentation of Uy (sl(r+1)) only by its subalgebra
Uq(h), generated by r + 1 elements Ky, ..., K,41. The inclusion Uy(sl(r + 1)) C Uy(gl(r + 1))
is such that K; = K?K;ﬁl,i =1,...,r. The quantum minors, properly defined in [61], of the
matrix of matrix elements of the natural representation of U, (gl(r+1)) are denoted det,(A>)



UNRESTRICTED QUANTUM MODULI ALGEBRAS, II 13

for k =1,...,7 + 1. We have det,(A>1) = 1 in the case of sl{(r + 1). Then [61] proves that
dety(Asy) = (Kg...K,41)?, and there exists an element K € U,(gl(r + 1)) such that

K™ = dety(A>1)"dety(Asg)...dety(As,i1).

This has to be interpreted in the si(r + 1) case as K_o, = ®1(dety(A>2)...detq(A>r11)). As
a result this gives the equality

’(/J_p = detq(A22> --'detq(AZT—I—l)-

The (quantum) graph algebra Lo, = Lon(g) is the braided tensor product of n copies of
Lo,1 (considered as a Us-module algebra). As a linear space and U,-bimodule with actions <
and D>, it coincides with E%%?, and thus with (’)29”. It is also a right U,-module algebra, with
the following action of U, (extending coad” on Lo ):

(16) coadl,(y) (W @ ... @ a™) = Z coadr(y(l))(a(l)) ®...® coadr(y(n))(a(n))
()

forally € U, and V@, .®a™ e Lo n. The product of Ly, can be explicited as follows. For
every 1 < a < n define i,: Lo1 — Loy by ig(z) = 126D g 2 1®("_“); iy is an embedding
of Ug;-module algebras. We will use the notations

(17) £ =Im(ia) , (@)@ :=i4(a).

Take ()@, (o/)@ E((f?)z and (8)®), (8")® ¢ E((f; with a < b. Then the product of Lo, is
given by the following formula (see [28], section 6):

(@@ & @E®) (@)@ @)®)
(a)
_ 3 pa / 1 p2
(18) = > (a(s@hyRh) > o R RY)))
(RY),...,(R%)
(0)
1 p3 2 pd
® ((S(RlyBY) > 8 < Ry Ry ) )
where R' = Z(Ri) R%l) ® R’@, i €{1,2,3,4}, are expansions of four copies of R € U§2, and
on the right-hand side the product is componentwise that of Lo ;. Later we will use the fact

that the product of Lo, is obtained from the standard (componentwise) product of Eng? by
a process that may be inverted. Indeed, (18) can be rewritten as

(19) (@@ @ )((@) @) =3 @@ Fa)) @ ((8)® - Fu) )8)®
(F)

where F' =37 ) F1) ® Fg) := (A ® A)(R'), and the symbol “” stands for the right action

of U?Q on Lo, that may be read from (18). The tensor F' is known as a twist. Then, by

replacing F with its inverse F' = (A® A)(R'™!), one can express the product of Eg%? in terms
of the product of Ly, by

(20) (@)@ @ (AD(E) =3 (@& (B Fuy) )(((0) - Fp) @ (8)).
(F)
We call quantum moduli algebra and denote by
Moy = Lg%,

the subalgebra of Ly, formed by the Ug-invariant elements.
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The map ®; can be extended to Lo, as follows. Consider the following action of U, on
the tensor product algebra UC(]X’”, which extends ad” on Uy:

(21) ady(y)(x) = > A (S(ya))zAM™ (y2)
(¥)

forally € Uy, x € U(;@". This action gives U(;@" a structure of right U,-module algebra. In [1]
Alekseev introduced a morphism of U;-module algebras ®,,: Lo, — Uq®" which extends ®;.
In Proposition 6.7 of [28] we showed that ®,, affords isomorphisms

(22) Dyt Lo — (U, @yt Moy — (US™)Ye

where (Uq®”)lf is the set of ad; -locally finite elements of UC(]X)”. We call @,, the Alekseev map;
we do not recall here the definition of ®,,, for we will not use it. It is a key argument of the
proof of (22) that the set of locally finite elements of US™ for (ad")®" o A coincides with

(Uéf )®™; this follows from the main result of [69]. Using that the map

(23) b = B o (B71)E": (U)E — (UMY

is surjective and intertwines the actions (ad”)®*" o A™Y and ad’,, we deduced that Tm(®,,) =
(Ugny!.

Remark 2.4. We have (Uéf )™ £ (ngm)lf , and in fact there is not even an inclusion. Indeed
let Q= (¢—q ")?FE+¢K +¢ 'K~ ! be the Casimir element of Uq(sl(2)). We trivially have
A(Q) € (UP*Y but

A)=q-¢gHY (K 'E®RFK+FRE)+QK+K '0oQ—(¢g+¢ HEK '@ K
and therefore A(Q) ¢ (Uéf)®2, since K ¢ Uéf (see eg. Theorem 2.1 (2)). This reflects the
fact that Uéf is only a right coideal (and not a subcoalgebra).

As in Remark 2.2, denote by C(u), u € PT, the linear subspace of Lo,1 generated by the
matrix coefficients of V,,. For every tuple [u] = (u1, ..., un) € P put

(24) Clu) =C(m) @ ... © Cun)
Then Lon = Dyye Py C([p]). Each space C([p]) is a finite dimensional U;-module under the

action coad;,, whence it is completely reducible. Therefore

(25) ACO,n = MO,n ®1

as Us-modules, where I the sum of non trivial isotypical components of Lo ,,. The C(g)-linear
projection map

(26) R:Lon = Mon, Ker(R)=1
is called the Reynolds operator. For all « € Mg, B € Loy, it satisfies
(27) R(aB) = aR(B).

This property will be crucial in the sequel, so let us recall a (classical) proof of it. We can
write 8 = R(B) +~ with v € I, and then we have to show ay € I. We can reduce to the case
where « is contained in a simple summand V' of I. Multiplication by the invariant element
a yields a surjective map V' — oV, which is a morphism of U,-modules. Since V' is simple,
it is either the 0 map, or an isomorphism. In either cases it follows oV C I (in fact the first
case cannot happen, for Lo, has no non-trivial zero divisors, as explained after (31)).
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We can formulate the Reynolds operator in the following way. Recall that O, has a unique
left (or right, or 2-sided) Haar integral, that is a linear map h: O, — C(q) such that

(28) h(1) =1 and (id ® h)A(a) = h(a)1, Va € O,.

(See eg. [35], Proposition 13.3.6). It vanishes on all matrix coefficients except the one of the
trivial representation, to which it gives the value 1. Denote by Az: Lo, — Lo, @ Oy the
right coaction dual to the action coad;, of U; on Ly,. Then, in analogy with the formula
of the averaging operator C*°(G) — C®(Q)Y, f — [f] = fG flg™t - g)du(g), for a locally
compact group G with Haar measure du(g), it is straightforward that

(29) R = (id® h)Ag.

Note that the complete reducibility of Ly, discussed after (24) follows also from Theorem
2.1 (1), since by (23) we have an isomorphism of Uj,-modules

D, n Qﬁ;l n
(30) Lon = (Ug()®™H = U (g)%m,

where [ f means respectively locally finite for the action ad], of U,(g) on U,(g)®", and locally
finite for the action ad” of Uy(g) on Uy(g). An explicit basis of My, is described in Proposition
6.22 of [28].

Finally, let us point out here two important consequences of (22). First, ®,, yields iso-

morphisms between centers, Z(Lo,) = Z(U,)®" and Z(Eg;b) = Z((Uq®")U‘1)7 where one can
show that ([28], Lemma 6.29)

(31) Z((Ug™Vr) = AM(2(U,)) ®c(q) Z(Ug)®"
Second, Ly, (and therefore My, ) has no non-trivial zero divisors because of the isomor-

phisms ®,,: Lo, — (Ufm)lf C UC(IX)" and Ugg’" >~ U,(g%"), and the fact that U,(g®™) has no
non-trivial zero divisors (proved eg. in [39]).

2.2. Integral forms and specializations. Let A = C[q, qil]. We call integral form of a
(Hopt) C(g)-algebra H a (Hopf) A-subalgebra 4 H such that the canonical map 4 H®4C(q) —
H is an isomorphism. Note that the standard notion of integral form of C(q)-algebra uses
Z[q,q"'] instead of C[g, ¢~ ']; our choice is made for simplicity (C[g,q '] is a principal ideal
domain, whereas Z[q, ¢~ '] is not).

2.2.1. Definitions. The unrestricted integral form of U, is the A-subalgebra Us = Ux(g)
introduced by De Concini-Kac—Procesi in [41], Section 12 (and in a differently normalized
form in [39] and [40]). It is the smallest A-subalgebra of U, which contains the elements
(t=1,...,m)

(32) Ei=(si—q VB, Fi=(si—q )Fi L, L'

and is stable under the action of B(g) given by the Lusztig automorphisms (see (1)). Recall

the root vectors Eg, , 3, defined in (}) Let us put ¢g := qfﬁ’ﬁ)/Q. The algebra Uy is a free
A-module with basis the monomials Egi .. Egz K )\Fg;;’ ... Iy, where A € P and we set

. -1 - -1
Eg, = (qﬁk — 94g, )E/Bk  Eg, = (q/Bk — g, )Fﬁk'
We denote
if . l
Ui =UanUY.
The unrestricted integral form of U, gd is defined similarly, as the smallest A-subalgebra Ufld C

Ua which contains the elements E;, F; and Kiﬂ, for i = 1,...,m, and is stable under the
Lusztig action of B(g).
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For 8 a positive root, we define the divided powers

The Lusztig restricted integral form of Uj ad (72, 73] see also [35], Chapter 9.3) is the A-
subalgebra U*® generated by the elements (t=1,...,m, ke N")

0 B pw B
N P,
The algebra U,* is a free A-module with Poincaré-Birkhoff-Witt (PBW) basis

VK, KN

(33) EPY BT KoKt FyN) . Fe
i=1

where o; € {0,1}, ng, pi, t; € N, and we set [KZ-;O]qZ. =1 and

ﬁ qul— K 1 s 1

s=1 % 4"

The integral forms Ux(h), Ua(bs) and Ures(h) U®(by) associated to the subalgebras b,
by C g are the subalgebras of Uy and UL, respectively, defined in the obvious way. For
instance the “Cartan” subalgebra U}**(h) = Uy(h) N U is generated as a A-module by the
elements [, K [K;;ti]g,-

Denote by C4 the category of U4**-modules of type 1, ie. free A-modules of finite rank
which have a basis where the elements K; act diagonally with eigenvalues of the form qf ,
k € Z (in general, finiteness of the rank imposes eigenvalues of the form iqf , k€Z). The
category C4 is a rigid and tensor category. It is not semisimple, and this makes the study of C4
a complicated task; for this, see [28], and section 2.2.2 below. Every type 1 finite dimensional
simple Ug-module V,,, € Py, has a U)**-invariant full A-sublattice, that we denote by 4V,.
These U**-modules form the simple objects of C4. Moreover C4 ® (C[ql/D, q_l/D]
category (see Section 2.3).

The integral quantum function Hopf algebra O4 = O4(G) is the (type 1) restricted dual
of U, that is, the A-span of the matrix coefficients z — v'(my (z)v;), € UL, for every
module V in Cy4, where (v;) is an A-basis of V and (v') the dual A-basis of the dual module
V* (compare with the definition of O,). We can also regard O4 as the set of A-linear maps
f:UY® — A such that Ker(f) contains a cofinite two sided ideal I, and [[.__ (K; —¢f) € I
for some r € N and every i. Because of the inclusions of U}**(b), Ures( +), Us%(by) in UL,
there are Hopf epimorphisms from O4 to the A-duals of these subalgebras, that we denote
by Oa(Tq), Oa(U+) and O4(Bx+) respectively.

The algebra O4 has been introduced by Lusztig in [72, 73]. It is an integral form of Oy, so

Oq = OA XA C<q)

O, is also the restricted dual of the integral form I' = I'(g) of U;d introduced by De

Concini-Lyubashenko in [43], Sections 2-3; T" is the A-subalgebra of Ugd generated by the
elements (1 =1,...,m)

[Ki;t]qz‘ =

is a ribbon

E¥ w FF ! q_s+1 1
E® =~ pM = (Kiit)g, Kigi  ~1 g
N P 13 '
where k € N, t € N (setting (/;;0), = 1 by convention). Note that the definition of I" is less
symmetric than that of U}**. However, I contains the elements K;, and the commutation
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relations between the generators Ei(k), Fi(k) imply that the symmetrized elements [Kj;;t],,
belong to I'. In fact, let us denote I'(h) = U,y(h) NI and I'(by) = Uy(bs) NI. It is proved in

[43], Theorem 3.1, that I'(h) contains U**(h), and that the elements [[;", K_U(t )(Ki;ti)qi,
t; € N, where o(t) € {0,1} and o(t) =t mod(2), is an A-basis of T'(h). A PBW basis of I' is
formed by the monomials

(34) BV HK V(s ti)g Y L FS.

The inclusion U}* C T is strict, for the elements (K;;t),,, t # 0, do not belong to U,*.
However the restriction functor Cr — C4 is obviously an equivalence, where Cr is the category
of I-modules of type 1, ie. free A-modules of finite rank which have a basis where the elements
K; act diagonally with eigenvalues of the form ¢F, k € Z. Therefore we can identify the two
categories, and O4 with the (type 1) restricted dual of I'. We will thus consider the U}**-
modules AV, n € Py, equally as I''modules. We will sometimes use I' instead of U’"es
in order to make direct the connection with results of De Concini-Lyubashenko about the

integral pairings 71';‘1: considered in Section 2.3.

The integral form Eél of Lo, is defined as the U}**-module O endowed with the product
of Lo,1. The integral form £én of Loy is the braided tensor product of n copies of £‘0471; in
particular Eén = O%n as U)>-modules. That the products of L1 and Ly, are well-defined

over A was shown in Proposition 6.9 of [28].
The integral quantum moduli algebra is

M = (L£6)75 = (£5,)7.

Finally, given ¢ = ¢ € C* we define the specializations U, T, O, Lj,, and Mé’; as the
C-algebras obtained by tensoring Uy, I', Oy, Cén and Mén respectively with C,, the A-
module C where ¢ acts by multiplication by e. Each one can also be defined as the quotient
by the ideal generated by ¢ — e. We find convenient to use the notations

(35) (UM = UMY @aCe, (UMY = (UF")Y ®aCe.

Let us stress here that when € is a root of unity, taking the locally finite part and taking the
specialization at € are non commuting operations. Indeed, as shown by Theorem 2.22 below
U, is finite over Zy(U.) and therefore all its elements are locally finite for ad”; on another
hand Uelf = U1l4f ® 4 C, does not contain the elements L;.

Similarly, taking invariants and taking the specialization at ¢ are non commuting operations
when € is a root of unity: indeed, it is easily checked that in this case (U$™)Y4 and (UZ™)Ye,

or M(’i’; = ./\/l n®aCe and ( 6 )UE, are distinct spaces. When € is a root of unity, we will
not consider the algebras MO,n in this paper.

Arguments similar to those mentioned at the end of Section 2.1 imply that the algebras
[,0 ns MO , and CO "o MO ©, € € C*, have no non-trivial zero divisors (see [28], Proposition
6.11 and 6.30).

2.2.2. Canonical basis and modified quantum groups. Because the category C4 is not semisim-
ple, it is not clear from the above definition of 04 whether or not it is a finitely generated
algebra, or if it satisfies a Peter-Weyl A-module direct sum decomposition similar to (6), if
Mén is a direct summand of the A-module £én, or if the projection map (8) may be refined
to a morphism between underlying A-modules.
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Such properties indeed hold true, and will play a key role later. We state them precisely
in Proposition 2.7, Theorem 2.6, Theorem 2.10 and Proposition 2.8. These results are con-
sequences of the existence of an A-basis of O 4 with favourable properties, which implies in
particular that O4 is a free A-module. In order to introduce this A-basis it is necessary to
consider a variant of U;d introduced by Lusztig [73], called modified quantum group, and use
the Kashiwara-Lusztig theory of canonical bases ([62, 63, 64], [73]). We are going to recall
the background material step by step.

The Lusztig modified quantum group is the C(q)-algebra U obtained by replacing Ugd(h)
with the direct sum of infinitely many one-dimensional algebras, generated by orthogonal
idempotents 1y indexed by the elements \ of the weight lattice P ([73], Chapter 23). Namely,

as a vector space U= @, yvep »Unr, where

Oy = U3 (Ko = ¢@ )02+ 37 UKy - g@X"),
acQ aeq

Denote by my \»: U;d — » U, the canonical projection. The product of U is given by
Ty (8)may ag (8) = mar oy (st) if ! =\, and zero otherwise. Set 1) := ) x(1). The algebra
U has not unit, but the family (1))acp can be regarded as a substitute of it. Denote by A
the collection of maps Ay: x av gt x+a,Unrgay = A, Uny ® y,Uyy such that
(36) A g TNy = (T ay © T ar) Apad,
where AUgd is the coproduct of Ugd. We can regard A as a (categorically completed) coprod-
uct A: U—U®2. There is a natural structure of U;d-bimodule on U, defined by
(37) ' an ()8 = gy (' st”)
for all s € U;d and all elements ¢',t" € U;d of respective weights v/, v”". This structure affords
a triangular decomposition of U: given basis {b*} of U;d(ni), the set of elements b+ 1,b~
(or b~ 1\b7, or bth~1y), where A € P, is a basis of U.

Given any Ugd—module X of type 1, and any weight subspace X* C X of weight A € P,
one can define the action of an element uly €U, u € U, on X as the projection onto X*

q )
followed by the action of w. This way, one can identify the category C with the one of finite

dimensional unital U-modules, where unital means that all elements 1, act as 0 but a finite
number of them, and ) ). p 1) acts as the identity. It is proved in [73], Section 29.5.1, that

two — sided ideal of finite codimension of U

@ o-{r v

[ is C(g)—linear and vanishes on some }

There is an analogous realization of O4, of the form (see [73], sections 23.2 and 29.5.2, and
[74])

B o f is A—linear and vanishes on some

(39) Oa= {f' Ua— 4 ' two — sided ideal of finite corank of U4 [’

where Uy is the A-subalgebra of U generated by the elements Ei(k)l » and Fi(k)l \, for all

ic{l,...,m}, ke Nand X € P. It is a U**-subbimodule of U, and the coproduct restricts
to a map A: Ua—U4%?%. The above identification of the category C with the one of finite
dimensional unital U-modules yields an identification of the category C4 of U)**-modules of

type 1 with the category of U 4-modules of finite rank.
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The key advantage of this realization of @4 is that U can be equipped with a canonical
A-basis B. The construction of B is described in [73], Chapter 25. It relies on the Kashiwara-
Lusztig canonical basis of U}**(n_). This last basis, denoted by B, is defined in [73], Chapter
14, and [62] (a review can be found in [35], Chapter 14). It enjoys the following nice properties.
Denote by ~: C(q) — C(q) the field involution such that § = ¢!, and by ~: Uq“d — U;d the
homomorphism of C-algebras such that

Ei=FE; F;,=F,, Kx=K_,, fr=fz

for all f € C(q), x € U;d (E; and F; above, which will not appear elsewhere, should not be
confused with the normalized elements in (32)). The map ~ yields a C-algebra homomorphism
~: U—U. Then we have:

(1) the elements of B™ are weight vectors under the adjoint action of U;d(h);

(2) for every be B™, b =1

(3) for every b,b' € B™, bb' = 3" NP0 where N € Ng, ¢ '];

(4) for every b,b' € B™, A(b) = Yy yuep- Chiynb @ 1" where Ctyr € N[g, ¢ Y;

(5) For every u € PT, denoting by v,, the highest weight vector of the U**-module 4V,
the elements bv,, which are non zero, where b € B™, form an A-basis of 4V,.

In the case of g = sl(2) the elements of B~ are just the divided powers F' (%) k € N. Formulas
in terms of PBW basis elements are known also for g = si(3) and si(4), and an algorithm
exists in the general case (see [55] and the references therein).

Correspondingly to B™, the set BT = w(B™) is a basis of U}**(n,.), where w: U;d — Uq“d
is the (C(g)-linear) Cartan automorphism, defined by

w(E) =F,, w(F;)=FE; , wK;)=K; "

fori =1,...,m. The triangular decomposition of U implies that the elements b™1,6'~, where
b" € BT, ¥~ € B™ and \ € P, form a basis of U. They form in fact an A-basis of Uy, and
its elements are fixed by the involution ~: U—U.

Lusztig has constructed another A-basis of Uy, denoted B, and called the canonical basis
of Ua. It satisfies numerous properties that we now review. Its elements are denoted by
b0V, where b, € B~ and A\ € P, and are related to the elements b0 "1y, where b1 := w(b)
and b~ := b, by a specific trigonal change of basis with coefficients in A. Although we
always have b1y, b'"1, €B, to our knowledge explicit formulas of the elements of B as
linear combinations of elements b 1,6’ or b~ 1,b" are known only for g = sl(2) or sl(3) (see
[73], 25.3, and [33]). In the former case, identifying P with Z and @ with 2Z the canonical

basis B is formed by the elements
(40) E®M1_,FO and FOU1,E®  kilneNn>k+l

where E®1_, ;O = FO1, E® for n =k +1.

We are going to review Lusztig’s construction of B, its canonical partition B=U AP, B[)\],
the dual basis B*, and Kashiwara’s approach to B* ([63, 64]). The latter is stated in Theorem
2.6 below. At first we need to recall the notions of based module and balanced triple; for
details on these notions we refer to [73], Chapter 27, and [63] (see also [65], the sections 3.15
and 3.16 in [92], or Chapter 14 in [35] for overviews).

Denote by Ay C C(q) the ring of rational functions regular at ¢ = 0. By applying the
involution —, put

Ao = Ap.
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Since Ay is the localization of C[q] at ¢ = 0, we may regard A, as the localization of C[g™!]
at g = oo.

Let us recall briefly the definition of crystal basis (see [62]). Denote by Uq“d(g)i the sub-
algebra of Ugd(g) generated by E;, F; and K'; thus U;d(g)i is isomorphic to Uy, (sl(2)).
Let M be a U;d—module of type 1. Denote M¢ the subspace of M of weight ¢ € P. For
every i = 1,...,m we can regard M as a Uq“d(g)i—module, so M = &;V,, for some simple
Ugd(g)i—modules V,. These being generated by primitive weight vectors, the PBW basis of
U;d(g)i yields

M=FP @ F(Ker(E)nMO).
CeP 0<n< (i)

The Kashiwara operators é;, fl are the endomorphisms of M defined by, for every v €
Ker(E;)NMS and 0 < n < (&, (),

(41) F(E™w) = My | y(FMy) = FODy,

A crystal basis of M at ¢ = 0 consists of a pair (£, B), where:
e L is a free Ap-sublattice of M such that the canonical map £ ®4, C(q) — M is an
isomorphism;
e B is a basis of the C-vector space L/qL;
o L=&cepLlS and B =[] cp(BNLE/qLS), where LS = LN MS;
e for every ¢ = 1,...,m the Kashiwara operators ¢€;, .]i preserve £, and the induced
maps on L£/qL send B into BU {0}, and satisfy ¥’ = f;(b) if and only if b = &;(¥') for
every b,b' € B.
Crystal basis at ¢ = oo are defined similarly, by replacing Ag with Axe.

A based module consists of a pair (M, B) where M is a U;d—module of type 1 endowed with
a C(q)-basis B such that the following conditions hold:

(i) For every weight ¢ € P, the set B N M¢ is a basis of the weight subspace M¢ C M.
(ii) The A-module 4M generated by B is stable under U**.

We will denote by £js the Ag-submodule of M generated by B, and by Ly the
Ao-submodule of M generated by B.

(iii) The C-linear involution ~: M — M defined by fb = fb for all f € C(¢) and b € B
is compatible with the action of U;d in the sense that Tm = xm for all x € U;d,
m e M.
(iv) The Auo-submodule £y of M together with the image of B in Ly;/q 'Ly forms a
crystal basis of M at g = oc.
If (M, B) is a based module, we will denote by B the image of B in £y/q~'Lys. From the
notion of balanced triple that we recall now, denoting by B the image of B in Ly;/qLys, we
see that (L, B) is a crystal basis at ¢ = 0.
Indeed, consider more generally a C(q)-vector space V', finite dimensional or not, a sub-A-
module 4V, a sub-Ap-module 4,V and a sub-A.-module 4V satisfying the conditions (all
isomorphisms being the canonical maps)

V=C(q)®@aaV, VEC(Q) @4 4V, VEC(Q) @4y ALV

Denote the C-vector space E := oAV N 4,V N 4, V. Then (4V, 4,V, 4., V) is a balanced triple
([62, 63]) if the canonical maps

(42) ARcE = AV, Ag@c E = 4,V , A ®@c E — 4.V
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are isomorphisms. Equivalently, (4V, 4,V, 4..V) is balanced if and only if the canonical map
E — 4,V/qa,V is an isomorphism, if and only if the canonical map E — 4_V/q ' 4V is
an isomorphism ([63], Lemma 2.1.1).

Given a based module (M, B), the elements of B are weight vectors and b = b for every
b € B. Also, if an element m € 4 M satisfies @ = m and m € B + ¢ 'Ly, then m € B (see
27.1.5 in [73] for details on this fact). It follows that the canonical quotient map

(43) AMOEMQZM%ZM/q_le

is an isomorphism of C-vector spaces. This provides another way of viewing based modules:
by (43), (AM, Ly, L) is a balanced triple, and by (42) the A-lattice 4M is completely
determined by the crystal base (L, B). We will say that (Lps,B) (or the corresponding
crystal base (L, B) at ¢ = 0) is melted into the based module (M, B).

We will indifferently apply the notion of based module to finite-dimensional unital U-
modules, since they are equivalent to Ugd—modules of type 1.

Every module V,, u € P, supports a structure of based module ([73], Section 14.4.10,
[62]); the corresponding basis, called canonical basis and that we will denote by B, is formed
by the elements bv, € AV, which are non zero, where b € B~ and v, is the canonical
highest weight vector of V,,, corresponding to the coset of 1 € Ugd(n_) in the Verma module
construction of V,,. Note that the involution ~: V, — V|, defined by (iii) above is indeed an
automorphism, for the space V), with action of Ugd defined by x - v := Zv, for all z € U;d,
v € V), has highest weight p, and is thus isomorphic to V), via the map ~. The crystal base
(Eﬁfw,BLow) at ¢ = 0 is formed by the Ag-sublattice ,Cl:w of V), generated by B, (which is
eventually the same as the Ay-sublattice generated by the vectors of the form fil 0...0 f’lk (),
where i1,...,9 € {1,...,m}), and Bifw is the set of non-zero images of these vectors in
Ll fqrlew.

There is the following uniqueness result ([62], Theorem 3):

Theorem 2.5. Let M be a U;d-module of type 1, and (L,B) a crystal base at ¢ = 0 of
M. Then there exists a C(q)-isomorphism M — ©;Vy; by which (L,B) is Ao-isomorphic to
®; (U)\O].w, Bf\‘;w) :

The based modules form a category. Given based modules (M, B) and (M’, B"), a mor-

phism of U(‘;d—modules f: M — M’ is a morphism of based modules if:

(a) f(b) € B'U{0} for any b € B;

(b) BN Ker(f) is a basis of Ker(f).
The direct sum of based modules (M, B) and (M', B') is a based module (M & M', BU B');
and a submodule M’ of a based module (M, B) spanned over C(q) by a subset B’ of B forms
a based module (M’, B"). The quotient module M /M’ together with the image of B\ B’ is
then a based module.

The tensor product of based modules (M, B), (M', B') is also defined. Namely, consider
the C-linear map ¥: M @ M’ — M @ M’ defined by ¥(m @ m') = R™'(m @ m'), where
R =071R, sece (4) (note that, as we use the coproduct opposite to [73] our quasi-R-matrix
is ]:Tl). It can be checked that ¥ is an involution compatible with the action of U in the
sense of (iii) above in the definition of based module. Moreover, denote by £/ 3 the C[g']-
submodule of M ® M’ spanned by the basis elements b ® b, where b € B, b’ € B'. It is
shown in [73], Section 27.3, that for every couple (b,b’) € B x B’ there is a unique element
bOb € L M, v such that
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(a) U (bOY') = bOY,

(b) b<>b/ —b® b € q*1£M7M/.
Moreover, By = {bOV/,b € B,V € B’} is a basis of M ® M’, a C[g~!]-basis of Ly, a
Clq, ¢~ ']-basis of the C[g, ¢ ']-module ALy of M ® M’ generated by the elements b @ b,
where b € B, b’ € B, and (M ® M’', By) is a based module.

This construction of By is associative. Since (V,,B,,) is for every p € Py a based module,
it follows that any tensor product M of a finite number of the simple modules V), is naturally
a based module. The corresponding basis is called the canonical basis of M. These canonical
basis have been computed explicitly in [53] in the case g = sl(2).

Consider now the U;d—module “V,, with underlying space V,,, u € P, and action defined
by z.,v = w(x)v, for every z € U;d and v € V, (as usual w: U;d — U;d is the Cartan
automorphism). Note that there are isomorphisms “V,, = V_, () = V,; (endowed with the
standard left action of Ugd). Let us denote by “v,, the vector v, regarded in “V,, (ie. its
canonical lowest weight vector), and by “B,, := {b.,"v, # 0,b € B"} its canonical basis.
Then “V,y ® V,,» has the canonical basis B, ,» 1= {B'OY" )b € “B,, V' e B, }. Since v oy’
is canonically determined by the elements v',0"” € B~ such that b’ = w(b').,“v,, b = b"v,,
following Lusztig we denote it ('0b”), ..

Denote by vy,(,,) the canonical lowest weight vector of V,, and by “v,,,(,,) the vector v,
regarded in “V),. It is a crucial observation that “ v, () @y, (. is a cyclic vector of “V,, @V
(see eg. [73], 23.3.6; note that “v,, (1) @ Vy, () Plays the role of £y @ 9 1= “vy @ vy in
[73], because we use opposite coproducts on Ugd but the factors “V,, and V},» are ordered in
the same way).

We can now state the definition of the canonical basis B of U: each element u of B belongs
to U al¢ for some (unique) ¢ € P, and it is then uniquely determined by the property that,
for every u', i’ € P such that wo(u” — p') = ¢, we have

(44.) u(wvwo(ul) ® UU}O(N//)) = <b/<>b//)l/7#”
for some (b'00"),s v € B,y ([73], Chapter 25.2). We write u = b'O¢b”, and as in [74]

we denote by BM/,“// the finite subset of B which is in bijection with B,/ ,» under the map
U +—r u(“’vwo(#/) & vwo(,u/’))' So
(45) B= U wepy Bu’,u” :
Note in particular that B is formed by weight vectors for the left and right action of Uq“d(f))
(defined as usual by (37)).

In a sense, one can view U as the projective limit of an inverse system formed by the
(U;d ® Uqad)—modules Vi @ Vi, where' w1 € Pty then B is the basis resulting from the
corresponding inverse system of basis {B u} /-

Lusztig has produced a partition of B as follows. First, consider the situation of a based
module (M, B). For every A € Py denote by M[A] the sum of the simple submodules of M
isomorphic to V) (ie. its isotypical component). Set

(46) M[Z /\] = EB)\/Z)\M[)\/].

Then, for every base element b € B there is a unique A € P, such that b € M[> \] and A is
maximal with this property ([73], 27.2). Denote by B[A] the set of all b € B that give rise to
A € Py in this way. Clearly the sets B[], A € P4, form a partition of B.

Now, given b €B, let ¢ € P be the unique weight such that b eU‘Alg, and let p/, p” € P*
be such that wo(u” — p') = ¢, and (é&;,u') is large enough for all @ = 1,...,m so that
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(Vg () @ Vyy(ury) 18 non zero. This element belongs to the canonical basis B, ,» of
“V @V, and therefore to one of the subsets B, ,#[A], for a unique A € P;. It is a result
that A does not depend on the choice of 1/, " (see [73], 29.1.1). Hence there is a well-defined
map B— Py, b — \. Denoting by B[)\] the fiber of this map, we thus obtain a partition

(47) B= H)\eP+ B[)‘]

The sets B[)] are called 2-sided cells. They are finite sets and have the following remarkable
properties. For every A € P, denote by U[> A] and U[> A] the subspaces of U spanned by
[Ty BIN] and [],,-, B[N] respectively. Then U[> A] (respectively U[>A]) consists of the
elements u €U such that if u acts on V. by a non zero linear map, then > A (respectively
> A) (([73], 29.1.3-29.1.4). Both U[> A] and U[> )] are two-sided ideals of U. Moreover
the algebra homomorphism 7y: U[> ] — End(Vy) given by the U-module structure on V)
descends to an algebra and Uq“d—bimodule isomorphism (keeping the same notation)

(48) 7x: U A/ U[> A — End(Vy)

([73], Proposition 29.2.2).
For instance, when g = sl(2) the 2-sided cell B[n] associated to the simple U;d(sl(Z))—
module of type 1 and dimension n + 1 is the set ([73], 29.4.3)

(49) Bln] = {EW1_,FO n>k+ 1 U{FY1,E® n>k+1},

with the identification E(k)l_nF(l) = F(l)lnE(k) when n = k+1. As we are mainly interested
in @4 we are going to describe the dual partition of B*; see Theorem 2.6. The duality with
(47) is discussed after that theorem.

First we follow the approach of Kashiwara [63, 64]. For every A\ € Py denote by Vy the
dual space of V) endowed with its natural structure of right U;‘d—module, defined by

(fz)(v) = f(xv)
for every f e VY, x € Uq“d, v € V). Clearly Vy is a simple module of highest weight A\. Let
©: Ugd — U;d be the anti-automorphism of C(q)-algebra given by ¢(E;) = F;, p(F;) = E;

¢(Ky) = K). By using ¢ any right U;d-module can be considered as a left U;d—module. In
particular, by the Verma module construction of V) it follows

m
V= U /(Y (K= g™ Ut + 3 B o),
nePy i=1
and ¢ affords an isomorphism of the right module Vy with the left module V). We will denote
by fx the highest weight vector of V.
The space VY ® V) can be identified with End(V})*, and thus acquires by duality a natural
structure of Uq“d—bimodule (or equivalently left Uq“d ® (U;d)‘)p—module); the left and right
actions are given by

(50) r(fov)y=fy®av

for every x,y € Ugd, feVy, ve V. Thespace Vi ® V) also acquires by duality a natural

“upper” crystal structure over U;d® (U;d)‘)p , as we explain now. Denote by (, )x: VA x V) —
C(q) the unique symmetric bilinear form such that

(51) (n,oa)a =1 and  (p(z)u,v)y = (u,zv)
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for every u,v € V) and z € Ugd. Recall the crystal base (ﬁifw,[)’ffw) at ¢ = 0 introduced

before Theorem 2.5. In Kashiwara’s terminology ([62, 63]) the pair (£, BYY) is the lower
crystal base of Vy at ¢ = 0. Applying the involution ~: V) — V) one obtains the lower crystal

base (El)?w, Bf\ow) at ¢ = co. Because the canonical bases are determined by the crystal bases
(see the discussion about (43)), we call (V),B,) the lower based module of V), and B, the
lower canonical basis of V).

Put

(52) AV;LP ::{1) S V)\, (1), AV)\>)\ C A},

LY :={v € Vi, (v, LY) ) C Ao},

FKP ={v € Vy, (v, L%)\ C A}
Then (4V,?, L3P ,T;\p) is a balanced triple ([63], Lemma 4.2.1). Denote by B)” the basis of
L3P /qL5P dual to B by the induced pairing ( , )x: £/qL5F x L™ /L — C. The pair

(L3P, BY?) is the upper crystal base of Vy at ¢ = 0. The weight spaces of the Ap-modules clow
and L) are related by

up QN ()

(53) (LX) =q 2 T (LY peP.
Correspondingly, denoting (BY*)* := By’ N (L{")" and (B = BYY N (LYY)*, we have
(162, [63], cq. (4.2.9))

QD) (mop)

(BY)f=q 2~ 5 (BY)-.

The A-module 4V, is characterized by the following two properties ([63], eq. (4.2.10)-
(4.2.12)):

(aVa")* = Cla,q "o
(AP = {v e VA | U (") v € Clg, ¢ Jun}

where U (n*)Y = {u € U (n*) | Vv € P, K,uK, ' = ¢®"Vu}. Denote by BY the inverse
image of BY” by the isomorphism 4V N L N LY — L£17/qLiF. By (42) the set B is a
basis of AV;\J P, we call it the upper canonical basis of V. In the Appendix we describe in
details the sl(2) case.

Similarly, the right module Vi with its canonical basis B} = {fib,b € BT} \ {0} has
the lower crystal base (£5/°%, By!%), and it supports a balanced triple (4Vy“, £}"P , L1up)
defined again by duality. We denote by (£3“P, BY“P) and B} “P the corresponding crystal base
and upper canonical basis of Vy respectively.

It follows that (AVY"" @4 AVyP, LY"P @, L3, L1 @ 4 L3F) is a balanced triple; equiv-
alently Vi’ ® V) with the bimodule structure (50) and the basis BY"” @ B} is a based
(U(‘;‘d ® (U;d)Op)-module.

Denote again by (.,.): O,x U~ C(q) the pairing of U;d-bimodules induced by the canon-
ical pairing ( , ): Oy x U;d — C(q), and let ®y: VY @ V) = O4, A € Py, be the “matrix
coefficient” map, ie.

(54) (2A(f @), 2) = (fz,v)x

for every f € Vy, x € U;d, v € V). The map ® := @) cp, P, is an isomorphism of U;d—

bimodules, so let us use it to identify O, with ©xep, VY ® V) (which is the content of the
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Peter-Weyl decomposition (6)). Define

£(0) = P L3 ea L7 BO,) = [] By o By

AP, AEP;

L(0)) = P L{? @a,, LY, BOy) == [] By & ByF.
AEPL AEP,

Theorem 2.6. (i) The triple (O, L(Oy), L(O,)) is balanced. Therefore, denoting by G the
inverse of the canonical map O N L(Oy) N L(O,) — L(Oy)/qL(O,), we have

Oa= P AGO).

beB(Oy)

(ii) The basis G(B(0Oy)) := {G(b),b € B(O,)} coincides with the dual canonical basis B,
i.e. the elements a* € Oy, for every a €B, defined by a*(a’) = 04 o for every ' €B. Therefore

O = P Av*

beB

The statement (i) is Theorem 1 of [63], and (ii) is Theorem 10.1 and Proposition 10.2.2 of
[64] and section 29.5 of [73]. The basis G(B(0,)) =B* is called the global basis, or canonical
basis, of O4. The proof of Theorem 2.6 (ii) in [64] (see also [65]) exhibits an isomorphism of
crystals over U;d ® (U;d)"p,

(55) v: B(Og) — B(U),

where (£(U),B(U)) is the crystal base of U associated to the canonical basis B. The iso-
morphism 1 satisfies (G(b), G(b')) = 8y for every b € B(O,), b’ € B(U). The unit 1 of
O4 is (1p)*; the constant structures of O4 are studied in [73, 74].

Let us spell out the case g = sl(2). Denote by a, b, ¢, d the matrix coefficients in the
canonical basis (vy,v_ := Fvy) of Vi, the simple U;d(sl (2))-module of type 1 and dimension
two, read from the top left to the bottom right. In that case of V; the upper canonical basis
B!"? and B}” coincide with the lower ones (this is not true in general, see Example 2.12).
The basis B*(slz) is formed by the monomials c®a?b” where p,7,s € N, and c*dPb” where
p,r,s € N and p > 0; this is stated in [63], Proposition 9.1.1 (in [43], Proposition 1.3, similar
monomials are shown to form an A-basis of O4(SLs), but without reference to the canonical
basis; see the comments before (110) below). More precisely, recall the 2-sided cells (49). A
tedious though straightforward computation shows that we have the duality pairing

(P, EO1_ FOY = 6,00 16,0055 (aPbr, FD1, EDY =0
(¢CaPb", EW1_, FU)y = 0 , (cfaPb" , FO1EDY = 6,00 160006 .

A generalization of this result to the case of g = sl,, can be found in [36]. Moreover, denote
by V,, the simple U;d(sl (2))-module of type 1 and dimension n+1, by (vj) the canonical basis

of Vy,, by (v*) the dual basis, and by m,: U (sl2) — End(V;,) the representation morphism.
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By using the above pairing it is readily checked that for every 0 <[, m < n we have:
(56)  v'(mn (") vm) =

m+j n—m-+1i—j ; 3\ *
Z Omtj—id0—k,n—2(m+j) { j / } { ; J } (E(l)lko(])>
0<i,jk q q

i+j<k<n

m—1+] n—m-+1 ; AN\ *
+ Z 5m+jfi,l(5k,nf2(mfi) [ j ’ ] |: i ] (F(])1+kE(Z)> .
0<1i,j,k q q
i+j<k<n

In particular, we see in this case of g = sl(2) that in general the matrix coefficients of simple

U'*-modules of type 1 are not elements of the dual canonical basis B*. Moreover, these
matrix coefficients do not form a basis of Q4. For instance, it follows from (56) that the
matrix of matrix coefficients of V5 has the following form:

a?  [2],ab b
(57) ca [24sbc+1 db

@ [24ed
The matrix coefficient vy ® vy being equal to [2],bc + 1, this shows bc cannot be expressed as
a linear combination over A of matrix coefficients of simple modules.

Let us discuss the U}**~-bimodule structure of O4, and its relation with the partition (47).
For every A € P, put

(58) A0 = P Av
beB[A
and . .
Oa(N) =P aC(X), 0a(< ) = acV).
N <A AN <A

Recall that U[> A] and U[> )] are two-sided ideals of U, and the algebra (whence Ugd—
bimodule) isomorphism 7y: U[> A]/ U[> A\ — End(V)) (see (48)). Since B is a basis of
U4, the A-modules Ua[> A] and Ua[> A] spanned by [],,~, B[X] and [],,., B [\] are
two-sided ideals of Uy4. Also, since Ua preserves the canonicz;l basis By of 4V}, 7y restricts
to an isomorphism of U}**-bimodules 7y: Ua[>A]/Ua[>A] = End(4V)). In [73], Chapter
29.3, Lusztig groups this isomorphism and its properties under the general term of refined

Peter-Weyl theorem. We are going to reinterpret it in terms of O 4.

First, observe that O4(< \) and Ox(< A) are U)**-bimodules. Indeed, for instance in
the case of O4(< \), if @ € Oa(< N), 2,y € U™, and b €By] for some u £ A, we have
xby €UA[> ] = ®p>uA B [1], and since n > p implies n £ X it follows that (zby,a) = 0,
ie (x> a<y)(b) =0. This shows z > a <y € O4x(< A). The same proof applies as well to
O4(< A). Moreover, the map

(59) dy: 0a(<A) — Hom({jA[EA]/UA[>A],A)
« — <a">

descends to an isomorphism of U}**-bimodules dy on O4(< \)/Oa(< \) (with the obvious
dual structure on Ux[> A]/ Ua[> A]). Bijectivity of dy comes by comparing the cardinals
of canonical basis: O4(< X\)/Oa(< A) has the basis formed by the cosets of the elements

of the basis (B [A])* of 4 C'(X), and Ua[> A/ Ua[> A] the basis formed by the cosets of
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the elements of B [)\], all cosets being non zero and pairwise distinct. We thus get exact
sequences of U)**~bimodules

00— Ual> N ——= Ual> N 2> End(4Vy) — 0
and

(73 1) ody
_—

(60) 00— 0A(< \) —= O4(< \) (End(4Vh))* ——0.

They split as sequences of A-modules, but not as sequences of bimodules. We stress that
(End(aVA))" := Hom(End(4Vy), A) = Hom(4Vy ®4 aVi, A) = aV,? @4 (4V2)",

with the ““P” structures defined in (52), and corresponding basis B}’ ® (“B,)". Moreover,
the exact sequence (60) shows that this A-module of matrix coefficients, regarded as an A-
submodule of O4 by means of the coefficient map ® := @y ep, ) (see (54)), is contained in
O4(< A). This for all X < X yields @y <) (End(aVy))" € Oa(< A). Now, note that using
the isomorphism 7\ we get

rank4(O4(< ) Z Card Z I"ank(AV>\/)2
N<A N<A
and therefore
(61) dime) (Oa(< A) @4 C(g)) = > dim(Vy)? = )~ dim((
N<A N<A
It follows
(62) 0a(< N ®aCg) = @ CN), 0a(<N)®aClg) =P W)
N<A N<A

However, note that in general 4 C()\) ®4 C(g) is not equal to C'(A). This is reflected in the

fact that in general it is not true that A('j’()\) is a U}**-bimodule.
For instance, we have 15F €BJ[2] (see (49)), so ((12E)* <1 E)(19) = (A((12E)*),E ® 1U> =

((12E)*, Elg) = ((12E)*,12FE) = 1 since Ely = 13E. Therefore (12E)" 9 E ¢ AC( ).
Moreover, by just considering the case of g = sla, and inverting the system of identities (56)

for all 0 < I, m < n (or simply from the identity vy ®@vg = [2],bc+1), we see that 4 C(\) is not
an A-sublattice of the space C'(\) of matrix coefficients (defined in (24)). This is emphasized
by the dot notation “ * ”.

In the case of g = sla we can observe this in the formulas (56). Also, by projecting
the matrix (57) onto (End(4V2))" the entries are unchanged except the (1,1) entry, which
becomes [2],bc. All factors [2], in the middle column disappear if one uses matrix coefficients
in the upper canonical basis of V5, which is ng = vg, v} " = [2](1_1111, vs := vg in the notations
of (56), since we have v'(m2(-) vm) = [6m,1 + Ug(vjT, - v2) for I,m € {0,1,2}, where ( , )
is the pairing (51). Thus, in this particular example of (End(4V2))" we see explicitly the
identification of the basis (75) o da(B[2]*) and B5* ® (“By)“?.

Summing up, as an A-module we have a direct sum decomposition

(63) Oa= @ acv,

AePy
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as U**-bimodules we have a (directed by inclusion, and non direct) sum

(64) Oa= > 0al<N),

AP,

and the composition factors of O4 are the bimodules
(65) (End(aVi))" = (Va2 ® aVa)"

for every A € Py, each of multiplicity 1. Because B is formed by weight vectors for the left

and right action of U;d(h) (see (45)), the same is true of B and (63) can thus be refined into
a weight space decomposition

(66) o.=Pp P (Aé’(A))

wv .
;,L,ZIGP >\€P+

Now recall the property (45). Consider in particular the finite subsets BO,wz' and Bwi,O
associated to the fundamental weights w;, i = 1,...,m. The map u — u(*v0®Vyq(c,)), U €U,
allows one to identify Bg o, with the canonical basis B, of “Vo ® Vg, & V5, and therefore
with a uniquely determined finite subset B, of the canonical basis B~ of Ugd(n_); similarly,
one can identify Bwho with a uniquely determined finite subset “Bg, of the canonical basis
BT of U;d(mr). The elements of Bgw,; and B, o are respectively of the form b~ 14, and
bt1_,, where b~ € By, and bt € “B,,,, and we have (see [74], Proposition 3.3 and section
3.4):

Proposition 2.7. The algebra O4 1is finitely generated. A system of generators is provided
by the elements a* €B*, where a € U™ | (Bo.w; U Bw;.0)-

Note that the above system of generators of Oy has 23", dim(Vy,) elements. In fact,
recall that : U;d — U;d is the anti-automorphism given by ¢(E;) = F;, ¢(F;) = E;,
o(K)) = K. Denote by v_, and f_, the canonical lowest-weight vectors of the highest
weight modules V_,, () and V—ng(wi) respectively, and put the upperscript “ “? ” for the

upper canonical basis vectors. For every b~ € By, and bt € “B,,, we have
(67) (07 1,)" = Pox; (fip(07))"™ © ;)
(68) (b1 ,)™ = @ () (f-mi P (0T)) P D V)

In other words, (b 1g,)* and (b71_4,)* are the matrix coefficients lying on the first and
last columns of the matrix representations in the upper canonical basis of the spaces V,,
i = 1,...,m. This can be checked by using the isomorphism (55). The key observation is
that
(@A(fr@vr), 1u) = (Fx; Luoa)n = O

for every A\ € Py, u € P, and therefore @, (fy ®vy) = 1}. Then the computation proceeds by
using the equivariance of ® under the action of Uc‘;d ® (U;d)Op , the fact that (.,.) dualizes the
bimodules structures on O, and U, and the description of the associated Kashiwara operators
on B(O,) and B(U). Here is an alternative argument. By the very definition of the sets B[)]
we have b~ 1y, €B[w;], bT1_o, €B[~wo(w;)]. We wish to check if their duals (b 14,)*,
(bT1_w,)* coincide with the elements of O4 on the right sides of (67) and (68). As already
noticed after (60) the isomorphism Oa(< A)/Oa(< ) = End(aVy)" implies that every
matrix coefficient of 4V) belongs to O4(< A). Now, for A = w; the A-module O4(< w;) is
generated by B[w;]*, and similarly for A = —wg(cww;). Because (ﬁ;i)_lo dw,; (B[w;]*) coincides
with Bi? ® (“B,,)"”, the conclusion follows.
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Note that the same argument implies that, for every A € P, any matrix coefficient of V)
in the upper canonical basis and vanishing on the elements of B[\'] for A’ < A must belong
to B[A]*. For instance, in the sl(2) case, O4(< 2) has canonical basis B[0]* H B[2]*, so the

matrix coefficients of V5 vanishing on 1o belong to B[2]*. This can be observed in (57), using
the comments in the paragraph before (63).

Though the A-module 4V, ®4 4V, has no decomposition like (7), we can refine the map
C(p) @ C(v) = C(p+v) in (8) to an A-linear map defined on 4 C(u) ®A A C(I/) Indeed,
there is a unique injective morphism of Uj**-modules T, ,,: aVy4 — 4V, ®4 aV,, which is
given by ¥, ,(vu4r) = v, ® v, ([73], Proposition 25.1.2 (a)-(b)). It defines a morphism of
based modules

(VMJH/»B;H—V) — (Vu & VI/,BHOBV)
where B,,0B, := {bQV',b € B,,,b' € B,} ([73], 27.1.7). Therefore T, is a split A-lincar
map, ie. there exists a A-linear map &, : AV, ®4 AV, = aVjqp such that G, , 0T, , = id.
Note that &, , is not a U)“*-morphism. Similarly, the unique morphism of U}**-modules

YTt Vit = 4V ®44Vy is a split injection. Define pys i Ua— 4V ®4 AV, by
Pyt (1) = (Vo (1) A Vug (1))
and pps UA®2 = AV ®4 AV @44V @4 AV,r by
Pyt (1) = UV () DA Vi () DA Vi (17) @A Vi (1))
Define 7y v v vt AV @4 AV pr — GV @4 AV @44V @4 aVyr by

TN’?N"J//,V" = (]. X R_l &® ].)(N‘I'M/,Vl (%) ‘INNW")’

It is an injective morphism of Uj**-modules. In Section 1.13 of [74], Lusztig proved that

Ty w18 a split A-linear map ([74] uses R instead of R, since our coproducts on Ugd
are opposite), and that it satisfies

(69) TM/nUN7V/7V"pNI+NH7VI+VN = pM,7M//7V/7V”A

" / !
,v:=V =v € Py, and

where A is the coproduct of Uy, see (36). Now take pu:= p/ = p
put T:“?” = TN,M,V,Z/‘
Using the classical decompositions (7) over C(g), and (8) and (62), it follows that multipli-

cation in O4 yields a map m: Oa(< p) ®4 Oa(< v) = Oa(< p+v). Denote the projection
map putr: Oa(< p+v) = 4AC(u+v), and put

7Y~ Llod
T2 OA(S N) — OA(< N)/O0a(< N) 2D (Bra(,a4)*
where the first map is the quotient map. Consider the diagram:
AC(p) ® A Cr) —" s 4 O+ v)

’ ! /
lﬂ'u ®7T1/ lﬂ—u-&-l/
Tt

(Bnd(aVy))" ® (End(aV,)" = (End(4Vus.))"

where 7!  is the transpose of Lusztig’s map Tu,w- By Lusztig’s results that we have recalled

1,0
above, 7'/371, is a surjective morphism of U**-modules, which is split as an A-linear map. The

epimorphism 7 is injective on 4 C()\), and maps canonical basis elements to elements of the
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upper canonical basis BY” ® (“B,)"". Therefore it is split as an A-linear map. Let us denote

by AT'W, the top map p,4, om. The diagram being commutative, using (69) it follows that:

Proposition 2.8. The map AT.W,: AC.'(;L) ®A AC.*(V) — AC.'(M +v) is split as an A-linear
map, and it coincides with the product in O4 followed by the projection onto the component

AC(u+v).

We stress that A7:H7V will play for O4 the same role as the map (8) for O,.

Finally, we consider for any n > 1 the invariant elements of O%n endowed with the action
coady, of U™, see (16) (recall that Lo, = OF" as U;d—module).

First note that, by definition, ©4(G™) is the restricted dual of the Hopf algebra U’,**(g®"),
associated to its category of type 1 modules. By ordering the summands of g®" we get an
isomorphism U} (g%") =2 U} (g)®", and any type 1 simple U}**(g)®"-module is isomorphic
to Vjy == ®;=, V), endowed with the componentwise action, for some [A] := (A1,..., ) € P
(this is a classical fact; see eg. Theorem 3.10.2 in [49]). Therefore we have an isomorphism
OA(G™) =2 OF". With the same notation [A] := (A1,...,\,) € PP, let us put

(70) AC) =@lac) = @ 4
bERT | BIA]*
(71) OA<N) =@, 04 M) = B ac(V).

N]ePP N <X
We thus obtain a decomposition into based (U} @ (U’4%*)?)®"-modules

(72) OF" = Y 0a(<[N).

[\ePy

Now coad!, = (coad™)*™ o A1) gives structures of U}**-modules to O%F" and O4(< [A]). In
order to make it a based module, we give it the “¢” product of the canonical basis of the
factors O4(< \y), i.e.

B[] =01y | ] BN
oy

We thus obtain a decomposition into based U)**-modules

(73) 05" = Y (Oal< W) BINI)

(NeP}

with composition factors ®%_; (End(4Vj,))". By the properties of “0” products of basis of
based modules, the underlying A-module is

(74) 05" = @ aC(N).
(AePy

Finally we state the last property of based modules we need. Let (M, B) be a based
module. Recall the notations introduced around (46). It is proved in Proposition 27.1.8 of
[73] that for every A € Py the submodule M[> )] is a sub-based module of M, and that it
has the basis

(75) BN M[z )\] = U)\’Z/\BP‘/]'
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Consider M [# 0] := ®x20M|[A], the largest proper submodule of M that contains no non-zero
invariant element. Recall that the space of coinvariants of M is

MUgd = M/M|# 0]
= M/C(q){um — e(u)m,m € M,u € U;d}

that is, the largest quotient of M with trivial action, where ¢: U;d — C(q) is the counit. It
follows from (75) that M[# 0] is a sub-based module of M, with the basis Uy.oB[)], and we
have (this is [73], Proposition 27.2.6):

Proposition 2.9. The quotient map w: M — MUgd is a morphism of based modules, where
Myjaa is endowed with the basis Byrea := 7(B[0]).

As a consequence, the transpose map ': M};.a — M™ is a monomorphism mapping the
q

dual basis Bjj.q to the subset B[0]* of B*. The image of n* is (M *)Va *  the subspace of
q

U;d-invariant elements of M*, regarded as a right module in the natural way. Denote by
AM C M the A-module generated by B, and by 4M* C M™* the A-module generated by
B*. They are Uj**-modules. Set 4 Myres = m(aM). Then TI't((AMUzeS)*) = (AM*)Y4" is the
A-submodule of 4M™ generated by B[0]*, and therefore

(76) AM* = (AM*)YA" @4 AN

where 4N C 4M" is the A-submodule generated by Uy.oB[A]*. Note that, since B[0] is in

general not invariant under the action of U4**, 4N need not be stable under this action.

We are now ready to draw consequences of this discussion and the previous results. As
usual denote by (O5™)V4™ the subspace of invariant elements of O%™ for the action coad.,.
In the case n =1 it is just the center Z(04).

Theorem 2.10. (O%")UTS is a direct summand of the A-module O%" for any n > 1.

Proof. By (73) it is enough to show that for every [A] € P the invariant elements of
O4(<[N) form a direct summand, and these summands are compatible with non-empty
intersections O4(<[A]) N O4(<[X]). Using that O4(G™) = OF" and viewing P} as the
weight lattice of G", it is enough to prove these claims for n = 1. Given A € P, put

Py={N €PN £}
and denote by Ua[P)] the A-submodule of U4 generated by [, Py B[)]. Also, let us put
U[P)\] =UA[P\] ®4 C(q). The complement P, \ Py is finite, and if \' € Py and X’ > X,
then \’ € Py. By the results of [73, Chapter 29.2], U [Py] is a two-sided ideal, and the
quotient algebra U/U[P,] is finite dimensional with unit the coset of > /.y 1y, and it is
semisimple, isomorphic to @y <y End(Vy) (whereas Ua/U a[Py] has indecomposable modules,
see Example 2.12). It inherits from U a canonical basis, formed by the non-zero cosets of
elements of B, and with this basis U/U[P,] is a based module for the right adjoint action

ad”. Similarly as for (59) we have a morphism of U}**-modules
dy: Oa(<)N) — Hom(UA/UA[P,\], A)
o — (o, )
which is an isomorphism by (61) and the computation dim(U/U[P]) = Y. N<A dim(Vy/)? in

[73, Chapter 29.2]. Applying Proposition 2.9 and (76) to the based module M =U/U[P)]
we obtain that the invariant elements of O4(< \) form a direct summand. Finally, for
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any A\, N € P we have O4(<\) N O04(<N) Hom({jA/(UA[PA]—i-UA[P,\/]),A). Applying

Proposition 2.9 and (76) to the based module M :=U/(U[Py]+ U[Py]) we obtain that the
invariant elements (4 M*)V4A™ of O4(<A\) N OA(LN) form a direct A-summand. Since the
latter is a based Uj**-submodule of O4(<\) and O4(<)), this summand is also a direct
A-summand of O 4(<\)V4™ and O4(<N)Y4™. This shows the A-modules O 4(<\)V4™ for all
A € Py match to form the A-summand (O4)Y4™ of O 4, and thus concludes the proof. O

Remark 2.11. Let (M, B), (M’, B") be based modules, with tensor product (M ® M’, By),
and By[0] C By the subset in bijection with the canonical basis of the space of coinvariants
(M ® M’)Ugd (see Proposition 2.9). This subset is described in Proposition 27.3.8 of [73] in

terms of B and B’. Since U/U[P,\] is semisimple with known summands, and the construction
of the “¢” product of canonical basis is associative, one can recursively compute the subset
of the canonical basis of ®7_; U/U[Py,] (endowed with the action dual to coad],) which is in
bijection with the canonical basis of the space of coinvariants. Therefore a complete (though
highly non trivial) characterization of the basis of (O$")V4A” can be obtained. Examples
can be found in [73], 27.3.10. In the case g = sl(2), the canonical basis of the dual space
End(V{™)* has been identified in [53] with the canonical basis of the Temperley-Lieb algebra
TLn(q)-

Example 2.12. The simplest case is already instructive. Namely, consider V; and V3, the
simple U;‘d(sl(Q))—modules of type 1 and dimension two and three.

On Vj we have the lower canonical basis vectors vy and v_, such that Kvy = quy, Evy = 0,
v_ = Fvy. The canonical lower and upper basis of V; are both {v;,v_}. Using the relation
(44) we see that the elements of B071 and B1,0 are 11, F'1; and 1_;, E1_; respectively; the
dual linear forms generate O 4(S L), they are the matrix coefficients a, ¢, d and b respectively.
By (49) we have B[1] =Bo1 [] B1.o-

Next consider V5. On V, we have the canonical highest weight vector vy of weight 2,
and lower canonical basis B, = {vg,v1,v2}, where v; = Fvg and vy = F @y, We have
B,” = {uvo, [2];11)1, va} (see the Appendix). We can identify the ambient space of the right
module V5 with that of Va; its highest weight vector is then v, and its canonical lower and

upper basis are B}, = {vg, v1,v2} and B5"? = {vy, [2];1211,212}.
Consider now the module “V; ® V4. We have R = > (a—g )" ¢""=D/2E" @ 7o the

[n]q!
matrix of the involution ¥ = R™! o™ in the basis vy ® vy, v4 @ v_,v_ Q@ vy, v_ ® v_ is
1 0 00
51 - 0 1 00
ETeDwnm=| o o1 9

q_l—q 0 01

Therefore the canonical basis B, ; is formed by the vectors v Qv = vy @ vy + ¢ v @u_

and v Qv = vy ® v_, V_Qvy = v_ ® vy, v_Qv_ = v_ ® v_. Consider the partition
B,, =B, ,[2]UB;[0]. We have B, ;[2] = {v_0vy,v4Qvy,,v1Qv_}, which is a basis of the
three-dimensional submodule of V; ® V1. Since B, ; is an A-basis of “4V1 ®a AV, it follows
that the epimorphism 7{;: 4C(1) ®4 aC(1) — AC(2) splits (see Proposition 2.8). The
vector v_Qu_ is cyclic, so By ;[0] = {v_Qv_}. By the definitions we have v, Qv, = (1001)11,
vyQu_ = (100F) 1,1, v—Qvy = (FOol)1,1, v_OQv_ = (FOoF)1,1, so the corresponding elements
of B1,1CB are respectively 1g, 1_oF, 19F, and F1oF = E1_5F.

The invariant submodule of “V; ®V] is generated by v/ = v_®v_ —q_1v+ ®uy; in particular
vy ® Vg = [2];1(qv+<>v+ — ') ¢ AV @ 4V1, and therefore 4V; @4 4AV1 # 4Va @ 4V1 though
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both sides are equal over C(g). The module of coinvariants is
(Vi ® W)z = Clo) m(v- © v},

where as usual 7: “V; @ Vi — (*V1 ® Vl)Ugd is the quotient map. The transpose map
7 (V1 ® V1)Ugd)* — (“V1 ® V1)* sends (v—Qv_)* to the unique Uq“d—invariant linear map
evy: “V4i ® Vi — C(q) such that evi(v- ®@v_) = 1.

Note that, since elements of U [\ > 2] act trivially on modules with all isotypical compo-
nents of highest weight < 2, 4V ®4 4V1 is an indecomposable module over Ua/Ua[A > 2]
(that is, Ua/Ua[P2] in the notations of Theorem 2.10).

2.2.3. Some consequences on Eén and Mén. Recall from Section 2.2.1 the definition of the
integral forms L’én and Mén.

Proposition 2.13. EOA’n and Mén are free A-modules, and ./\/loA’n is a direct summand of the
A-module ﬁén. Moreowver, E(‘in s a finitely generated ring.

Proof. Since Eén = OF" as U)**-modules, by (74) it has the basis Upyje pr BJ[\]]*. Therefore

Eén is a free A-module. Since A is a principal ideal domain, Mén is a free A-submodule.
By Theorem 2.10 there is a direct sum decomposition as A-module

(77) Ly, = Mg, ® aN,

and the proof identifies a basis of M{in as a subset of Upyepr B[[\]]*.

Next, consider the question of finite generation. By the formula (18) it is enough to verify
this for Eél, but Eél = 04 as an A-module, and O, is finitely generated by the matrix
coefficients of the fundamental U)**-modules 4V, , k € {1,...,m} (see Proposition 2.7 and
(67)-(68)). Then our claim follows from the formula inverse to (9), expressing the product %
in terms of the product of Ly 1, and the integrality properties of the R-matrix (see in [28] the

formula (4.8) and Section 3.3). O
Remark 2.14. (a) As noted in (76), the A-module 4N in the decomposition (77) is in

general not a U)**-module. Therefore the A-linear projection map R 4: Eén — M{in such
that Ker(Ra) = aN is not a Reynolds operator, for it does not satisfy the identity R4(af) =
aRA(B) for all a € MG, B € Li,.

(b) Recall (29). In coherence with (a) above, there is no normalized Haar measure on
O4 taking values in A. Indeed, by extending scalars over C(g) it should otherwise coincide
with the Haar measure h: Oy — C(q), but in the notations of Example 2.12 (see also the
comments after (55)), since h(vg ® vg) = 0 we have h(bc) = —1/(q + ¢ '), whence h cannot
be defined on O 4.

(c) The Haar measure yields a well-defined Ap-linear map h: £(O,) — Ap (and analogously
Ap-linear and Ayo-linear maps h: EQ(O?") — Ap and h: EQ((’)?") — Ay for any n > 1,
where (LQ(OSQ”), B[[A]]*) is the crystal base at ¢ = 0 underlying the based U;d—module (73)).
Indeed, by (53) the lattice £3"P® 4, L) is generated by the matrix coefficients in the canonical
basis of Vy and V). Since the normalisation by powers of ¢ is vacuous on the trivial module
Vi ® Vo, and h vanishes on Vi ® V), for A € Py \ {0}, the claim follows.

2.3. Perfect pairings. We will need to restrict the morphisms ®*, ®~ in (5) on the integral
forms O4(By), Oa(B-). We collect their properties in Theorem 2.15 and the discussion
thereafter. In order to state it, we recall first a few facts about R-matrices and related
pairings.
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Recall that C4 is the category of U4**-modules of type 1. In [72, 73] Lusztig proved that
Ca® A(C[qil/ = | is braided and ribbon, with braiding given by the collection of endomorphisms

R = (Rv,w)v.weob(ca)-

Actually, Ry is represented by a matrix with coefficients in qZ/ b (C[qﬂ] on the tensor
product of the lower canonical basis of V' and W (see Corollary 24.1.5 of [73]).

This can be rephrased as follows in Hopf algebra terms. Denote by Ur the categori-
cal completion of I', ie. the Hopf algebra of natural transformations Fg, — Fg¢,, where
Fe,: Co — A-Mod; is the forgetful functor towards the category A-Mod; of finite rank

A-modules. Then Ur ®4 C[¢*/P] is quasi-triangular and ribbon with R-matrix

R € U22 @4 Clg*Y/P).
As in (3), we can write

+ + +
R =) Ry © R,
(R)

There are pairings of Hopf algebras naturally related to the R-matrix R, considered as an
element of U;@. What follows is standard (see eg. [67, 68, 71]), for details we refer to the
results 3.73, 3.75, 3.92, 3.106 and 3.107 in [92]:

e There is a unique pairing of Hopf algebras p: Uy(b_)“? @ U,(by) — C(q"/P) such
that, for every a, A € P and [,k € Uy(h),

(78) (K Ka) = g™, p(Fi By) = bi5(a: — a7 )™ s pll Bj) = p(Fi, k) = 0.

e The Drinfeld pairing 7: Uy(b4)°P @ U,y (b_) — C(¢*/P) is the bilinear map defined by
7(X,Y) = p(S(Y), X); it satisfies

(79)  T(ExKo) =q M (B F) = =il —aq; )7, T(LEF) = (B k) = 0.

e p and T are perfect pairings; this means that they yield isomorphisms of Hopf algebras
i+: Ug(by) — Og(Bx)op (with coeflicients a priori extended to C(qg"/P), but see
below) defined by, for every X € Uy(by), Y € Uy(b_),

(i4(X),Y) = 7(S(X),Y) , (i_(¥),X) = (X, Y).
Since Oy4(B+)op is equipped with the inverse of the antipode of O4(B+), which is
induced by the antipode So, of Oy, it follows that iy 0 S = S(;; 014,
e Denote by pi: Oy(G) — Oy(By) the canonical projection map, ie. the Hopf algebra

homomorphism dual to the inclusion map U, (by) < Uy(g). For every a, 5 € O4(G)
we have

(80) (a® B, R) = 7(i7 (p-(8)),i (p+ ().
Note that it is the use of weights a, A € P that forces the pairings p, 7 to be defined over
(C(ql/D), instead of C(g). Then, let us consider the restrictions 77; of p, and 7, of 7 defined
by the formulas (78) and (79), where now o € @ and k € Ugd(b). They take values in C(g),
and define pairings

mh s Ug(b2)“P @ US4 (by) = C(q) , 2 Ug(b4)“? @ U(b_) — C(q).

By the same arguments as for p and 7 (eg. in [92], Proposition 3.92), it follows that 7r;t are
perfect pairings. Note also that 7, = ko 7T;_ o (k ® k), where k: Uy — U, is the C-linear

automorphism extending ~ : Uq“d — U;d in Section 2.2.2, so defined by

(81) k(E)=F,, i(F)=FE;, s(Kx)=K_» , k(q) =q "
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In [43], De Concini-Lyubashenko described integral forms of 773E as follows. Denote by
m*: O4q — Oa(By) @ O4(B-) the map dual to the multiplication map I'(by) @ I'(b_) — T,
som” = (p+ ®p_)oAp,. Let Uo(G") be the smallest A-subalgebra of U (b_)“P?@U(b)“?
which contains the elements (i = 1,...,m)

1K, 'E;, FK;®1, L' LT

and is stable under the diagonal action of B(g). The reason for the notation U (G*) will be
explained at the beginning of Section 2.5. Note that U4 (G™) is free over A, a Hopf subalgebra,
and that a basis is given by the elements

(82) Fgf cee Fg]ivan151+-..+nNﬁNK/\ ® K*)\K*plﬁlu-*pNﬁNEgi T ng
where A € P and nq,...,nyN,p1,...,pN € N.

Now, let v be a lowest weight vector of the lowest weight I'-module oV_y, A € P. As after
Theorem 2.1, denote by v* € 4V*, the dual vector, and by 1)_y € O4 the matrix coefficient
defined by (¢, z) = v*(zv) for every x € I'. Consider the maps j;t: Oy(B+) = Ugy(bx)P
defined by

<Oé+,X> = W;(j;_(a-i-):X) ) <a—>Y> = 7rq_(jq_(a_),Y)
where oy € Og(By), X € Ui (by), and Y € UF4(b_).

The following theorem summarizes results proved in the sections 3 and 4 of [43]. Denote by
Oa [1/):;] the localization of O4 by the element 1)_,; this localization is well-defined, for the
set {Y”  }nen is a left and right multiplicative Ore subset of O (see Corollary 2.18 below for

an analogous statement for Eél). For the sake of clarity let us spell out the correspondence
of notations between statements: ), 7, Uq(b5)%, Ua(b3)°?, Oa(Bx), Ua(G*) and @ are
denoted in [43] respectively by 7", @, Uy(b5)op, Rq[Bx]”, Rq[B+], A” and p” (the definition
of j% is implicit in the section 4.2 of [43]).

Theorem 2.15. (1) W;t restricts to a perfect Hopf pairing between the unrestricted and
restricted integral forms, 75 : Us(bx)? @ T'(by) — A.

(2) j;t yields an isomorphism of Hopf algebras jf: Oa(Bx) = Ua(b5)P, satisfying (o, x4) =
mi(ix(ax), x2) for every ax € Oa(By), zx € T'(bz).

(3) The map ® := (j @ j ) om*: Ox — Ua(G*) CUA(b_)P? @ Ua(b1)°P is an embedding
of Hopf algebras, and it extends to an isomorphism ®: O 4 W:;] — Uas(GY).

For our purposes it is necessary to reformulate this result. Consider the morphisms of Hopf
algebras ®*: O (By) — Ua(b5)°?, o (a @ id)(RF).

Lemma 2.16. We have ®* = jf.

Proof. By definitions, for every X € Uy (b4)?, Y € U;d(b,) we have (i, (S71(X)),Y) =
7, (X,Y), and similarly for every X € Us¥(b), Y € Uy(b-)°? we have (i_ (S~ (Y)), X) =
74 (Y, X). By keeping these notations for X and Y, we deduce jqf(z;(S*l(X))) = X and
Jg (i-(S7HY))) =Y, ie.

4 1
(83) ]q = S O ’l:F .
Because 55; o0i4 = i4 oS, it follows that
(84) Jg © S0, =5 oy
Also, for every a_ € O4(B-) we have
(@, @"(i-(Y))) = (i-(Y) @ a-, R) = 7(i3' (), Y) = 7, (j; (So,(a-)),Y) = (a—,S(Y))



36 STEPHANE BASEILHAC, PHILIPPE ROCHE

where the first equality is by definition of ®* (see (5)), the second is (80), the third follows
from (84), and the last from the definition of j, . Similarly, for every ay € Oy(B) we have

(ag, @7 (i4(X))) = (i+(X) ® g, RT)
= (o ® Sp! Ol+( )
= <04+®2+( (X)), R)

= 7(5(X),iZ" (o))
=7 (S(Z (@4)), S(X)) = 7 (4] (@4), S(X)) = (g, S(X)).

These computations imply ®* = § oi;1
O

R)

= j;t, and the result follows by taking integral forms.

2.4. Integral form, specialization and localization of ®,. Recall the isomorphism of
Ug-module algebras ®1: Lo1 — U, f, and that Ulf =UsaN Ulf. We have:

Corollary 2.17. The map ®1 affords an embedding of U\**-module algebras ®1 : Eél — Ui‘f

Proof. The only thing to be proved is that ®(04) C UA , since £é1 = 04 as A-module.
But Lemma 2.16 and (12) imply ®; = m o (id ® S™') o ®, and ® maps O4 into Ua(b_)*? ®
Ua(b4)P by Theorem 2.15. The conclusion follows. O

Let us denote

A
d=1-p € Loy
(The linear forms v_) have been introduced before Theorem 2.15.) When g = si(2) the
element d is one of the “standard” generators of Ly 1(sl(2)) (see (112) below). In this case
we have shown in Lemma 5.7 of [28] that Eél has a well-defined localization £é1[d_1], and
that ®;: Cél[d_l] U =1," Ui{ is an isomorphism of algebras. A generalization of these
facts to any g is provided by the following statement. As usual £/ = K»,, the pivotal element.
Corollary 2.18. (1) The set {d"}nen is a left and right multiplicative Ore set in 531. We
can therefore define the localization Eél[d_l].
(2) @1 extends to an embedding of U\**-module algebras P : Eél[d_l] — Ui{ (4], and Uilf (] =
Ty
2-YA-

Proof. (1) Because Eél has no non-trivial zero divisors, d is a regular element. We have
to show that for all z € L’él there exists elements y,y’ € Lél and d’,d" € {d"},en such
that od’ = dy and d’z = y/d. In fact d = d”’ = d in the present situation. Indeed by
(14) we have ®1(x)®1(d) = ®1(x)K_2, = K_9pad (K2,)(®1(x)), and ad (K2,)(P1(x)) =
1 (coad" (K2p,)(z)). Therefore the left Ore condition is satisfied with y = coad" (K»,)(x).
Similarly one finds /.

(2) The first claim follows immediately from Corollary 2.17 and ®;(d) = ¢~!, which is a
regular element of Uy. For the second claim, since K_5, = H;n:1 L;z, localizing in d we
obtain L2 = [[,.; L;?@1(dY) = &1([p; -, d 7)) € @1(L44[d7Y]). Therefore T, C
<I>1(£é1[d_1]), which implies the assertion (2). O

We expect that the inclusion ®1(04) C Ui‘f is an equality, but have no proof yet. However,
recall Joseph-Letzter’s Theorem 2.1 (1) and (2).

Proposition 2.19. We have Uy = TQ_fsz[T/TQ] = @1(£él[d71])[T/Tg] and therefore
Dy EoA,l[dfl] — T2:1Uilf is an isomorphism. Moreover ®1(0a) = ®xrecap, ad” (U7 )(K_»).
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Proof. The inclusions T' C Uy, Uf4f C Uy and @1(£él[d*1]) C Tz__lUi‘f imply
1 (Ltald™ DT/ To) € Ty UY [T/T5) € Ua.
For the inverse inclusion, it is enough to show that any PBW basis vector of Uy lies in
<I>1(£6471[d*1})[T/T2]. This will follow at once if this is true of all root vectors Eg, , Fj,. Let

us show this explicitly for the simple root vectors E; and Fj. For every positive root a define
elements 2,1~} € Oy by the formulas, where z € I":

W2y, x) = v (xEqv) , (Y-, x) = v (Faav).
It is shown in [43], Lemma 4.5, that
O(y_r) = K\@ Ky, W) = —0ijail; @ LK ' By, ®(W°g) = b0, FK L7 ® L.

— T

(Note that the generators denoted by E; and F; in [43] are respectively K, 'E; and F;K; in
our notations, which explains the factors ¢;, g;- ! in the formulas below; also  in (81) maps Ej,
F; to —F;, —E;, whence the sign for the expression of q)(q/ﬂiwj)). Since ®1 = mo(id® S~ 1) od,
we have

(85) O1(pon) = K on, ©1(¢20 ) = 6L 2E; , @1(y=2) = bijg; | FRGL; .

Therefore E;, F;, L' € T2__1<I>1(£él)[T/T2] = @ﬂﬁél[d*l])[T/Tg]. These elements do not
generate Ujy; it is necessary to consider general root vectors. By the stability of Us(G*)
under B(g) and the isomorphism OA[@D:;] — Ua(G") of Theorem 2.15 (3), for every posi-
tive root B we have 1 ® Kﬂ_klEgk , ngKﬁk ®1 e (I)((’)A[w:})]) = @(Eél[dfl]). Therefore
Py K, 5™ (B K, € 01(L34[d7)), and By, 57 (By,) € @1(Li[d7 DT/ Ta]. The sets
S™Y(Eg,)UA(h) generate the subalgebra U4(by.) of Uy (in fact, let us quote that a formula of
S~Y(Eg,) is given in [94]). From the triangular decomposition Us = Ua(n_)Ua(h)Ua(ny),
the inclusion Uy C <I>1(£é1[d_1])[T/T 5] follows, whence the equality too. In particular, Ug
is a free cI>1(£6471[d_l])—module with a basis formed by representatives of the cosets in T'/T5.
By the uniqueness of this free decomposition, we find <I>1(£6471 [d~1]) = TQ__1 Uilf . Therefore @,
in Corollary 2.18 (2) is surjective.

For the third claim, recall the isomorphism ®;: C(—wo(r)) = ad"(Uy)(K_2,) (see (15)),
and that t_, is the matrix coefficient dual to the vector “v_, ® v_, € Enda(V_yp))-
This vector is cyclic by (44), so by equivariance ®1: AC(—wo(p)) — ad" (U}**)(K_2,) is an
isomorphism of U}**-modules. The second claim follows from this and (74) for n = 1. O

Recall from (22) the isomorphisms of Uj,-module algebras ®,: Lo, — (Ufm)lf and of

algebras ®,, : Mo, — (Uq®")Uq, and from (35) the notations for specializations. Corollary
2.17 can be extended to ®,, as follows:

Corollary 2.20. The map ®, affords embeddings of module algebras @, : Eén — (Uf”)lf
and @, : £6:n — (U®”)g, q=¢ eC*.

Proof. For the first claim the only thing to prove is the inclusion @n(ﬁén) c U™ Tt follows
from Corollary 2.17 and the expression of ®,, in terms of ®; and R-matrices (in particular,
the fact that they preserve integrality, see [28], Lemma 6.10). For the specialization at
qg = € € C*, we have to justify that ®, is injective. One uses the fact, to be developed
in Theorem 2.24 below, that ®: O, — U.(G") is an embedding. The algebra U.(G*) has
the basis elements (82), and the map m o (id ® S™1) sends this basis to a free family of U..
Therefore ®1: L, — Ue is injective. Since @, differs from @?” by a linear isomorphism
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(induced by the conjugation action of R-matrices on the components 4C([\]) of EOA,TL in (74),
see equation (6.10) in [28]), ®, : £§,, — UZ™ is an embedding as well. ]

Remark 2.21. (1) It is a natural problem to determine the image of ®,,. One may expect
that it would be (TQ__IU%)(@", because this is true for n = 1, as well as for any n in the sl(2)
case, as shown in [28]. Unfortunately this is not so. This comes from the fact, eg. for n = 2,
that the matrix elements of R02R01R61R621 do not belong to (7: 211 Ui{ )®2 as can be shown by
an explicit computation in the si(3) case.

(2) In the case of g = si(2) we defined in [28] an algebra locﬁén generalizing L’él[d*l}
above, containing Cén as a subalgebra, and such that ®, extends to locﬁén and yields an
isomorphism @, : locﬁén — Ujd(sl(2))®". The definition of locﬁén involves elements §(i) €
Eén (i =1,...,n) such that ®,(€D) = (K~H@ ... (K~)™_ It may be of interest to study a
similar extension of ®,, for general g.

2.5. Structure theorems for U, and O,. As usual we denote by € a primitive [-th root of
unity, where [ is odd, and coprime to 3 if g has Ga-components.

Recall the subgroups T, U+ and By of G. Let G° = B, B_ (the big cell of G), and define

the subgroup

G* = {(u_i_t,u_t*l),t €Tg,ur €Us} C Bip x B
where BY is the group By with opposite multiplication. The group G* can be naturally
identified with the Poisson-Lie dual of G with its standard structure.

Recall also that there is an injective homomorphism -, Yo hy: Z2(U,) — Uy(h), defined by
means of the quantum Harish-Chandra homomorphism (see eg. [35], section 9.1.C, or [92],
Section 3.13). The image of e Lo hq is the set Uq(f))W of invariant elements under W, the
subgroup of W x Py generated by the conjugates cWo of W by elements o € P;. Here,
P5 is the group of homomorphisms P — Z/2Z, and the semidirect product W x Pj acts
on Uy(h) by the standard action of the Weyl group W, and by the action of P given by
oKy :=0(MNK,.

It was shown in [41], section 21.1, that the inverse map h, ' 07, U,(5)" — 2(U,) induces
by specializing ¢ to € a well-defined injection

U)W — Z(U.).

We denote its image by Z1(U.). For instance, when U, = U(sl(2)), Z1(Ue) is the polynomial
algebra generated by the Casimir element Q = (e — e 1)?FE +eK + e KL

Denote by Z5(Ue) C U, the smallest subalgebra containing the elements EZZ , Fll , K é, for
i€ {l,...m}, o € P, and stable under B(g); it is also the subalgebra generated by E/lgk, Fék,
LE for k€ {1,...,N} and i € {1,...m} ([41], Section 18). We will denote by Zy(U.(n_)),
Z0(Ue(h)) and Z(Uc(ny)) the subalgebras of Zy(Ue) generated by the elements Fék, K

(A € P), and Elﬁk respectively. In [39], Section 1.8-3.3-3.8, and [41], Theorem 14.1 and
Section 20-21, the following results are proved:

Theorem 2.22. (1) U, has no non-trivial zero divisors, Zo(Ue) is a central Hopf subalgebra
of Ue, and U, is a free Zy(Uc)-module of rank 198 Moreover the classical fraction algebra
Q(U:) = Q(2(Ue)) @z.) Ue is a central simple algebra of PI degree IV, and U, is a mazimal
order of Q(Ue).

(2) Mazspec(Zo(U,)) is a group isomorphic to G* above, and the multiplication map yields
an isomorphism Zo(Ue) @z, nz,w.) 21(Ue) = Z(Ue).
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By this theorem the dimension of Q(U,) over its center Q(Z(U,)) is I*V, and its dimension
over Q(Zo(U.)) is 19m8 = [m+2N  Therefore the field Q(Z(U.)) is an extension of Q(Zo(U.))
of degree .

Note that, because Zy(U,) is an affine and commutative algebra, the maximal spectrum
Maxspec(Zy(U.)), viewed as the set of characters of Zy(U.), acquires by duality a structure
of affine algebraic group. Thus, the first claim of (2) in the theorem means precisely that
this group can be identified with G*. See for instance Section 7.2.1 of [28] for an explicit
description in the si(2) case.

In addition, Maxspec(Zp(Ue)) and G* have natural Poisson structures which correspond
one to the other under the isomorphism of (2), and we have the following identifications
(see [41], Section 21.2). The dual isomorphism O(G*) — Zy(U.) identifies O(T) with
Z0(Ue) NU(h) = C[LP], where as usual Uc(h) = Ua(h) ®a C.. Therefore we can identify C[P]
with O(Tg), the coordinate ring of the I"™-fold covering space Tz — T¢;. The quantum Harish-
Chandra isomorphism identifies Z;(U,) with C[2P]" = O(Tg/(2))", where we denote by
(2) the subgroup of 2-torsion elements in T¢. Consider the map

oc: BLxB. — G°
(by,b) +— bybl.

The restriction of o to G* is an unramified covering map of degree 2". Composing o: G* —
G° with the quotient map under conjugation, G° < G — G//G, we get dually an embedding
of O(G//G) = O(G)% in O(G*). Collecting these observations, we see that the isomorphism
of Theorem 2.22 (2) affords identifications

Zo(U) N 21 (U) = OG)Y
as a subalgebra of Zy(U,) = O(G*), and

Z0(U) N 21(U) = CIPIWY = O(Tq/2)WY = O(Tq/2)Y

Il

as a subalgebra of Z1(U.) = O(Te/(2))V.
We will use the following obvious though crucial fact. Note that Ujd is naturally a subal-
gebra of U**, and therefore acts on U/“’-modules.

Tes

Lemma 2.23. For every UL*°-module V' of type 1, the action of Zo(de) on the specialization
Ve =V ®4 C, is trivial.

Proof. This comes from E! = [l]!Ei(l), F! = [l]!Fi(l) and the fact that K; acts on V' by powers
of g;. Specializing to ¢ = € ends the proof. ]

A result similar to Theorem 2.22 holds true for O.. Namely, take the specializations at
g = € in Theorem 2.15. Denote by Zy(U(G*)) the subalgebra of U(G*) generated by the
elements (k € {1,...,N},i € {1,...m})

1® K . By , Fy Kig, ®1, L7 ® LT

It is a central Hopf subalgebra. Recall that the coordinate ring O(G) can be identified
as a Hopf subalgebra with U(g)°, where as usual U(g)° denotes the restricted dual of the
envelopping algebra U(g) over C. In [43], Section 6, De Concini-Lyubashenko introduced an
epimorphism of Hopf algebras n : I'c — U(g) (essentially a version of Lusztig’s “Frobenius”
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epimorphism in [72]), defined by

P! P/

n(EP) = Gy TEdvides oy — 8T
0

otherwise 0 otherwise

if [ divides p

hi(hi =1)...(hi = (p/1) + 1)
n(Ki) =1, n((Ki;p)g,) = (pél)!

if [ divides p
otherwise

where p € N, and e;, f; and h;, i € {1,...,m}, denote the standard generators of U(g). The
kernel of 1 is generated by the elements E;, F;, K; — 1, and (K;;p), where [ does not divide
p. Put

(87) Z0(0c) =7 (0(G))

where n*: U(g)° — I'? is the monomorphism dual to 7. Let us define special matrix coeffi-
cients, analogous to those introduced in Theorem 2.15. Denote by v, and vy (w,) & highest
weight vector and a lowest weight vector of the I-module 4V ,. Denote also by UZ)O(‘WZ‘) and

* a highest and lowest weight vector of the dual module I'-module AV;i = L4V

v wo(w;)*
Define the matrix coefficients by, , ¢, € O by

w;

bwi (.1‘) = v;i (wio(wi)) ) Co; (:13) = U’Zkuo(wi)(wii)

for all z € I". We consider them as elements of O,. Denote by Z;(O,) the subalgebra of O,
generated by the elements bf;icgik forl1<i<mand 0<Ek <.

Theorem 2.24. (1) Zy(O¢) is a central Hopf subalgebra of O C I'¢, and Q(Z(O¢)) is an
extension of Q(Z20(O¢)) of degree I™.

(2) Y1y, € 20(Oc), and Zy(Oe) is generated by matriz coefficients of irreducible I'-modules
of highest weight I\, X € Py. Moreover the multiplication map yields an isomorphism
Z20(0¢) ®zy(0)nz:(0.) 21(0) = Z(O¢), and the map ® in Theorem 2.15 affords an algebra
embedding Zo(Oc) — Zo(U(G")) and algebra isomorphisms ZO(OE)[@Z):llp] — Z0(Uc(G™)) and
Oc[v7},) = Ue(G"). .

(8) O, has no non-trivial zero divisors, and it is a free Zo(O.)-module of rank 198, Moreover
the classical fraction algebra Q(Oc) = Q(Z2(O.)) ®z(0,) O is a central simple algebra of PI

degree IV, and O, is a mazimal order of Q(O,).

For the proof, see in [43]: the proposition 6.4 for the first claim of (1) (where Z5(O,) and
Zo(U(G™)) are denoted Fy and Ay respectively), the appendix of Enriquez and [48] for the
second claim of (1) and (2), the propositions 6.4-6.5 for the other claims of (2), the theorem
7.2 (where O, is shown to be projective over Zy(O,)) and [25] (which provides the additional
K-theoretic arguments to deduce that O, is free), or Remark 2.18(b) of [5], for the second
claim of (3), and the corollary 7.3 and theorem 7.4 for the third claim. The fact that O, has
no non-trivial zero divisors follows from the embedding O, — U.(G*) via ®.

As above for Uk, it follows directly from (3) that Q(Z(O,)) has degree I'"* over Q(Z0(O)).
For a more complete description of Z(O,) we refer to [48] and Enriquez’ Appendix in [43],
as well as [24].

We do not know a basis of O, over Z,(0O,) for general G, but see [45] for the case of SLs.
We will recall the known results in this case of S Ly before Lemma 4.5.

Finally, there is a natural action of the braid group B(g) on O, that we will use. Namely,
let n; € N(Tg) be a representative of the reflection s; € W = N(T)/T associated to the
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simple root «;. In [89, 88] Soibelman-Vaksman introduced functionals ¢; : O, — C(q) which
quantize the elements n;. They correspond dually to generators of the quantum Weyl group
of g; in the Appendix we recall their main properties, in particular they map Oy4 to A (see
also [35], Section 8.2, and [67, 89, 71, 68, 43]). Denote by < the natural right action of
functionals on O4, namely (using Sweedler’s notation)

a<dh= Z h(a(l))a@)
(@)

for every a € Oy and h € Oy — A. Let us identify Z,(O,) with O(G) by means of (87). We
have ([43], Proposition 7.1):

Proposition 2.25. The maps <it; on O, preserve Zy(O.), and satisfy (f <t;)(a) = f(n;a)
and (fxa) <t; = (f <t)(a<t;) for every f € Z0(O,), a € G, a € O.

We provide an alternative, non computational, proof of this result in the Appendix (Section
6.3).

3. NOETHERIANITY AND FINITENESS

In this section we prove Theorem 1.1. Recall that by Noetherian we mean right and left
Noetherian. We begin with:

Theorem 3.1. The algebras Lo, EOAJL and Eg:n, ¢ € C*, are Noetherian.

By Proposition 2.13 each of the algebras in this theorem is finitely generated.

The theorem 3.1 for £y and any g follows immediately from Joseph-Letzter’s Theorem
2.1, claim (3), by identifying Lo, with Uéf via ®;. The method of proof uses filtration
arguments. An alternative proof in the case of sl(n), which works also for Eél, was obtained

by Domokos-Lenagan in [44], by exhibiting special sequences of generators of EOAJ satisfying
polynormal relations. Here, given a Noetherian Abelian ring R and a finitely generated R-
algebra B with product o, we call polynormal a set of relations between generators w1, ..., up
of B, of the form (see [92], Proposition 3.133)

j—1 M
(88) Ui O Uj — QijUj O U = Z Z (af;us ou + ﬂf;ut o us)

s=1 t=1

forall 1 < j <i< M, where af;, f]t € R, and the elements ¢;; € R are invertible (note that
this definition is more restrictive than the more standard one, in e.g. [23], I1.4.1). If such
a set of relations exists in B, then B can be endowed with an algebra filtration such that
the associated graded algebra is a quotient of a skew-polynomial algebra ([23], Proposition
[.8.17). By classical results, if the algebra filtration is well-founded, then B is a Noetherian
ring (see eg. [82], 1.2.9-1.6.9-1.6.11, or [92], Lemma 3.130-3.131). In [44], the theorem 3.1 is
also proved for any n > 1 in the case of g = sl(2) by considering Eén(sl@)) as an iterated
overring of Lo 1(sl(2)).

The proof of Theorem 3.1 that we develop for any g and n > 1 is also based on polynormal
relations. In our proof, the generating set of Lo, that we will consider is evident, as they are
matrix coefficients in the modules V,, k € {1,...,m}; the task is then to exhibit a set of
polynormal relations between them, that hold in a certain graded algebra associated to Lo .
Indeed, as explained above this will imply that the graded algebra is Noetherian, and that
Lo n is Noetherian as well. In the case of £(‘in, the proof is formally similar, but it needs the
use of canonical basis discussed in Section 2.2.2.
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én; the result for

Proof of Theorem 3.1. First we develop the proof for Lg,, and then for £
6:n = Eén /(q—¢ )ﬁ(in follows immediately by lifting ideals by the quotient map Eén — ,cg:n.
We adapt the proof of Theorem 2.1 (3) given in Theorem 3.137 of [92]. Let us begin by
recalling these arguments. In doing this, let us stress that [92] takes on O, and Ly the
product opposite to ours, and below in (95) and (96) we respect their convention.
As usual let C'() be the vector space generated by the matrix coefficients of V},, the simple
U%-module of highest weight u € Py. Denote by C(u)yx C C(u) the subspace of weight A
q

for the left coregular action of Uy(h); so a € C(p)x if K, >a = ¢"Na ,v e P. Consider the
semigroup
A = {(u,\) € Py x P,\is a weight of V,}.

Recall that the partial order < on P is defined by: p < p/ if and only if ¢/ — p € D71Q,.
Define < on A by: (u,A) < (¢/,X) if and only if ¢/ — p € D7'Q4 and N — X € D71Q,.
If (g, A) < (@, N) and (u, ) # (1, N), we write (u, A\) < (4, N). Since Lo and O, are
isomorphic vector spaces, we have Lo1 = @,cp, C(1) = Dy ayen C(1)r. Consider the
family of subspaces

Fr= P cW)v,(mr eA,
(B N =2 (psA)
F'Y= P Cl)y () €A
(1" X)) = (1, )
We have
(89) Lo1 = UguaeaFs™.

Indeed, clearly Lo1 = Z(%)\)GA F 2 s0 (89) follows from the following fact: for every
(i, A), (1, \') € A, the element (1, \") := (u + g/, A+ X') is such that

LA w N N

Note that in general, since Q1+ € Py (but Py C D7'Q.), it is not true that there exists an
element (u”,\") satisfying such an inclusion if one replaces < with the standard “product”
partial order < on A, defined by: (u,\) < (¢, \') if and only if 4/ —p € Q1 and N -\ € Q..
Note also that < is finer than <, in the sense that if pu < i, then p < /f . Again, this would
not be true if we had replaced D@, by Py in the definition of <.

The family Fy := {F} ”\}( pA)en is a filtration of the vector space Lo 1, which is clearly well-
founded (ie. every subset of A contains a minimal element, or equivalently any decreasing
infinite sequence of elements in A is eventually constant).

Consider the associated graded vector space Grz, (Lo 1) == @(“’,\).7:5")‘/]:;”’)‘. By identify-

ing an element = € C'(u)) with its coset T € FY A / .7-"; A e get an equality of vector spaces
Grr,(Lo1) = @B rea C(1)a. Now, one has the following facts:

(i) Taking the product in L1 we have
(90) af € Flrtr At for o€ Clun)a,, B € Clua),-

This follows from (7) and the fact that, for every v € P, and every summand of the formula
(9), denoting by —r € —Q the weight of the R-matrix component R, we have

(91) K, > ((R(g/)S(R(g)) > a) * (R(l’) > (< R(l)))
= g MR (R o) S(Ra)) B ) % (Ryry > B < Ryyy).
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(Details of a similar computation are given below (101)). It follows from (90) that F is an
algebra filtration of Lo 1, and then Grz,(Lo 1) is a graded algebra.

(ii) Denote by a o 8 the product in Grz,(Lo,1) of a, 8 € Lo1. The space C(u1 + p2) has
multiplicity one in C'(u1) ® C(p2) (again by (7)), therefore if & € C(u1)y, and 8 € C(p2)a,»
then « o § is the projection of af onto C(u1 + p12),+x,- Denote by x the product x of O,
followed by the projection onto the component C(u + v). Then we have

(92) Cu) o Cv) = Cp) x C(v) = C(u+v).
This follows from the formula (9), and the fact that it is given by an invertible twist of the
product *.

(iii) For every pu € Pi fix a basis of weight vectors ef,... e 2‘( y of Vi Denote by

e}“ .. .,eﬁ(“) € V, the dual basis, and by w(e] ") the weight of e!'. Consider the matrix
coefficients Hqﬁ;( ) : u(ﬂ'v( z)(€})), © € Uy. By using the formula (9 ) and the explicit form
of the R-matrix one can check that
. !/
w0 el = > Wy bl % L)
g
(93) = DD D) o o+ S A ool

ll/

J #J 1#1
/
where Z » is the sum over indices with weights satisfying w(e”) +w(e) = w(e] E)+w(ep),
] b

w(el) < w(e) and w(ey) > w(ey), and the coefficient c l ! equal to ¢ )w(el) wled) s
computed from the term © in the R-matrix factorization ( ). In general, all the coefficients
c“,”lf and d;’f]lf belong to C(q) (see Proposition 4.1 of [28]); in particular g wier)—w(ep) ¢ (2
since w(el”)7— w(er) € Q. The second equality follows by repeated use of the first and (92).
Similarly, by using (10) one gets

k . / kil i _
vOF 0wl =D € ud % vof

i k!
w(et),w(e?)—w(e? i T k ! kzlj i !
iq( (e5)w(ey) (l))ﬂ¢j*l’¢l+ g z’k’#¢j*y¢l
il k!
i #i, k! #k

= e WD) gix b 1 3 R 6 o Lo

/ kl ! l/
i’;éi,k’;ék
kilj kilj T . . . . I
where e, ), fi € C(q), and g . is the sum over indices with weights satisfying w(e}’) +

w(ey) = w(el) + w(ek/) w(ely) < w(ei) and w(ey,) > w(e}), and e’“l] = glw(er)wle)—w(e)
The third equahty comes from the second and (93); the sum is over indices with weights
satisfying w(el') + w(ef) = w(el) + w(ep), w(el) < w(el), w(ey) > w(ef), w(eé.‘,) < w(ef)
and w(e;) > w(e]). By eliminating the leading term uqﬁé * ,¢F one deduces
(99) vl © b} — ikt w0 vy =
kilj 4 ' ! ikjl i
ST ol = S qund b0 ek

il kl ! l/ jl 4

i’;éi,k’;ék g1 #5,1#L
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Where Qij’l = q(w(eg)"_w(e?)7“](52)—’11)(6;’))'

(iv) We can always always reorder the weight vectors ef, ... ,eg(“) so that w(e}’) > w(e})

implies ¢ < j; then (94) reads

d(p) k 1-1 d(p
(95) VO 0w — Qijit w5 0007 = Y D Z St uB 0 v 9%

r=i s=1u=1v=j5+1
d(p) k—

- > Z Giri il udf o vy

r=i+1 s=1

where ~v/9k 51Kl C(q) are such that v9¥ = 0 unless w(e!) < w(el) and w(e) > w(ey),

rs ) Yrsuv

and 695 — 0 unless w(e’) > w(el), w(el) < w(e}), wler) < wlef) and w(ey) > w(ey). Now,
from (95) one can extract a defining set of polynormal relatlons for Grz,(Lo,1), as in (88).

Indeed, like Lo the algebra Grz,(Lo,1) is generated by the matrix coefficients o, ¢! of the
fundamental representations V, . One can list these matrix coefficients, say M in number, in

an ordered sequence u1, ..., uy such that the following condition holds: if w(e;”*) < w(e;”"),
or w(e®) = w(e) and w(e™) < w(e]”), then ug == &, 3 and wuy = . ¢F satisfy b < a.
Then denoting Mgﬁj, ,,d)f in (95) by u;, u; respectively, and assuming u; < w;, one finds that
all terms ug := ,¢, MQS; in the sums are < u;. Therefore, for all 1 < j <7 < M it takes the
form:

=1 M

st
(96) Ui © Uj — iU O U; = g g s o ug

s=1t=1

for some ¢;; € ¢ and af; € C(q). As explained after (88) it follows that Grz,(Lo;1) is a
Noetherian ring, and since the filtration /5 is well-founded, it implies that Lo ; is Noetherian
too.

We are going to extend all these facts to Lo, n > 1. First we need to refine the filtration
Fa on Ly ;1. Consider the action of Uy(h) on C(u)y given by
(97) K,.a:=coad(K; Y )(a) , v € P, a € C(p)x.

Denote by C(u)x, C C(u)x the subspace of weight v for this action; so a € C(u)y~ if
K,.a = ¢®"a. Consider the semigroup

Ap = {(i; \,7) € Py x P? \is a weight of V,, for 1>, 7 is a weight of V), for .}

with the partial order (u, A,v) < (', N,~') if and only if p/ — u, N — X\,7' —~ € D71Q,.
Define

98) [Ap] = {(lu]. [\ b)) € P x P x P
| (i M) € A i) = ()i N = )iy, ) = (i)}

Let us put the following lexicographic order on [Ap], starting from the tail: ([/], [N], [7/]) <
([, [AL 7)) i (H;m >"/m ’Y;L) =< (B Ans Yn), OF (fns Any Yn) = (:U’;w )‘/nv /71,1) and (/1’;1—17 Agm—lv 71/1—1)
(:unflv)‘nflarynfl)""v or (/‘kv)‘kv'Yk) = (H?{}’)\Zﬁvllc) for all 1 < k < n and (:U’llv ’1’,}/1) =
(11, A1,71)- (As usual we write (1], [N'], [v]) < ([ul, [\], [7]) for ([u'], N'], [¥']) = ([u], A, [9])
and ([1], N1, D) # (Il [\, 7))

<
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Now recall that L, = LO 1= (929” as vector spaces. For every ([u], [A], [7]) € [Ap] consider
the subspace C([u])(z),1y) € EO,n defined by

C([u]) = C(p1) @ ... @ C(n)
C([N])[/\],[’y] = C(Ml)hm ®...® C(Nn)kn,vw

Then Lo, = @pepn C([1)) and C([u]) = By ) C 1)y o) For every ([ul, [, (1) € [Ap)
define

(99) FyROMR) P N
([N D 2[Rl D)
]:; (Ll @ C([MI])[A’],[W’]-

(1IN D= (el D)

Clearly Lo,y is the union of the subspaces ]-"?[)“ FALOT gyer all ([], [M], 7)) € [Ap], so these form
a vector space filtration of Lo,,. Let us denote it F3, and define

(AL SN,
Grrs(Lon) [, = -7:?[)”] (A [7]/]:3-<[M] L]

This space is canonically identified with C'([u])[y),y), so the graded vector space associated to
]:3 is
(100)  Grr(loa)= D Grrluwuwm= @ Sl

([, AL DEAP] ([, AL DEAP]

We claim that F3 is an algebra filtration with respect to the product of Lo ,, and therefore
Grr,(Lon) is a graded algebra.

For notational simplicity let us prove it for n = 2, the general case being strictly similar.
Recall the R-matrix factorization (4). Take tuples ([u], [A], [7]) = ((p1, p2), (A1, A2), (71,72))

and (1], V], V') = (), (N A3), (74,7%) in [A ], and clements a.& § € C([u])py,yy and
o ® B € C([t'])v,jy- Recall from (18) that the product of Lo is given by the formula
(101) (a®p)(d' ®p)=
3 pd / 1 p2 1 p3
> a(SRyRY) =o' R R ) © (S(Rly Rly) = 8 < Ry Ry ) 8

(BRY),...,(R*)
For every v € P and any of the components R%Q), . ,R?Q), denoting by —r; € —Q4 the
weight of R{Q) we have

KVD(S(R%) ) > B < Ry Ry ) ZB )( vS(RigyRiz)) &> B )
—q (vyr1+73) Z B(l R(g))( (R%2)R(32))KV|>/B(2))
(8):(8)
= gAemmims) Z Bay(R (2))( (R%2)R?2))>B(2))
(8),(8

=g (s (R<2>R?2>) > 5 < Ry Rly)

By similar computations for the action coad(K; '), and for all terms in the right-hand side
of (101), and using (90) componentwisely, we find that

! , )\// , 11
a (S(R?DR( ) > o’ < R(l)Ré)) ® (S(R(Q)R(Q)) > 8 < R, R(Q)) B e FHHNILL,
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where
N= M+ +r3+714, 24+ Xy — 11 —73)
YV'=Mm4++rtrot+rstraye+yy—1r1—ro—1r3—r4).

Since r1 4+ ro + 13 + r4 = 0 implies 7y = r9 = r3 = r4 = 0, by the order we have put on [Ap]
we deduce / , ,
(a®B)d®p) e f?[)/ﬁ]‘*‘[/i]7[/\]4‘[)\]7[’”'*‘[7]'

Note that the filtration F3, taking the action (97) into account, is crucial for this argument
to work. Similar arguments work for any n > 2. This proves that Grz,(Lo,) is a graded
algebra. We denote its product by o,,.

Next we show that (92) implies the analogous property for the product o,,. For simplicity
of notations let us again assume that n = 2. Recall that the product oo is defined on
homogeneous elements a ® 8 € Grz,(Lon)(y),y and o @ 8 € Grr,(Lon) v by

0@ fona’®F = (0@ B)(a’ ® f)+ F5 L
Clearly (92) gives (C(p1) 0 C(p))) ® (C(p2) 0 Cps)) = C([w+ 1']), and (101) gives
C([u]) on C([1']) € (Cu1) 0 C(u1)) ® (Cluz) o C)) -

The converse inclusion holds true as well, as one can see by expressing, reciprocally, the

(componentwise) product of L5 L in terms of the product of Lo, via the formula (20). In
conclusion

(102) C () on C([]) = C [+ 1.
We are left to show that (95) generalizes to Lo,. First note that for every 1 < a < n
the embedding i,: Lo1 — Lo, in (17) is a morphism of the filtered algebras (Lo1,F2)
and (Lo, F3), in the sense that ia(}"é"’\) C D ep .7-"?[)““]’[)“1]’[%}, where by definition [u,] =
(0,...,0,1,0,...,0) with u on the a-th entry, and similarly [A,] = (0,...,0,X,0,...,0) and
Vel = (0,...,0,7,0,...,0). Therefore the relation (95) yields in Grz,(Lo) similar relations
between elements of the form (matrix coefficient)®1, or 1®(matrix coefficient).

We now consider the case of “mixed” products. We give the details when n = 2, the
general case being similar. Let us write the twist F' in (19) as

F=Y Fuy®Fg =) Fan®Fup® Fayn ® Fay
(F) (F)

that is, we set Fj); = R%Q)R‘é), Fyp = R%Z)R?Q), Floy = R%I)R%I), Flayy := R?I)R?l). Put
d(p) := dim(V,,), p € Py, and

d(pg) " d(u}) y )
2 _ D !
D 202) = Y 10 © udh © wmdf, » AP () = Y udy @ ol © o
p,s=1 p,s'=1

From (101) one obtains

(103) (19 0f2) (ol ©1)

d(pg)  du))

—ZZ S (0% (1405 (Fiop) 67, (S(Fiap)) )

) pys=1p/,s'=1

(1297 (12082 Fon a1 (S Fe) )
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It is immediate that

pi0h @ €CUR) sy ot ) @ ClH2)u(eh2) (el2) -w(eh?)-
As in (iv) above, for every p € Py we order the weight vectors ef, ... e" so that w(e!) >
w(ef) implies i < j. With such an ordering the factorization R = OR (see (4)) implies

s k; s’
1202 (Fl1y1) 2 @3, (S(Flay2)) = 0 unless ky > p and s > Iy, and 1 ¢ o (F2)1) 01 (S(F(2)2) = 0
unless k; < p' and 5" < Ij. Since 5 > Iy we have w(ef?) < w(e)?), and if w(eh?) < w(e]?)

<pzw(ey)) : o :
then ,, ¢4 € F, #%27 Iy this last situation the summands W, qbs/ ® up @t in the sum above

vanish in Grz,(Lo2). In order to find all the non zero summands we have to consider also
the weights with respect to the action (97). Since k2 > p implies w(e 2) < w(ep?), we have
w(ek?)—w(eh?) < w(e)?)—w(e?). Therefore the summands which are non zero in Grz, (Lo 2)

have both weights w(et?) = w(e é”) and w(ey?) = w(ek ) Domg similarly with the weights of
/d) ,, we find that also w(e “1) =w(e ;fl) and w(e 51) = w(ek/ ). When all these conditions on

weights are satisfied, the correspondlng components F(y)y, F(l)z, Fl2)1, F(2)2 have zero weight.
Therefore the sum reduces to

K 1
D O (Fay)ua b (S(Flaye) )y 6yt (Flap) &1t (S(Fayo)

(F)
k l 4 U -1 -1
= (a2 © 1,08 © 0y © 4,01}, O13071 02,05}

(el -wiet2r e el )

Denoting by q’chQ K this scalar, it follows
k k] / k] k
(1 ® u2¢l22> ©2 (u’l ‘f’zf ® 1) = Qiglok 1 1) ‘f’zf ® ua Py
k] k
= Q;Qle/ll/l (;/1 ¢l’11 & 1) 09 (1 ® u2¢122) .
This is the relation analogous to (95) for mixed products in Grz,(Lo2).
Recall that in (96) we denoted by ui,...,ups the ordered list of matrix coefficients , ¢?.

(2) (2)

Let us order in a lexicographic way the elements u; ® u;, ie. as a sequence u;™,...,u, > such

M2
that the following condition holds: if 5, d)? < ng,, or o, d)é/, = wk,(bg, and wl(b'; < o 01,
then qu) =, P Q ¢, and ul(f) = oy L R, (;55/ satisfy “1(72) < ugz). Then, for this ordering
the polynormal relations (96) hold true for all 1 < u§~2) < uz(.z) < M?. As described after (88),
it follows that Grr, (Lo ) is Noetherian. The filtration F3 being well-founded, it implies that
Lo n is Noetherian too.

Finally we consider the A-algebra £én, and prove it is Noetherian. We proceed in exactly
the same way as for L ,, changing the generators and replacing key arguments of the steps
(i)—(iv) by the corresponding results over A. Let us describe these modifications step by
step.

First consider the case n = 1. Recall the A-lattices 4C(\) (see (58)), and the decomposition
(66) of O4 into weight subspaces. In particular have a decomposition into weight subspaces
for the left coregular action,

ACA) = @ aC(\)w

NeP
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Define

AR = P act)x
(W N) =2 (110
Recall that every A-module of matrix coefficients (End(aV),))", p € Py, is contained in

Oa(< ), and by inverting over C(g) the corresponding linear triangular system between
basis elements, and using that the order relation < is finer than <, we obtain an inclusion

D=y Aé(u’) C @u=u C(1) (see (60)-(62)). It follows that 4FL* = Fi* 0 O4, and
therefore, like F5 the family 2F5 := {A]:;’)\}(u,A)eA is a well-founded filtration of O4. Put
AF;“’)‘ = ]—";“’A N Oy, and consider the graded A-module Gr, r, (Eél) associated to 4F2.

By (63)-(64)-(65) and the fact that Oy = Eél as an A-module we have the A-module
decomposition

GrAfz(‘C(I)L‘,I): @ AC(p)x
(N EA

where 4C(u)y is the submodule of weight A\ (for the left coregular action) of
AC(p) == (End(aVy))"

Then we can proceed as before. By step (i) we deduce that 4F% is an algebra filtration of

Eél. By Proposition 2.8 the A-module AC.'(,u1 + p2) has multiplicity one in Aé(ﬂl) ® Aé(MQ).
In fact, by step (ii), aC(u1 + p2) has multiplicity one in 4C(p1) ®4 4C(u2), so exactly in
the same way as 92 we obtain in Gr, ;Z(L’,él) the equality

(104) AC(p) o AC (V) = AC(pn +v).

In step (iii) we fixed a basis of each space C(u), consisting of a set of matrix coefficients
{ Mqﬁ;} with respect to dual basis of weight vectors of the modules V, and V;. In step (iv) the
basis elements of V,, and V; were ordered by means of the weights, and we used the fact that
the matrix coefficients in the spaces C(w1),...,C(w,,) form a generating set of the algebra
Grr,(Lo,1). The only property of the matrix coefficients used in the computations was that
they are weight vectors for the left coregular action (and later, in the case n > 1, for the
action (97)).

We can proceed exactly in the same manner by working with the A-modules of matrix
coefficients 4C(u). If one wishes to work at the lever of O 4, recall that any set of generators
of 04 generates Eél as well (see the comment after Theorem 3.1). Then, one can replace

the basis {,ﬁ;ﬁ?} of each space C(u) with the canonical basis B[u]* of AC.'(,U,), and take the

generating set of O, formed by the elements in Blw;]*, i = 1,...,m (see Proposition 2.7
and the comments thereafter). By the integrality properties satisfied by the R-matrix and
the twists, all the computations in the proof of steps (iii) and (iv) can be done using such
basis elements, and eventually take place over A (see the propositions 4.10 and 6.9 in [28]).
Therefore we obtain a relation like (96) with coefficients af; € A. Since A is a Noetherian

ring, again this proves Gr, r, (564,1)7 whence EOAJ, are Noetherian rings.

This being done, the adaptation of the proof when n > 1 is immediate. The filtration
F3 has to be replaced with 4F3 := {A‘FSM’[)\MV]}([NH/\HV])’ where A}"?[)“]’[A]’M is the A-module
defined by

) A ) :
AFIRROT - D AC([H D x, 1
(LN D=2k L)
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where AC([)pp) = AC (DA ©A -+ ©4 AC(Hn)rn s a0d AC(1)5,, s the subspace of

Aé (1) of weight ~ for the action (97). Then the proof proceeds in exactly the same way,
replacing in (103) and all subsequent computations the matrix coefficients by the generators
of O 4 provided by Proposition 2.7. This concludes the proof. O

Theorem 3.2. The algebra Mg, = E((){ZL is Noetherian and generated over C(q) by a finite
number of elements.

Our method of proof follows closely that of the Hilbert-Nagata theorem (see [38]). Let us
recall one version of this theorem. Let K be an arbitrary field, 2l a commutative algebra over
K finitely generated by elements ay,...,a,, and G a group of algebra automorphisms of 2.

Theorem 3.3. If the action of G on 2 is completely reducible on finite dimensional repre-
sentations, then the ring A of invariants of A with respect to G is Noetherian and a finitely
generated algebra over K.

We recall here the main steps of the proof that we will adapt in order to prove Theorem
3.2

(a) From the complete reducibility of the action of G on 2 one can define a linear map
R:2A—A¢

namely the projection onto the space of invariant elements along the sum of non-trivial
isotypical components of 2. This linear map is the Reynolds operator; we already discussed
it in (26) in the case of U, acting on Ly,. By the same arguments we developed there, it
satisfies

(105) R(hf) = hR(f)
for every f €A, h € AC,

(b) Let I be an ideal of A€, Then I = R(AI) = AI NAC. Because AT is an ideal of L,
and 2 is Noetherian, there exist elements b1, ..., bs, that can be chosen in I C QlG, such that
AL = Aby + ... + Ab,. Since I = R(AI) = R(Aby + ... + Ab,) = Aby + ... + A, I is
finitely generated over A¢. Therefore AC is Noetherian.

(c) Let B be an algebra graded over N (for simplicity of notations): B = @, B,,, with
BB, C Byon. The augmentation ideal of B is BT := +°° 15, If BT is a Noetherian
ideal of B, then B is a finitely generated algebra over Bg. ThlS is Lemma 2.4.5 of [87] (in
that statement 9 is commutative, but this hypothesis is not necessary for the proof).

(d) Assume that 2 is graded over N (for simplicity of notations): 2% = @ AS with
A = K. Then A+ = @A is an ideal of A€, which is Noetherian by (b) above.
Applying (¢) we deduce that A is a finitely generated algebra over K.

Proof of Theorem 3.2. Consider the filtration F of Lo, by the subspaces
P cu)).puepy
(][]

where P} is given the lexicographic partial order induced from [A]. It is easily seen that F is
an algebra filtration: the coregular actions >, < fix globally each component C'(u) of Lo 1, so
the claim follows from (9), (18) and the fact that C(u) x» C(v) C C(u + v) for all u,v € Py.
Denote by Grrz (L) the corresponding graded algebra. As a vector space we have:

(106) Grr(Lon) = @ C(ln

[nleP}
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Because each space C([u]) is stabilized by the coadjoint action of Uy, (106) has a key advantage
on the refined decomposition (100). Indeed, since Lo, is a U,-module algebra, the action
of Uy, is well-defined on Grr(Ly,) and gives it a structure of U,-module algebra. As vector
spaces we have

(107) Grr(Lon)’ = @ C(u
(wlepPy
Now we can adapt the differents steps (a)—(d) recalled above:

(a’) The action of U, on Grr (Lo ) is completely reducible. This follows from (106) and the
fact that the spaces C(u) are finite-dimensional and thus completely reducible U,-modules.
We can therefore define the Reynolds operator as in (a),

R: Grz(Lon) — Gre(Lon)T.

(b") Grr(Lo,n) is Noetherian, because (106) shows it is filtered by F3, and the associated
graded algebra Grz, (Grr(Lon)) = Grr,(Lon) is Noetherian by Theorem 3.1. As in (b) we

deduce that Grz(Loy,)Y is Noetherian. But Grz(Lo )" Gr]:(ﬁo )» which implies that

,CO‘; is Noetherian.

(c’-d’) Then we can apply the steps (c)-(d). As a result Gryz(Lo,,)Y" is finitely generated,
say by k non zero elements Z1,..., T, which we may assume homogeneous.

(e’) We can now deduce that Eé{ 7 is generated by elements z; with leading terms the Z;’s.
Indeed, let = € £y?,, and [u] € P} such that = € FI\ F=I, where f*“fl = @< C(W])-
In Grz(Lo, n)[ | = .7:[”]/.7:4“] we have T = Z(il,m‘ﬂ:k)el
I ¢ N¥/ scalars o Zk) € (C( ), and monomials 7' .. “C of degree [1]. By definition of the
product in Gr;(ﬁg n) 7, . :EZ’“ = mil .. xZ’“ + .7-"4“}, so x7 :czk e Flu \.7-"4“], whence

Ay, i) @1 - 2F for some finite set

Il .. 2’“ = xl .z and x — Z(i1,...,ik)el A(il,...,ik)xif . x}f e F=. The conclusion follows

by decreasmg induction on [u], since at last we terminate at F (0] o C(q).
By combining the steps (a’) to (e’), we get that M ,, is a Noetherian and finitely generated
ring. O

Remark 3.4. (1) Because [,([)J’ % is the center of Lo, (€’) proves it is finitely generated. Of
course this follows also from the isomorphism Lo 1 = Uéf and the fact that the center of Uéf
is the center of U, (by Theorem 2.1), plus the well-known description of the latter.

(2) In the si(2) case the filtration F on E 7, should be related via the Wilson loop isomor-

phism (defined in [28], Section 8.2) to the ﬁltratlon of skein algebras of spheres with n + 1
punctures used in [79].

4. PROOF OF THEOREM 1.2

As usual we let € be a primitive [-th root of unity with [ odd and [ > d; for alli € {1,...,m}.
We now consider the specialization L ,, of Lo, at ¢ = €, defined in Section 2.2.1. Recall the

isomorphism of algebras n*: O(G) — Z¢(Oc) (see (86)), and that L§, = OZ" as a vector
space. Consider the linear subspace of L ,, defined by

Z0(L5 ) == Z0(0)*"

This space is naturally a subalgebra of O®" (endowed with the componentwise product ).
In fact we also have:
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Proposition 4.1. (1) Z¢(Lj,,) is a central subalgebra of the algebra L3 ,,, and the Zo(Lj ,,)-
modules Lf ,, and O%" with actions defined by the respective products of these algebras, do
coincide.

(2) L5, is a free Zo(LG ,)-module of rank [r-dimg

(8) (p*~1H)en: Z0(L5,,) = O(G)®™ is an isomorphism of algebras, and Zo(Lj,,) is a Noe-
therian ring.

(4) The Z0(L ,,)-module LG, is finite and Noetherian. Therefore L ,, is a Noetherian ring.

Note that the proof we give in (4) of the fact that L, is Noetherian is independent from
the proof of Theorem 3.1.

Proof. (1) Let us show that Zy(Lj,,) is a central subalgebra of £f,,. In the case n = 1 the
formula (9) implies that a8 = ax § for all a € Zy(O,) and 3 € Lj ;. Indeed, by (9) we have

af = Z (R(2/)S(R(2)) D> a) x (R(lf) >4 < R(l))
(R),(R
R

)
oy * (B (R (S(R) Bs) (Ranae) (Re)) B )
(R)(R)(0).(8)

where all components a1, (2), a3y € Z0(Oc), since Z¢(Oc) is a Hopf subalgebra of O. But
> ry Rya (S(Re)) = S7HP(So,.(as)))) € Zo(Ue), since ™ (So,(a3))) € Zo(Ue) by
Theorem 2.24 (2). Similarly, 3 gy Ry 2) (R@2)) € Zo(Ue). In general these elements belong
to Zo(U.) and not Zy(U) because of the “diagonal” factor © of the R-matrix in (4). By
Lemma 2.23, Zo(U%) acts by the trivial character e (the counit) on I'.-modules. The action
of Zy(U.) is e multiplied with some powers of ¢/, However, Proposition 4.1 and 4.10 of

1/D

[28] show that such powers of e eventually disappear in the sum above; this is because

the sum can be rewritten in terms of copies of the quasi R-matrix R in (4) and the pivotal
element /¢, instead of copies of R. Therefore

(108) aB= > agx (5(5(1))€(a(3))€(ﬂ(3))€(a(2))5(2)) =axf.
(R),(R),(a),(B)

This shows £ ; and O, coincide as modules over Zo(Lj ;) = Z0(O.). Next we show that
the subalgebras Zo(O,) are central in LGy, foralla =1,...,n. This fact will conclude the
proof that £§,, and OF" coincide as Zo(Lf,)-modules, because the subalgebras Z0(0)@
generate the space Zo(L§,,) in (£§,)®", and hence in £§,, (this follows from the comment
before (19)).

In order to show that Z5(0,)® is central in L, foralla=1,...,n, it is enough to show
Z0(0)@ commutes with the elements of L5, supported by the tensor factors (Ef)’l)(b) with
b # a. Since (@)@ @ (8)® = ()@ @ 1)(1 @ (8)?)) by the definition, we have to show
that (1@ (B)) (@)@ ©1) = () @ (8)® whenever o € Zo(O.). We have (denoting
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D (@) (@) (@) (@) PY 2oyt Alaa)) = 20y ) ® o)) ete.):

(1 ® (ﬁ)(b)><(a)(“) ® 1) = (S(R?I)R?‘l)) > a4 R%UR%I)> @

(RY)
(b)
1 3 2 4
® (S(R(Q)R(Q)) > 8 < R(Q)R(Q))
= Z (e(2)) @ (By)™®

(RY),(a)%,(8)?
< By (o) (B By m (SR RY))
x Bs) (0(3)(2)(R:()’D)Rf’g)aa)u)(3%1))5(3(12))) -

By Theorem 2.24 (2) it follows that Oé(l)(?)(R%l))R%Q) = T (e 1y(2)) € Z0(Ue), and similarly
a(3)(1)(S(R?1)))R?2)7a(3)(2)(R?1))R?2)aa(l)(l)(Rél))S(R%Q)) < Z()(UE). Denote by Z any such
element; Zy(U, ead) acts by the trivial character (the counit £) on I'.-modules. By using Propo-
sition 6.2 of [28], arguing as above (108), we obtain that the expression of z in terms of the
corresponding ag;y(;) involves (2) = (ay;)(;)) only (no root /Py, 1t follows

By (Oé(1)(2)(3?1))3?2)04(3)(1)(5(3?1)))3?2)) = e(aqm)@)@) )8 (1)
= e(ay2)ela@)w)e(Bay)
Bs) (a(3)(2)(R?1))R?2)04(1)(1)(Rb))S(R%z))) = e(a)2))e(am)a))e(Ba))-

Therefore (1® (8)?)((a)® ®1) = (@)@ @ (8)®). 1t follows that L§, = 02" as modules
over Zo(Lf,); for instance when n = 2, given o/, 3" € Zo(Lf ) we have (o/ @ f')(a® ) =
(d/®1)(1®8) (a®1)(1® ) immediately by (18), and (188)(a®1) = a®p’ = (a®1)(1ep’

as above. Then (o' ® ')(a ® ) = &/a® §'S. In particular Zy(Lj ,) is a central subalgebra
of L£§ -

(2) Since L§,, and OF" coincide as modules over Zy(Lf,,) = Z0(OZ"), the claim follows from
Theorem 2.24, that is: from Theorem 7.2 of [43], which shows that O is a finitely generated
projective module of rank [4™® over Z4(O,), and from the arguments of [25] (using that
Ko(O(Q)) = Z by [81]), which imply that this module is free. Alternatively, it follows from
the fact that O, is a cleft extension of O(G) (see [5], Remark 2.18 (b), and Section 3.2 of
21)).

(3) The linear isomorphism (n*~1)®™: Zy( o) — O(G)®" is an isomorphism of algebras
because Zo(Lg,) is central in L£f,. It implies that Zo(Lj,,) is a Noetherian ring, since
O(G)®" = O(G™) and G™ is an affine algebraic variety.

(4) The fact that L ,, is a finitely generated Zo(Lj ,,)-module follows from (2); an alternative
proof of this fact will be provided at the end of the proof of Theorem 4.9. Since L ,, is finite
over Zo(Lg,,) and Zo(Lf ,,) is Noetherian, Lf ,, is a Noetherian Zy(Lj ,,)-module (eg. by [6]
Proposition 6.5). It follows that Lj ,, is a Noetherian ring (by eg. [82], Section 1.3 of Chapter
1). O

Recall that we denote UY = Uilf ®4 Ce (see (35)), and Zy(U,) C U, is the central poly-
nomial subalgebra generated by E/lgk, F,éw Liﬂ, for k € {1,...,N} and i € {1,...m}. Since
Qy: Lo — U is an embedding of algebras (see Corollary 2.20), it identifies Z0(L5,1) with
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a central subalgebra of UY. Put
Zo(U7) = @1(Z0(L51))-

Recall Theorem 2.1, Proposition 2.19, and let T(l), TQ(Q and T2(l) be the subsets of T', T5_ and
T, formed by the elements Ky; with A € P, A € —2P; and A € 2P respectively.

Proposition 4.2. We have U, = T, 'UY[T/Ty] = &( 671[d_1])[T/T2], and therefore the
map P : Eg’l[dfl] — T, 'UY is an isomorphism. Moreover Z(UY) = UY 0 2(U.), and

20(U) = T 20T 20 = T 20O /7).

Proof. The first claim follows immediately from Proposition 2.19 by specialization at g = e.
For the second claim, the inclusion UY N Z(U.) ¢ Z(UY) is clear, and for the converse
inclusion we only have to show that the elements of Z(Uelf ) commute with 7. They commute
with Ty € UY, so the conjugation action by elements of T on Z(U) has order at most 2.
Let z € Z(Uelf) with decomposition z = ), ¢;x; with all ¢; € C and z; PBW basis vectors,
and let A € P. We have KyxK_ = 3. ciq(x;)z;, where q(x;) € €” satisfies g(x;)*> = 1 for
all 7. Because € has odd order the only possibility is ¢(z;) = 1, whence KyxzK_) = x. The
conclusion follows.

The inclusion Zo(UY) ¢ Z4(U,) follows from the definition Z( 0.1) = 20(O¢), the formula
®; = mo (id® S™') o @, and the fact that ® affords an embedding Zy(0.) — Zo(U(G*))
(see Theorem 2.24 (2)). Since T") C Zo(U.), we obtain T\" " Zo(UY)1® )TV ¢ 24(UL).
The proof of the converse inclusion is similar to that in Proposition 2.19. The isomor-
phism Z0(Oc)[¢'-},] = Z0(Uc(G")) of Theorem 2.24 (2) implies Ff, Kf ©1,1® K;'Ej, €
<I>(Zo((96)[1/1:llp]) for every positive root 3. Since ¢p_;, = &7 (K_g,) = wl_p (the I-th power of
Yoy in £5), and ®;(Z(L5,1)[0L]) = ToV ™ Zo(UM), it follows that Fh Kb S~ (EL KY€
TQU_)—1 Zo(UY), hence Fly , SHEL ) € TS " 20U TG /T{"]. The sets S~ (EL ) Zo(U(h)),
k = , N, generate the subalgebra Zo(Ue(by)) of Zy(Ue), so from the triangular de-
comp081t10n ZO(U) Z0(Ue(n2))Z0(Uc(h)) Z0(Ue(ny)) this proves the inclusion Zy(Ue) C
T Zo(UM) T /TV]. By the isomorphism Zo(Ue) @z, )nz, 0. 21(Ue) = Z(Ue) (see
Theorem 2.22), and the fact that Z(U,) C Ué (whence Z1(U.) ¢ Z(UY)), the equality

Z(U,) = TéQ_IZ(Uif)[T(Z)/TQ(Z)] follows at once. O

Remark 4.3. Let us explain how this can be used to give an interpretation of the iso-
morphism Zo(Lj ;) = O(G). Recall the notations introduced around Theorem 2.22. Since
G* =U,TeU_, we have O(G*) = O(U;)O(Te)O(U-), and the map o yields an identification
(109) O(G°) = O(U4)O(Tg/(2))O(U-).

We can identify O(G°) with the subalgebra (a|G*)*(C’)(G0)) C O(G™). Consider the exterior
power V = ANg endowed with the action AN Ad of G. Put on g a basis consisting of one
element e, per root space g,, along with a basis of h. Let v € V' be the exterior power of the
eq’s for a negative, and v* a dual vector such that v*(v) = 1 and v™ vanishes on a Tg-invariant
complement of v. It is classical that G \ G° has defining equation §(g) = 0, where § is the
matrix coefficient §(g) = v*(my(g)v) (see eg. [57], page 174). Hence O(GY) = O(G)[6 7).
On G° we have d(uytu_) = x_2,(t), where x_a, is the character of T associated to the
root —2p. Now we can make the connection with U.. The isomorphism Zy(U,) = O(G™) of
Theorem 2.22 (2) identifies Zo(U(h)) = C[T®] with O(T¢) by mapping K to the character
of T associated to A. Therefore it maps C[TQ(I)] to O(T¢/(2)), and TZ(QAZO(UEZJ[) to O(GY)
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by (109) and Proposition 4.2. Since O(G°) = O(G)[67!] and TéQ_lZo(Uglf) = Zo(UN[Y, it
follows that Z(UY) and O(G) coincide after localization by ¢ and & respectively. By using

the Bruhat decomposition of G as in (114) in the proof of Theorem 4.9 below, one can deduce
Zo(UY) =2 O(G), whence Z( 0.1) = O(G) by injectivity of ®.

Let us make the following observation. Since Lj,, = Eén ®a C,, with Eén = 09" as an
A-module, and a generating system of (’)%m is also a generating system of L’én, it follows
from Proposition 2.7 and the identities 67-68 that Lf ,, is generated by elements of the form
a1 ®...® ap, where a1, ..., a;, belong to the set Cye, of matrix coefficients lying on the first
and last columns of the matrix representations of U}*® in the canonical basis of the modules
AV, i =1,...,m. Denote by oa*®, k€ N, the k-th power of an element o € Oy4.

Lemma 4.4. For all a € Cyep, o™ € Z0(L51)-

Proof. Recall that the Frobenius epimorphism 7: U4* ®4 C. — U(g) in (86) has kernel
the ideal I generated by the elements E;, F;, K; — 1, and (Kj;p),, where [ does not divide
p,i=1,...,m. It follows that an element of O, belongs to Zy,(O,) = n*(O(G)) if and only
if it vanishes on I. But this is immediate to check for the elements of the form o* with
a € Cyen, using that K; is grouplike and the pure summands of A(E;) and A(F;) have one
component equal to 1 or KfEl and the other component equal to E; or F;. For instance,
’QZJ;ZZ(KZ —1) = o, (K;) =1 = l@®i) _ 1 = 0. Similarly, for every a € Cgen we find
a*(E;) = a®(AV(E;)) = 0, and o*'(F;) = o*!(K; — 1) = 0. O

We need below explicit descriptions of the centers of O.(SL2) and L, (sl(2)) and their
Zp-subalgebras. Denote by a, b, ¢, d the standard generators of O,(SL2), ie. the matrix
coefficients in the basis of weight vectors vg, v1 = F.vyp of the 2-dimensional irreducible
representation V; of Uy(sl(2)). As above, denote by #** k€ N, the k-th power of an element
x € Oa(SLs). The algebra O4(SLs) is generated by a, b, ¢, d; the monomials a* x b*7 % d*"
and a* «c*Fxd*" | i, j, k,r € N,k > 0, form an A-basis of O 4(SLs). The algebra Zo(O.(SLs))
is generated by a*', b*!, ¢*!, d*!; the monomials a* xb*! x d*" and a* « ¢** % d*"" form a basis
of Z5(Oc(SLy)), and Z(O(SLy)) is generated by Zo(Oc(SLs)) and the elements b* %) x

=0,...,1 (see [43], Proposition 1.4 and the Appendix). We have the relation

(110) alwdt = x et =1

and the Frobenius isomorphism of Parshall-Wang (see [78], Chapter 7) coincides with the
map

F’I“pwl O(SLQ) — ZO(OG(SLQ))
induced by 7n*; it sends the standard generators a, b, ¢,d of O(SLy) = O1(SLs) respectively
to a*, b*, ¢, d*. Finally, we have seen that O.(SLs) is a free Zo(O(SLz))-module of rank
I3 (see Theorem 2.24 (3)). In [45] it is shown that a basis of this module is formed by the
monomials a”b"c® and b"csud”, with the integers m,n,r,s’,s” in the range
(111) 1<m<l—-1,0<n,r<l—-1,m<s<l-1,0<s"<l—r—1.
Now consider Eél(sl@)). Recall that COAJ = 04 as Ug-modules. The algebra Eél(sl(2)) is
also generated by a, b, ¢, d; a set of defining relations is (see [28], Section 5):
ad=da , ab—ba=—(1—-q 2)bd
db=¢*bd , cb—bc= (1 —q ?)(da — d?)
cd=¢*de , ac—ca= (1 —q %dc

ad — ¢*be = 1.

(112)
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The element w := qga + ¢~ 'd is central. Let T}, k € N, be such that Tj(x)/2 is the k-th
Chebyshev polynomial of the first type in the variable x/2. We have (see [28], Proposition
7.2, for the generalization to L ,,(sl(2))):

Lemma 4.5. Z(L§,(sl(2))) = Clw,t',d,d"]/T and Zy(L§(sl(2))) = C[(Ty(w), V', d"]/T,
where I is the ideal of Clw, b, ¢!, d"] generated by (Tj(w) — d')d" — b'cd — 1.

Here b!, ¢!, d" are the I-th powers of b, ¢,d computed using the product of EoA,l(sl(2)), not
the product x of Z5(O¢(SL2)). The above generator of Z can be interpreted as a determinant,
and w as a quantum trace on V;.

Lemma 4.6. Viewed as elements of Oa(SLs), Tj(w) — d' = a* and 2! = 2, = € {b,c,d}.

Proof. Let a and w be the simple root and fundamental weight of si(2). In the notations
of (85) we have b = Y-, ¢ = ¢, d = _5; the formulas give o1 (b)) = (¢ — ¢ HIF,
Dy (c) = (¢ — ¢ D E'K!, ®(d*) = K~'. These coincide respectively with ®;(b"), ®;(c}),
®1(d") (see (32) in [28]). By passing to the localization O4(SLy)[d™!], and using Parshall-
Wang’s relation (110), one deduces easily ®1(a*') = K'+(¢—q¢ ) F'E' = T)(Q)— K, where
Q= (e—e )Y’ FE+eK +e 'K ! is the Casimir element, and Tj(2)/2 is the I-th Chebyshev
polynomial of the first type in the variable z/2. We have ®;(w) = Q, so ®;(a*') = Tj(w) — d".
The conclusion follows from the injectivity of ®. O

This lemma proves that we have a commutative diagram

O(SLs) —Y o Z0(O(SLa)) > O(SLy)

T | |

Z0(L£5,1(s1(2))) = L5,1(s1(2))

where Frpy is Parshall-Wang’s Frobenius isomorphism recalled above, F'r is the Frobenius
isomorphism introduced in [28], Definition 7.1, and the vertical arrows are the identifications
as vector spaces (the middle one proved by Proposition 4.1).

Remark 4.7. By Lemma 4.5 the monomials T;(w)®'d"™ and T;(w)'c™d", for i,j,k,r € N
and k > 0, form an A-basis of Zo(L ;(sl(2))). It is straightforward (though cumbersome) to
express these basis elements in terms of the basis elements a* x b*! x *" and a** % ¢** % ¢*™
of Zp(O(SL2)), and conversely; this can be done by using Lemma 4.6, the formula (9) or the
inverse one (expressing  in terms of the product of Ly 1, see (18) in [28]), and the formula of
the coproduct A: Lj,(sl(2))) — L£§2(sl(2))) restricted to Zo(L51(s1(2))) (given in Lemma
7.5 of [28]).

Since Eél = (O4 as an A-module, the functionals ¢; in Proposition 2.25 can be seen as

maps t; : [,64’1 — A. Though the algebra structures of O and Lj; are very different, £
satisfies a result analogous to Proposition 2.25:

Proposition 4.8. The maps <t; preserve Zo(Lj ), and they satisfy (f <t;)(a) = f(n;a) and
(fa) <ty = (f <ti)(a<ty) for every f € Zo(L5,), a € G, a € Lg ;.

Proof. The first two claims follow from Proposition 2.25 and the definition Zo(Lf,) =
Z0(O).

The last claim follows from the case g = sl(2), as in the proof of Proposition 7.1 of
[43]. In fact it is enough to show that t(fg) = t(f)t(g) for every f € Zo(Lj,(sl(2)), g €
L£51(sl(2)); for completeness we explain this in the Appendix, see (138). A word of caution
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is needed: the proof of (138) uses that A: O, — O, ® O, is a morphism of algebras. The
analogous property for £{; is that A yields a morphism of algebras A: £j; — L£{,. Since
the algebra structure of Cg 5 is not the product one on 58,1 ® Lg,l, it is not true in general
that Z(f),(g)( ) ® f2))(90) @92)) = Z(f),(g) f1)9(1) ® f2)9(2) for every f,g € Lj ;. However
it holds Whenever f e ZO(EOJ) since A(Z20(L£51)) C Z0(L£51) ® Z0(L5,1) and therefore
f2) € 20(L£51) = Z0(Oc) commutes in Lj o with any g(1) € £5; = O..

It is enough to prove the identity ¢(fg) = t(f)t(g) when f ranges in a set of generators of
the algebra Zo(Lf 1(sl(2))). So one can take f among, say, Tj(w) — d' = a* and o' = 2,
x € {b,c,d} (using Lemma 4.5). By (9) and Proposition 6.1 in the Appendix we have

t(fg)= > t(Re)S(Rw) > f)t(Ray>g<Ry)).

(R),(R)

Expanding coproducts and using that R~! = (S ® id)(R) we deduce

t(fo)= > t(fwy) (e Re)S(Rw)) t (Ray > g < Rp)
(PAR(R)

= > t(fw) t<<f<2>=R(2/>>R<1/> >g < <f(3>75(R(2>)>R<1>>
(ARAR)

( (f(z)))>9<15_2(¢>_(f(3))))

Z
2 i
()

D tfay) e[ SR (f5) Je[ STH@ (f2) ) t(9)
5t )( )

where w € Up is the quantum Weyl group element dual to t (see Section 6.2), and in the last
equality we used that ®~ maps Zy(O,) into Zy(U,) (see Theorem 2.24 (2)), which acts on
I'-modules by the trivial character (the counit) e: U, — C. By (130)-(131) in the Appendix
we have t(a*) = t(d*) = 0 and t(b*) = 1, t(c*)) = —1. Now the computation of t(fg)
follows easily. For instance, taking f = b' = b*, by using A(b") = a* @ b*! + ™ @ d* and
A(d) = ¢t @ b + d? @ d* we get

ttlg) <5200 )< (57 @ () )t + 2 (520 (@) )2 (5@ @) )t

Since b € O (Uy), ®~(b*) = 0. Also, it is immediate from the definition of ®~ that
&~ (d*) = & (d)! = L'; alternatively, one can bypass this computation by observing that &~
sets an isomorphism from O (Tg) = O(B+)NO(B_) to C[L*'] = U.(b)NU(b_), mapping
a generator d to L or L™'. We have (L") = 1, and therefore

t(b'g) = t(g) = t(b")t(g).

The other cases f = Tj(w) — d', ¢!, d" are similar. O

(s <g, 2(<I>_(f<3)))w5_1(‘1>_(f(2)))>

Theorem 4.9. Lj,, is a free Zo(L§ ,)-module of rank m4ms - and (L8
ring and a finite, whence Noetherian, Zo(L ,,)-module.

m)Uf is a Noetherian
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Proof. We already proved the first claim in Proposition 4.1, and that Lj ,, is a Noetherian
Z0(L§,,)-module. For the second claim, it follows that the Zy(Lj ,,)-submodule ( Bm)UE is
necessarily finitely generated. But Zo(Lf ,,) being Noetherian, (Ean)Ue is then a Noetherian
Zy(L§,,)-module and a Noetherian ring.

For the sake of clarity let us provide a self-contained proof of the first claim, not invoking
directly [43, 25] or [5, 21], but applying the same arguments directly on L, . Since L,
and L'S@l coincide as modules over Zo(Lf,,) = Zo(L§)®™ by Proposition 4.1, the result will
follow from the case n = 1. Then we argue in four steps First, using Theorern 2.1 we show
that a certain localization of L, is a free module of rank ld’mg. Then, assuming that £
is finitely generated and projective, we explain why it has constant rank [9™® (this is very
classical). Thirdly, we prove that £f  is finitely generated and projective as in Theorem 7.2
of [43]. Finally we obtain that it is a free module as in [25].

Recall Proposition 4.2: U, is a free ®1 (£, [d~"])-module of rank 2™ (note that L1 (A7 =

6,1[d_1])» and Zo(Ue) is free over TQ(Q_IZO(UElf) = ®1(20( 6’1)[d_l}) of rank 2™. Since Uk
is also free of rank (%% over Zo(U,) (Theorem 2.22 (1)), it is free over ®;(Z( 871)[d*l])
of rank 2™, The decomposition being unique, 1 ( 871[d_l]) is free of rank %™ over
<I>1(Zo(£871)[d_l]), and injectivity of ®; implies that Eal[d_l] is free of rank 199 over
Zo(L5,1)[d7"].

Assume now that L, is finitely generated and projective. Let us show that its rank is
19m8 . The localization (L£61)p of LG, at any prime ideal P of Zo(Lf ;) is a free module
over Zo(Lj1)p ([84], Proposition 2.12.15); the ranks of such modules are finite in number
([84], Proposition 2.12.20). If these ranks are all equal, then, by definition, it is the rank of
L5, over Zo(L ). This happens if Z¢(Lf ;) has no non-trivial (ie. # 1) idempotent ([84],
Corollary 2.12.23), which is the case since it has no non-trivial zero divisors. To compute the
rank, suppose P does not contain d' = " p- Such ideals P are in 1-1 correspondence with the
prime ideals of Z( 671)[(1_[] by the natural ring monomorphism Zo(L£j,) — 20(5871)[d_l].
The set S = Z0(L5,) \ P is multiplicatively closed, and we have also a ring morphism
Zo(LG1)d™ =871z, (£5,1), which is also an injection (there are no zero divisors in Zy(Lg ),
whence in §). Then

(113) (Loa)p = 5_158,1 = 56,1[d_l] ®zo(L )ld] 5_120(56,1)

shows that (L )p has over Zo(LG,)p = 5_120(5871) the same rank (%™ as Eal[d_l] over
Zo( 8’1)[d*l]. This proves our claim.

In order to show that £, is finitely generated and projective over Zy(Lj ;) it is enough to

show it is finite locally free, ie. there are elements d; € Zo(Lj ;) such that the localizations
0.11d; 1] are finite free Zo( 0.1)[d; !-modules, and Maxspec(Zo(Lj 1)) is covered by the open
sets U(d;) made of the ideals not containing d; (see Lemma 77.2 of [90]).

We have seen above that 5671[d_l] is free of rank (%™ over Zo(ﬁal)[d_l]. By Remark 4.3,
Z0(L£51)[d7"] = Zo(UY)[¢Y] is isomorphic to O(GP), and O(G°) = O(G)[6™"]. Now, given
w € W with a reduced expression s;, ...s;,, put t, = t;;...t;,. Let w be represented by
Ny = Ny, ...n;, in N(Tg). By Proposition 4.8 we have (f < t,)(x) = f(nyx) for every
f € 20(L51), * €G. Then

(114) Zo(L5)ld "] Dty = O(ng,'G°) 2 O(G)[(8 < t) 7]
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If by,...,b, (r :=1%™%) is a basis of 5671[d_l] over Zo([,al)[d_l], then Eal[d_l] <Aty is free
over Zo(L£§1)[(d < tw)™'] = O(n,'G°) with basis by < ty,...,by < t,. Consider the Bruhat
decomposition of G: any g € G can be written in the form g = bynby, where by,b2 € B_,
n € W. Hence g = nn " tbinby € nBiB_ = nGO, and therefore

G = Upew (B_nyB_) = Uyew (n,G).

For every w € W put

d, == d <Dty
Under the isomorphism of Zy(L§ ;) with O(G), we thus get that Maxspec(Zo(Lj 1)) is covered
by the open sets U(d,) = n,G°, and E&ﬂd;l] is finite free over 2 (5671)[d;l]. Therefore L
is finitely generated and projective over Zo(Lj ;).

Finally, let us explain why L3 , is free over Zo(Lj ;), following the arguments of [25]. Let R
be a commutative Noetherian ring, put X = Maxspec(R), and let P be an R-module. Denote
by Ry, Pr the localizations of R, P at a maximal ideal I € X. Define the f-rank of P as f-
rank(P) = inf;cx { f-rankg, (Pr)}, where f-rankg, (Pr) = sup{r € N, R¥" C P} € NU {400}
(ie. the maximal dimension of a free summand of Pr). Bass’ Cancellation theorem asserts that
if P is projective and f-rank(P) > dim(X), and P& Q = M & @ for some R-modules @) and
M such that @ is finitely generated and projective, then P = M (see [9], IV.3.5 and pages 167
and 170, taking A = R, or [82], section 11.7.13). Let us apply this to R = O(G) and P = L ;.
We proved above that f-rankg, (Pr) = 199, a constant, and we have 19" > dimg = dim(G).
By a result of Marlin [81], G being semisimple and simply connected the Grothendieck ring
Ko(O(G)) is isomorphic to Z. Therefore £j, ® Q = O(G)" for some free O(G)-module Q
and r € N. Then Bass’ Cancellation implies £f ; is free over Zo(Lo1) = O(G). O

5. PROOF OF THEOREM 1.3
We begin with the following lemma, interesting by itself.

Lemma 5.1. Z(Lj,,) is a finite Zo(Lj ,,)-module and a Noetherian ring. Therefore the ring
Z(L5,,) is integral over Zo(Lj ,,)-

Proof. We know by Proposition 4.1 that Z,(Lj,,) is a Noetherian ring, and £j ,, is a finite
Noetherian Zy(Lj,,)-module. Therefore the submodule Z(Lj ,,) is finitely generated. Being
finite over Zo(Lg ), it is necessarily a Noetherian ring (by eg. Proposition 7.2 of [6]).

Let x € Z(L5,,). The Zy(Lj,,)-submodule Zo(Lj ,)[z] of LG, is finitely generated by the
same argument. Using the fact that an element z is integral over Zo(Lj,,) if and only if
Z0(L5,)[7] is a finitely generated Zo(Lj ,,)-module (by eg. Proposition 5.1 of [6]), this proves
the last claim. O

We will use the following notations. Let A be a ring with no non-trivial zero divisors. The
center Z = Z(A) is a commutative integral domain. We denote by Q(Z) its field of fractions,
and put

Q(A):=Q(Z2) ®z A.
It is an algebra over its center (7). Since Lj ,, has no non-trivial zero divisors ([28], Propo-
sition 6.30), we can take A = L ,, or A = ( Bm)UE.
By the lemma Z(Lj,,) is finite over Zo(Lj ,,), so the ring Z(Lg ,,) D225 ) Q(20(L5,,)) is
a field. Necessarily it coincides with Q(Z2(Lj ,,)), and therefore

(115) Q(Lon) = Q(Z(L£00)) ®@z(c5,) Lon = Q(Z20(£0,0)) ®zo(25,,) Lon-
Recall that we denote by N the number of positive roots of g.
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Theorem 5.2. (Theorem 1.3(1)) Q(Lj ,,) is a division algebra and a central simple algebra
of PI degree "™

Proof. Tt follows from (115) and Theorem 4.9 that Q(Lj,,) is a vector space of dimension
[4ime over Q(20(L5,,)), and therefore has finite dimension over its center Q(Z(Lg ,)). Be-
cause Lj ,, has no non-trivial divisors ([28], Proposition 6.30) and Q(Lj ,,) is finite-dimensional
over Q(Z(L5,,)), Q(Ly,,) is a division algebra, whence a central simple algebra. By classical
theory (see eg. Section 13.3.5 of [82], or [84], Corollary 2.3.25) there is a finite extension F
of Q(Z(L5,)), a splitting field, such that

F®qzcg ) Q(Lon) = Ma(F)
where d € N, the PI degree of Q( B,n)’ satisfies

[Q2(L5,)) : Q(Z0(L5 )]
We have to show d? = [>™V. We will obtain this equality by proving firstly that d? > >V,
and then d? < 12"V,

In order to show that d®> > I>™V, it is enough to exhibit an irreducible representation
V of Lf,, of dimension k := "N Indeed, the representation map py : Ls, — Endc(V)
being surjective, given basis elements vy, ...,v,2 € End(V), and elements aq, ..., a2 € Ean

(116) & = [Q(Lf,) : Q2(L5,))] =

such that p(a;) = v; for every i € {1,...,k*}, necessarily o, ..., a4 form a free family of
Q(LG,,)- For, if there was a non trivial relation }; zio; = 0, with 2z; € Q(Z0(L5,,)), by
clearing denominators and then applying the representation map py we would get a non
trivial relation in Endc (V) between vy, ..., vy2.

Now, by Theorem 2.22 (1) (see [41], section 20), the dimension of a generic irreducible
representation space of U, is 1" . Because U, = T, 'UY [T /T3] (Proposition 4.2), an irreducible
representation of U, yields an irreducible representation of U, elf . Moreover, the tensor product
of n irreducible representation spaces of Uelf of dimension [%V is an irreducible representation
space of (UY)®" of dimension 1™V (see eg. Theorem 3.10.2 in [49]). Applying the linear
isomorphism 1, = ®,, o (®71)®™ in (23) thus provides an irreducible representation of L5,
of dimension 1™V,

It remains to show d? < I>™ which by [Q(LG,) : Q(20(L5 )] = [MNFM) i equivalent
to [Q(Z2(L5,)) + Q(20(L5,,))] = I™". For this, it is enough to exhibit an extension of
Q(Z20(L5,,)) contained in Q(Z(Lf,,)) and of degree I"™". There is a very natural one, which
we denote by Q(Zo( 0.n)) and is constructed as follows. Consider for every A € P, the
matrices

My = (13 08 )iy € End(aVy) ® Ly MY = (112 ¢) D)1y € End(aVy) ® L4,

where 7 = 1,...,n, and as usual ,v, ¢¢! is a matrix coefficient of 4V, {ex} the canonical
basis of 4V, and (VﬁbZi)(i) = 1801 g vy Pel ® 127=0) | Set

s = Tr(m (OM) 5 sw = Tr(my, (M)

where T'r is the standard trace on End(V)). Clearly \w € EOAJ, »wl e Eén. By Proposition
4.8 and 6.24 of [28], the family of elements [];", Aiw(i), where A1,..., A\, € Py, is a basis of
Z(Lo,); moreover the Alekseev map ®,, affords an isomorphism from Z(Ly,) to Z(U,)®",
and @, ((w¥) = (@1 (Lw))?. For n = 1, specializing ¢ to ¢ it follows

(117) Zl(Ue) = Vect {<I>1(,\w), AE P+},
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where Z;(U,) is defined before Theorem 2.22. Then, for every i = 1,...,n define
ZO:(i) (‘Ca,n) = ZO(‘CB,n)[{Aw(i)v Ae P—i—}]

and let Zo( o) C Z(L5,,) be the algebra generated by Zy (1)(£5,), - - -, Z0,n)(L£on). The
fields Q(Zy,(;y(L5,,)) are n linearly disjoint extensions of Q(Zo(L5,,)), so
[Q(Z0(£5,4)) = Q(Z0(£5,,))] = [T1Q(Z0,5) (£5,0)) : Q(Z0(£5,))]-
i=1
Now, by Proposition 4.2 we know that ®; affords isomorphisms Q(Zo(Lf;)) = Q(Zo(UMY)Y)
and Q(Z(L,)) = Q(Z(UY)), and moreover

(118) Q(Z0(U0) = QZoU )TV /T, Q(2(U.) = QEEWI ) TO /T,
Computing via the field embedding ®™: Q(Zo( on)) = Q(Z(UEM)), we deduce

Q(Z0,)(£5,0)) : Q(Z0(L5.,)]
— [ (Q(Z0,)(£0,0))) + O (@(Z0(L5,)))
— [QEWIHT{(@10w) DA € Pri =1, n}] s QE(UI)™)]

= (@2 (@1 ()P A € Pri =1, n}] = Q(Z20(U) )]

="

The second and third equalities follow from (118) and the properties of ®; recalled be-
fore it, and the last equality follows from Theorem 2.24 (2) and (117). As a result we

have [Q(20(£5,)) = Q(Zo(L5,))] = "™, whence [Q(Z(L5,,)) : Q(Zo(L5,))] > ™. Since

[Q(L ) : Q(20(L5,))] = "™ T2N) by (116) we obtain d® < 1*"V, which concludes the proof.
O

Remark 5.3. By the degree computation above, it follows [Q(Z (L5 ,,)) : Q(Z20(L5 )] = ™",
whence Q(Z(Lf,)) = Q(20(L§,,)). In [27] we prove that Z(L§,,) = Zo(L§,,)-

Theorem 5.4. (Theorem 1.3(2)) Q(( S,n)Ue), n > 2, is a division algebra and a central
simple algebra of PI degree [Nn=1)=m

Proof. The center of ( gm)UE contains Z(Lg ), so the finite dimensionality of Q(Lj ,,) over
Q(Z(L5,,)) implies the finite dimensionality of Q((ﬁan)U‘) over its center. Since it has no
non-zero divisors, this proves Q((ﬁan)Uf) is a division algebra.

Now denote by A0, - O%" n > 2, the n-fold coproduct, ie. AP .= A, the standard
coproduct of O, and A™ := (id @ A) o A"V for n > 3. Identifying L5, with OF" as a
vector space, we consider A™ as a map A™: L6141 — LG, It is an algebra morphism ([28],
Proposition 6.18), injective because (5®("*1) ® id)A(") = id. Then it extends uniquely to
the fraction algebra Q(Lj ;). As noted above QL) = Q(Z0(£51)) ®z(c5,) L£o,1- Since
Z0(L51) = 20(Oc) is a Hopf subalgebra of O, ([43], Proposition 6.4), A™ maps Z0(L5,) to
Zo(L£51)®". Then, extending the scalars of AP (Q( 0.1)) by the field Q(Z2(L,,)), consider
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the algebra
Qz(AM(L51)) = Q(Z(L5,0)) @am (zy(c5 ) A™ (L6,1)
= Q(Z(L5)) OAM (Q(20(L5 ) A(n)(Q(ﬁg,l))
= (QZ(£50)) @amazaics,yn A (QE(L51))))
DA (Q(2(£5,))) AM(Q(L 1))

By Proposition 5.2, A™ (Q( 1)) is a A(")(Q(Z(ﬁal)))—central simple algebra. The left
(n)

factor is a field, so Qz(AY(L{ 1)) is a central simple algebra over it (see eg. [84], Theorem
1.7.27, or [91], Lemma 4.9). Note that the left factor can also be written as

QZ(L5,0) = QUZ(Ld0) By A (Z(L51))

for it contains Q(Z(ﬁgyn)), it is contained in its fraction field, and Q(Z( 0.n)) is a field
because Z(Lj ;) is finite over Zo(Lg ;) and has no non trivial zero divisors. Note that

[QIZ(£5,)) : Q(2(L5,))] = 1™

We proved in Proposition 6.19 of [28] that the ring (Eén)UA is the centralizer of A (L’él)

in Eén; the same arguments show that (£g7n)U" is the centralizer of A™( 0.1) in £§,,. So
the algebra

QULEMT) = Q(2(Lh)) ®z(c5,,) (Lo0)""
is the centralizer of Qz(A™ (£5.1)) in Q(LG,,). Since the latter is simple, we can apply the

double centralizer theorem (see eg. [84], Theorem 7.1. 9, or [91], Theorem 7.1): Q(( Bm)UE)
is a simple algebra, we have

[QULE)Y) - QE(L )] =

QLR QUL s
[Qz(AM(L5,)) : Q(Z(L§,))] ’

and the centralizer of Q(( B?R)Uf) is Qz(AM( 0.1))- In particular Q(( an)Ue) has center
Q(( B’n)Uﬁ) N QZ(A(”)(Eal)), which is easily shown to be Q(Z(L§ n))- It then follows

o QUL : QUE(LS))
QU™ Q2 = 5 e 0z ()
(

_ l2nN—(2N+m) —m — l2(N n—1)— m)

Therefore Q((L§ )UE) is a central simple algebra of PI degree [N(n—1)—m O

6. APPENDIX

6.1. Low and Up crystal structures in the s/(2) case. Let k € N, and denote by V}, the
simple U;d(sl(Q)) module of dimension k + 1. It has a basis v, ..., v such that:

Kuvj = qk_2jvj,

Foj = [j + 1]q’l)j+1 if j <k, Fop =0,

Ewj=[k—j+1]gvj_1if j >0, E.vg = 0.
This basis defines the full A-sublattice 4Vj, which is left invariant by U**, and we have:

(119) F(a).vj = [ J —ga ] vj+a,E(a).vj = [ k_‘;+a } Vj—q,a > 0.
q q
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The action of the Kashiwara operator é, f on Vj, are given by:

(120) f(’Uj) = Vj+1, é(’[)j) = Vj—-1-
The crystal basis (£, B!°?) at ¢ = 0 is formed by the Ag-sublattice £!°* generated by

Vg, ..., U, and B by the images @y, ..., U; of these vectors in £V /qLlov.
The bilinear form (, )5 defined by (51) is easily computed:

(121) <Ui7vj>k = <F( ).’UO,F(]).’U()>k = <’U0,E( )F(j).v0>k = [ i :| (51‘,]'.
q
k
By definition AV, * = {v € Vi, (v, aVi)r C A} = EBAU;.LP where
j=0

—1
’U;Lp = |: k :| ’Uj.
J q

The upper crystal basis (L, BY?) at ¢ = 0 is formed by the Ap-sublattice L*? generated by
vy”, ..., vF, and Bl°Y by the images vy”, ..., 0," of these vectors in L' /qL"P.
Using that [n], € ¢' ™" + A, we obtain

[ k :| € qk2—kj —|—.A0.
J q

As a result we get ﬁ?p =M _k2ﬁj, which is exactly the relation (53) relating the low and up
crystal basis, with A\ = kwy, p = (k — 27)w;.
6.2. Quantum Weyl group. We recall some of the formulas of [31]. Let e,(2) be the formal
power series in z with coefficients in C(q) defined by:
400 p
(122) eq(z) =) o
n=0
We first consider the case of g = sl(2). As explained in [28], Section 3, the Cartan element
H € g defines an element of U,(sl(2)). Viewed as elements of U, we have L = ¢'/2. The
series © = ¢T®H/2 defines an element of Uq(sl(2))®2, its image under multiplication being
qH2/2. The R-matrix can be expressed as R = OR where R = eq-1((q— ¢ HYE®F) is a well

defined element of [U?Z. Consider the Lusztig [72] braid group automorphism of U,(sl(2)),
defined by

(123) T(L)=L"YT(E)=-FK ', T(F) = —-KE.
For every x € U,(sl(2)) it satisfies:
(124) A(T(z)) = R"HT @ T)(A(z))R.
Define the quantum Weyl group element w € Ugy(sl(2)) by Saito’s formula [86]:
(125) i = ey (F)g 1 e i (—E)g~ T e o (F)g~ 12,
For every x € U,(sl(2)) it satisfies:
(126) T(x) = bz~ ?,
(127) A(D) = R Y b @ w),
2

(128) @? = ¢*/%¢,
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where 0 € U,(sl(2)) is the ribbon element, and § € Uy(sl(2)) is the central group element
whose value on the type 1 simple module Vj of U;d(sl(Q)) of dimension k + 1 is the scalar
endomorphism (—1)¥idy; .

In order to compare our setting to the one of [43] we need an explicit formula of w. Using
(123), (126) and (128), we obtain:

(129) woj = (=1 g Ik 0=k
In [43] another quantum Weyl group element w is defined. It is dual to the Vaksman-
Soibelman functional t: Oy(SLa) — C(q) of [89, 88|, that is, t(a) = (o, w) for all a €

O4(SLs2). By comparing (129) with the formulas defining the action of ¢ in Section 1.7 of
[43], we find

w=E{wk
and the basis vectors w? of [43], where p € (1/2)N and r € {—p,—p+1,...,p — 1,p}, are
related to the vectors v; above as follows:

vj = Ajwy
where k =2p, j=p—r, Ao=1, \1 = [k]qfky and
A= (k]! JUHD=ik+2) s g

k-G -2 |
Explicit formulas of the evaluation of ¢ on basis vectors of O,(SL2) can be computed. We
get:
P

(130) @™ 0" % dP) = Smpq ™ [J(1— a7,
=1
~ p '
(131) H@" x &7 % d*P) = (_1)n5m7pq7n(p+1) (1- q,Ql)
=1
where
(132) d:ajl;:qué:qflc,ci:d

and as usual a, b, ¢, d are the standard generators of O,(SLs), ie. the matrix coefficients in the
basis of weight vectors vg, v1 of the 2-dimensional irreducible representation Vi of Uy,(sl(2))
such that K.vyg = qug and v; = F.vg. Here we have introduced the generators a,... ,J to
facilitate the comparison with the formulas in [43]; these generators come naturally in their
setup because they use different generators E; and F; of U,(g), which in our notations can
be written respectively as K Z-_lEi and F;K;.

The formulas (130)-(131) can be shown by two independent methods. The first uses a
definition of t as a GNN S state associated to an infinite dimensional representation of Oy(SLs),

as recalled in Section 1.6 of [43]. The second is to write eg.
(133) @™ * 0™ x d*P) = <&®m @ b®" @ d®P, A(m+n+P—1>(w)>

and to use explicit expressions of A(m+7+r=1) (w) when represented on Vl®(m+n+p )

one can check that

(134) AM (@) = (A(”‘l) ®id> (ﬁz—l) ((A("‘z) ®id) (fz—l) ®id)
. ((A ® id) (ﬁa—l) ® id®("_3)) (E—l ® id®(”_2)> %",

. In general
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By (129) or (130)-(131) we see that w (or w) and ¢ are well-defined on the integral forms,
w € Up, t: Oa(SLy) — A.

We now consider the case where g is of rank m > 2. To each simple root «;, 1 < i < m,
is associated the subalgebra of U, generated by Ei,Fi,Li,Lfl. It is a copy of Uy, (sl(2)),
where ¢; = ¢%. Let w; be the corresponding quantum Weyl group element in Uqy = Uy(g),
defined by Saito’s formula (125), replacing H, E, F by H;, E; and F;. Also, denote by
vi: Oy = Og,(SL2) the projection map dual to the inclusion Uy, (sl(2)) ®c(q,) (C(q) — U,
and put t; = t ov;. Let w; be the corresponding quantum Weyl group element in Uy, ie.
ti(o) = (o, wy) for all € Oy. On integral forms they yield well-defined elements w;, w; € Ur
and t;: Og — A (see [43], Proposition 5.1, and [74] for a different construction). They satisfy
the defining relations of the braid group B(g) of g [67]:

wﬂf)j’lﬂi = ’Lf)j’lf}iﬁ}j if aijaji =1
(wzlb])k = (@le)k for k = 1,2,3 if aijaji == 0,2,3

and similarly by replacing w; with w;, or with ¢; (see [88] for the latter). The Weyl group
W =W(g) = N(T¢)/T¢ is generated by the reflexions s; associated to the simple roots «;.
Denote by n; € N(Tg) a representative of s;. Let w € W and denote by w = s;, ...s;,
a reduced expression. Because of the braid group relations the elements w = w, ... %0;,,
W= Wy W, and the functional t,, = t;, ...t;, do not depend on the choice of reduced
expression. The Lusztig [72] braid group automorphism T,,: I' — I' associated to w satisfies
(see [43]):

Tw(z) = v, xeT,
Let wg be the longest element in W. We have
(135) A(ip) = B~ (o ® o)

where as usual R = OR.

6.3. Regular action on O.. The following result is proved in Section 1.10 of [43]. For
completeness let us give a (different) proof. Recall from (87) that we may identify Z,(O,)
with O(G).

Proposition 6.1. For every f € Zy(O,), g € O, we have

(136) ti(f) = f(ni)

(137) ti(f > g) =ti(f)ti(g)-

Proof. 1t is sufficient to prove the results for SLs because v; : O — O(SLs) is a morphism
of Hopf algebras and v;(Zo(O¢)) C Z0(O(SL2)). In this case (136) can be proved by using
(130)-(131), evaluating ¢ on basis elements of Zy(O(SL2)) as is done in Lemma 1.5 (a) of
[43]. Such a basis is formed by monomials like in (130)-(131), with all exponents divisible by
[; then for instance . }

t(&*ml * b*nl *d*pl) — p,06m,0 — mendp(n)

where a, . ..,d are the generators of O(G) = O1(G) corresponding to a,...,d, and we take

_ 01

"m0
as representative of the reflexion s generating the Weyl group W (sl(2)). Here is an alternative
proof of (136): (137) shows that ¢ is a homomorphism on Zy(O((SLz)), so by proving (137)

at first one is reduced to check (136) on the generators a*,...,d*", which is easy by means
of (133) and (135).
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We provide a proof of (137) that we find more conceptual than the one in Lemma 1.5 (b)
of [43] (which uses again (130)-(131)). As above let us denote w = £&wK. For any f,g € O,
we have

=(f®g) (ﬁ_l(w ® w))

- Z e ((ﬁ_l)(1)> fey(w) g ((ﬁ_l)(z)w>
(R=1),(f)

= () g ((fy @ id) (R ).
0

Assume now f € Zy(O((SL2)). Since Zo(O(SL2)) is a Hopf subalgebra of O(SL2) we have
fa) € 20(Oc(SL2)). From Theorem 2.24 (2) we deduce

(foy ®id)(R™Y) € Ue(n_) N Zo(U).
Denote by z this element. Note that from its expression we have €(z) = €(f(1)). Now

g9(zw) = >, 9(1)(2)9(2)(w), but g1y is a linear combination of matrix elements of I'-modules,
on which Zo(U%) acts by the trivial character. Therefore

g(zw) = Z(g) 6(2)9(1)(1>9(2) (w) = e(2)g(w) = €(f(1))g(m)
and eventually
t(fxg)=>_ foywe(fayglw) = t(f)tg).
()
This concludes the proof. |

For the sake of completeness, let us show how this result implies:

Proof of Proposition 2.25 (ie. Proposition 7.1 of [43]). We have f <t; = Z(f) ti(f)) fea)s
f € 20(O¢). Since Zp(0O) is a Hopf subalgebra of O, f2) € Z0(Oc) and therefore the maps
<ti: Oc — O preserve Zo(Oc). Moreover, (f <t;)(a) =3 ) f1)(ni)fi2)(a) = f(nia), a € G,
by (136).

It remains to show that (f xa) <t; = (f <t;)(a <t;) for every f € Zo(O¢), a € O.. We
have

(fxg)<ti= 2 pug ti (F*9))) (F*9)2) = Z ti (fa) * 901)) fo) * 92
(f)(9)
= Z t (vi(fayvilgn))) feo) * 92
(£)(9)
(138) = t (vi(fay)) t(
(£),(9)

>

):(g

vi(g9a))) fi2) * 92)

using that v; is a homomorphism in the third equality, and (137) in the last one. The result
is just (f < ti)(g < ti). O
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