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ABSTRACT

Recent advances in Deep Reinforcement Learning (DRL) led
to the development of powerful agents that can learn how to
perform complicated tasks in an end-to-end fashion operat-
ing directly on raw unstructured data, e.g., images. How-
ever, the real world performance of such methods critically
relies on the quality of the simulation environments used for
training them. The main contribution of this paper is the de-
velopment of a realistic simulation environment, by employ-
ing a state-of-the-art graphics engine, for training DRL agents
that are able to control a drone for performing active shoot-
ing. In contrast with previous approaches, that solely relied
on simplistic constrained datasets, the environment employed
in this work supports a challenging open-world setting, pro-
viding a solid step towards developing effective RL methods
for various drone control tasks. An appropriate reward shap-
ing approach is also introduced in this work, ensuring that the
agent will behave as expected, avoiding erratic movements,
as demonstrated through the conducted experiments.

Index Terms— Active Shooting, Deep Reinforcement
Learning, Open-World Setting

1. INTRODUCTION

Deep Learning (DL) provided powerful information analy-
sis tools that allowed for developing a wide range of intel-
ligent control methods [1, 2, 3, 4]. These applications range
from developing autonomous cars [2, 3], to drones that can
autonomously perform various challenging tasks, such fol-
lowing trails in forests [4], assisting rescue operations [5],
and covering various public events [6]. Early approaches,
e.g., [4], relied on DL for performing the visual information
analysis, the output of which was used by traditional control
approaches,e.g., proportional-integral-derivative (PID) con-
trollers [7, 8], to perform the task at hand. These approaches
managed to solve a wide range of difficult problems that re-
quired performing information analysis from highly unstruc-
tured data, e.g., detecting and/or tracking the objects of in-
terest in an image [9, 10], by employing powerful DL-based
analysis methods.

Fig. 1: Open-world simulation environment developed in this
paper

However, these approaches suffer from a significant draw-
back: information analysis is performed independently from
control. That is, we typically first design a DL method for ex-
tracting some handcrafted high-level features, e.g., bounding
boxes, that are then used by the control algorithm to perform
the task at hand. This pipeline allows for easily developing
control algorithms that leverage the power of deep learning
for performing complex tasks. However, it is worth noting
that such controllers are usually not optimal, since optimal
control often requires anticipating scenarios that depend on
higher level information that is not extracted from the data.
For example, a drone covering an athletic event should slow
down when following a runner that approaches the finish line,
even if the runner accelerates towards reaching the end of the
race. So, even though the bounding box of an athlete is usu-
ally enough for accurately following her/him through the race,
it discards useful information that could be used to improve
the control quality. These limitations can be addressed either
by manually creating handcrafted features that can be used
to exhaustively handle such scenarios, or by using deep rein-
forcement learning methods (DRL) that are capable of learn-
ing how to perform optimal control directly using the raw data
and without requiring to design handcrafted intermediate fea-
tures [11]. In this way, DRL allows for merging the informa-
tion analysis and control processes into one unified model that
can be trained in an end-to-end fashion towards achieving the
desired task.



Indeed, DRL is capable of providing agents that operate
directly on the raw input, e.g., pixels in the case of visual in-
formation, and learning how to perform various tasks, ranging
from maneuvering vehicles [1], to using tools and cooperating
to achieve their goals in complex environments [12]. How-
ever, DRL agents, in contrast with “traditional” DL models,
cannot be trained using static datasets. Instead, they typically
require using interactive simulation environments, through
which the agents acquire experience and adapt their behav-
ior in order to learn how to achieve their goals. That is, the
agents interact with the environment, by performing various
actions, and they collect a reward for each of them. Then, they
are optimized, according to the collected experience, in order
to maximize the expected reward. The quality of the learned
agent critically depends on the quality of the simulation en-
vironment used for training. This is even more important in
robotics-related applications, in which the agents are then de-
ployed in the real world. Therefore, usually either realistic
simulations environments are employed, with the hope that
the distribution shift induced by transferring the agent from
the simulation to the real world will not greatly impact its per-
formance, or sim2real learning methods are used to smooth
the transition to the real world [13].

In this work, we study the problem of controlling a drone
that carries a camera in order to perform frontal view shooting
of human subjects. This problem has been tackled with vari-
ous approaches in the past, ranging from using face detectors
and PID controllers [14], to developing DRL approaches for
end-to-end control [15, 16], due to its importance for vari-
ous emerging applications, such as active perception, human-
robot interaction, aerial cinematography, etc. It is worth not-
ing that applying DRL for this task is not straightforward, due
to the lack of appropriate simulation environments. Existing
approaches usually just employ static datasets that have been
extended to support DRL, usually offering a very limited vari-
ety of view poses (since they are based on a limited collection
of static images) [15], raising significant concerns on the be-
havior of DRL agents on less constrained environments.

The main contribution of this paper is the development
of a realistic simulation environment, by employing a state-
of-the-art graphics engine, that will allow for training DRL
agents under more challenging open-world scenarios. A snap-
shot of the developed simulation environment is shown in
Fig. 1. Note that in this study we employ a significantly more
complex and challenging environment compared to previous
approaches, e.g., [15], in order to examine the behavior of
DRL methods in a open-world setting, allowing to better un-
derstand how DRL methods behave and bringing us one step
close to deploying such approaches on real applications. It
is worth noting that, to the best of our knowledge, this is
the first study in which an open-world simulator is employed
for training DRL agents for performing frontal view shoot-
ing without using a static posed dataset, demonstrating that
DRL can be successfully used, even under this challenging

setting. The developed DRL agent is trained using an estab-
lished value-based DRL method and employs a specially de-
signed reward shaping approach that was critical for success-
fully training the developed model. Note that reward shap-
ing is often employed in various challenging RL problems,
especially when they involve delayed and sparse rewards,
to increase the performance of the agents [17]. An open-
source implementation of the developed simulator is provided
at https://github.com/opendr-eu to further accel-
erate research on developing DRL approaches.

The rest of the paper is structured as follows. First, the
developed simulation environment, along with the proposed
control agent and reward shaping approach are described in
Section 2. Then, the experimental evaluation is provided in
Section 3. Finally, conclusions are drawn in Section 4.

2. PROPOSED METHOD

In this Section we describe the developed simulation environ-
ment and the capabilities of the employed agent, e.g., avail-
able actions, ways of observing and interacting with the envi-
ronment, etc. Then, we provide a concise description of the
employed DRL method, as well as of the proposed reward
shaping approach used for training the agent.

2.1. Simulation Environment

The simulation environment was developed using the Unreal
Engine 4. The environment represents a city that consists
of four blocks, as already shown in Fig. 1. Other than the
four buildings, bus stops, trees and other smaller props are
also included. Furthermore, fourteen distinct 3D models of
people were employed and inserted at various spots of the
city. The selected models correspond to people of various
ethnic groups, with a variety of clothes and features, allowing
to examine the behavior of DRL methods under these more
challenging conditions. Ten human 3D models were used for
training, while the rest of them were used for evaluating the
performance of the agent on previously unseen subjects, as
shown in Fig. 2.

A drone, equipped with an RGB camera, is also included
in the simulation. The purpose of the developed agent is to ap-
propriately control the drone in order to acquire frontal shots
of the human models. Note that the drone can perform ac-
tions that only affect the position and orientation of the drone,
while the orientation of the camera remains fixed, i.e., the
agent does not control the gimbal on which the camera is
mounted. Therefore, in order to acquire the desired shots, the
agent must learn how to appropriately control the drone. The
developed environment supports 9 different discrete actions:

1) Forwards: Move the drone towards the drone’s look
direction with speed 0.3m/s for 0.3s,
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(a) Douglas (b) Liam (c) Malcolm (d) Regina (e) Remy

(f) Shae (g) Ely (h) Kachujin (i) Alison (j) Marker

(k) Stefani (l) Dreyar (m) Eric (n) Neuman

Fig. 2: Human models used in the developed simulation en-
vironment. The first ten (a-j) were used for the training pro-
cess, while the rest of them (k-n) were used for evaluating the
performance of the model. Note the large variations in style,
clothing, and features exhibited by the employed human mod-
els.

2) Backwards: Move the drone in the opposite direction
than the drone’s look direction with speed 0.3m/s for
0.3s,

3) Left: Move the drone to the left with respect to the
drone’s look direction with speed 0.3m/s for 0.3s,

4) Right: Move the drone to the right with respect to the
drone’s look direction with speed 0.3m/s for 0.3s,

5) Up: Move the drone up with speed 0.3m/s for 0.3s,

6) Down: Move the drone down with speed 0.15m/s for
0.3s,

7) Rotate left: Rotate the drone to the left with angular
velocity 10◦/s for 0.3s,

8) Rotate right: Rotate the drone to the right with angular
velocity 10◦/s for 0.3s,

9) Stay: Do not perform any action.

The above actions were implemented using the API provided
by the AirSim plugin for Unreal Engine [18]. Also, note that
the simulation was running 50 times faster than real time, so
each second was equivalent to approximately 10 environment
steps. Each episode lasts for 20 seconds, so about 200 steps
are performed in each episode.

For every episode, one of the human models is selected
at random, which will be the target human for the current
episode. The selected human model is rotated to a random
orientation so that the background appearing in the shot is
different in each episode. The drone is placed in a random
position in front of the human model’s face, pointing at it.
Some indicative examples of initial positions are shown in
Fig. 3. Note again the wide variety of different backgrounds,
compared to the uniform background observed by agents used

Fig. 3: Observations provided to the agent when an episodes
begins. A 200×200 RGB frame is captured through the cam-
era mounted on the drone at each simulation step.

Table 1: Neural network architecture used by the DRL agent

Layer Output Shape
Input Layer 200× 200× 3

Convolutional Layer (8× 8, stride 4) 49× 49× 32
Convolutional Layer (4× 4, stride 2) 24× 24× 64
Convolutional Layer (3× 3, stride 1) 22× 22× 64

Fully Connected Layer 512
Fully Connected Layer 9

in previous works (as shown in Fig. 1). The episode ends
when either the human’s face goes out of the frame, or the
drone moves away from the target, or the drone collides with
another object or finally when the 20 second time period is
depleted from the start of the episode. The RL agent inter-
acts with the developed environment and observes its state
through the camera mounted on the drone, which provides
one 200 × 200 RGB frame to the agent at each step. The
agent is then trained to learn how to appropriately control the
drone directly from this raw pixel input.

2.2. Deep Reinforcement Learning Agent

At each time step the agent observes a tensor x ∈ R200×200×3

and decides which is the most appropriate action that should
be selected in order to maximize the reward obtained from
the environment. A value-based DRL approach is employed
in this work: a deep learning model fW(x) ∈ R9 is used
to estimate the Q-value for each available action at each time
step [19], where the notation W is used to denote the trainable
parameters of the model. For any given observation, the agent
selects the most profitable action by choosing the action with
the largest Q-value. A fast and lightweight network architec-
ture, that can also run on embedded processing platforms that
drones typically use [20], was employed for this task. The
architecture of the used network is shown in Table 1. The
ReLU activation function [21] is used for all the convolutional
and dense layers (except from the final one, which does not
use any activation function and predicts the Q-values for the
9 possible actions). We also followed the dueling approach,
proposed in [22], when designing the DRL agent.

A significant limitation of Q-learning is the instability of
the learning process when non-linear functions, such as neu-
ral networks, are used to approximate the Q-values. To this
end, in this work we used prioritized experience replay [23],
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to increase the stability of the training process and reduce the
correlation between the data used for training the model. The
size of the experience replay pool is set to Nreplay = 500
and batches of Nbatch = 32 samples are drawn before each
gradient descent update. Furthermore, we use a separate tar-
get network for generating the Q-values during the training to
avoid feedback loops that can lead to instabilities. The target
network is updated every Ntarget = 500 steps.

Finally, we used the Huber loss function for training the
DRL model to regress the Q-values:

L(δ) =

{
1
2δ

2, when δ < δthres

|δ| − 1
2δthres, otherwise

, (1)

where δ is the error between the target Q-value and the cur-
rent output of the network. The parameter δthres for the
Huber loss was set to 1. For updating the weights of the
network, the Adam optimizer [24] with learning rate λ =
0.00005 was used. Also, the discount factor γ was set to
0.95. Finally, to explore the solution space a linear explo-
ration policy was used. Exploration starts with an initial rate
of εinit = 1 and linearly decreases it to εtarget = 0.1 dur-
ing the first Nexplore = 1, 900, 000 training steps. After the
initial Nexplore steps the exploration rate stays constant to
εtarget = 0.1. The agent was trained for 2, 000, 000 steps.

2.3. Reward Shaping

Defining a meaningful reward function is critical for training
RL agents. The agent is trained to achieve the desired dis-
tance with respect to the selected human subject, as well as to
acquire a frontal shot. Therefore, the optimization objective
should involve both the distance to the target, as well as the
angular error with respect to the human subject. The distance
error is defined as:

d =

√
(fpx − cpx)2 + (fpy − cpy)2 + (fpz − cpz)2, (2)

where (fpx, fpy, fpz) denotes the optimal position in which
the drone should be in order to take a frontal close-up shot and
(cpx, cpy, cpz) is the current camera position. The angular
error is similarly defined as:

θ = arccos

(
tdT ld

||td||2||ld||2

)
, (3)

where td = (tdx, tdy, tdz) is the person’s face direction with
respect to the drone’s camera and ld = (ldx, ldy, ldz) is the
current look direction of the drone’s camera. Therefore, the
agents should be optimized with the respect to the combined
distance and angular error.

However, simultaneously optimizing these two objectives
when training an agent that directly operates on the raw cam-
era input can be especially difficult [15]. To this end, we de-
fine an appropriate reward shaping approach that a) further

rewards the agent as it gets closer to the target (by providing
an additional rp reward), b) encourages the agent to select the
stay action (by further providing an additional rs > rp re-
ward), c) punishes the drone (by providing a negative reward
equal to rn) when collides with the another object or losses
the human subject, d) disentangles the angle from the actual
returned reward, as far as the agent stays within certain limits.
Therefore, the reward function used in this paper is defined as:

r =



(1− d) + rs + rp,
when d < d1 and θ < θ1 and
the agent selects “Stay” (action
8)

(1− d) + rp, when d < d1 and θ < θ1

−rn,
when d > d2 or θ > θ2 or the
drone collides with another ob-
ject

1− d, otherwise

,

(4)
where for all the conducted experiments we set: rs = 90,
rp = 10 and rn = 100. The error bounds for the distance and
angle can be set according to the requirements of each appli-
cation. In this work, we set d1 = 0.1, θ1 = 0.1, d2 = 1.13
and θ2 = 0.4. Note that providing the additional rs reward
when the stay action is selected, allows not only to reach the
target position and orientation, but also to train more robust
agents that stay in place (select the “stay” action) when the
desired shot is achieved and avoid erratic movements. In Sec-
tion 3, we experimentally verified that this approach indeed
leads to stabler agents that avoid performing back and forth
movements just to slightly reduce the position error.

3. EXPERIMENTAL EVALUATION

The evaluation results are reported in Table 2. Two different
evaluation setups were used: a) “train”, where the ten human
models that were used during the training process were used
for the evaluation, and b) “test”, where four different human
models were used. For evaluating the method we ran 500
random episodes, where the agent was allowed to perform
actions in a 20 second window. The proposed approach (de-
noted by the acronym “DRL” in Table 2) is also compared to
a baseline agent that only selects the stay action. This allows
to evaluate the improvements acquired by using the proposed
agent. The total reward acquired through each episode is re-
ported, as well the mean distance error (in meters). The pro-
posed agent is indeed able to accurately control the agent to
acquire a frontal shot, both for the train evaluation (the error
is reduced from 0.60 to 0.15), as well as for the test evaluation
(the error is reduced from 0.61 to 0.16). Note that the agent
was capable of successfully generalizing the learned policy
to subjects not seen during the training, as highlighted by its
performance on the test evaluation.

Furthermore, to qualitative demonstrate the ability of the
trained agent to control the trajectory of a drone in order to
acquire a frontal shot, while avoiding erratic movements, we
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Table 2: Drone control evaluation for frontal close-up shoot-
ing

Method Eval. Type Mean Reward Mean Error
Baseline Train 140 0.604
DRL Train 10,500 0.148
Baseline Test 137 0.605
DRL Test 6,250 0.164

provide an example of a control sequence in Fig. 4a. It is
worth noting that after acquiring a satisfactory frontal shot,
the agent selects the “stay” action, in order to acquire the re-
ward associated with this action (rs), demonstrating the ef-
fectiveness of the employed reward shaping approach. Also,
in Fig. 4b, we also provide another control trajectory from a
different viewing angle, showing both the human subject, as
well as the drone. Again, similar conclusions can be drawn:
the drone is appropriately controlled to lock its position in
front of the human subject.

4. CONCLUSIONS

In this paper we presented a realistic simulation environment
that can be used for developing deep reinforcement learning
methods for various drone-related control tasks. The devel-
oped simulation environment goes beyond the static environ-
ments used by many existing methods, that largely employed
datasets with little to no background variations. This open-
world environment, that does not constraint the actions that
can be performed, was used to develop an agent capable of
controlling a drone, in order to perform frontal view shoot-
ing. The effectiveness of the developed approach was demon-
strated using both subjects that were seen by the agent during
the training, as well novel subjects, which were not seen dur-
ing the training. The developed environment provides a solid
step towards developing effective DRL methods for various
robotics-related control tasks, allowing for easily implement-
ing and experimenting with novel DRL approaches. To this
end, we also provide an open-source implementation of the
developing simulation environment, as well as of the DRL
agent, allowing other researchers easily use and extent the
methods presented in this paper.

There are several interesting future research directions.
First, the proposed method can be used and evaluated in even
more challenging settings, in which the human subjects inter-
act with each other and potentially use other objects of the
environment, e.g., cars. It is worth noting that this is a sce-
nario that can be easily supported by the developed simulation
environment. Furthermore, more advanced network architec-
tures, such as recurrent neural networks, can be employed to
ensure that the agents will capture the necessary temporal in-
formation needed for anticipating actions from each subject.
Finally, the proposed method can be extended to control mul-

(a) View from the drone’s camera

(b) View from a fixed point above the subject (the red rotors repre-
sent the front end of the drone)

Fig. 4: Two example control sequence of the trained DRL
agent from two different perspectives

tiple axes, e.g., both the movement of a drone and the gimbal
mounted on it, providing more flexible agents that can achieve
shots of higher quality.
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