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Abstract. Bag-of-Features (BoF)-based models have been tradition-
ally used for various computer vision tasks, due to their ability to pro-
vide compact semantic representations of complex objects, e.g., images,
videos, etc. Indeed, BoF has been successfully combined with various
feature extractions methods, ranging from handcrafted feature extrac-
tors to powerful deep learning models. However, BoF, along with most
of the pooling approaches employed in deep learning, fails to capture
the temporal dynamics of the input sequences. This leads to significant
information loss, especially when the informative content of the data is
sequentially distributed over the temporal dimension, e.g., videos. In this
paper we propose a novel stateful recurrent quantization and aggrega-
tion approach in order to overcome the aforementioned limitation. The
proposed method is inspired by the well-known Bag-of-Features (BoF)
model, but employs a stateful trainable recurrent quantizer, instead of
plain static quantization, allowing for effectively encoding the tempo-
ral dimension of the data. The effectiveness of the proposed approach is
demonstrated using three video action recognition datasets.

1 Introduction

Computer vision is one of the most active and continuously expanding research
fields, while with the advent of deep learning (DL) many powerful visual informa-
tion analysis methods for high dimensional data have been recently proposed [8].
The typical pipeline of a visual information analysis approach involves at least
the following two steps: a) feature extraction, in which lower level information
is extracted from small spatial or temporal segments of the data, and b) feature
aggregation, in which the extracted information is fused into a compact repre-
sentation that can be used for the subsequent tasks, e.g., classification, retrieval,
etc. DL unified, to some extent, these two steps by employing deep trainable fea-
ture extraction layers, e.g., convolutional layers, that are combined with naive
pooling operators, e.g., max or average pooling, to lower the complexity of the
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model and provide translation invariance. Indeed, the outstanding performance
of Convolutional Neural Networks (CNNs) in complex and challenging image
analysis tasks, has confirmed their ability to extract meaningful feature vectors
with high discriminative power [8]. However, these powerful feature vectors are
crushed through the pooling layers of the network, that usually implement the
pooling operation in a less sophisticated manner. As we will demonstrate through
this paper, this can lead to significant information loss, especially in cases where
the informative content of the data is sequentially distributed over the spatial
or temporal dimension, e.g., videos, which often requires extracting fine-grained
temporal information, which is discarded by these pooling approaches.

The aforementioned limitations can be better understood through the follow-
ing example. Consider the task of activity recognition in videos, where the action
of sitting down must be distinguished from the action of standing up. Feature
vectors can be extracted from every video frame or a sequence of them by using a
deep CNN. However, the pooling layers, as the weak point of the network, dull the
expressiveness of the extracted feature vectors and produce less discriminative
representations by pooling over the time dimension. For example, assume that a
sequence of feature vectors is extracted from a given video instance of action sit-
ting down. Let that sequence, notated as S1 = [a1,a2,a3], be composed of three
feature vectors a1 = [0, 0, 1]T , a2 = [0, 1, 0]T , and a3 = [1, 0, 0]T , which are the
feature vectors that correspond to the sub-actions standing above a chair, bend-
ing knees and sitting on a chair, respectively. Similarly, consider the same fea-
ture vector sequence, but in reverse order, i.e., S2 = [a3,a2,a1], that represents
a video instance of the activity standing up. Also, let si denote the aggregated
representation extracted for the i-th video. Note that when average or max pool-
ing is applied over both sequences, then the same representation is extracted for
both videos, i.e., s1 = s2 = [maxi[ai]1,maxi[ai]2,maxi[ai]3]T = [1, 1, 1]T for max
pooling (where the notation [x]i is used to refer to the i-th element of vector x)

or s1 = s2 = 1
3

∑3
i=1 ai = [ 13 ,

1
3 ,

1
3 ]T for average pooling. Therefore, even though

the employed CNN was capable of perfectly recognizing the fundamental sub-
actions from still frames, the resulting deep model cannot discriminate between
the two actions due to the employed pooling layer. Therefore average and max
pooling layers are not capable of capturing the fine-grained spatial or temporal
interactions between the feature vectors extracted from a given sequence. Note
that in other cases, instead of employing a pooling layer, the extracted feature
map may be flatten to a vector and fed to the subsequent fully connected layer.
However, this approach makes it impossible for the network to handle inputs
of arbitrary size, while it significantly reduces the invariance of the network to
temporal shifts (the features must always arrive at the exact same moment).

In this paper, we propose a novel stateful recurrent pooling approach that
is capable of overcoming these limitations. The proposed method builds upon
the well-known Bag-of-Feature (BoF) model [11], which is capable of creating
a constant-length representation of a multimedia object, e.g., video, audio, etc.,
by compiling a histogram over its quantized feature vectors. Therefore, every
object is represented using a fixed-length histogram over the learned codewords.
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The codewords/dictionary can be either learned using generative/reconstruction
approaches [11], or by employing discriminative dictionary learning methods [4],
which usually better fit classification tasks. This scheme found application in
numerous computer vision tasks, including scene recognition [7], texture classifi-
cation [16], etc. BoF can be also combined with deep neural networks to provide
more powerful trainable pooling layers that can better withstand distribution
shifts, while handling inputs of various sizes [9]. Despite its remarkable success
in various tasks and its ability to handle variable size inputs, the main drawback
of BoF-based methods is the loss of spatial and temporal information, as well as
their inability to capture the geometry of input data [7].

These drawbacks severely limit the ability of BoF to process temporal or
sequential data, such as video data, since it is not capable of capturing the
temporal succession of events. To overcome this limitation, we suggest that the
quantization process should take into account the order in which the features
arrive, allowing for forming temporal codewords that also capture the interrela-
tion between the feature vectors. As a result, a BoF method employing a stateful
recurrent quantizer would be able to quantize the vector a2 - “bending knees”
(given in the previous examples) into a different codeword depending on whether
it was following the vector a1 - “standing above a chair” or the vector a3 - “sit-
ting on a chair”. In this way, it would be possible to extract a representation
that can discriminate the standing up action from the sitting down action.

The proposed method is inspired by the BoF model, but employs a stateful
trainable recurrent quantizer, instead of a plain static quantization approach to
overcome the limitation of existing BoF formulations. In this way, the proposed
method harness the power of a novel powerful recurrent quantization formula-
tion in order to capture the temporal information of input data, which is crucial
in classification tasks, such as activity recognition, while still maintaining all
the advantages of the BoF model. In this work, the proposed Recurrent BoF
(abbreviated as “ReBoF”) layer is used between the last feature extraction layer
and the fully connected layer of a network. Therefore, instead of using other
naive pooling layers, that can lead to significant loss of temporal information,
the extracted feature vectors are quantized to a number of codewords in a re-
current manner, enabling us to encode the fine-grained temporal information
contained in the original feature vectors. The resulting network can be trained
in an end-to-end fashion using plain gradient descent and back-propagation,
since the proposed ReBoF formulation is fully differentiable.

This allows for building powerful deep learning models for various visual in-
formation analysis tasks, as thoroughly demonstrated in this paper, while at the
same time keeping the overall space and time complexity low compared to com-
petitive approaches. In this way, the proposed method holds the credentials for
providing fast and efficient human-centric perception methods for various em-
bedded and robotics applications [6]. To the best of our knowledge, in this paper
we propose the first stateful recurrent Bag-of-Features model that is capable of
effectively modeling the temporal dynamics of video sequences. It is also worth
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noting that existing BoF formulations, e.g., [9], merely provide models that fully
ignore the temporal information.

The rest of the paper is structured as follows. In Section 2 the proposed
Recurrent BoF (ReBoF) method is analytically derived. Then, the experimental
evaluation of the ReBoF method is provided in Section 3. A thoroughly dis-
cussion on how ReBoF could be used for practical applications, along with its
limitations, are provided in Section 4, while conclusions are drawn and future
work is discussed in Section 5.

2 Proposed Method

In this Section, we first briefly introduce the regular (non-recurrent) Bag-of-
Features model. Then, we derived the proposed Recurrent Bag-of-Features for-
mulation, draw connections with the regular Bag-of-Features model and discuss
how it can be used for video classification tasks.

2.1 Bag-of-Features

Let X = {xi}Ni=1 be a set of N videos to be represented using the standard BoF
model. From each video Ni feature vectors are extracted: xij ∈ RD(j = 1, ..., Ni),
where D is the dimensionality of each feature vector. BoF provides a way to ef-
ficiently aggregate these features into a fixed-length histogram. To this end,
each feature vector is first quantized into a predefined number of codewords, by
employing a codebook V ∈ RNK×D, where NK is the number of codewords.
This codebook is usually learned by clustering all feature vectors into NK clus-
ters [11]. Clustering algorithms, such as k-means, can be used to this end, with
each centroid, vk ∈ RD(k = 1, ..., NK), corresponding to a codeword. Then,
the quantized feature vectors of each object are accumulated to form the final
histogram. Even though several feature quantization approaches have been pro-
posed [11], this work focuses on using a soft quantization approach that allows for
learning the codebook using regular back-propagation, along with the rest of the
parameters of the model [10]. This can significantly improve the discriminative
power of the model, since the codebook is adapted for the task at hand.

More specifically, each feature vector xij , extracted from the i-th object, is
quantized by measuring its similarity with each of the Nk codewords as:

[dij ]k = exp

(
−‖vk − xij‖2

σ

)
∈ [0, 1], (1)

where σ controls the fuzziness of the quantization process. Then, for each feature
vector we obtain a fuzzy membership vector, after normalizing the observed
similarities as:

uij =
dij

‖dij‖1
∈ RNK . (2)
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Finally, the final histogram is extracted by accumulating all the normalized
membership vectors as:

si =
1

Ni

Ni∑
j=1

uij ∈ RNK . (3)

The histogram si has unit l1 norm, regardless the number of the extracted feature
vectors, and provides an efficient representation of the feature vectors extracted
from the corresponding video. This histogram is then fed to a multilayer per-
ceptron (MLP) to classify the video. Note that the extracted histogram can be
also used in other tasks, such as regression or retrieval.

2.2 Proposed Recurrent BoF

The histogram extracted using the regular BoF formulation, as described pre-
viously, discards any spatial or temporal information encoded by the feature
vectors. To overcome this limitation, in this work we propose using a recurrent
stateful quantizer, which allows for capturing and effectively encoding the tem-
poral information expressed by the order in which the feature vectors arrive to
the model. Note that in the case of video, we assume that the feature vector xij

corresponds to the j-th timestep of the i-th video sequence. Before deriving the
proposed recurrent quantization approach, it is worth examining, from a proba-
bilistic perspective, the quantization process involved in the BoF model. Using
Kernel Density Estimation [1], we can estimate the probability of observing the
feature vector xij , given an input object xi, as:

p(xij |xi) =

NK∑
k=1

[si]kK(xij ,vk) ∈ [0, 1], (4)

where the histogram si ∈ RNK separately adjust the density estimation, while
K(·) is a kernel function. Then, a maximum likelihood estimator can be used to
actually calculate the histogram:

si = arg max
s

Ni∑
j=1

log

(
NK∑
k=1

[s]kK(xij ,vk)

)
. (5)

The involved parameters (histogram) can be estimated as si =
1

Ni

∑Ni

j=1 uij , as

shown in [1], where

[uij ]k =
K(xij ,vk)∑NK

l=1K(x
(t)
ij ,vl)

∈ [0, 1]. (6)

Using this formulation, we can re-derive the regular BoF with soft-assignments.
Also, note that we can also replace the Gaussian kernel used in (1), which typi-
cally requires tuning the width σ, with an easier to use hyperbolic kernel, which
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does not require tuning any hyper-parameter. The hyperbolic kernel also proved
to be stabler and easier to use when the proposed method was combined with
deep neural networks. Therefore, we can now measure the similarity between
each feature vector and the codewords in order to quantize the feature vectors
as:

[dij ]k = σ(xT
ijvk) ∈ RNK , (7)

where

σ(x) =
1

1 + exp(−x)
, (8)

is the logistic sigmoid function. Note that this formulation still ignores the tem-
poral information, since it provides no way to encode the current state of the
quantizer. Therefore, we extend (7) in order to take into account the temporal
information, as expressed by the histogram extracted until the current step, as:

[dij ]k = σ(Vxij + Vh(rt � si,j−1)) ∈ RNK , (9)

where Vh ∈ RNK×Nk is a weight matrix that is used to transfer the gated
histogram vector into the quantization space, si,j−1 is the histogram extracted
from previous quantizations (state) and rj ∈ RNK is the output of a reset gate,
introduced to ensure the long-term stability of the model. The additional pa-
rameters introduced in this formulation are learned during the training process
using back-propagation. The proposed method also employs a reset gate, in-
spired by the GRU model [2], to further increase the stability of the learning
process. Therefore, the reset gate is defined as:

rij = σ(Wrxij + Ursi,j−1) ∈ RNK , (10)

where Wr ∈ RNK×D and Ur ∈ RNK×NK are the weight matrices used to imple-
ment the reset gate.

Then, the l1 normalized membership vector is computed similarly to the
regular BoF model as:

uij =
dij

‖dij‖1
. (11)

Note that the initial state si,0 is initialized to:

si,0 =
1

NK
1, (12)

where NK is the number of codewords and 1 ∈ RNK is a vector of all ones. This
ensures that quantizer’s output will be always a properly normalized membership
vector. Therefore, the histogram is recurrently updated as:

si,j = (1− zij)� si,j−1 + zj � uij ∈ RNK . (13)

The update gate zi,j , which controls how much the current histogram will be
updated, is defined as:

zij = σ(Wzxij + Uzsi,j−1) ∈ RNK , (14)
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where Wz ∈ RNK×D and Uz ∈ RNK×NK are parameters of the update gate.
Finally, to compile the final histogram we average all the intermediate histograms
as:

si =
1

Ni

Ni∑
j=1

si,j ∈ RNK . (15)

Back-propagation can be directly used to learn all the parameters of the
proposed ReBoF model. Note that ReBoF allows for capturing their temporal
information, since it is capable of recursively processing the input feature vectors.
First, the proposed recurrent stateful quantizer is employed to quantize the input
feature vectors, as described by (9) and (11). Then, these vectors are employed to
update the state of the quantizer, as descibed by (13), and allowing for compiling
the resulting histogram. It is worth noting that ReBoF, similarly to all BoF-based
models, is capable of processing varying-length input sequences.

ReBoF provides a significant advantage over existing BoF formulations, since
it allows to capture the temporal information of sequential input data. This alows
the ReBoF model to effective tackle challenging video analysis problems, e.g.,
video retrieval, activity recognition, etc. Therefore, to apply ReBoF we: a) use
a convolutional neural network to extract a feature vector xij from each frame
of a video, and b) feed the extracted feature vectors to the ReBoF model in
order to extract a compact representation for each video. This allows ReBoF to
process videos of arbitrary duration, while creating fixed-length compact rep-
resentations of them. Note that the whole architecture can be trained in an
end-to-end fashion, since the proposed ReBoF formulation is fully differentiable.

3 Experimental Evaluation

The proposed method was evaluated using three video activity recognition datasets,
the UTKinect-Action3D [15] dataset, the UCF101 dataset [12] and a more chal-
lenging dataset, the Complex UCF101, which was designed to evaluate the abil-
ity of the methods to capture the temporal dimension of video sequences, as it
will be described below. The UTKinect-Action3D [15] consists of 10 types of
human activities in indoor settings. Samples for each action are collected from
10 different people that perform every activity two times. The provided RGB
frames were used for all of the conducted experiments. Since there is no official
training/testing split provided, a 50%-50% subject-based split strategy was em-
ployed, i.e., the videos of the first five subjects were included in the training set
and the rest of them were used to form the testing set. Hence, a quite challenging
setup was created, as the activities belonging in the testing set were performed
from unseen subjects. The UCF101 dataset [12] is widely used for benchmarking
action recognition models. The dataset contains 13, 320 action instances belong-
ing in 101 classes, that can be grouped in five generic categories. For all the
experiments conducted in this paper, the first evaluation split of the dataset was
used.

We also created a challenging and more complex dataset based on the UCF101
dataset to better demonstrate the ability of the proposed method to capture the
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temporal dynamics of video data. To this end, we compiled a dataset by mix-
ing instances from different activities of the UCF101 dataset together. More
specifically, 10 activities of UCF101 (split 1) were selected to be joined together.
Every action of this subset was joined with each one of the remaining, leading
to 90 complex actions. One can further understand the significance of encoding
the temporal information of these instances by considering that a sample of ac-
tion “A” combined with one of action “B” (let name this complex activity class
“AB”) must be separated from samples of complex activities from class “BA”.
Note that “AB” and “BA” videos contain the same set of frames (for a specific
instance of “A” and “B”), but in a different order. Hence, 114 samples were se-
lected for each class, as this was the minimum number of instances contained in
the selected initial classes. The selected 10 action classes were the following: Ap-
plyEyeMakeup, ApplyLipstick, Billiards, BoxingPunchingBag, BoxingSpeedBag,
Haircut, Hammering, TableTennisShot, TennisSwing, and Typing. Then, the i-
th sample of initial class “A” is combined with the i-th sample of initial class
“B” and so on, leading to 7, 380 training and 2, 880 testing data equally balanced
among the 90 classes. The compiled dataset is called “Complex UCF” in the rest
of this paper.

Table 1: UTKinect-Action3D Evaluation

Method # Codewords / Test
GRU Units Accuracy (%)

Average Pooling - 40.83
GRU 512 47.71
ReBoF 512 54.64

Table 2: UCF101 Evaluation

Method # Codewords / Test
GRU Units Accuracy (%)

Avg. Pooling - 70.32± 0.43
GRU 2048 71.04± 0.20
ReBoF 1024 72.02± 0.68

For the UTKinect-Action3 and UCF101 datasets, every video instance was
uniformly sampled in time in order to extract a predefined number of frames,
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Table 3: Complex UCF101 Evaluation

Method # Codewords / Test
GRU Units Accuracy (%)

Average Pooling - 48.95

GRU 512 88.86± 2.04
ReBoF 512 89.25± 1.08

GRU 1024 88.62± 1.02
ReBoF 1024 89.29± 0.89

denoted by Nf . The number of extracted frames was set to Nf = 30 for the
UTKinect-Action3D dataset and to Nf = 40 for the UCF101 dataset. Shorter
videos were looped over as many times as necessary to ensure that each video
contains at least Nf frames, following the methodology described in the rele-
vant literature [3]. Then, an Inception V3 model [13], pretrained in ImageNet,
was used to extract a feature representation from each frame from the last av-
erage pooling layer of the network. Therefore, from each video, a sequence of
Nf feature vectors was extracted. This sequence was then fed to the proposed
ReBoF layer, followed by a hidden fully connected layer with 512 neurons and
dropout with rate 0.5, as well as by the final classification layer. The ReLU
activation function was used for the hidden layer, while the cross-entropy loss
was used for training the model. The network was trained using the Adam opti-
mizer and a learning rate of 10−5, apart from the pretrained feature extractors
which were kept frozen. Furthermore, note that we also experimentally found
out that scaling the extracted histogram by NK significantly improved the con-
vergence of the proposed method, especially when training from scratch. This
scaling ensures that the gradients from the fully connected layers will not di-
minish as they are back-propagated to the previous layers. The network was
trained for 800 epochs for the UTKinect-Action3D dataset and for 500 epochs
for the UCF101 (the training/evaluation procedure was also repeated 3 times
and the mean and standard deviation is reported). For the Complex UCF101 a
slightly different setup was used. First, a 16-frame sliding window, with overlap
of 4 frames, was applied on every activity instance of UCF101 dataset, while a
pretrained 3D ResneXt-101 [3] was used to extract a feature vector from each
window. The features were extracted from the last average pooling layer of the
network. Therefore, a 32-length sequence (Nf = 32) of 2048-dimensional feature
vectors were extracted for each video action. The training process stopped when
99.9% accuracy was achieved in training set (for the average pooling baseline,
the network was trained for 50 epochs). The evaluation of ReBoF and GRU
methods was repeated 3 times and the mean accuracy and standard deviation
on the test set are reported.
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The performance of the proposed method was also compared to two other es-
tablished pooling methods. The same feature extractors and classification block
was used to ensure a fair comparison between the methods. First, global aver-
age pooling (denoted by “Average Pooling” in the rest of the paper), over the
temporal dimensions of the input sequence, was used instead of the proposed
ReBoF method. Furthermore, a more powerful recurrent aggregation model, a
GRU [2], was also employed to aggregate the extracted features.

First, the proposed method was evaluated on the UTKinect-Action3D, while
the results are reported in Table 1. The proposed method greatly outperforms
the other two evaluated methods, leading to the highest accuracy (54.64%) using
512 codewords. For the GRU also 512 units were employed, since at this point
GRU achieved its best accuracy, which is however significantly lower (47.71%)
compared to the proposed ReBoF method. Both ReBoF and GRU outperform
the plain Average Pooling, since they are capable of effectively modeling the tem-
poral dynamics of the input video sequences allowing for better discriminating
between similar activities, such as stand up and sit down.

Moreover, in Fig. 1 the effect of using a wider range of codewords and number
of GRU units in the classification accuracy on the UTKinect-Action3D dataset is
evaluated using the two methods that achieve the highest performance (GRU and
ReBoF). In all cases, the proposed method leads to higher accuracy compared
to the GRU method. Furthermore, the proposed method allows for reducing the
size of the extracted representation, since it outperforms the best GRU model
(512 units) using just 128 codewords. This allows for reducing the size of the
extracted representation and, as a result, the number of parameters in the sub-
sequent fully connected layer. Both methods achieve their best performance for
512-dimensional representations. After this point, the accuracy for both models
drops, mainly due to overfitting phenomena.

Again, similar conclusions can be drawn from the evaluation results on the
UCF101 dataset, which are reported in Table 2. Note that even though UCF101
is a less challenging dataset, in terms of temporal dependence, the proposed
method still outperforms the rest of the evaluated methods, achieving the high-
est accuracy (72.02%) for 1024 codewords. Again, all the methods were tuned to
use the best number of codewords/representation length to ensure a fair com-
parison. Note that the proposed method outperforms the GRU while using rep-
resentations with half the size of the ones used by the GRU. The effect of using
different number of codewords and recurrent units is also evaluated in Fig. 2.
Again, the proposed method outperforms the GRU method regardless the num-
ber of used codewords, while it achieves comparable accuracy using 2 to 4 times
smaller representations.

Finally, the proposed method was also evaluated on the Complex UCF dataset.
The results are provided in Table 3. As expected, Average Pooling fails to over-
pass the 50% test accuracy, since “AB” activities cannot be distinguished from
those of “BA”, due to employing global averaging, which completely discards
the temporal information. On the other hand, ReBoF again achieves the highest
accuracy (89.29% when 1024 codewords are used). It is worth noting that even
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Fig. 1: UTKinect-Action3D Evaluation: Effect of using different number of code-
words/recurrent units for the ReBoF and GRU methods

though spatio-temporal information is already encapsulated in the extracted fea-
ture vectors, since 3D kernels were used in feature extraction block, GRU again
achieves lower accuracy compared to the ReBoF for both representation sizes.

4 Discussion

In this section, some further practical details regarding the employment of Re-
BoF method are presented, providing more insight into the proposed method
compared to our previous works, e.g., [5]. A more thorough inspection of equa-
tions (9), (10), (13) and (14) implies that ReBoF shares some similarities with
GRU units [2], since both ReBoF and GRUs use a similar update-reset gate
structure. Therefore, the RBoF method can be implemented by modifing an
existing (and optimized) GRU implementation by a) replacing the output acti-
vation function (in order to ensure the quantization of the feature vectors), b)
setting the initial state si,0 (to ensure that the histogram vector will maintain
a unit l1 norm) and c) appropriately initializing the codebook. This allows us
to simply modify existing and highly optimized GRU implementations to pro-
vide highly efficient ReBoF implementations. As far as the number of employed
codeworks, a rule of thumb, based on the current work’s analysis, could be to
initialize ReBoF with 512 codewords, since it can provide a balanced trade-off
among feature space dimensionality and model accuracy.

Furthermore, the advantages of employing ReBoF architecture in the corre-
sponding framework for video analysis might be limited under certain circum-
stances. In case that temporal information is not crucial to distinguish different
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Fig. 2: UCF101 Evaluation: Effect of using different number of codewords/recur-
rent units for the ReBoF and GRU methods

video instances, the employment of ReBoF is not guaranteed that will lead to
significantly higher performance compared to a simpler architecture designed to
analyze video instances by a single or a small set of frames. Yet, any method
that discards temporal information is incapable to cope with tasks where crucial
information is contained over temporal dimension of data. This is clearly demon-
strated via the experimental results on UCF101 and Complex UCF101 datasets.
In the first case, the employment of ReBoF slightly improves the model accu-
racy, since performing classification of the videos of UCF101 can considered a
not so challenging task in terms of temporal dependence, given that in many
cases we can achieve quite high recognition accuracy just using one frame from
the videos. On the contrary, in the second case of Complex UCF101, enclosing
temporal information is crucial to distinguish different video activities and thus,
the employment of ReBoF leads to significant performance improvements com-
pared to methods that discard temporal information. Finally, it should be noted
that feeding to the ReBoF layer feature vectors that a priori enclose temporal
information might lead to improvements to some extent however, this could also
disproportionately increase overall the complexity of the models.

5 Conclusions

A novel stateful Recurrent Bag-of-Features (ReBoF) model was proposed in this
paper. ReBoF employs a stateful trainable recurrent quantizer, instead of a plain
static quantization approach, as the one used in existing BoF formulations. This



Human Action Recognition using Recurrent Bag-of-Features Pooling 13

allows ReBoF to capture the temporal information of the input data, which is
crucial in classification tasks, such as activity recognition, while still maintaining
all the advantages of the BoF model. ReBoF can be directly used in DL models
and the resulting architecture can be trained in an end-to-end fashion using back-
propagation, allowing for building powerful deep learning models for various
visual information analysis tasks.

ReBoF opens several interesting future research directions. First, ReBoF can
be also used for encoding the spatial information, instead of merely the tem-
poral one. For example, the spatial information encoded in the feature vectors
extracted from static images can be encoded by manipulating the extracted fea-
ture map as a sequence of feature vectors. This allows for overcoming one long-
standing limitation of regular BoF formulation that led to the need of using
complicated spatial segmentation schemes [7]. Furthermore, activity recognition
can be further enhanced by combining a ReBoF layer over the spatial dimension,
followed by a ReBoF layer over the temporal dimension. In this way, the spatio-
temporal information can be more properly encoded by creating a spatiotempo-
ral histograms. Finally, using ReBoF for other tasks, such as video retrieval and
hashing [14], is expected to further boost the performance of existing methods
by extracting compact, yet more discriminative representations.
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