N
N

N

HAL

open science

Adapting TDL to Provide Testing Support for
Executable DSLs.

Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé

» To cite this version:

Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé. Adapting TDL to Provide Test-
ing Support for Executable DSLs.. The Journal of Object Technology, 2021, 20 (3), pp.6:1-15.

10.5381/jot.2021.20.3.a6 . hal-03265196

HAL Id: hal-03265196
https://hal.science/hal-03265196

Submitted on 19 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03265196
https://hal.archives-ouvertes.fr

Journal of Object Technology | MANUAL

I I JOURNAL OF
OBJECT TECHNOLOGY

Adapting TDL to Provide Testing Support for
Executable DSLs

Faezeh Khorram*, Erwan Bousse’, Jean-Marie Mottu®™, and Gerson Sunyé!
*IMT Atlantique, LS2N, Nantes, France
*Université de Nantes, LS2N, Nantes, France

ABSTRACT Testing is one of the most prevalent and successful verification and validation (V&V) techniques used in the field of
software engineering. While a large number of testing frameworks exist for general-purpose programming languages, providing
testing facilities for any given executable Domain Specific Language (xDSL) remains a costly and challenging task. In this
context, a standard such as the Test Description Language (TDL) appears as a suitable foundation for the definition of a generic
testing approach for xDSLs. Unfortunately, TDL does not provide the domain-specific concepts required to write test cases for
a given xDSL and does not include any model execution facilities. Our contribution addresses these limitations and thereby
provides a fully generic testing approach for xDSLs based on TDL. Required TDL domain-specific concepts are automatically
inferred from the xDSL definition through a model transformation into TDL. Model execution facilities are provided through the
definition of a refined operational semantics for TDL. The application of our approach on 5 different xDSLs shows its generality

and that it can successfully be used for testing executable models.

KEYWORDS Executable Domain-Specific Language, Executable models, Testing, Test Description Language

1. Introduction

A large portion of DSLs are proposed for describing the dy-
namic aspects of systems as behavioral models (e. g., (Object
Management Group 2013b; Bendraou et al. 2007; OASIS 2007;
Fischer et al. 2000)). Each time a new DSL is engineered, a com-
plete modeling environment has to be provided for its users (i. e.,
domain experts), so they can use the DSL in practice. When the
environment offers dynamic verification and validation (V&V)
techniques, the domain expert can also analyze the behavioral
models as early as possible to ensure the correctness of the sys-
tem’s behavior. As dynamic V&V techniques rely on the ability
to execute models, their application is reserved to DSLs with
execution semantics, such as DSLs with translational semantics
(i. e., compilation) or operational semantics (i. e., interpretation).
In this paper, we focus on DSLs with operational semantics,

JOT reference format:

Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, and Gerson Sunyé.
Adapting TDL to Provide Testing Support for Executable DSLs. Journal of
Object Technology. Vol. vv, No. nn, yyyy. Licensed under Attribution -
NonCommercial - No Derivatives 4.0 International (CC BY-NC-ND 4.0)
http://dx.doi.org/10.5381/jot.yyyy.vv.nn.aa

referred to as executable DSLs (xDSLs).

In the field of software engineering, probably the most preva-
lent dynamic V&V technique is festing, which involves exe-
cuting systems and observing whether they act as expected.
Accordingly, testing frameworks have been built for both a wide
range of General-Purpose Languages (GPLs) (e. g. JUnit for
Java) and specific xDSLs (Mijatov et al. 2015; Kos et al. 2016;
Liibke & van Lessen 2017; Igbal et al. 2019a). A testing frame-
work must at least include both a way to write test cases, and
a way to execute such test cases in unison with the programs
or models under test. Unfortunately, providing such complex
testing facilities for a given new xDSL remains an expensive
and error-prone task.

Therefore, in a context where the engineering of new xDSLs
is recurrent, a desirable solution would be an approach applica-
ble to a wide range of xDSLs, i.e. a generic testing approach
for xDSLs. This raises at least three interconnected challenges.
First, to allow the domain expert to write test cases, a testing
language must be defined, generated, or identified. In partic-
ular, this testing language must somehow allow the domain
expert to use domain concepts to define how a model under test

An AITO publication

http://dx.doi.org/10.5381/jot.yyyy.vv.nn.aa

should be executed, and what results should be expected from
the execution. Second, the execution semantics of this testing
language must somehow be connected to the execution seman-
tics of the considered xDSL, for the testing language to demand
the execution of models as needed. Third, this testing language
must provide facilities to analyze the runtime state of the tested
model, and to compare this state with the expected one.

A recent effort of the European Telecommunications Stan-
dards Institute (ETSI) led to the creation of the Test Description
Language (TDL), a standardized language for the specification
of test descriptions (Makedonski et al. 2019). Since TDL is not
specific to any specific GPL or xXDSL, it represents an interest-
ing candidate for generically writing test cases for executable
models. In addition, TDL was designed as a simple language
for testers lacking programming knowledge, making it a good
fit for domain experts working on models. Unfortunately, TDL
fails to fully address the three aforementioned challenges: (1)
because of its genericity, TDL requires the domain expert to
first define the required domain-specific concepts, before being
able to write test cases; (2) the TDL standard does not provide
any clear way to make TDL test cases able to execute models
conforming to a given xDSL; (3) the TDL standard relies on a
simple representation of the expected observable behavior of
the system under test, and does not provide any efficient way to
analyze an arbitrarily complex runtime state of a tested model.

This paper addresses these limitations and thereby proposes
a novel generic testing approach for xDSLs. This approach uses
TDL as a testing language and relies on three main contribu-
tions. First, we provide a model transformation to automatically
generate a TDL library—i. e. all the TDL boilerplate code that
the domain expert would otherwise write by hand—from the
definition of an xDSL. Such generated TDL library can be used
by the domain expert to write test cases for models conform-
ing to the considered xDSL. This transformation relies on a
mapping between the concepts of the Ecore metamodeling lan-
guage (Steinberg et al. 2008) and the concepts of TDL. Second,
we provide an operational semantics for TDL, adapted to the
testing of executable models. To be compatible with a wide
range of diverse xDSLs, this operational semantics for TDL is
not coupled to any specific xDSL, nor to any specific metapro-
gramming approach used to define the considered xDSL. Third,
the approach provides two different methods to interrogate the
state of the runtime model: one relying on model comparison
and the second relying on an OCL interpreter. This enables the
definition of oracles for executable models in TDL test cases.

We implemented the presented approach for the GEMOC
Studio, a language and modeling workbench for xDSLs (Bousse
et al. 2016). We conducted an evaluation to assess the genericity
aspect of our proposed approach considering the diversity of xD-
SLs. More precisely, we aimed to answer the following research
questions: RQ#1 Does the approach provide testing facilities
for xDSLs in which their abstract syntax is designed for different
domains? RQ#2 Does the approach provide testing facilities
for xDSLs in which their operational semantics is implemented
using different metaprogramming approaches? To this end, we
applied the approach on five xXDSLs covering various domains
and implemented with different metaprogramming approaches.

2 Khorram et al.

The evaluation results demonstrate that the genericity aspect is
successfully realized.

The rest of the paper is organized as follows: Section 2
provides the background and presents a running example for
the paper. Section 3 describes an overview of our proposed
approach, and the details for its main components are given in
Sections 4 and 5. The tool support for the approach is described
in Section 6. In Section 7, the method used for the evaluation
along with its result is illustrated. The previous related work
is presented in Section 8§ and the paper concludes in 9 with a
discussion on future work.

2. Background and Motivation

In this section, we first present the executable DSLs considered
in the scope of the approach and give an overview of the Test
Description Language (TDL). Then, we further motivate the
proposed approach through a running example.

2.1. Executable DSLs (xDSLs)

In the present paper, we focus on executable DSLs (xDSLs),
which are composed of two main parts: an abstract syntax'
and an operational semantics. The abstract syntax defines the
domain concepts while the operational semantics (i. e. the inter-
preter) specifies how the runtime state of a conforming model
under execution varies over time. More specifically, we consider
the abstract syntax of an xDSL to be defined as a metamodel
using the Ecore metamodeling language (Steinberg et al. 2008).
A metamodel is commonly made of a set of metaclasses, each
containing a set of features. A feature can be either an attribute
typed by a primitive type or a reference to another metaclass.

The operational semantics of an xDSL is composed of two
parts: the definition of what are the possible runtime states of a
model under execution and the set of execution rules that define
how such a runtime state changes over time. For a given xDSL,
we consider that the definition of the possible runtime states
is a set of dynamic features directly added to the metamodel.
During the execution of a model, only the parts defined by these
dynamic features may be altered by the execution rules. To
distinguish the dynamic features from other ones, we assume
they each have an annotation labeled ‘dynamic’.

Figure 1 illustrates an example of an executable Finite State
Machine DSL (later referred to as XFSM). An xFSM model is
an automaton that consumes a string and produces a new string
based on the transitions that were fired to parse the consumed
string. The abstract syntax of xFSM is defined as a metamodel
(part a in Figure 1). The root element of an xXFSM model is
a StateMachine composed of a set of State and Transition
elements. The initialState of the StateMachine specifies the
starting state. Each Transition object connects two states called
source and target. A transition may also have an input string
that tells which characters are consumed when this transition is
fired, and an output string that tells what characters are produced
when this transition is fired. The elements written in bold are

! The proposed approach is agnostic of the concrete syntax of an xDSL, therefore
this part is left out of the scope of the paper.

fsm (|
— % NamedElement

T name : EString

T

[0..1] curr
- E StateMachine
[1.1] initialState
= unprocessedString : EString
[1.1] owningFSM | = consumedString : EString
= producedString : EString
[0.*] ownediTransitions
[0.*] ownedStates
‘ H State [1.1] source [0.*] outgoingTransitions E Transition

[0.*] incomingTransitions

[1.1] target

StateMachine.setlnitialValues();
State.step(String inputString);
Transition.fire();

input : EString
output : EString

imports

Execution rules

Figure 1 Executable Finite State Machine DSL (xFSM)

the dynamic features that define the possible runtime states of
an xFSM model.

We consider that the operational semantics of xXFSM com-
prises three execution rules (part b in Figure 1). These execution
rules can be written using any language or framework able to
perform in-line model transformations. For example, Listing |
shows the xXFSM execution rules implemented using the Action
Language for EMF (ALE) (Leduc et al. 2017). ALE provides
three annotations to decorate methods: @init to designate the
method that must be called to initialize the dynamic state of
the model before its execution, @main to designate the method
that must be called to start the execution of the model, and
@step to designate operations that perform observable execu-
tion steps. The setInitialValues rule sets the initial values
of the dynamic features of the model, namely the currentState
(set to the initialState), the unprocessedString (set to the in-
put string given to the model), the consumedString and the
producedString (both set to empty strings) (lines 4-7). The
model execution starts wtih the main() method (lines 9—14)
which calls the step(String inputString) rule on the cur-
rentState with the unprocessedString as its parameter (line 11)
while the unprocessedString is not empty (line 10). The
step(String inputString) rule checks the outgoingTran-
sitions of the called State to find the one whose input is equal
to the first character of the rule parameter (i. e., the inputString),
and then calls the fire rule on that valid transition (lines 18-23).
The fire rule is responsible of changing the model state (i. e.,
the bold elements in part a of Figure 1). To do so, it sets the cur-
rentState to the target of the fired transition, removes the first
character of the unprocessedString, and concatenates the input
and the output of the fired transition to the end of the consumed-
String and the producedString, respectively (lines 27-40).

Figure 3 shows an example of a model conforming to XFSM.
It describes a StateMachine designed to perform a bit shifting
operation on a sequence of bits (i. e., the unprocessedString).
The execution of the model starts from SO (i. e., the initialState)
and stops when the bit sequence is shifted. Note that there is

40

4

behavior fsm;
open class StateMachine {
Q@init
def void setInitialValues (String input) {
self.currentState := self.initialState;
self .unprocessedString := input;
}
@main
def void main() {
while (self.unprocessedString.size() > 0) {
self.currentState.step(
self .unprocessedString);
}
}
}
open class State {
@step
def void step(String inputString) {
Sequence (fsm::Transition) validTrans:=
self .outgoingTransitions->select (
t | inputString.startsWith(t.input));
validTrans->at (1) .fire () ;
}
}
open class Transition {
@step
def void fire() {
StateMachine fsm := self.source.owningFSM;
fsm.currentState := self.target;
fsm.producedString += self.output;
fsm.consummedString += self.input;
if (self.input.size()+1 <=
fsm.unprocessedString.size()) {
fsm.unprocessedString :=
fsm.unprocessedString
.substring(self.input.size()+1);
}else {
fsm.unprocessedString := ’’;
}
}
}

Listing 1 The operational semantics of the xXFSM DSL
implemented using the ALE language

a defect in this model because the state S1 cannot process an
input bit with a value of 1. A possible fix would be a cyclic
transition for S1 whose input and output properties are equal
to 1. We aim to be able to detect this defect with a test suite
written and executed using the approach proposed in this paper.

2.2. The Test Description Language (TDL)

The Test Description Language (TDL) is a DSL for describing
test cases introduced by the European Telecommunications Stan-
dards Institute (ETSI). The main objective of TDL is to provide
a common perception of test cases for different stakeholders,
through filling the gap between the abstract test requirements
described by non-technical people and the complex code of exe-
cutable test cases. TDL supports the high-level description of
test objectives derived from system requirements, the definition
of test cases refining these objectives, and also the presentation
of the test execution results (Makedonski et al. 2019). The TDL
standard includes both, a loose semantics written in natural
language and a precise translational semantics using the Test-

Adapting TDL to Provide Testing Support for Executable DSLs 3

S1_to_S2
0/1

S2_to_S1
1/0

S0_to_S1
1/0

SO0_to_S2
0/0

Figure 3 A sample xFSM model for performing bit shifting
operation on a sequence of bits. It has a defect since S1 can-
not process an input bit with a value of 1

ing and Test Control Notation version 3 (TTCN-3) as a target
language—TTCN-3 being also standardized by the ETSI. The
ETSI also provides a reference implementation of TDL built
atop the Eclipse Modeling Framework (EMF) and available as
an open-source project”. Its current implementation includes
a standard abstract syntax, textual and graphical concrete syn-
taxes, as well as tools for model validation, transformation to
TTCN-3, translation to XMI format, and automatic documenta-
tion generation in Word.

Listing 2 shows an example of a TDL model for testing the
bit shifting FSM shown in Figure 3. It contains all the essential
elements for writing a simple test case; they conform to the
TDL metamodel briefly presented in Figure 2. A Package is
the root element of a TDL model, and thus is the container of
all other elements. Using various DataType elements, a tester
can define the data types required for the definition of test data
that will be exchanged between the test suite (later referred to as
the fest system) and the System Under Test (SUT). For instance
for testing the bit shifting FSM, the tester defines a data type

% https://labs.etsi.org/rep/top/ide

£ Package [0.%] packagedElement |f PackageableEIemeni

7

I

named EString (line 2) and another named StateMachine
(lines 3—7). StateMachine is a StructuredDataType contain-
ing Members of different types, such as unprocessedString
and producedString of type EString.

A TestConfiguration element specifies how the test system
will communicate with the SUT. It contains at least one Tester
and exactly one SUT component instances, with connections
between their gates. Each component instance has a Com-
ponentType, which specifies the component communication
channels using the so-called gates. Accordingly, a Compo-
nentType contains at least one gate that is instantiated from a
GateType. A Gate Type specifies the kinds of data that can
be exchanged through the gates instantiated from it. For ex-
ample in Listing 2, the FSMGate Gate Type accepts data of
type StateMachine (line 9). There is one ComponentType
named FSMComponent (lines 10-12), that has one gate instance
named g of type FSMGate. The Test Configuration named
FSMConfiguration (lines 13—17) has one Tester component
instance (FSMTester in line 14), one SUT (FSM_SUT in line 15),
and connections between their gates (line 16). This configura-
tion means the FSMTester and the FSM_SUT can exchange data
of type StateMachine through their g gates.

Test data can be defined through instantiation of DataType
elements. This concerns both the input data that will be sent
to the SUT during test case execution, and the expected output
data that will be used in assertions (i. €. to define the oracle of
the test case). In the TDL model shown in Listing 2, the only
test data is bitShifting (line 19).

A test case is defined using a TestDescription element,
which uses one of the previously defined instances of Test-
Configuration, and contains a sequence of Behavior ele-
ments. At the moment, there are twenty types of Behav-
ior elements in TDL, such as Message, TimeOut, Alter-
nativeBehavior, BoundedLoopBehavior, etc. For example
in Listing 2, the bitShiftingTest Test Description uses

I]

& TestDescription| (1, 1] testConfiguration ‘b TestConfigurationl ‘U ComponentType{ E GateType | [1-1dataType ' & pataType | [1.1] dataType

1..1]|behavi 1.1
[1.1]}behavior [1.*] copnection (1-Thtype

E Behaviour E Connection [1.%] gatel

[2.*] componentinstance

H AtomicBehaviou

[aY

[1.1] type ’——‘

Pstance| 5 Gatelnstance ‘ & SimpleDataType | ‘ B StructuredDataTypel

[1.1]|gate [0.*] member

‘ £ Componentinstance

E Interaction

[1..1] component

i

[2..2] endPoint

E GateReference

7 role : ComponentinstanceRole = SUT’ = Mewbes
ComponentinstanceRol

= SUT
= Tester

H Message [1.1] targetGate
[1.1] sourceGate
" argument : DataUse

Figure 2 An Excerpt of the TDL Metamodel (ETSI ES 203 119-1 2020)

4 Khorram et al.

Package FSMTest{
Type EString;
Type StateMachine(
_name of type EString,
unprocessedString of type EString,
producedString of type EString
)

Gate Type FSMGate accepts StateMachine;
Component Type FSMComponent having {
gate g of type FSMGate;

Test Configuration FSMConfiguration {
create Tester FSMTester of type FSMComponent;
create SUT FSM_SUT of type FSMComponent;
connect FSMTester.g to FSM_SUT.g;

}

StateMachine bitShifting (_name="BitShifting");
// Start of the actual test

Test Description bitShiftingTest uses
configuration FSMConfiguration {

case

// Sending test input data
FSMTester.g sends bitShifting
(unprocessedString="10010110") to FSM_SUT.g;
// Oracle with expected output data
FSM_SUT.g sends bitShifting
(producedString="01001011") to FSMTester.g;
}
}
Listing 2 An example of a TDL model with a test case for the

bit shifting FSM

the FSMConf iguration and contains two Message elements
(lines 22-31). A Message specifies a sending of data through
the connected gates of the tester and SUT components.When
the sender of a Message is the Tester, the sent data corresponds
to test input data. But when the SUT is the sender, the Message
is actually an assertion that the SUT should send back said Mes-
sage—and the data it contains. In Listing 2, the first message
specifies the test input data—which is an FSM in a runtime state
where its unprocessedString is set as "10010110" (lines 26—
27)—and the second message asserts that the producedString
of the FSM is equal to "01001011" (lines 29-30). Note that, in
theory, if we were to execute this test case, it would not pass
since the bitShifting FSM (. e., the model under test) cannot
process two consecutive 1 bits. This test case should therefore
be able to detect this defect.

2.3. Limitations of TDL and Motivation

The presented example shows that TDL can be used to suc-
cessfully describe test cases for an executable model (xModel).
However, producing a test case for an xModel such as the one
presented in Listing 2, the domain expert faces the three limita-
tions of TDL already identified in the introduction.

First, all the required data types (e. g. lines 2—7) and test
configurations (e. g. lines 13—17) have to be manually defined
by the domain expert using the xDSL definition (i. e. the abstract
syntax and the operational semantics). Yet, not only the domain

expert is unlikely to be knowledgeable of the internals of the
xDSL, but this endeavor is also costly and error-prone.

Second, we have no actual way to execute the test case from
Listing 2. While a translational semantics using TTCN-3 as a
target language exists for TDL, this semantics is only partial,
and mainly aims to manage test cases for software systems com-
municating through common protocols (TCP, UDP, TELNET,
SQL, HTTP, etc.). Therefore, a new execution semantics for
TDL adapted to the testing of executable models is required to
execute the TDL test case shown in Listing 2.

Third, the expressiveness of TDL is rather limited when it
comes to analyzing the content of the runtime state of the tested
model and thus when it comes to writing assertions. Since tested
models may be large, their runtime states may be numerous and
complex. Therefore, a proper way to query their contents from
a TDL test case appears necessary.

In the next sections, we present our approach to provide
testing facilities to xDSLs using TDL. We address all aforemen-
tioned limitations with, respectively, a generator to automati-
cally produce the required TDL data types and test configura-
tions, an operational semantics for TDL adapted to the testing
of executable models, and a way to use queries written using
the Object Constraint Language (OCL) in TDL test cases; so
the query validation result can be used as the actual output to be
asserted with the expected output specified in the test case.

3. Approach Overview

Figure 4 presents an overview of the proposed approach. At
the top left corner, we assume that an xXDSL was implemented
by a language engineer according to the definitions given in
Section 2.1. At the center, the domain expert uses the provided
xDSL to define an executable model and wishes to write TDL
test cases for this model.

At the top is shown the first component of the approach,
namely the TDL Library Generator. Its purpose is to automati-
cally generate a domain-specific TDL Library that the domain
expert can then use to conveniently write test cases for exe-
cutable models conforming to the xDSL. This library provides
all the data types required for the specification of test data, a set
of default test configurations, some elements for enabling TDL
test cases to request the execution of the model under test, and
some elements for writing OCL queries in the TDL test cases.
As shown in Figure 4, the library generator requires as input
data the definition of the xDSL. In particular, the abstract syntax
and the part of the operational semantics defining the possible
runtime states of the conforming models.

At the bottom-right corner is shown the second component
of the approach, namely the TDL Interpreter. This interpreter
is based on an operational semantics for TDL, adapted to the
testing of executable models. For this purpose, this operational
semantics is connected to two external components: the Exe-
cution Engine and the Query Evaluator. We assume that the
Execution Engine exists and provides services to trigger the
execution of a model conforming to an xDSL. In particular, that
this engine is able to load a model, load an xDSL, and execute
the model using the operational semantics of the xDSL. Here,

Adapting TDL to Provide Testing Support for Executable DSLs 5

Executable DSL (xDSL)
| TDL Model
i defines Operathnal _____ | Abstract ; > oy TDL Library > Domain Spe0|f|c
Semantics |imports| Syntax % Generator TDL Library
A) i A conforms to Test Description
Language 1 : 4 imoorts }TTTTTTTC > Language (TDL)
Engineer E conforms to = Abstract Syntax
: Executable |_____________ .- specificto i | Test
: Cases
uses Model N //7
! K N defines. defines
: s \i/ A
' - N executes
! executes evaluates :
' ‘ B Domain Expert '
: OCL Query depends on
4] @ || eIl Model
+ % Execution +p Query Query result +» TDL <
.+ Engine ' Evaluator 4 »| ¥ Interpreter aatalfiow

. 4
N Procedure
_ defines

<

Model execution commands

Figure 4 Overview of the Proposed Approach

the Execution Engine is used by the TDL Interpreter to start
the execution of a model, to get the content of the model, or to
set the model in a specific runtime state. We also assume that
the Query Evaluator can evaluate Object Constraint Language
(OCL) queries. The Query Evaluator is used by the TDL In-
terpreter to evaluate queries written inside TDL test cases, so
the query validation result can be used as part of the oracle of a
TDL test case.

With everything in place, the domain expert can use the
generated domain-specific TDL library to write test cases, and
can then use the TDL interpreter to execute these test cases. We
provide a detailed explanation of the TDL Library Generator
and the TDL Interpreter in Sections 4 and 5.

4. TDL Library Generator

This section presents the TDL Library Generator, whose role
is to produce a TDL library specific to a given xDSL. We first
present how the component works and then explain what are
the contents of the generated TDL library. Afterward, we show
how such a library can be used by the tester (i. e., the domain
expert) to write test cases for models conforming to the xDSL.

4.1. Description of the Generator Logic

The output of the generator is a TDL library providing a set
of TDL elements for the tester. The first set of generated TDL
elements are the required data types for the definition of test data.
These data types are provided through a model transformation
which uses the Ecore metamodel of the xDSL as input and
produces a set of xDSL-specific TDL data types as output. The
second set of generated TDL elements are necessary to enable
the TDL test cases to request the execution of the model under
test, to write OCL queries in the TDL test cases, and to configure
the TDL test cases for their execution. These elements are
provided by a code generator which only requires the name of
the xDSL as input.

6 Khorram et al.

4.2. Description of the Generated TDL Library

Given an xDSL, three TDL packages are produced by the gen-
erator: the xDSL-Specific Types package, the common package,
and the Test Configuration package.

xDSL-Specific Types Package As discussed in Section 2.2,
to use TDL for a specific domain, all data types required for
the specification of test data have to be provided to the tester.
Yet, in the context of testing executable models, we can observe
that these data types are in fact already defined as part of the
definition of the considered xDSL, both in the abstract syntax
and in the definition of the possible runtime states in the oper-
ational semantics. It is therefore possible to infer the required
TDL data types from this information.

As explained in Section 2.1, we consider that the Ecore meta-
model of the xDSL includes both the abstract syntax and the
definition of the possible runtime states of conforming executed
models. More precisely, runtime states are defined as additional
metamodel features decorated with a "dynamic" annotation.
Accordingly, we rely on a model transformation from Ecore to
TDL to automatically generate all the required TDL data types
for testing executable models conforming to a given xDSL.

rule concretelnheritedClass2structuredType {
from class: Ecore!EClass (
class.eAllStructuralFeatures.notEmpty ()
and class.eSuperTypes.notEmpty ()
and not class.abstract)
to type: TDL!StructuredDataType (
name < class.name,
member < class.eStructuralFeatures—
collect(f | if (f.isDynamicFeature)
then thisModule.
dynamicFeature2annotatedMember (£f)
else thisModule.staticFeature2member (f)
endif),
extension ¢ thisModule.superClass2extension(
class))

}
Listing 3 Example of an Ecore to TDL Transformation Rule

Table 1 Outline of the Ecore to TDL Transformation Rules

Source Ecore element Target TDL element

EClass with no

EStructuralFeature SimpleDatalype

StructuredDataType containing one
Member per EStructuralFeature

EClass containing
EStructuralFeature

an Annotation named ‘abstract’ is set to its

Abstract EClass .

corresponding DataType

an Extension of the DataType generated for
Inherited EClass its last super class, assigns to its related

DataType

Member contained in the
EStructuralFeature .

. StructuredDataType that is generated for its

(EAttribute and . .

container EClass. Its type is the DataType
EReference)

corresponding to the feature eType
Dynamic an Annotation named ‘dynamic’ is set to its

EStructuralFeature’ | corresponding Member

EDataType SimpleDataType

EEnum SimpleDataType

EEnumLiteral S?mpleDataInstancethatnstypelsthe
SimpleDataType of the related EEnum

EPackage Package containing all the generated elements

as packagedElement

A summary of the transformation rules is shown in Table 1.
Each rule takes one element from the left column and trans-
forms it into an element of the same row of the right column. In
a nutshell, the objective of this transformation is to transform
each Ecore class into a TDL data type, either simple or struc-
tured. An Ecore class with structural features (i. e., attributes
and references) is transformed to a structured data type contain-
ing members, each of which corresponds to one feature of the
class. To distinguish abstract classes from concrete ones and
dynamic features from static ones, annotations are generated
and assigned to the corresponding element. An inheritance re-
lationship between two classes is transformed into an extension
relationship in TDL. The transformation generates simple TDL
data types for Ecore primitive data types and enums, and enum
literals are transformed to the instances of the TDL data type
corresponding to their related enum. Finally, an Ecore package
is transformed to a TDL package that is the root container of all
the generated TDL elements.

We used the ATL language (Jouault et al. 2006) to define
the transformation rules. An excerpt of this transformation
is shown in Listing 3, with the ATL code for transforming a
concrete Ecore class containing features and superclasses, to a
TDL structured data type containing members and an extension
to the last super class. This rule has several calls to other
transformation rules that are not shown here (the source code of
the complete ATL transformation is available here).

Listing 4 presents the TDL DataTypes generated from the

Ecore metamodel of the xFSM DSL (part a of Figure 1).

The abstract Annotation element (line 2) is for specifying

3

it has an EAnnotation element named as ‘dynamic’

10

10

11

12

14

Package fsmSpecificTypes {

Annotation abstract;

Annotation dynamic;

Type NamedElement (

_name of type EString

) with {abstract;};

Type StateMachine extends NamedElement (
ownedStates of type State,
initialState of type State,
ownedTransitions of type Tramnsition,
currentState of type State with {dynamic;},
unprocessedString of type EString

with {dynamic;},
consumedString of type EString
with {dynamic;},
producedString of type EString
with {dynamic;}

)

Type State extends NamedElement (
owningFSM of type StateMachine,
outgoingTransitions of type Transition,
incomingTransitions of type Transition

)

Type Transition extends NamedElement (

source of type State,

target of type State,

input of type EString,

output of type EString

)3
}

Listing 4 TDL Data Types generated for the xFSM DSL

the TDL DataTypes generated for an abstract class, such as
NamedElement (lines 4-6). Moreover, to distinguish the TDL
DataTypes generated for the dynamic elements, an Annotation
named dynamic (line 3) is defined and assigned to them, such
as the currentState member of the StateMachine (line 11).

Common Package This package contains common elements
that are not specific to the given xDSL, but provide common
testing facilities for any xDSL. As shown in Listing 5, the
Verdict Type (line 2) along with several instantiations of it
(lines 3-5) are defined to be used for test verdict assignment.
This Package also provides elements for performing several
operations on the model under test (later referred to as model
execution commands), including runModel for executing the

Package common {
Type Verdict ;
Verdict PASS ;
Verdict FAIL ;
Verdict INCONCLUSIVE ;

Type modelExecutionCommand ;
modelExecutionCommand runModel ;
modelExecutionCommand resetModel ;
modelExecutionCommand getModelState ;

Type OCL (query of type EString) ;
OCL oclQuery (query = 7);
}

Listing 5 TDL Common Package for all xDSLs

Adapting TDL to Provide Testing Support for Executable DSLs 7

https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/blob/master/org.imt.atl.ecore2tdl/src/org/imt/atl/ecore2tdl/files/ecore2tdl.atl

Package testConfiguration {
Import all from common;

Gate Type genericGateType accepts
modelExecutionCommand;
Gate Type oclGateType accepts O0OCL;
Component Type TestSystem having {
gate genericGate of type genericGateType;
gate oclGate of type oclGateType;
}
Component Type MUT having {
gate genericGate of type genericGateType;
gate oclGate of type oclGateType;
}

Annotation MUTPath;
Annotation DSLName;

Test Configuration fsmConfiguration {
create Tester tester of type TestSystem;
create SUT fsm of type MUT with {
MUTPath:’>TODO: Put the path to the MUT’;
DSLName:’TODO: Put the name of the DSL’;
};
connect tester.genericGate to
genericGate;
connect tester.oclGate to fsm.oclGate;

fsm.

}
}
Listing 6 TDL Test Configuration Package generated for the
xFSM DSL

model (line 8), resetModel for resetting its state to the default
(line 9), and getModelState for getting its current state, i. e.,
the content of its dynamic features (line 10). To enable the tester
to use OCL queries in the test cases, this package provides a
data type named OCL (line 12) and an instantiation of it (line 13).
This instantiation uses the question mark TDL symbol (?) for
the query attribute, which means that a value must be given to
this attribute when the oc1Query instance is used.

Test Configuration Package In TDL, a test case must refer
to a test configuration defining what is the system under test,
and how to communicate with it. In particular, a test configu-
ration can define what are the available communication gates,
each gate allowing specific types of messages. In the present
approach, we consider that two kinds of messages can be ex-
changed with the model under test: model execution commands
related to the execution of the model, and OCL commands re-
lated to the execution of the OCL queries. Accordingly, given
an xDSL, our generator will generate a TDL Test Configuration
Package introducing these gates and components for the xDSL,
along with a test configuration that makes use of them.

Listing 6, shows the testConfiguration package gen-
erated for the xFSM DSL. It defines two types of gates:
genericGateType for model execution commands (line 4),
oclGateType for OCL commands (line 5). These gates are
used by two types of components: TestSystem to represent
the test system i. e. the test suite itself (lines 6-9) and MUT to
represent the model under test (lines 10-13). Lastly, the test con-
figuration fsmConfiguration is defined, which creates both

8 Khorram et al.

Package bitShiftingFSM_TestSuite {
Import all from common;
Import all from fsmSpecificTypes;
Import all from testConfiguration;

StateMachine stateMachineNewState (
"BitShifting");
"Sz");

_name =
State S2 (_name =

Test Description bitShiftingGenericTest uses
configuration fsmConfiguration{
tester.genericGate sends
stateMachineNewState
(unprocessedString =
to fsm.genericGate;
tester.genericGate sends runlModel
to fsm.genericGate;
tester.genericGate sends getModelState
to fsm.genericGate;
fsm.genericGate sends stateMachineNewState
(producedString = "01001011")
to tester.genericGate;

"10010110")

}
Test Description bitShiftingOclTest uses
configuration fsmConfiguration{
tester.genericGate sends
stateMachineNewState
(unprocessedString =
to fsm.genericGate;
tester.genericGate sends runModel
to fsm.genericGate;
tester.oclGate sends oclQuery
(query = "self.currentState")
to fsm.oclGate;
fsm.oclGate sends S2 to tester.oclGate;

"000101010")

}
}
Listing 7 Two sample TDL test cases for the bit shifting
xFSM: (1) an executable version of the test case of Listing 2
(2) using an OCL query in the test case

components and connects their gates (lines 18-26). In addition,
we rely on TDL annotations to define additional information
inside the MUT component: MUTPath containing the path to
the file containing the model to test (line 21), and DSLName
containing the unique identifier of the DSL (line 22).

4.3. Using the TDL Library to write Test Cases

Listing 7 presents two test cases for the bit shifting FSM
model (previously shown in Figure 3). The first test case
(lines 10-21) is a more complete and executable version of the
example test case previously introduced in Listing 2. Contrary to
Listing 2, all the required data types and test configurations for
writing test cases are provided by the generated TDL library and
are obtained by import declarations. Using the data types pro-
vided by the fsmSpecificTypes package (line 3), the domain
expert can define runtime states for the bit shifting FSM by in-
stantiating the StateMachine type (stateMachineNewState
in lines 6-7) and setting its dynamic features in the test case
description (line 12 as test input data and line 19 as expected
output). In the first test case, the tester component first sends the
test input data—that is the bit shifting FSM in a runtime state

where its unprocessedStringis setas "10010110" (line 12)—
to the tested model, i.e., the bit shifting FSM. By using the
model execution commands provided by the commonPackage
(line 2), the tester component then requests a run of the model
(lines 14-15), and also gets the current runtime state of the
model (lines 16-17) to be asserted against the expected output
data—the bit shifting FSM in a new runtime state where its
producedString is "01001011" (line 19).

In the second test case, we use OCL queries to check the
value of specific dynamic features using the elements provided
by the commonPackage (line 2). After sending the test input
data (lines 23-25), and requesting for running the bit shifting
FSM in the specified runtime state (lines 26-27), the tester
component sends an OCL query (line 29) through the OCL
gates to get the value of the currentState of the bit shifting
FSM after its execution (lines 28-30). Finally, the expected
result, i. e., S2 (line 31) will be checked against the query eval-
uation result to set the test case verdict as pass or fail. As is
shown, by using the domain-specific data types provided by the
fsmSpecificTypes package, the domain expert can define the
model elements to use them as test data, such as the S2 of type
State (line 8) that is used when defining the oracle (line 31).

5. TDL Operational Semantics for xDSLs

In this section, we present an operational semantics for TDL
tailored for the testing of executable models. We initially present
how we refined the execution semantics provided in the TDL
standard for the testing of executable models, We then define
the operational semantics itself, and explain how it is decoupled
from both the xDSLs and the metaprogramming approaches
used for their implementation.

5.1. Adapting the TDL semantics to model execution

The TDL Standard* consists of several documents: the TDL
metamodel, the TDL graphical syntax, the TDL exchange for-
mat, the UML profile for TDL, the mapping from TDL to TTCN-
3, and two extensions that we will not discuss here.

Two parts of the standard are related to the semantics of TDL.
First, the metamodel document (ETSI ES 203 119-1 2020) spec-
ifies the abstract syntax as a metamodel, and its associated
semantics using natural language. It introduces the basic princi-
ples of TDL and describes all the test-specific concepts included
in the TDL abstract syntax, categorized as Foundation, Data,
Time, Test Configuration, and Test Behavior. For each con-
cept, the semantics, the relationship with other concepts, the
properties, and the static constraints are also provided. Second,
the mapping to TTCN-3 document is essentially a translational
semantics for TDL using TTCN-3 as a target language. While
this semantics does allow the execution of TDL test cases, it is
only partial and mainly aims to manage test cases for software
systems communicating through common protocols (TCP, UDP,
SQL, HTTP, etc.). Therefore, we deemed this translational se-
mantics too distant from the aim of this work—i. e. the testing
of executable models. Instead, we solely used the execution se-

4 https://tdl.etsi.org/index.php/downloads

mantics described in the metamodel document as the reference
specification for the operational semantics we propose.

However, as previously explained, our approach aims to
cover two additional concerns: managing the execution of mod-
els, and managing OCL queries. As these concerns are not cov-
ered by the standardized TDL semantics, we have to make adap-
tations for the operational semantics we propose. In Section 4,
the TDL Library Generator, takes these concerns into account
by generating specific data types (ModelExecutionCommand
and OCL in the common package) along with gate types that ac-
cepting data conforming to them (genericGate and oclGate
in the testConfiguration package). Accordingly, our op-
erational semantics must be able to interpret such generated
elements. This will be presented in the next subsection.

In addition, to specify the result of a test case execution, we
support the verdicts provided by the TDL metamodel document,
including PASS, FAIL, and INCONCLUSIVE (ETSI ES 203
119-1 2020). PASS and FAIL correspond to observing valid
and invalid behaviors of the SUT, respectively, while INCON-
CLUSIVE is used when neither pass nor fail can be assigned.
For instance, if the fester sends a syntactically wrong OCL
query to the SUT, the TDL Interpreter will interrupt the test case
execution and the verdict will be assigned as INCONCLUSIVE.

It should be noted that at the moment, we do not support
all the TDL elements, such as Time and complex Behavior
concepts (e. g., Parallel, Exceptional, Periodic). These concepts
enable the tester to define different types of tests such as load
tests and distributed tests, so we consider them as future work.

5.2. Definition of the TDL Interpreter

We call TDL Interpreter the component that embodies the TDL
operational semantics we propose. Algorithm 1 shows the main
loop of the interpreter. Its input is a TDL package that contains
TDL test cases. Each test case uses a specific configuration that
must be activated first to enable the test case execution (line 3).
It also contains a set of behaviors of different types, each of
which has a different operational semantics. For instance, to
execute a behavior of type Message (line 5), according to its
source gate, indeed the role of its container component, the
argument is treated differently. When it has the SUT role, the
argument is the expected result that has to be asserted (line 10)
and when the role is the Tester, the argument is the test input
data that has to be sent to the model under test (line 13).

5.3. Connection to the External Components

We assume that the TDL Interpreter is connected to two ex-
ternal components: the Execution Engine and the OCL Query
Evaluator. First, the Execution Engine must provide services
to manage the execution of the model under test (e. g., running
the model, resetting its state to default, getting its current state),
and is used by the TDL Interpreter to interpret all the model ex-
ecution commands used in a test case. Second, the OCL Query
Evaluator must provide services to trigger the execution of an
OCL query on the model and to retrieve the result.

As can be seen in Figure 4, the execution engine uses the
operational semantics of the xDSL to execute its conforming
models. Since the operational semantics of xXDSLs can be de-

Adapting TDL to Provide Testing Support for Executable DSLs 9

Algorithm 1: The algorithm of the TDL Interpreter
main loop

Input: package: the TDL package containing the TDL test cases to be
executed

1 begin

2 foreach festcase € package.testCases do

3 testcase.con figuration.activate()

4 foreach behavior € testcase.behaviors do

5 if behavior is Message then

6 sourceGate < behavior.source

7 targetGate < behavior.target

8 if sourceGate.component.role is SUT then

9 L testOracle < behavior.argument

10 targetGate.assert(testOracle)

11 else if sourceGate.component.role is Tester then
12 testInputData < behavior.argument
13 targetGate.sendDataToSUT(testInputData)

14 else if behavior is <other behavior types> then

15 |-

fined using different metaprogramming approaches—i. e. one
or several metalanguages used in a particular fashion— various
execution engines are required. This in turn reveals one source
of heterogeneity of xDSLs that is supported by our generic
approach as follows. For running tests on models conform-
ing to a given xDSL, the TDL Interpreter automatically selects
the appropriate execution engine (i.e., the engine dedicated
to the metaprogramming approach used for implementing the
operational semantics of the given xDSL). This is done when
activating the test configuration of a running test case (line 3
of Algorithm). Indeed, according to the DSLName specified
in the configuration of the testcase, the TDL Interpreter
looks for an appropriate engine from the existing ones. It can
then start the engine and make a request for running the model
in different states specified in the test cases (i. e., model exe-
cution commands). This communication takes place in line 13
of Algorithm 1. If the argument of the behavior is a model
execution command, it will be sent to the model through the
execution engine that was previously started in line 3. Therefore,
as long as there is an execution engine dedicated to a specific
metaprogramming approach, our proposed approach can use
it for running tests on models conforming to any xDSL whose
operational semantics is defined using that specific metapro-
gramming approach.

Besides, to evaluate the OCL queries specified in the TDL
test cases on the model, the interpreter has to communicate with
an OCL Query Evaluator. To this end, if the configuration of
the testcase includes an oclGate, the OCL Query Evaluator
will be initialized when activating the test configuration (line 3
of Algorithm 1). Consequently, whenever the argument of the
behavior is an OCL query, it will be sent to the model through
the query evaluator that was previously initialized in line 3.

To provide the mentioned communications while decoupling
the TDL Interpreter from various execution engines, we rely on
an specific interface for execution engines. Figure 5 shows the
ExecutionEngine interface and the dependencies of the TDL

10 Khorram et al.

TDLInterpreter

[1] execu[ionEngV MqueQ/Engme

<<interface>> OClLInterpreter
ExecutionEngine

+ setUp()

+ setUp(MUTPath, DSLPath
p() + runQuery(MUTResource, query)

+ executeModel()
+ setModelResource(resource)
+ getModelResource():Resource

7.y

\ implements

<<abstract>>
AbstractExecutionEngine

- MUTResource: Resource

i

[I]
ALEEngine JavaEngine

Figure 5 Class diagram showing the main dependencies of
the TDL interpreter

Interpreter using a class diagram. Following the terminology of
popular frameworks such as EMF, we call resource the artifact
that contains the model to load and execute. A resource may
be a file, or a URL to access the model remotely, or a database
connection. The ExecutionEngine interface contains methods
for setting up the execution engine based on the model under
test (i. e., the model to be executed) and its conforming xDSL,
executing the model, setting the model in a specific state, and
getting its current state. The ExecutionEngine interface is par-
tially implemented by the AbstractExecutionEngine class, and
then further specialized for each metaprogramming approach
(see Section 6 for examples). Therefore, our proposed approach
is not restricted to a specific execution engine, but can support
all the existing ones. Finally, we also rely on a specific inter-
face for the OCL Query Evaluator, here with the class named
OClLlInterpreter.

6. Tool Support

We implemented our approach as part of the GEMOC Stu-
dio (Bousse et al. 2016), a language and modeling workbench
defined on top of the Eclipse Modeling Framework (EMF). TDL
is also implemented using EMF technologies, making it easier
to make both work together.

We used the ATL transformation language (Jouault et al.
2006) for implementing the Ecore to TDL transformation. For
the TDL interpreter, we used Xtend (Efftinge et al. 2012) to
implement the execution rules of the TDL operational seman-
tics. To evaluate the OCL queries, we used the Eclipse OCL
API (Damus et al. 2020).

The GEMOC Studio supports several metaprogramming
approaches. This includes Java-based languages (Ker-
meta (Jézéquel et al. 2015), Xtend (Efftinge et al. 2012), and
pure Java), the Action Language for EMF (ALE) (Leduc et al.
2017), xMOF (Mayerhofer et al. 2013), and a combination of a
Java-based language with the MoCCML language (Deantoni et

runtime-ecmfa - BitShifting_Test/testSuite.tdlan2 - GEMOC Studio

File Edit Mavigate Search Project [T_D_l_l Run Window Help

g _?[-:-:\;.;‘ B Qv Qe HEG T ® S vl vl S ow |l g Q Ot
® B a e
: Pruoject EXpiolEy podelExpiosy testSuite.tdlan2 @ *test] = =
&”ButSh\ftlng StateMachine stateMachineNewState(_name = "BitShifting"); A TR M M @~ @aa m, =
¥ & BitShifting_Test State 52 (_name = "S2"); genericGate genericGate L
= Project Dependencies . oclGate : : odGat
v i generated [fest Description testl uses configuration fsmConfiguration{ genericGate odGateType genericGate odGate}
common.tdlan? tester.genericGate sends stateMachineNewState
femSpecifich dlan2 (unprocessedString = "180190118") to fsm.genericGate; SUT Tester
smepectic yr’_“t ane tester.genericGate sends runModel to fsm.genericGate; - —
testConfiguration.tdlan2 tester.genericGate sends getModelState to fsm.genericGate; genericGate : | odGate: genericGate : ot
representations.aird fsm.genericGate sends stateMachineNewState ggﬂe”fc'atg odGateType ga""fc"m odGe
¥ testSuite.tdlan? (producedString = "810@1811") to tester.genericGate; | |
! stateMachinebwstate !
o=t TDL Test Results & Test Description test2 uses configuration fsmConfiguration{ | (unprpcessedsiring = “1p010110°)
tester.genericGate sends stateMachineNewState | runModet |
(unprocessedstring = "@e@101e18") to fsm.genericGate; ! !
. : etMogeiStat
Results J tester.genericGate sends runModel to fsm.genericGate; ! g. ojtetsiate
Test case Result Description tester.oclGate sends oclQuery (query = "self.currentState") |__stateMachineNbwsState)
to fem.oclGate; : { proucedString := 01?01011-;.
Message#1 PASS o fsm.oclGate sends 52 to tester.oclGate; " & -
Messagei2 PASS The model . Test Description test3 uses configuration fsmConfiguration{
Message#3 PASS The current : tester.genericGate sends runModel to fsm.genericGate; <)
Message#4 FAIL The expectes tester.oclGate sends oclQuery (query = "self.currentSta") 8 representations &
> test? PASS to fsm.oclGate; - Wy e . v | @ &
» test3 INCONCLUSIVE ~ ; fsm.oclGate sends 52 to tester.oclGate;
< > v

Y

The expected data is: 01001011, but the current data

is: 010010 * Gemoc Engines Status &

o BitShifting.fsm 1[0]
o testSuitetdlan2 1.

[Writable

Tlnsert [9:5:226

Figure 6 A screenshot of the TDL testing facilities running in the GEMOC Studio modeling workbench for the bitShifting xFSM

al. 2015). Each of these approaches is supported by a dedicated
execution engine. Hence, a significant part of the implementa-
tion of the TDL Interpreter is dedicated to managing all these
execution engines properly. For instance, the TDL Interpreter
must read the xDSL definition in a GEMOC-specific .dsl file
to discover the used metaprogramming approach, in order to
start the correct execution engine accordingly.

Figure 6 shows a screenshot of the resulting tool. The source
code is available on a public GitLab instance’. There are GUI
icons in the toolbar and the menu bar allowing the user to choose
an xDSL and run the generator for it. To use the tool for test-
ing the bit shifting FSM model (label 4), we initially run the
generator for the xFSM DSL and the generated TDL packages
can be seen in the Project Explorer (label 1). Here we show
the execution of a test suite containing three sample TDL test
cases (label 2), two of which already described in Listing 7.
The graphical representation of the first test case is shown on
the top right side (label 3). We extended the TDL graphical
syntax to color the arrow corresponding to each message based
on the result of its execution when executing the test case. Ac-
cordingly, if the message is successfully executed, the arrow
will be highlighted to green and otherwise to red. The status of
the GEMOC engines (label 5) demonstrates that the model and
its test suite are running. We provide a view to report the test
execution result along with some useful information for the user
(label 6). As can be seen, the first test case has failed, the second
has passed, and the result for the third one is inconclusive since
the OCL query is syntactically wrong and cannot be created.

5 https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl

7. Evaluation

We designed and performed an empirical evaluation of our
approach to consider its genericity by answering the following
research questions:

RQ#1 Does the approach provide testing facilities for xDSLs in
which their abstract syntax is designed for different domains?
RQ#2 Does the approach provide testing facilities for xXDSLs in
which their operational semantics is implemented using different
metaprogramming approaches?

Considered xDSLs: We tried our testing approach for five
xDSLs, covering different domains including FSM, Arduino,
and BPMN © to answer RQ#1. For the FSM and the Arduino
languages, we used two different implementations of their se-
mantics (i. e., implemented using Kermeta and ALE metapro-
gramming approaches) to answer RQ#2. We used the FSM
xDSL with Kermeta semantics and with ALE semantics (i. e.,
already described in Section 2) that are both provided by the
GEMOC language workbench. We also used the open source
project of the Arduino xDSL with Kermeta semantics, and then
we implemented its semantics using the ALE language to have
two different implementations of the Arduino xDSL. We made
minor modifications in these existing xDSLs to match the as-
sumptions described in Section 2.1.

As the last xXDSL used in our evaluation, we have defined
BPMN xDSL that is a representative of the Microflow DSL’, a
real-world interpreted language introduced by the Mendix de-
velopment platform. Microflow DSL enables the non-technical
domain experts to define the application logic throug h data-flow

© Business Process Model and Notation
7 https://docs.mendix.com/refguide/microflows

Adapting TDL to Provide Testing Support for Executable DSLs 11

https://github.com/eclipse/gemoc-studio/tree/master/official_samples/K3FSM/language_workbench
https://github.com/eclipse/gemoc-studio-execution-ale/tree/master/examples/language_workbench
https://github.com/atlanmod/eel/tree/master/Language_Workbench

Table 2 The Evaluation Data

DSL size Model size (n. TDL Library Test suite size
xDSL Model of EObjects) Size (LoC
Abstract syntax size Semantics generated)
(n. of EClasses) size (LoC) n. of Test cases LoC
TrafficLight 7 4 31
BitShifting 9 4 33
K3: 110

xFSM 3 ALE: 90 EdgeDetector 9 111 8 58
ToLowerCase 133 5 39
ToUpperCase 133 5 39
Servo9g 15 4 35
. ActiveWaitIR 18 4 38

xArduino 59 EEE6A?27 1 259
. TurnOnLED 18 2 26
ServolrButton 59 4 65
VerifyUserAccess 26 2 44

xBPMN 39 ALE: 318 202
PromoteEmployee 46 4 60

modeling. It contains elements to perform CRUD operations
on data objects, to show Ul pages, to make choices, etc, and
its graphical syntax is based on the BPMN standard. Since its
source code is not open to access, we re-implemented it from
scratch. The design of our BPMN xDSL conforms to the defini-
tions presented in Section 2.1 and its semantics is implemented
using the ALE language. The definition of all five xDSLs are
available in a public git repository.

Workflow: We applied our testing approach on each consid-
ered xDSL, following the same workflow. In reference to the
approach overview depicted in Figure 4, we initially executed
the TDL Library Generator component. The component gener-
ated a TDL library specific to each given xDSL, successfully.
Since our approach provides testing facilities for models con-
forming to a given xXDSL, we prepared a set of models under
test (MUTs) conforming to each considered xDSL. Afterward,
we defined test cases for each MUT using the model execution
commands and the OCL queries provided by the generated TDL
Library. Finally, all the test cases were executed on their re-
lated MUT, the test verdicts were set, and the test results were
reported through the graphical view provided by our tool. All
the tested models and their test cases are publicly accessible on
a public GitLab instance.

Evaluation result: Table 2 presents all the information re-
lated to our evaluation including 1) the size of each xDSL as the
number of the EClasses of its abstract syntax and the number
of lines of code (LoC) of its semantics; 2) the tested models
with their size in terms of the number of their EObjects; 3) the
number of LoC of the TDL library automatically generated for
each considered xDSL; and 4) the test suite size as the number
of the test cases per tested model along with the number of LoC
manually written by the tester. Most noticeably of all, it can be
seen that, unsurprisingly, the size of the generated TDL Library
increases with the size of the xDSL. This highlights one benefit
of using our approach since the generated library provides all
the TDL boilerplate code that the domain expert would other-
wise write by hand. Therefore, the proposed approach reduces

12 Khorram et al.

the cost of providing testing support for a given xDSL.

Successful use of the approach for testing different exe-
cutable models conforming to various xDSLs, demonstrates
that it satisfies the genericity aspect.

Discussion: Our experiment on the Arduino xDSL reveals
some limitations of the proposed testing approach. Using this
xDSL, one can define time-dependent behaviors in the Arduino
models, such as turning on an LED after 200 milliseconds. It
is also possible to define Arduino models that continuously
collect data from the outside of the model (e. g., the ambient
temperature) and react to specific event occurrences (e. g., high
rise and fall of the ambient temperature). To test the behavior of
such models, the test cases should be able to communicate with
the model under test during its execution. For example, sending
test data to the running model at a certain time and asserting if
the model reacts as expected.

More precisely, to provide testing support for the xDSLs
whose contain time-related concepts and/or have an event-driven
behavior—called reactive DSLs—, specific requirements must
be considered. In models conforming to reactive xDSLs, some
behaviors can happen at a specific time or under reception of
specific event occurrences from the outside of the model during
its execution. For testing these kinds of behaviors, one possi-
bility could be to support at least two new commands in TDL
test cases: (1) controlling the execution of the tested model by
requesting for the asynchronous execution of the model, waiting
for a precise time duration, and requesting to stop the model
execution; and (2) interacting with the tested model during its
execution through the exchange of the event occurrences. There
are some existing work trying to define the characteristics of the
reactive DSLs and their specific testing requirements (Meyers
et al. 2016; Leroy et al. 2020) which would be considered in
our future work.

https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/Language.sequential_Workbench
https://gitlab.univ-nantes.fr/naomod/faezeh-public/xtdl/-/tree/master/Modeling.sequential_Workbench

8. Related Work

Testing support for DSLs is already investigated but in different
paths. While some efforts are interested in defining support for
a specific DSL, others propose generic solutions for different
DSLs. In this section, we provide an overview of the related
work in both paths.

8.1. Ad-hoc Testing Facilities for DSLs

Sequencer Testing Tool (SeTT) is a testing framework proposed
particularly for the Sequencer DSL (Kos et al. 2016), a DSL for
data acquisition included in the NASA awarded measurement
system DEWESoft for adjusting measurements and creating
measurement procedures. SeTT is the result of extending Se-
quencer DSL with basic testing concepts such as assertions.
Using SeTT, the domain expert defines test cases for each part
of the measurement system by augmenting the model under test
with test elements.

A BPMN-based testing approach is proposed in (Liibke &
van Lessen 2017) to facilitate the definition of test cases for
executable business processes (i. e., described in WS-BPEL or
BPMN?2). They define a test profile for BPMN by adding testing
concepts such as Assertions to the BPMN metamodel. Some
control-flow restrictions are also enforced to ensure determinism
of test models. A BPMN test model contains several process
Pools, one for the process under test and the others for the tests,
which communicate through message exchange. The mapping
between the test case model and the physical operations (i. e., in
the process under test), and the technical information for their
execution must be previously defined.

Mijatov et al. propose a functional testing framework for a
subset of fUML? including class and activity diagrams (Mija-
tov et al. 2015). The framework introduces an executable test
specification language to be used for describing and running
test cases that control the behavior of fUML models. Test cases
use temporal expressions for the precise selection of the run-
time states that need to be asserted. Since fUML models can
describe a system with concurrent behavior, OCL queries are
also supported for specifying complex assertions on the runtime
states of a system that behaves concurrently. In addition, they
propose a new algorithm for the verification of execution order
of activity nodes of concurrent systems.

A simulation and test generation approach for fUML activity
diagrams is proposed in (Igbal et al. 2019a). The approach is
mainly based on a translation from fUML Activity diagram
containing Alf” code to Java. The generated Java code is used
for the automatic generation of test input data required for an
exhaustive simulation of the f{UML model along with its asso-
ciated Alf code, as well as automatic generation of test cases
with oracle based on the provided simulation. The generated
test cases satisfy 100 % coverage of the Java code.

Juhnke and Tichy define a domain analysis method for auto-
motive systems test specification (Juhnke & Tichy 2019). The
method applies to the analysis phase of the DSL development,
to extract the domain-specific concepts from the existing textual

8 Foundational Subset for Executable UML Models
9 Action language for f{UML

test specifications of a specific automotive system. The concepts
are then used when generating a specific test DSL for describ-
ing logical test cases (acceptance and customer experience test
cases), which will be implemented or executed manually on the
hardware system or the prototype vehicle.

To sum up, ad-hoc testing solutions promote usability, as they
enable the domain experts to describe test cases using the system
description language that is familiar to them. Nevertheless, they
are mainly defined by adding basic testing elements such as
Assertion into the main DSL to support testing at the unit level,
hence they are not adapted for different levels of testing, such
as integration. Moreover, they lack reusability, since a new test
language must be engineered for each new DSL.

8.2. Generic Testing Facilities for DSLs

Wau et al. propose a generic unit testing framework for grammar-
based xDSLs, whose semantics is translated to a GPL that
offers a unit testing framework (e. g., JUnit for Java) (Wu et al.
2009). The translator of the framework keeps the traceability
links between the DSL code and its corresponding generated
GPL code, and the language engineer must define the mapping
algorithms between the testing actions of DSL and those of
the GPL. At first, the framework translates DSL test cases into
the GPL, allowing the GPL testing tool to execute them on the
compiled code of the model under test (i. e., the GPL code).
Afterward, the framework translates the test results in the GPL
level back to the DSL level and presents them to the domain
expert. Therefore, these two sets of mappings enable using of
GPL testing tools for testing executable models conforming to
the compiled DSLs.

Meyers et al. propose a generic testing approach for xDSLs
with operational semantics (Meyers et al. 2016). They use a
DSL extension mechanism that augments a given xXDSL with a
limited set of testing features to automatically generate a specific
test language for the given xDSL. To execute test cases, the
operational semantics of the input xDSL has to be instrumented
for each single test case, separately. Therefore, a variant of
the operational semantics must be generated for individual test
cases. In the instrumentation, a call to a new execution rule is
added between each execution rule of the xDSL’s semantics.
Consequently, the new rules have to be implemented in the
same metaprogramming approach as the execution rules of the
semantics of the xDSL.

Contrary to them, our approach is independent of the
metaprogramming approach used for defining the operational
semantics of the xXDSL. Additionally, we use a standard testing
language, TDL, covering more than 100 testing concepts in its
abstract syntax (such as 20 different types of test behaviors),
while they defined a custom test metamodel with 20 concepts.

9. Conclusion and Future Work

Providing testing facilities for any given xDSL is a challenging
task concerning the diversity of xDSLs. This diversity origi-
nates from both, the domain described by the xXDSL abstract
syntax and the approach used for the implementation of its se-
mantics. In this paper, we proposed a generic testing approach

Adapting TDL to Provide Testing Support for Executable DSLs 13

for metamodel-based xDSLs. It uses the TDL standard testing
language for describing test cases and provides solutions to spe-
cialize TDL for testing executable models conforming to xDSLs.
Indeed, we proposed a TDL library generator that generates a
domain-specific TDL library for a given xDSL, allowing the do-
main expert to write test cases for testing the executable models
conforming to it. We also provided an interpreter for TDL to
execute TDL test cases on executable models. Our evaluation on
5 xDSLs demonstrates that the approach realizes the genericity
aspect, and thus is reusable by various xDSLs.

Perspectives for future work include both, applying the ap-
proach on more xDSLs and extending it with more features. We
plan to explore the approach on more complex xDSLs (having
many dynamic features) and consequently, on models with more
complex runtime states. For extending the proposed approach in
the future, there are several interesting lines of research. At the
moment, we only support testing of executable models conform-
ing to one xDSL, so one possible extension is supporting models
conforming to several interconnected xDSLs. In Section 5.1, we
noted that the TDL interpreter does not support all the elements
of TDL standard abstract syntax currently. By completing the
definition of TDL Interpreter, we can write and execute more
complex TDL test cases to control different features of the
model under test (not just its functionality).

Acknowledgments

This project has received funding from the European Union’s
Horizon 2020 research and innovation program under the Marie
Sktodowska Curie grant agreement No 813884.

References

Bendraou, R., Combemale, B., Crégut, X., & Gervais, M.-P.
(2007, December). Definition of an eXecutable SPEM 2.0. In
14th Asia-Pacific Software Engineering Conference (APSEC)
(p- 390-397). Nagoya, Japan: IEEE Computer Society.

Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T., Deantoni,
J., & Combemale, B. (2016). Execution framework of the
gemoc studio (tool demo). In (p. 84-89). New York, NY,
USA: Association for Computing Machinery.

Damus, C., Sanchez-Barbudo Herrera, A., Uhl, A., & Willink,
E. (2020). Ocl documentation (Tech. Rep.). Retrieved from
https://download.eclipse.org/ocl/doc/6.12.0/ocl.pdf

Deantoni, J., Diallo, I. P, Teodorov, C., Champeau, J., & Combe-
male, B. (2015). Towards a meta-language for the concur-
rency concern in dsls. In 2015 design, automation & test in
europe conference & exhibition (date) (pp. 313-316).

Efftinge, S., Eysholdt, M., Kéhnlein, J., Zarnekow, S., von Mas-
sow, R., Hasselbring, W., & Hanus, M. (2012, September).
Xbase: Implementing domain-specific languages for java.
SIGPLAN Not., 48(3), 112-121.

ETSI ES 203 119-1. (2020). Methods for testing and spec-
ification (mts); the test description language (tdl); part 1:
abstract syntax and associated semantics. Retrieved from
https://tdl.etsi.org/index.php/downloads

Fischer, T., Niere, J., Torunski, L., & Ziindorf, A. (2000). Story
diagrams: A new graph rewrite language based on the unified

14 Khorram et al.

modeling language and java. In H. Ehrig, G. Engels, H.-
J. Kreowski, & G. Rozenberg (Eds.), Theory and application
of graph transformations (pp. 296-309). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Igbal, J., Ashraf, A., Truscan, D., & Porres, I. (2019a). Ex-
haustive simulation and test generation using fuml activity
diagrams. In P. Giorgini & B. Weber (Eds.), Advanced infor-
mation systems engineering (pp. 96—110). Cham: Springer
International Publishing.

Jézéquel, J.-M., Combemale, B., Barais, O., Monperrus, M.,
& Fouquet, F. (2015). Mashup of metalanguages and its
implementation in the kermeta language workbench. Software
& Systems Modeling, 14(2), 905-920.

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, 1., & Valduriez,
P. (2006). Atl: A qgvt-like transformation language. In
Companion to the 21st acm sigplan symposium on object-
oriented programming systems, languages, and applications
(p- 719-720).

Juhnke, K., & Tichy, M. (2019). A tailored domain analysis
method for the development of system-specific testing dsls
enabling their smooth introduction in automotive practice. In
2019 45th euromicro conference on software engineering and
advanced applications (seaa) (p. 10-18).

Kos, T., Mernik, M., & Kosar, T. (2016). Test automation of
a measurement system using a domain-specific modelling
language. Journal of Systems and Software, 111,74 - 88.

Leduc, M., Degueule, T., Combemale, B., van der Storm, T., &
Barais, O. (2017). Revisiting visitors for modular extension
of executable dsmls. In 2017 acm/ieee 20th international con-
ference on model driven engineering languages and systems
(models) (p. 112-122).

Leroy, D., Bousse, E., Wimmer, M., Mayerhofer, T., Combe-
male, B., & Schwinger, W. (2020). Behavioral interfaces
for executable dsls. Software and Systems Modeling, 19(4),
1015-1043.

Liibke, D., & van Lessen, T. (2017). Bpmn-based model-driven
testing of service-based processes. In Enterprise, business-
process and information systems modeling (pp. 119-133).
Springer.

Makedonski, P, Adamis, G., Kdirik, M., Kristoffersen, F.,
Carignani, M., Ulrich, A., & Grabowski, J. (2019). Test
descriptions with etsi tdl. Software Quality Journal, 27(2),
885-917.

Mayerhofer, T., Langer, P., Wimmer, M., & Kappel, G. (2013).
xmof: Executable dsmls based on fuml. In International
conference on software language engineering (pp. 56-75).

Meyers, B., Denil, J., David, 1., & Vangheluwe, H. (2016).
Automated testing support for reactive domain-specific mod-
elling languages. In Proceedings of the 2016 acm sigplan
international conference on software language engineering
(pp- 181-194). Association for Computing Machinery.

Mijatov, S., Mayerhofer, T., Langer, P., & Kappel, G. (2015).
Testing functional requirements in uml activity diagrams. In
J. C. Blanchette & N. Kosmatov (Eds.), Tests and proofs (pp.
173-190). Cham: Springer International Publishing.

OASIS. (2007). Web services business process execution lan-
guage version 2.0.

https://download.eclipse.org/ocl/doc/6.12.0/ocl.pdf
https://tdl.etsi.org/index.php/downloads

Object Management Group. (2013b). Semantics of a founda-
tional subset for executable uml models.

Steinberg, D., Budinsky, F., Merks, E., & Paternostro, M. (2008).
Emf: eclipse modeling framework. Pearson Education.

Wu, H., Gray, J., & Mernik, M. (2009). Unit testing for domain-
specific languages. In W. M. Taha (Ed.), Domain-specific
languages (pp. 125-147). Springer Berlin Heidelberg.

About the authors

Faezeh Khorram is a PhD student in the NaoMod group at IMT
Atlantique (France). She is also involved in the Lowcomote
European project working on quality assurance in the Low-
Code Development Platforms (LCDPs). Her current research
interests are model testing, test-specific languages, and Domain-
Specific Languages (DSLs). You can contact the author at
faezeh.khorram @imt-atlantique.fr.

Erwan Bousse is an Associate Professor at the University of
Nantes (France). He obtained his PhD in France in 2015 at the
University of Rennes 1 for his work on execution traces and
omniscient debugging of executable models. His current re-
search interests include Software Language Engineering (SLE),
Model Driven Engineering (MDE), Domain-Specific Languages
(DSLs), model execution and simulation, and the debugging
and testing of models. Contact him at erwan.bousse @Is2n.fr, or
visit https://bousse-e.univ-nantes.io/

Jean-Marie Mottu is an Associate Professor at the University of
Nantes (France). He obtained his PhD in France in 2008 at the
University of Rennes 1 for his work on testing model transfor-
mations. His current research interests include Model Driven
Engineering (MDE), Domain-Specific Languages (DSLs), Soft-
ware Quality in particular Test Verification considering func-
tional and non functional properties. You can contact the author
at jean-marie.mottu @l1s2n.fr.

Gerson Sunyé is an associate professor at the University of
Nantes (France) in the domain of software engineering and
distributed architectures and the head of the Nantes Software
Modeling Group. He received the PhD degree in Computer Sci-
ence from the University of Paris 6, France, in 1999. From 1999
to 2001 he was a postdoctoral researcher at the IRISA Computer
Science laboratory. He has 4 years of industry experience in
software development. He received his Habilitation in 2014.
He is the author of several papers in international conferences
and journals in software engineering. His research interests
include software testing, design patterns and large-scale dis-
tributed systems. Contact him at gerson.sunye @1s2n.fr, or visit
https://sunye-g.univ-nantes.io/.

Adapting TDL to Provide Testing Support for Executable DSLs

15

mailto:faezeh.khorram@imt-atlantique.fr?subject=Your paper "Adapting TDL to Provide Testing Support for Executable DSLs"
mailto:erwan.bousse@ls2n.fr
https://bousse-e.univ-nantes.io/
mailto:jean-marie.mottu@ls2n.fr?subject=Your paper "Adapting TDL to Provide Testing Support for Executable DSLs"
mailto:gerson.sunye@ls2n.fr
https://sunye-g.univ-nantes.io/

