
HAL Id: hal-03265182
https://hal.science/hal-03265182

Submitted on 19 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging Active Perception for Improving
Embedding-based Deep Face Recognition

Nikolaos Passalis, Anastasios Tefas

To cite this version:
Nikolaos Passalis, Anastasios Tefas. Leveraging Active Perception for Improving Embedding-based
Deep Face Recognition. 2020 IEEE 22nd International Workshop on Multimedia Signal Processing
(MMSP), Sep 2020, Tampere (virtual), Finland. �10.1109/MMSP48831.2020.9287085�. �hal-03265182�

https://hal.science/hal-03265182
https://hal.archives-ouvertes.fr


Leveraging Active Perception for Improving
Embedding-based Deep Face Recognition

Nikolaos Passalis and Anastasios Tefas
Artificial Intelligence Information Analysis Laboratory

Department of Informatics, Faculty of Sciences
Aristotle University of Thessaloniki, Thessaloniki, Greece

E-mail: {passalis, tefas}@csd.auth.gr

Abstract—Even though recent advances in deep learning (DL)
led to tremendous improvements for various computer and
robotic vision tasks, existing DL approaches suffer from a
significant limitation: they typically ignore that robots and cyber-
physical systems are capable of interacting with the environment
in order to better sense their surroundings. In this work we
argue that perceiving the world through physical interaction,
i.e., employing active perception, allows for both increasing the
accuracy of DL models, as well as for deploying smaller and
faster models. To this end, we propose an active perception-based
face recognition approach, which is capable of simultaneously
extracting discriminative embeddings, as well as predicting in
which direction the robot must move in order to get a more
discriminative view. To the best of our knowledge, we provide
the first embedding-based active perception method for deep face
recognition. As we experimentally demonstrate, the proposed
method can indeed lead to significant improvements, increasing
the face recognition accuracy up to 9%, as well as allowing for
using overall smaller and faster models, reducing the number of
parameters by over one order of magnitude.

I. INTRODUCTION

Deep Learning (DL) has led to tremendous improvements in
recent years for various challenging computer vision tasks [1],
including, but not limited to, object detection and recogni-
tion [2], scene segmentation [3], face recognition [4], and
others. The advanced perception capabilities enabled by DL
also provided powerful tools for various robotics tasks, lead-
ing to the development of spectacular applications, such as
autonomous cars [5], drones [6], [7], and robots that can
seamlessly interact with humans, e.g., collaborative manufac-
turing [8].

However, despite these recent achievements of DL in these
areas, most of the existing methods suffer from a significant
drawback: they follow a static inference paradigm, as inherited
by the traditional computer vision pipeline. More specifically,
DL models perform inference on a fixed and static input, ig-
noring that robots, as well as many cyber-physical systems [9],
[10], have the ability of interacting with the environment
in order to better sense their surroundings. For example,
consider the task of face recognition, where a robot has
acquired a sub-optimal profile view of a subject. An existing
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static perception-based DL model might fail to recognize
the subject from this view, especially if it has never been
trained on profile face images. However, it is usually possible
that the robot can acquire a better and more discriminative
view by more appropriately repositioning itself with respect
to the human subject. Therefore, in this case, the exact same
DL model, will probably be able to recognize the subject,
after the robot repositions itself in a more appropriate angle
with respect to the subject. This approach, which is called
active perception [11], [12], [13], allows for manipulating
the robot/sensor in order to acquire a better and more clean
view/signal, leading to improved situational awareness. It is
worth noting that this process is very similar to the way
humans and various animals interact and understand their
environment. For example, humans tend to look from different
angles when trying to process complex visual stimuli, while
many mammals have specialized muscles that rotate their ears
toward the source of an audio signal [14].

A number of recent, yet quite primitive approaches, demon-
strated that active perception can indeed increase the percep-
tion capabilities of various models. For example, in [15] it is
demonstrated that developing a deep learning system that also
predicts the next best move for a robot, using reinforcement
learning, can significantly improve the performance of object
detection, where the viewing angle, occlusions and the scale
of each object can have a significant effect on the object
recognition accuracy. Similar observations were also reported
by more recent works [16], [17], [18]. At the same time, it
is worth noting that active perception approaches often allow
for developing faster and more lightweight DL models, since
models are trained in order to solve a simpler problem. For
example, in the case of object detection [15], a simpler model
can be trained just for recognizing the objects from a limited
number of angles, since a robot can usually acquire a more
appropriate view that allows for accurately recognizing the
corresponding object. To the best of our knowledge, despite
these encouraging results in these areas, there have not been
any thoroughly study on developing deep learning-based active
perception models for human-centric robot perception, such
face recognition.

Motivated by the aforementioned observations, we examine
two main hypotheses in this work. First, we argue that the
recognition accuracy of DL models can be improved by



acquiring a more appropriate view, after manipulating the
position of a robot inside the world. For example, moving a
robot closer to a human is expected to improve the confidence
of the robot when recognizing a human, as well as reduce
the recognition errors. At the same time, we hypothesize that
a significant part of the complexity in modern DL models
arise from their ability to perform view invariant inference.
Therefore, we argue that significantly smaller models can be
used when active perception approaches are employed, without
reducing recognition accuracy.

The main contribution of this work is proposing a DL-based
active perception method for embedding-based face recogni-
tion, as well as examining the behavior of such approach on
a real multi-view face image dataset, shedding light on the
aforementioned research questions. The proposed method is
capable of simultaneously learning discriminative embeddings,
that can disentangle the representations extracted from facial
images that belong to different persons, as well as learning
which should be the next control action by a robot carrying
a camera in order to improve the face recognition confidence,
as shown in Fig. 1. The proposed method does not rely on
prior knowledge, such as that frontal views might lead to
better recognition accuracy, and it is capable of autonomously
learning how to acquire the best view in order to facilitate the
task at hand. Therefore, the proposed formulation is generic
and task agnostic and can be applied to virtually any DL-based
recognition model, given that the appropriate simulation envi-
ronment have been developed and/or the appropriate dataset
have been collected.

Furthermore, the proposed method is computationally ef-
ficient, since it utilizes the same main network backbone
both for extracting a discriminative embedding, as well as for
predicting the next action that must be performed in order to
increase the recongition confidence, as shown in Fig. 1. To
this end, two different branches, an embedding branch and a
control action branch, are employed, as further described in
Section II. Additionally, instead of using a computationally
intensive reinforcement learning-based approach for the opti-
mization, similar to other active perception methods [15], [17],
the proposed method employs a purely supervised learning
approach, which can significantly accelerate the convergence
of the method. It is worth noting that the proposed method is
task agnostic and can be trivially implemented in the typical
batch-based setting used for training DL models. Therefore, it
can be directly used for most classification/regression tasks,
extending beyond the face analysis applications presented
in this paper, paving the way for providing generic active
perception-enable DL models. Finally, to the best of our
knowledge, this is the first deep learning-based active percep-
tion approach that allows for efficiently optimizing one unified
architecture towards both learning discriminative embeddings,
as well as performing control.

The rest of the paper is structured as follows. First, the
proposed method is introduced and analytically derived in
Section II, while an extensive experimental evaluation is
provided in Section III. Finally, conclusions are drawn and

further research directions are discussed in Section IV.

II. PROPOSED METHOD

The proposed method is presented in this Section. First, the
necessary notation and a brief introduction to representation
learning for face recognition is provided. Next, the proposed
approach is presented and discussed in detail.

A. Notation and Representation Learning

Let xi ∈ RW×H×C denote a (cropped) face image, where
W , H and C are the width, height and number of channels of
the corresponding image. Also, let X = {x1, . . . ,xi, . . .xN}
be a collection of N training images, while the binary vari-
able dij ∈ {0, 1} is introduced to denote whether the i-th
face image belongs to the same person as the one depicted
in the j-th face image. Most recent deep face recognition
methods, e.g., [19], aim at learning an appropriate model
y = fθr (x) that will extract a discriminative identify-oriented
representation from each face image by solving the following
optimization problem:

(1)θr = arg min
θ

N∑
i=1

N∑
j=1,j 6=i

L(fθ(xi), fθ(xj), dij)

Different loss functions L(·) have been proposed to this
end. In this work, we employ the contrastive loss [20], [21],
which is minimized when embeddings that belong to the same
identity are as close as possible, while the representations of
face images that do not belong to the same person maintain
at least a distance of

√
m:

(2)Lc(yi,yj , dij) = dij ||yi − yj ||22 +

(1− dij) max(0,m− ||yi − yj ||22),

where ||·||2 refers to the l2 norm of a vector. After training
the model y = fθr (x), the identity of a person depicted
in a previously unseen image x can be obtained simply by
performing nearest neighbor search on a database that contains
images xi of known identities, i.e., Xd = {(xi, li)}, where li is
the identity of the person depicted in the i-th image. Therefore,
during inference the identity l of a person appearing in a novel
image x is obtained as:

l = li,where i = arg min
i
||f(xi)− f(x)||2 (∀(xi, li) ∈ Xd).

(3)

B. Active Perception for Face Recognition

Even though this static approach presented in the previous
subsection allows for achieving quite impressive face recogni-
tion results, as well as for easily training the model using
a collection of static images, it comes with an important
drawback: it ignores the ability of robotic systems to interact
with the environment in order to get a more discrimintive
view for the task at hand. For example, a drone carrying a
camera can fly to the appropriate direction in order to acquire
a more clean frontal view of a person, allowing for analyzing
the input with greater confidence. To this end, we introduce



Fig. 1: Comparing the proposed active perception-based approach to static face recognition. We simultaneously train a DL
model to predict both a discriminative feature vector, which is used for face recognition, as well as a high-level description for
the next best action, which can be used for acquiring a better and more discriminative view of the input. Note that the model
is not trained for facial pose estimation, yet it implicitly learns the control actions that will lead to the view that will provide
the best recognition results.

a trainable controller at = gθc(x(t)), where θc is a set of
trainable parameters for the controller model, that receives
an observation (image) x(t) from the environment at time t
and provides an appropriate control command at to the robot.
Then, the updated observation is obtained by executing the
corresponding action at as:

x(t+1) = v(at, t), (4)

where v(·) is either a model of the environment that returns
the result of a simulated action at at time t, or the real
environment, in the case of deploying the model into a real
system, where we execute the corresponding action and get the
updated observation. In this way, the controller gθc(·) provides
a way to actively interact with the environment in order to
get updated sensory stimuli, that will, in turn, lead to more
accurate predictions for the embedding extractor fθr (·). For
the rest of the paper, we will refer to the environment v(at, t)
as v(at) to avoid cluttering the used notation.

Both the feature extractor model fθr (·), as well as the con-
troller model gθc(·) must be appropriately trained for the task
at hand. That is, the feature extractor model must be trained to
extract discriminative embeddings, while the controller model
must be trained in order to provide the appropriate control
commands that will allow for getting a view that will maximize
the face recognition accuracy. To this end, the optimization
problem provided in (1) is updated following the proposed
active perception setting:

θr, θc = arg min
θ1,θ2

N∑
i=1

N∑
j=1,j 6=i

L(fθ1(v(gθ2(xi))), fθ1(xj), dij).

(5)

Note that the active perception controller is allowed to ma-
nipulate only the first input to the loss function, since the
other one corresponds to the fixed version that is stored
in the database. Ideally, the controller should be aware of
the remaining images contained in the database, since this

information can be exploited in order to acquire a view that
matches the view of the person that is stored in the database.
However, in this paper we assume that all images in the
database are acquired under similar conditions, allowing for
ignoring possible view variations of the database images.

It is also worth noting that (5) provides (at least) two
different ways to minimize the employed loss: a) either by
learning a powerful view-invariant feature extractor fθr (·),
or b) by jointly learning a feature extractor along with an
appropriate controller that is capable of acquiring images that
makes the recognition problem easier. For the deployment,
and after training both models simultaneously, the robot can
either output the most probable prediction according to (3), or
first appropriately control its camera (e.g., by moving itself or
controlling a gimbal) in order to acquire an updated view. It is
also possible that the controller will not provide any suggested
action, as further explained below. In this case, we assume that
the robot has already obtained an optimal view and no action
should be performed.

Without loss of generality, in this paper we assume that
control will be performed in discrete steps on one (horizontal)
axis, which lies along a sphere centered on the subject’s face.
The proposed approach can be directly extended to handle
multiple axes as well. Therefore, the controller gθc(·) ∈ R3

support three possible actions:
1) “stay” (at = (1, 0, 0)),
2) “left” (at = (0, 1, 0)),
3) “right” (at = (0, 0, 1)),

with each of the three output neurons corresponding to the
confidence of the controller for performing each of the three
possible actions. Note that the controller gθc(·) only provides
high-level control commands, which must be appropriately
translated into actual control commands by using an appro-
priate controller, e.g., an PID controller [6], [22].

Despite the updated formulation provided in (5), it is still
not straightforward to directly optimize gθc(·), since the model
v(·) is usually not fully known and it is not differentiable.



Instead of using reinforcement learning (RL), which is typ-
ically used to solve such control problems [15], [17], in
this work we opt for a simpler, yet more efficient approach,
which arises from the following assumption/observation: the
recognition confidence is expected to monotonically increase
or decrease when moving towards the same direction (at least
for small continuous intervals). We call this smooth control
manifold assumption. Even though it is possible that this
assumption does not hold in practice, this approach allows
for significantly simplifying the optimization process, as well
as increasing the face recognition accuracy, as we further
demonstrate in Section III. Therefore, for each face image
sampled during the training process, we propose executing all
the three possible actions simultaneously (using the appropri-
ate simulation environment/dataset) and observing the effect
on the recognition confidence. Let xi0, xi1, and xi2 denote the
updated facial image obtained after moving the robot to the
left, right, or performing no action. Then, the training target for
the controller can be trivially acquired by choosing the action
that minimizes the distance between the representation of the
correct face and the current face. Therefore, the controller
target d(a)i for an image xi and a positive example xp is
acquired as:

d
(a)
i = arg min

k∈{0,1,2}
||xik − f(xp)||2. (6)

For negative examples there are two options: a) either not
training the controller with them, or b) training the controller
in order to again minimize the distance between the embedding
vectors (despite belonging to different persons). The motiva-
tion for the latter option is that the controller should always
perform control in order to find the view that provides the
best matching between face embeddings. In this work, the first
option was selected, since it was experimentally shown to lead
to slightly better recognition results.

Therefore, the loss to be minimized when optimizing the
controller is defined as:

Lg =

N∑
i=1

N∑
j=1,j 6=i

dijLx(gθc(xi), d
(a)
i ), (7)

where Lx denotes the categorical cross-entropy loss. The fea-
ture extractor can be still trained as before, i.e., by minimizing
the loss:

Lf =

N∑
i=1

N∑
j=1,j 6=i

L(fθr (xi), fθ(xj), dij), (8)

as provided in (1). Therefore, the final loss is obtained as:

L = Lg + Lf (9)

Gradient descent is employed for optimizing both models as:

∆θr = −ηr
∂L
∂θr

, and ∆θc = −ηc
∂L
∂θc

, (10)

where ηr and ηc are the learning rates for the feature extraction
and controller models respectively. For all the experiments
conducted in this paper we set ηr = ηc = 10−3, while a

common backbone network with convolutional layers is shared
between fθr (·) and gθc(·), with two different branches used
for implementing these two function, as further described in
Section III. The structure of the employed network architecture
is depicted in Fig. 1.

III. EXPERIMENTAL EVALUATION

The experimental evaluation is provided in this Section.
First, the employed datasets, experimental setup and neu-
ral network architectures are presented. Then, the proposed
method is extensively evaluated and discussed.

A. Dataset and Experimental Setup

The proposed method was evaluated using the Head Pose
Image Dataset (HPID) [23], which contains facial images of
several persons at various pans and tilts, ranging from −90◦

to 90◦. The HPID dataset was selected for evaluating the
proposed method, since it contains real images at various
angles (instead of simulated faces), as also depicted in Fig. 2,
and it provides the full range of pans (from −90◦ to 90◦ with
15◦ steps). The small number of identities and face images
per pose contained in the dataset renders this evaluation setup
especially challenging, since it corresponds to a realistic few-
shot learning scenario, which is often encountered in various
robotics applications [24].

The 75% of the persons contained in the dataset was used
to train the models, while the remaining 25% persons were
used for evaluating the trained models. All experiments were
conducted 5 times and the mean and standard deviation of
the recognition accuracy is reported. Two evaluation setups
were used to examine the performance of the proposed method
under two different settings: a) “Set 1”, where the recognition
database contains face images with pans between −15◦ to 15◦,
and a) “Set 2”, where face images with pans between 30◦ to
60◦ were used. Images with tilt between −30◦ and 30◦ were
used for all the conducted experiments.

The backbone network used for the conducted experiments
consists of four 3× 3 convolutional layers with 8, 16, 32 and
64 filters, respectively. The ReLU activation function was used
for all the convolutions layer [25], while 2×2 max pooling was
employed after each layer. A fully connected layer with 256
neurons follows the last convolutional layer of the backbone.
The feature extraction branch consists of a fully connected
layer with 64 neurons, while the controller branch is composed
of a fully connected layer with 32 hidden neurons and a final
layer with 3 neurons (one for each action). Images of 88× 88
pixels were fed to the network, while the Adam optimizer was
employed for the optimization [26]. The proposed method was
pre-trained on the training dataset for 100 epochs (by training
only the feature extraction branch), followed by 50 training
epochs, where both branches were simultaneously optimized.
Finally, note that the cross entropy loss was weighted with
class weights, which were equal to 1 for the left and right
actions and to 0.01 for the stay action, since the model tended
to more frequently select this action.



Fig. 2: Sample images contained in the HPID dataset. Note that a complete set of poses are included in the dataset, allowing
for evaluating the proposed method using real data instead of using face images generated from simulators.

TABLE I: Experimental Evaluation using the HPID dataset

Method Accuracy (Set 1) Accuracy (Set 2)

Static Perception 54.1± 3.4% 49.9± 4.1%
Static Perception (finet.) 52.7± 4.2% 51.4± 4.6%
Proposed (1 step) 61.6± 5.1% 58.8± 7.0%
Proposed (3 steps) 62.2± 5.9% 58.9± 6.5%

TABLE II: Evaluating the effect of model size on face recog-
nition accuracy

Method Network Accuracy # Param.

Static Perception 0.25× 38.8± 6.6% 12k
Static Perception 0.5× 49.0± 5.5% 47k
Static Perception 1× 54.1± 3.4% 189k

Proposed 0.25× 57.5± 5.8% 14k
Proposed 0.5× 60.2± 6.9% 52k
Proposed 1× 62.2± 5.9% 197k

B. Experimental Evaluation

The evaluation results are presented in Table I. The proposed
method is compared to a static perception approach (“Static
Perception”), where the exact same DL model is used, but
without employing the control branch. This baseline was
trained for 100 epochs. To ensure a fair comparison with
the proposed method, we also report evaluation results for
the same model, further finetuned for 50 additional train-
ing epochs. The proposed method manages to increase the
recognition accuracy by more than 7%, just after one control
step, which can lead in a view change of at most 15◦.
This demonstrates the effectiveness of the proposed active
perception approach and indicates the importance of exploiting
the ability of a robotic system to interact with the environment
in order to acquire a better and more discriminative view
for the task at hand, confirming the first hypothesis posed

in Section I. It is worth noting that significant improvements
are obtained regardless the type of images contained in the
database (Setup 1 and Setup 2). When allowed to perform
additional control steps (3 steps instead of just 1), the proposed
method again further increases the recognition accuracy for
both setups. These results suggest that using more fine-grained
control approaches, that can further adjust the control steps
according the current state, can potentially lead to even greater
accuracy improvements.

To evaluate the second hypothesis, i.e., that using active
perception allows for using smaller and faster models with
only a small impact on the final recognition accuracy, an
additional set of experiments was conducted. The experimental
results are reported in Table II. Two different networks were
employed to this end. The same architecture as in the previous
experiment is used, but the number of neurons per layer is
reduced by 0.5× and 0.25× (respectively) compared to the
original architecture. Indeed, active perception can exceed the
performance of traditional static perception models, using one
order of magnitude less parameters, leading to faster and more
accurate models.

IV. CONCLUSIONS

In this work, we presented a DL method for face recognition
that utilizes active perception. The proposed method employs
a hybrid architecture with two output branches, allowing for
simultaneously learning discriminative embeddings, as well as
providing the appropriate high-level control commands. As it
was experimentally demonstrated, the proposed method indeed
allows for improving the face recognition accuracy, while, at
the same time, allows for using simpler and more efficient
models to perform face recognition, leveraging the ability of
the system to acquire a view that is more suitable for the task
at hand. Finally, it is worth noting that the proposed method



is generic and task-agnostic and it provides a straightforward
way of enabling active-perception capabilities for many of the
existing static perception DL models.

The proposed method paves the way for developing generic
active perception approaches for a wide variety of tasks,
since it provides an efficient task-agnostic way for training
DL methods that can actively interact with the environment
to obtain a more discrimnative view. The most important
obstacle for developing such approaches is the lack of ap-
propriate datasets, needed for obtaining realistic views of the
environments. Apart from collecting such datasets, which is
an expensive and tedious task, several interesting alternatives
exist. For example, Generative Adversarial Networks can be
used to perform image-to-image translation to obtain different
views for existing datasets [27], [28], 3D models can be
created from real images and the various views can be directly
rendered [29], both real and simulated data can be combined
using highly realistic simulations [30], [31], while knowledge
distillation methods could be used to further reduce the gap
between real and simulated data [32], [33].
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