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LINEARIZED ELECTRODYNAMICS AND STABILIZATION OF A

COLD MAGNETIZED PLASMA∗

Simon Labrunie1,** and Ibtissem Zaafrani1,2

Abstract. We consider a linearized Euler–Maxwell model for the propagation and absorption of
electromagnetic waves in a magnetized plasma. We present the derivation of the model, and we show
its well-posedeness, its strong and polynomial stability under suitable and fairly general assumptions,
its exponential stability in the same conditions as the Maxwell system, and finally its convergence to
the time-harmonic regime. No homogeneity assumption is made, and the topological and geometrical
assumptions on the domain are minimal. These results appear strongly linked to the spectral properties
of various matrices describing the anisotropy and other plasma properties.
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1. Introduction

Electromagnetic wave propagation in plasmas, especially magnetized ones, is a vast subject [24]. Even in
a linear framework, the equations that describe it are generally highly anisotropic and, in many practical
settings, highly inhomogeneous as well. The bewildering array of phenomena and parameters involved in this
modelling requires to derive simplified models tailored to the phenomenon under study, and to the theoretical
or computational purpose of this study.

Wave-plasma interaction is of paramount importance, for instance, in tokamak technology. According to their
frequency, electromagnetic waves can be used in a wide range of processes: to stabilize or heat the plasma and
thus bring it closer to the conditions needed for nuclear fusion, for instance, or to probe various properties
such as density and temperature. These interactions involve many phenomena, such as propagation, absorp-
tion, refraction, scattering, etc.. The basic physics is well understood [24]; nevertheless, efficient and robust
mathematical models have to be derived in order to do reliable numerical simulations in realistic settings, or to
properly interpret experimental results.

A first, time-harmonic model focused on propagation and absorption has been derived in [4, 13]. This article
constitutes the time-dependent counterpart of those works. We consider a general linearized Euler–Maxwell

∗The second author thanks the Campus France Eiffel Excellence Programme for its financial support.

Keywords and phrases: Maxwell equations, plasma, hydrodynamic models, stabilization, absorbing boundary condition, evolution
semigroups, strong stability, exponential stability.
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model describing the interaction between a strongly magnetized, pressureless, totally ionized gas and an electro-
magnetic wave; it can be particularized to various physical settings. The waves accelerate the charged particles
that make up the plasma, and transfer some of their energy to them through collisions, which act as friction. We
study the well-posedness of the model, investigate various stability properties (strong, polynomial, and expo-
nential), and finally check that no inconsistency stems from the time-harmonic modelling. The latter appears,
as expected, as a particular solution and a limit of the general solution (under reasonable physical assumptions)
in presence of a time-harmonic forcing. Not only the time-dependent model is more general, but it also appears
more robust. The well-posedness of the time-harmonic model rests upon absorption; more exactly, the proof
fails in the absence of absorption, and serious qualitative arguments suggest that the limiting model is actually
ill-posed [4].

On the other hand, we shall see that the time-dependent model is well-posed even without absorption.
Nevertheless, and unsurprisingly, the convergence (exponential or polynomial) of the time-dependent model
toward the time-harmonic one does depend on absorption. The mathematical tools used in this analysis are
well-known theorems on semigroups and operator spectra [2, 14, 17, 23]. The main difficulties are: first, the
resolvent of the evolution operator is not compact; then, absorption only acts on some variables, namely, the
hydrodynamic ones; finally, one has to handle with various technicalities linked to inhomogeneity, anisotropy,
and topology. More or less similar models have been studied by various authors [18, 19, 25]; but they did not
include anisotropy or inhomogeneity, and they generally considered simpler topologies or boundary conditions
than we do. On the contrary, we have tried to keep our model as general as possible, by assuming neither
any homogeneity in the plasma properties, nor in the external magnetic field, nor any strong topological or
geometrical condition on the domain.

Generally speaking, stabilization and controllability of Maxwell’s equations and coupled models involving
them may be rooted in two main physical mechanisms: boundary stabilization of the sourceless Maxwell system
through an absorbing boundary condition on all or part of the boundary [5, 11, 15, 20, 22]; or internal stabiliza-
tion by some resistive source term on all or part of the domain, typically that given by Ohm’s law ([22], among
others). Boundary absorption is usually sufficient to have energy decay and convergence toward an equilibrium
state (strong stability [5]), but the precise decay rate (polynomial or exponential stability) strongly depends
on the global shape of the domain (various star-shapedness conditions such as [15, 20]) and/or the absorbing
part of the boundary (geometric control condition [22]). Internal absorption, when it only holds on part of
the domain, also requires a geometric control condition [22]. Mathematically, the issue has been tackled by
several approaches: the multiplier method ([11, 15], etc.), microlocal analysis ([22], etc.), or frequency-domain
analysis [19]. In this paper we use the later method, and we focus on internal stabilisation; the internal absorp-
tion mechanism, however, is different from Ohm’s law. This allows us to consider fairly arbitrary geometries
and topologies, provided some physically reasonable (in the framework of tokamak plasmas) assumption holds
(Hypothesis 2; cf. [4], Rem. 4.1). The complementary approach, where the physical hypotheses are weakened at
the price of stricter conditions on the geometry, is reserved for future work.

The outline of the article is as follows. In Section 2, we present the derivation of the model, and recall some
classical results on the functional analysis of Maxwell’s equations in Section 3. Section 4 is devoted to the
proof of the well-posedness of the model, in three variants: with a perfectly conducting condition on the whole
boundary, and with a Silver–Müller one (homogeneous or not) on part of it. Section 5 recalls or introduces some
more advanced results of functional analysis, which are needed in the sequel. In Section 6, we study the spectral
properties of various matrices describing the anisotropy and other plasma properties, which will be essential in
the stability proofs of Sections 7 and 8. The former is dedicated to strong stability, the latter to unconditional
polynomial and conditional exponential stability. Though it happens that polynomial stability does not entail
stronger hypotheses than strong one, we have chosen to present them sequentially: the results which allow us
to prove strong stability are also the starting point for the finer properties needed to prove polynomial and
exponential stability. The stability part is also divided into perfectly conducting and Silver–Müller boundary
conditions. As an application, we conclude with a result of convergence to the time-harmonic regime when the
Silver–Müller boundary data is time-harmonic.



LINEARIZED ELECTRODYNAMICS AND STABILIZATION 3

2. The model

The physical system we are interested in is a plasma or totally ionized gas, pervaded by a strong, external,
static magnetic field Bext(x), which makes the medium anisotropic. The sources of this field are assumed to be
outside the plasma. Such a medium can be described as a collection of charged particles (electrons and various
species of ions) which move in vacuum and create electromagnetic fields which, in turn, affect their motion.
Electromagnetic fields are, thus, governed by the usual Maxwell’s equations in vacuum:

curlE = −∂B
∂t
, c2 curlB =

J
ε0

+
∂E
∂t
, (2.1)

divE =
%

ε0
, divB = 0. (2.2)

Here E and B denote the electric and magnetic fields; % and J the electric charge and current densities; ε0 is
the electric permittivity, and c the speed of light, in vacuum.

The electromagnetic field is the sum of a static part and a small perturbation caused by the penetration of an
electromagnetic wave. To simplify the discussion, we assume the plasma to be in mechanical and electrostatic
equilibrium in the absence of the wave. Thus, the electric and magnetic fields can be written as:

E(t,x) = εE(t,x), and B(t,x) = Bext(x) + εB(t,x),

where ε � 1 is the perturbation parameter. The total charge and current densities associated with the fields
are those due to the perturbation

%(t,x) = ε ρ(t,x), and J (t,x) = εJ(t,x). (2.3)

The static parts of E, % and J are zero by the equilibrium assumption.
Furthermore, we assume the plasma to be cold, i.e., the thermal agitation of particles, and thus their pressure,

is negligible. We shall designate the particles species (electrons and various species of ions) with the index s.
We denote as qs the charge of one particle and ms its mass. The momentum conservation equation of particles
of the species s writes:

ms
∂Us

∂t
+ms (Us · ∇)Us − qs (E + Us × B) +ms νs Us = 0, (2.4)

where Us denotes the fluid velocity and νs ≥ 0 is the collision frequency which only depends on the variable x.
The charge and current densities can be expressed as a function of the particle densities ns(t,x) and the fluid
velocities:

% =
∑
s

%s =
∑
s

qs ns, J =
∑
s

J s =
∑
s

qs ns Us.

Now, multiplying equation (2.4) by ns qs
ms

, we get

∂J s

∂t
+

1

%s
(J s · ∇)J s −

qs
ms

(%s E + J s × B) + νsJ s = 0. (2.5)

We now linearize equation (2.5). From the above discussion, we can assume, for each species s,

%s(t,x) = qs n
0
s(x) + ε ρs(t,x), and J s(t,x) = εJs(t,x),
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where n0
s is the equilibrium particle density, assumed to depend on x only. On the left-hand side of (2.5), the

terms of order 0 in ε vanish. To express the terms of order 1, we introduce the plasma and cyclotron frequencies
for the species s, respectively:

ωps :=

√
n0
s q

2
s

ε0ms
, Ωcs :=

qs |Bext|
ms

; (2.6)

they only depend on the space variable x. Observe that the cyclotron frequency is signed: it has the same sign

as the charge qs. Finally, denoting b =
Bext

|Bext|
the unit vector aligned with the external magnetic field, we obtain

the linearized equation:

∂Js
∂t
− ε0 ω

2
psE −Ωcs Js × b+ νs Js = 0. (2.7)

The perturbative electromagnetic field (E,B) satisfies, at order 1 in ε, the usual Maxwell equations derived
form (2.1) and (2.2), namely the evolution equations:

curlE = −∂B
∂t

, c2 curlB =
J

ε0
+
∂E

∂t
, where: J :=

∑
s

Js ,

and the divergence equations:

divE =
ρ

ε0
, where: ρ =

∑
s

ρs , (2.8)

divB = 0. (2.9)

Indeed, as its sources are outside the plasma, Bext(x) is curl- and divergence-free.
For the sake of simplicity, we assume that there only are two species of particles in the plasma: the electrons

(s = 1) and one kind of ions (s = 2). Obviously, the whole discussion can be extended to an arbitrary number
of species, provided they all carry an electric charge (no neutral atoms).

All in all, the model which will be the object of this article is the following. Let Ω be a domain in R3, i.e., a
bounded, open and connected subset of R3 with a Lipschitz boundary Γ := ∂Ω. The evolution equation for the
hydrodynamic and electromagnetic variables are:

∂J1

∂t
= ε0 ω

2
p1E +Ωc1 J1 × b− ν1 J1 , in Ω× R>0; (2.10)

∂J2

∂t
= ε0 ω

2
p2E +Ωc2 J2 × b− ν2 J2 , in Ω× R>0; (2.11)

∂E

∂t
= c2 curl B − 1

ε0

∑
s

Js , in Ω× R>0; (2.12)

∂B

∂t
= − curlE , in Ω× R>0; (2.13)

with the initial conditions at t = 0:

J1(0) = J1,0; J2(0) = J2,0; E(0) = E0; B(0) = B0, in Ω. (2.14)
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Figure 1. A cross–section of an example of a domain which represents the plasma volume in
a tokamak.

The boundary Γ is split into two parts Γ = ΓA ∪ΓP , with ΓA ∩ΓP = ∅; both ΓP and ΓA may be empty. On ΓP ,
there holds a usual perfectly conducting boundary (metallic) condition. On ΓA, there holds a Silver–Müller
boundary condition:

E × n = 0, on ΓP × R>0 , (2.15)

E × n+ cB> = g, on ΓA × R>0 , (2.16)

where n denotes the outward unit normal vector to Γ, B> is the component of B tangent to the boundary Γ,
and g is a data defined on ΓA×R>0. If g = 0, this is an absorbing or outgoing wave condition, meaning that the
electromagnetic energy can freely leave the domain through ΓA. If g 6= 0, this is an incoming wave condition,
modelling the injection of an electromagnetic wave into the plasma, and ΓA is interpreted as an antenna (see
Fig. 1 for a possible configuration).

The subsets ΓA and ΓP are compact Lipschitz submanifolds of Γ. When both ΓP 6= ∅ and ΓA 6= ∅, we do not
necessarily suppose that ∂ΓA ∩ ∂ΓP = ∅ (i.e., we consider both truncated exterior and interior problems), but
we do assume that ΓA is not too irregular. A sufficient condition is to assume it either smooth, or polyhedral
without so-called pathological vertices ([3], p. 204). This requirement is not very stringent; it can always be
satisfied in the outgoing wave case, where ΓA appears as an artificial boundary, whose exact location and shape
are to some extent arbitrary.

Otherwise, our assumptions on the domain are minimal. We do not assume Ω to be topologically trivial (but
we do assume that it does not have an infinitely multiple topology), nor Γ, ΓA, ΓP to be connected (though we
do assume that they have a finite number of connected components). The perfectly conducting boundary ΓP ,
if not empty, is just assumed to be Lipschitz.

The solution to the system (2.10)–(2.13) with boundary conditions (2.15)–(2.16) can be shown to satisfy
equation (2.9) in Ω for all t ≥ 0, as well the boundary condition

B · n = 0 on ΓP × R>0, (2.17)

provided they hold at t = 0. These properties will appear crucial for the derivation of the most suitable functional
framework for stabilization. Similarly, equation (2.8) can be recovered if it holds at t = 0 and the charge
conservation equation ∂tρ+ divJ = 0 is verified; yet, the latter is an immediate consequence of the continuity
equations for the various species, viz., ∂tρs + divJs = 0.

In this article we are interested in to cases: first when ΓA = ∅, i.e., we have a perfect conductor condition on
the whole boundary; the second case when ΓA is non-empty and so equation (2.16) holds. In the second case,
conditions on and statements about ΓP are of course void if ΓP = ∅.

As alluded to in Section 1, the model (2.10)–(2.13) has been studied by many authors [18, 19, 25] when
the medium is homogeneous and isotropic, i.e., Ωcs ≡ 0, and νs and ωps are constants. The dispersive medium
model with perfectly conducting boundary condition on the whole boundary has been studied in [18, 25], and
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it was proven in [18] that it is polynomially stable. In [19], the differential equation (2.7) is set in a subset of
the full domain, and the Silver–Müller boundary condition is imposed on the entire exterior boundary; it was
shown that the model is strongly stable. Similarly, some works on the boundary stabilization of the sourceless
Maxwell system (e.g., [11, 20]) allow for some inhomogeneity or anisotropy of the permittivity and permeability
coefficients, and some works on the internal stabilization by Ohm’s law (e.g., [22]) allow for an inhomogeneous
conductivity. But these inhomogeneous or anisotropic terms occur in Maxwell’s equations themselves, not in
a coupled ODE as in our model. Furthermore, most of the works which consider mixed boundary conditions
actually assume ∂ΓA ∩ ∂ΓP = ∅ (physically, a truncated exterior problem).

Therefore, our goal in the present work is to investigate the stabilization of the model in an inhomogeneous
and anisotropic medium with space variable coefficients νs, ωps and Ωcs, for both types of boundary conditions
and both types of truncated problems. We will give sufficient conditions on these coefficients that guarantee
first the strong stability, and then the polynomial or exponential stability of the energy.

3. Preliminaries

In this section, we introduce the Hilbert spaces needed in the study of Maxwell’s equations, and the relevant
Green’s formulas used in the sequel.

The Sobolev spaces of vector fields L2(Ω) := (L2(Ω))3, H1(Ω) := (H1(Ω))3 and H`(Γ) := (H`(Γ))3 for ` ∈
{ 1

2 ,−
1
2} are defined as usual. We denote (· | ·) the inner products of both L2(Ω) and L2(Ω), and ‖ · ‖ the

associated norm. As usual, H1
0(Ω) is the subspace of H1(Ω) whose elements vanish on the boundary Γ. The

space H̃
1
2 (ΓA) is the subspace of H

1
2 (ΓA) (the trace space of H1(Ω) on ΓA) made of fields defined on ΓA such

that their extension by zero to ΓP belongs to H
1
2 (Γ). The space H̃−

1
2 (ΓA) is the dual space of H̃

1
2 (ΓA).

On the other hand, for any Hilbert space W other than L2(Ω) or L2(Ω), its inner product will be denoted
by (·, ·)W and its norm by ‖ · ‖W . The duality pairing between W and its dual space is written as 〈·, ·〉W ; the
subscript designates the space to which the second variable belongs.

The spaces H(div; Ω) and H(curl; Ω) are the usual ones in electromagnetics; they are endowed with their
canonical norm. The respective subspaces of fields with vanishing normal (resp. tangential) trace are denoted
H0(div; Ω) (resp. H0(curl; Ω)). The ranges of the tangential trace mapping γ> : v 7→ v × n and the tangential
component mapping π : v 7→ v> := n× (v × n) from H(curl; Ω) are denoted by

TT(Γ) := {ϕ ∈ H−
1
2 (Γ) : ∃v ∈ H(curl; Ω), ϕ = v × n|Γ},

TC(Γ) := {λ ∈ H−
1
2 (Γ) : ∃v ∈ H(curl; Ω), λ = v>|Γ}.

These two spaces have been described in [7], where they are respectively denote H
− 1

2

‖ (divΓ,Γ) = TT(Γ) and

H
− 1

2

⊥ (curlΓ,Γ) = TC(Γ). Furthermore [8], they are in duality with respect to the pivot space

L2
t (Γ) := {v ∈ L2(Γ) : v · n = 0}.

Therefore, one can prove the following formula:

∀(v,w) ∈ H(curl; Ω)2, (v | curlw)− (curlv | w) = 〈v × n,w>〉TC(Γ). (3.1)

The spaces TT(ΓA) and TC(ΓA) denote respectively the ranges of γ> and π>, restricted on the part ΓA of

the boundary. In [7], they are called H
− 1

2

‖,00(divΓA ,ΓA) and H
− 1

2

⊥,00(curlΓA ,ΓA). The subspace of elements of

H(curl; Ω) such that the tangential trace vanishes on the part ΓP of the boundary is denoted by

H0,ΓP (curl; Ω) = {v ∈ H(curl; Ω) : v × n|ΓP = 0}.
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Then, the range of the trace mappings on ΓA from H0,ΓP (curl; Ω) are denoted

T̃T(ΓA) := {ϕ ∈ H−
1
2 (ΓA) : ∃v ∈ H0,ΓP (curl; Ω), ϕ = v × n|ΓA }

= {ϕ ∈ TT(ΓA) : the extension of ϕ by 0 to Γ belongs to TT(Γ)} ;

T̃C(ΓA) := {λ ∈ H−
1
2 (ΓA) : ∃v ∈ H0,ΓP (curl; Ω), λ = v>|ΓA }

= {λ ∈ TC(ΓA) : the extension of λ by 0 to Γ belongs to TC(Γ)} ;

they are respectively called H
− 1

2

‖ (div0
ΓA ,ΓA) and H

− 1
2

⊥ (curl0ΓA ,ΓA) in [7]. The spaces T̃T(ΓA) and TC(ΓA) are

in duality with respect to the pivot space L2
t (ΓA), and similarly for TT(ΓA) and T̃C(ΓA). We denote the duality

product between those spaces as γ0
A
〈·, ·〉πA or γA〈·, ·〉π0

A
. This allows one to derive the following integration by

parts formula:

∀(v,w) ∈ H(curl; Ω)×H0,ΓP (curl; Ω), (v | curlw)− (curlv | w) = γA〈v × n,w>〉π0
A
. (3.2)

If ΓP = ∅, i.e., ΓA = Γ, then H0,ΓP (curl; Ω) = H(curl; Ω), while T̃T(ΓA) = TT(Γ) and T̃C(ΓA) = TC(Γ).

In the case of a truncated exterior problem, i.e., ∂ΓA ∩ ∂ΓP = ∅, it holds again that T̃T(ΓA) = TT(ΓA) and

T̃C(ΓA) = TC(ΓA).

A profound and useful property of these spaces is: in the absence of pathological vertices, T̃T(ΓA)∩TC(ΓA)
is included in L2

t (ΓA), see [5] for the truncated exterior problem in a smooth domain and Remarks 5.1.5 and 5.1.8
of [3] in the general case. This is the framework of this article.

We shall also use the basic integration by parts formula between H(curl; Ω) and H1(Ω):

∀(v,w) ∈ H(curl; Ω)×H1(Ω), (v | curlw)− (curlv | w) = 〈v × n,w〉
H

1
2 (Γ)

. (3.3)

Finally, let us recall some useful subspaces of H(curl; Ω) and H(div; Ω):

H(div 0; Ω) = {v ∈ L2(Ω) : div v = 0},
H0(div 0; Ω) = H(div 0; Ω) ∩H0(div; Ω),

H0,ΓP (div; Ω) = {v ∈ H(div; Ω) : v · n|ΓP = 0},
H0,ΓP (div 0; Ω) = H(div 0; Ω) ∩H0,ΓP (div; Ω),

H(curl 0; Ω) = {v ∈ L2(Ω) : curlv = 0},
H0(curl 0; Ω) = H(curl 0; Ω) ∩H0(curl; Ω),

H0,ΓP (curl 0; Ω) = H(curl 0; Ω) ∩H0,ΓP (curl; Ω).

4. Well-posedness of the model

In the whole article, we shall make the following. . .

Hypothesis 1. We suppose that there exists strictly positive real numbers ν∗, Ω∗ and ω∗ such that, for almost
all x ∈ Ω and for each species s (ions and electrons), one has:

0 ≤ νs(x) ≤ ν∗, (4.1)

|Ωcs(x)| ≤ Ω∗, (4.2)

0 < ωps(x) ≤ ω∗. (4.3)
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For s ∈ {1, 2} and x ∈ Ω fixed, the mapping v 7→ Ωcs(x) b(x)× v+ νs(x)v defined from R3 (or C3) to itself
is linear. So, there exists a matrix Ms(x) ∈M3(R) such that:

Ωcs(x) b(x)× v + νs(x)v = Ms(x)v, ∀v ∈ R3 or C3. (4.4)

We denote by ||| · |||M the operator norm on the space M3(C) induced by the Hermitian norm of C3.

Proposition 4.1. There exists λ > 0 such that |||λMs(x)|||M < 1, for all s ∈ {1, 2} and x ∈ Ω. Therefore, the
matrix I + λMs is invertible for all s ∈ {1, 2} and x ∈ Ω, where I is the identity matrix, and its inverse is
uniformly bounded on Ω.

Proof. This is an easy consequence of Hypothesis 1, by a simple perturbation argument. See Propositions 3.1
and 3.2 of [16].

Definition 4.2. Let λ be given by Proposition 4.1. Let Dλ : Ω −→M3(R) be the matrix

Dλ(x) :=
∑
s

ω2
ps(x)(I + λMs(x))−1, for x ∈ Ω. (4.5)

By convention, sums on the variable s run on all particle species, i.e., from s = 1 to 2 in our model.

Proposition 4.3. The matrix Dλ(x) is positive for all x in Ω. Moreover, there exists ξ > 0 such that

sup
x∈Ω
|||Dλ(x)|||M ≤ ξ.

Proof. Let x ∈ Ω. To show the positivity of Dλ, it is enough to prove that the matrix (I+λMs(x))−1 is positive
for s ∈ {1, 2}. Given v ∈ R3, we have

(I + λMs(x))v · v = v · v + λMs(x)v · v = |v|2 + λνs(x)|v|2
(4.1)

≥ |v|2 ≥ 0.

Then, I + λMs(x) is positive. Next, given w ∈ R3, there exists η ∈ R3 such that w = (I + λMs(x))η. Hence, it
follows that

(I + λMs(x))−1w ·w = η · (I + λMs(x))η ≥ |η|2 ≥ 0.

So, the matrix (I+λMs(x))−1 is positive. The uniform boundedness of Dλ is an easy consequence of Hypothesis 1
and Proposition 4.1.

To prove the well-posedness, we rewrite the system (2.10)–(2.14) with boundary condition (2.15)–(2.16) as
the first order evolution equation {

∂tU + AU = 0,
U(0) = U0,

(4.6)

where the vector U is

U = (J1,J2,E,B)
>
,
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and A is a linear operator formally given by the expression

A =


M1 0 −ε0 ω

2
p1 0

0 M2 −ε0 ω
2
p2 0

1
ε0

1
ε0

0 −c2 curl

0 0 curl 0

 . (4.7)

The existence and uniqueness of the solution to Problem (4.6) follows from the classical Lumer–Phillips
theorem [9, 21], as we shall se later.

We introduce the weighted L2 spaces associated to each species index s:

L2
(s)(Ω) :=

{
w : Ω→ C measurable, s.t.

∫
Ω

∣∣∣∣ wωps
∣∣∣∣2 dΩ < +∞,

}
(4.8)

i.e., w ∈ L2
(s)(Ω) iff w/ωps ∈ L2(Ω), endowed with their canonical norm

‖w‖(s) := ‖w‖L2
(s)

(Ω) :=

∥∥∥∥ wωps
∥∥∥∥ . (4.9)

In view of the bound (4.3), one immediately deduces a basic useful result:

Lemma 4.4. For each s:

(i) The space L2
(s)(Ω) is continuously embedded into L2(Ω).

(ii) For any w ∈ L2(Ω), it holds that ω2
psw ∈ L2

(s)(Ω).

Next, we introduce the energy space

X = L2
(1)(Ω)× L2

(2)(Ω)× L2(Ω)× L2(Ω),

and we endow it with the inner product defined for all U = (U1,U2,U3,U4)> and V = (V 1,V 2,V 3,V 4)> by

(U ,V )X :=
1

ε0

∑
s

(
U s

ωps

∣∣∣∣∣ V s

ωps

)
+ ε0 (U3 | V 3) + c2ε0 (U4 | V 4), (4.10)

and the associated norm ‖ · ‖X.

4.1. Perfectly conducting case

Here, we suppose that ΓA is empty. The domain Ω is encased in a perfect conductor, which means:

∀t > 0, E(t)× n = 0, B(t) · n = 0, on Γ.

Now, we define the linear unbounded operator A1 : D(A1) ⊂ X→ X as

D(A1) := L2
(1)Ω)× L2

(2)(Ω)×H0(curl; Ω)×H(curl; Ω),

A1U := AU , ∀U ∈ D(A1). (4.11)
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The fact that im (A1) ⊂ X follows from Proposition 4.1 and Lemma 4.4. The abstract evolution equation (4.6)
writes:

∂tU(t) + A1U(t) = 0, for t > 0, U(0) = U0. (4.12)

Proposition 4.5. The operator A1 is maximal monotone.

Proof. First, we check that A1 is monotone. Given U = (U1,U2,U3,U4)
> ∈ D(A1), one finds, by the definition

of A,

(AU ,U)X =
1

ε0

∑
s

(
MsU s

ωps

∣∣∣∣∣ U s

ωps

)
−
∑
s

(U3 | U s)+
∑
s

(U s | U3)−ε0(c2 curlU4 | U3)+ε0c
2 (curlU3 | U4).

By Lemma 4.4, U s ∈ L2(Ω) for s = 1, 2 too. Taking the real part of this inner product, one gets:

<(AU ,U)X =
1

ε0

∑
s

<

(
MsU s

ωps

∣∣∣∣∣ U s

ωps

)
− ε0c

2< [(curlU4 | U3)− (curlU3 | U4)] . (4.13)

But, for all s = 1, 2, on has, according to the definition of Ms,

<

(
MsU s

ωps

∣∣∣∣∣ U s

ωps

)
= <

(
νsU s

ωps

∣∣∣∣∣ U s

ωps

)
+ <

(
Ωcs b×

U s

ωps

∣∣∣∣∣ U s

ωps

)
=

(
νsU s

ωps

∣∣∣∣∣ U s

ωps

)
. (4.14)

Thus, plugging (4.14) into (4.13) and using Green’s formula (3.1), the boundary condition U3 × n = 0 on Γ
and the condition (4.1), one obtains

< (A1U ,U)X =
1

ε0

∑
s

(
νsU s

ωps

∣∣∣∣∣ U s

ωps

)
≥ 0. (4.15)

Hence the monotonicity of A1.
Let us proceed to the maximal character. Let λ > 0 given by Proposition 4.1. Given any F =

(F 1,F 2,F 3,F 4)
> ∈ X, we look for U = (U1,U2,U3,U4)

> ∈ D(A1) such that (I + λA1)U = F . More
explicitly, this equation writes:

U1 + λM1U1 − λε0ω
2
p1U3 = F 1, (4.16)

U2 + λM2U2 − λε0ω
2
p2U3 = F 2, (4.17)

U3 +
λ

ε0
U1 +

λ

ε0
U2 − λc2 curlU4 = F 3, (4.18)

U4 + λ curlU3 = F 4. (4.19)

Assuming that a solution U of (4.16)–(4.19) exists, we can eliminate the equations (4.16), (4.17) and (4.19)
respectively:

U1 = (I + λM1)−1(F 1 + λε0 ω
2
p1U3), (4.20)

U2 = (I + λM2)−1(F 2 + λε0 ω
2
p2U3), (4.21)

U4 = F 4 − λ curlU3. (4.22)
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Inserting these three expressions into (4.18), one obtains, in function of U3,

U3 + λ2c2 curl curlU3 + λ2 DλU3 = F 3 + λc2 curlF 4 −
λ

ε0

∑
s

(I + λMs)
−1F s. (4.23)

Multiplying this identity by a test-function v ∈ H0(curl; Ω) and applying the Green formula (3.1), one finds
the following variational formulation:
Find U3 ∈ H0(curl; Ω) such that

a(U3,v) = L(v), ∀v ∈ H0(curl; Ω) (4.24)

where the forms a and L are defined on H(curl; Ω) as:

a(w,v) := (w | v) + λ2c2 (curlw | curlv) + λ2 (Dλw | v) , (4.25)

L(v) := (F 3 | v) + λc2 (F 4 | curlv)− λ

ε0

∑
s

(
(I + λMs)

−1F s | v
)
. (4.26)

The problem (4.24) is well-posed. Indeed, thanks to Proposition 4.3, the sesquilinear form a is continous and
coercive on H0(curl; Ω). The form L is anti-linear, and by Proposition 4.1 and Lemma 4.4, it obviously con-
tinuous on H0(curl; Ω). Then, we conclude by the Lax–Milgram theorem the existence of a unique solution
U3 ∈ H0(curl; Ω) to the formulation (4.24).

Returning to the problem (4.16)–(4.19), we define U1 and U2 by (4.20) and (4.21). Again, by Proposition 4.1
and Lemma 4.4, they respectively belong to L2

(1)(Ω) and L2
(2)(Ω). Also, we define U4 by (4.22); it belongs

to L2(Ω). Next, if we take v ∈ D(Ω) as a test function in the formulation (4.24) and use the Green formula (3.1),
we obtain equation (4.23). So, by the definition of U4, we can write this equation as

U3 − λc2 curlU4 + λ2DλU3 = F 3 −
λ

ε0

∑
s

(I + λMs)
−1F s. (4.27)

This equation, on the one hand, implies that curlU4 ∈ L2(Ω), and on the other hand is equivalent to (4.18)
(just replace Dλ with its expression). Hence, the quadruple (U1,U2,U3,U4) belongs to D(A1) and it solves
the equations (4.16)–(4.19). The proof is completed.

Theorem 4.6. The operator −A1 generates a C0-semigroup of contractions (T1(t))t≥0 on the energy space X.
Thus, for all U0 ∈ X, there exists a unique solution U ∈ C0(R≥0; X), given by U(t) = T1(t)U0, which solves
the problem (4.12).

Moreover, if U0 ∈ D(A1), then

U ∈ C1(R≥0; X) ∩ C0(R≥0;D(A1)).

Furthermore, we have ‖U(t)‖X ≤ ‖U0‖X and ‖∂tU(t)‖X ≤ ‖A1U0‖X.

Proof. From the previous proposition, the operator −A1 is maximal dissipative. The domain D(A1) of −A1

is dense in X according to Theorem 1.4.6 of [21]. Then, we can apply the Lumer–Phillips theorem (see [21],
Thm. 1.4.3) to obtain the result.
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4.2. Silver–Müller case

Now, we assume that ΓA is non-empty. A Silver–Müller boundary condition holds on the antenna ΓA, and a
perfect conductor boundary condition on the rest of the boundary ΓP :{

E(t)× n = 0 on ΓP , t > 0,
E(t)× n+ cB>(t) = g(t) on ΓA, t > 0.

(4.28)

Our goal is to solve Problem (4.6) with the boundary condition (4.28). First, we will start with the homogeneous
(or absorbing, outgoing wave) case, g = 0, and next we proceed to the general (incoming wave) case, i.e., g 6= 0.

4.2.1. Homogeneous (absorbing) boundary condition

Let us define the linear unbounded operator A2 : D(A2) ⊂ X→ X as

D(A2) := L2
(1)(Ω)× L2

(2)(Ω)×H,

where

H = {(V 3,V 4) ∈ H0,ΓP (curl; Ω)×H(curl; Ω) : V 3 × n+ cV 4> = 0 on ΓA},

and

A2U := AU , ∀U ∈ D(A2). (4.29)

Therefore, the abstract evolution equation (4.6) writes:

∂tU(t) + A2U(t) = 0, for t > 0, U(0) = U0. (4.30)

We shall need the following Hilbert space

V := {v ∈ H0,ΓP (curl; Ω) : v> ∈ L2(ΓA)} (4.31)

equipped with the inner product

(w,v)V := (w | v) + (curlw | curlv) + (w> | v>)ΓA . (4.32)

Above, (· | ·)ΓA denotes the inner product in L2(ΓA).

Proposition 4.7. The operator A2 is maximal monotone.

Proof. Let us start by proving the monotonicity of A2. Pick any U = (U1,U2,U3,U4)
>

in D(A2). The
equality (4.13) still holds; it only relies on the expression of A in Ω, not on the boundary conditions. As
U3 ∈ H0,ΓP (curl; Ω), we get by the integration-by-parts formula (3.2):

<[(curlU4 | U3)− (curlU3 | U4)] = <(γ0
A
〈U3 × n,U4>〉πA).

Now, we use the Silver–Müller boundary condition U3 × n+ cU4> = 0 on ΓA. We remark that both U3 × n
and U4> belong to T̃T(ΓA) ∩TC(ΓA) ⊂ L2

t (ΓA) as said in Section 3. Then, it holds that

<(γ0
A
〈U3 × n,U4>〉πA) = −c ‖U4>‖2L2(ΓA).
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We thus conclude from (4.13) that

<(A2U ,U)X =
1

ε0

∑
s

(
νsU s

ωps

∣∣∣∣∣ U s

ωps

)
+ ε0c

3 ‖U4>‖2L2(ΓA) ≥ 0, (4.33)

which yields the monotonicity of the operator A2.
Now we show the maximality of A2. Again, we use the same λ > 0 given by Proposition 4.1. Given any

F = (F 1,F 2,F 3,F 4)
> ∈ X, we look for U = (U1,U2,U3,U4)

> ∈ D(A2) such that (I + λA2)U = F , which
is equivalent to the system (4.16)–(4.19) (plus boundary conditions). Following the same argument as in Propo-
sition 4.5, we can eliminate U1, U2 and U4, and they are given respectively by (4.20), (4.21) and (4.22), while
U3 verifies the equation:

U3 + λ2c2 curl curlU3 + λ2DλU3 = F 3 + λc2 curlF 4 −
λ

ε0

∑
s

(I + λMs)
−1F s. (4.34)

Thus, multiplying (4.34) by a test-function v ∈ V, applying Green’s formula (3.2), and using the Silver–Müller
boundary condition and the expression (4.22), we arrive at the variational formulation:
Find U3 ∈ V such that

ã(U3,v) = L(v), ∀v ∈ V (4.35)

with the sesquilinear form ã defined as:

ã(w,v) := a(w,v) + λc (w> | v>)ΓA
, (4.36)

and the forms a and L given respectively by (4.25) and (4.26).
As the form a is coercive on H(curl; Ω) (Prop. 4.5), the form ã is coercive on V. So, by Lax–Milgram

theorem, Problem (4.35) admits a unique solution U3 ∈ V. Defining U1, U2 and U4 respectively by (4.20),
(4.21) and (4.22), they respectively belong to L2

(1)(Ω), L2
(2)(Ω) and L2(Ω); taking a test-function v ∈ D(Ω) in

(4.35), we find the equation (4.34) which is equivalent to (4.18). Thus U = (U1,U2,U3,U4) formally satisfies
(I + λA)U = F , and in order to prove that D(A2) it remains only to check the homogeneous Silver–Müller
boundary condition on ΓA. To this end, using the integration-by-parts formula (3.2) in (4.35) and the definition
of U4, it follows from the identity (4.34) that:

λc (U3> | v>)ΓA
− λc2γA〈U4 × n,v>〉π0

A
= 0, ∀v ∈ V. (4.37)

Let ω ∈ H̃
1
2 (ΓA) and ω̃ ∈ H

1
2 (Γ) be its extension by 0 to the whole boundary. By the surjectivity of the

trace mapping, there exists v ∈ H1(Ω) such that ω̃ = v|Γ ; clearly, v ∈ V. From the integration by parts
formulas (3.2), (3.3) applied to U4 and v, we get that

γA〈U4 × n,v>〉π0
A

= 〈U4 × n,v〉
H̃

1
2 (ΓA)

. (4.38)

Recalling that v|Γ = v> + (n · v)n, it follows that (U3> | v>)ΓA
= (U3> | v)ΓA

. Using (4.38) and the previous
identity, equation (4.37) becomes:

(U3> | v)ΓA
− c 〈U4 × n,v〉

H̃
1
2 (ΓA)

= 0. (4.39)
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As v|ΓA = ω and ω is arbitrary in H̃
1
2 (ΓA), one concludes from (4.39) that U3> − cU4 × n = 0 in H̃−

1
2 (ΓA)

which is equivalent to U3×n+ cU4> = 0 in H̃−
1
2 (ΓA), and therefore also in L2(ΓA) because U3> is in L2(ΓA)

(plus a density argument). This proves the Silver–Müller boundary condition, and the proof of the Proposition
is complete.

Theorem 4.8. The operator −A2 generates a C0-semigroup of contractions (T2(t))t≥0 on the energy space X.
Thus, for all U0 ∈ X, there exists a unique solution U ∈ C0(R≥0; X), given by U(t) = T2(t)U0, which solves
the problem (4.30).

Moreover, if U0 ∈ D(A2), then

U ∈ C1(R≥0; X) ∩ C0(R≥0;D(A2)).

Furthermore, we have ‖U(t)‖X ≤ ‖U0‖X and ‖∂tU(t)‖X ≤ ‖A2U0‖X.

Proof. Entirely similar to Theorem 4.6.

4.2.2. General (non-homogeneous) boundary condition

Here, we suppose that g 6= 0 in (4.28). We shall solve the evolution problem by using a lifting of the boundary
data g. To this end, we introduce the mapping:

ZA : H0,ΓP (curl; Ω)×H(curl; Ω)→ T̃T(ΓA) + TC(ΓA)

(v,w) 7→ γ>(v) + cπ>(w).

It is clear that ZA is linear and continuous, and due to the surjectivity of γ> and π> (see the definition of T̃T

and TC), ZA is also surjective. Then, we deduce that ZA is bijective from (kerZA)⊥ to T̃T(ΓA) + TC(ΓA)
and we denote its inverse by RA. By the Banach–Schauder theorem, RA is continuous.

We assume the following regularity on the boundary data g:

g ∈W2,1(R>0; T̃T(ΓA) + TC(ΓA)). (4.40)

According to the previous paragraph, for any t ≥ 0 there exists (g3(t), g4(t)) ∈ H0,ΓP (curl; Ω) ×H(curl; Ω)
such that

(g3(t), g4(t)) = RA[g(t)], i.e., g3(t)× n+ c g4>(t) = g(t) on ΓA, (4.41)

and the functions (g3, g4) have the following regularity:

(g3, g4) ∈W2,1(R>0; H0,ΓP (curl; Ω)×H(curl; Ω)). (4.42)

Theorem 4.9. Suppose that the initial data satisfy:
J1,0 ∈ L2

(1)(Ω), J2,0 ∈ L2
(2)(Ω),

E0 ∈ H0,ΓP (curl; Ω), B0 ∈ H(curl; Ω),
E0 × n+ cB0> = g(0) on ΓA,

(4.43)

and g is of regularity (4.40), which gives a meaning to the initial value g(0). Then, there exists one, and only one,
solution U = (J1,J2,E,B)> to the evolution problem (4.6), supplemented with the boundary conditions (4.28),
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such that its components have the following regularity:

(J1,J2) ∈ C1(R≥0; L2
(1)(Ω)× L2

(2)(Ω)),

E ∈ C1(R≥0; L2(Ω)) ∩ C0(R≥0; H0,ΓP (curl; Ω)),

B ∈ C1(R≥0; L2(Ω)) ∩ C0(R≥0; H(curl; Ω)).

Proof. Define (g3, g4) by (4.41), and introduce the auxiliary unknown U? = (J?1,J
?
2,E

?,B?)>:

J?1 = J1, J?2 = J2, E? = E − g3, B? = B − g4.

If a solution (J1,J2,E,B)> as above exists then, by construction, the fieldU?(t) belongs toD(A2) for any t ≥ 0.
Moreover it is governed by the evolution equations

∂tU
? + AU? = F , t > 0, (4.44)

U?(0) = U?
0, (4.45)

with data

F =


ε0 ω

2
p1 g3

ε0 ω
2
p2 g3

−∂tg3 + c2 curl g4

−∂tg4 − curl g3

 , U?
0 =


J1,0

J2,0

E0 − g3(0)
B0 − g4(0)

 .

Thanks to (4.42) and Lemma 4.4, one sees that F ∈ W1,1(R>0; X); and, obviously, U?
0 ∈ D(A2). Thus,

Problem (4.44)–(4.45) admits a unique strong solution ([9], Prop. 4.1.6), with regularity U? ∈ C1(R≥0; X) ∩
C0(R≥0;D(A2)), which depends continuously on the data F and U?

0. Hence, we conclude the existence of

U = (J1,J2,E,B)> = (J?1,J
?
2,E

? + g3,B
? + g4)>

solution to (4.6) with boundary condition (4.28), and depending continuously on the data g and U0. To get
uniqueness, we notice that the difference of two solutions solves the homogeneous problem (4.30) with zero
initial data, so it vanishes.

4.3. On the constraint equations

Following the usual pattern in electromagnetics, the constraints on the fields: divergence equations (2.8), (2.9),
magnetic boundary condition (2.17), are preserved by the evolution semigroup, provided the sources (ρ,J) :=∑
s(ρs,Js) satisfy the charge conservation equation. We omit the proofs, as they are extremely classical ([3],

Rem. 5.1.2, Thms. 5.2.3 and 5.2.12). The details can be found in §4 of [16]. As a matter of fact, once the
existence and uniqueness of the solution to the coupled model is obtained, the electromagnetic variables (E,B)
naturally appear as the solution to the Maxwell equations with data (ρ,J).

Theorem 4.10. Assume that

divE0 =
ρ(0)

ε0
, and divB0 = 0 in Ω, B0 · n = 0 on ΓP ,
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and that the charge conservation equation

∂ρ(t)

∂t
+ divJ(t) = 0 holds in Ω for a.e. t > 0.

Then, for all t > 0, the electric field E satisfies (2.8) and the magnetic field B satisfies (2.9) and (2.17).

Remark 4.11. For ` = 1, 2, we define X` := L2
(1)(Ω)×L2

(2)(Ω)×L2(Ω)×H0,ΓP (div 0; Ω) where the case ` = 1

corresponds to ΓA = ∅, i.e., ΓP = Γ and ` = 2 is for the case ΓA 6= ∅. Then, im (A`) ⊂ X` and, according to
Theorem 4.10, we conclude that the space X` is stable by the semigroup T` generated by the operator −A`,
i.e.,

• For all U0 ∈ D(A1) ∩X1, there exists a unique U ∈ C1(R≥0; X1) ∩ C0(R≥0;D(A1) ∩X1) solution to the
system of equations (2.10)–(2.14) and (2.9) with boundary conditions (2.15) and (2.17).

• For all U0 ∈ D(A2) ∩X2, there exists a unique U ∈ C1(R≥0; X2) ∩ C0(R≥0;D(A2) ∩X2) solution to the
system of equations (2.10)–(2.14) and (2.9) with boundary conditions (2.15)–(2.17).

Also, for all `, if we take U0 ∈ X`, the two problems above have a weak solution U ∈ C0(R≥0; X`).

5. Some results of functional analysis

5.1. The geometry

As said in Section 2, the domain Ω can be topologically non-trivial, and the boundary Γ can be connected,
or not; see Figure 2 for an example. We now introduce some notations associated with this geometry; we use
the notations from [1, 3, 12].

We denote by Γk, 0 ≤ k ≤ K the connected components of Γ, Γ0 being the boundary of the unbounded
component of R3 \ Ω. When the boundary is connected, Γ0 = Γ. Let us introduce a subspace of H1(Ω):

H1
∂Ω(Ω) := {q ∈ H1(Ω) : q|Γ0

= 0, q|Γk = Ck, 1 ≤ k ≤ K}.

Above, Ck means a constant, and for ` 6= k, C` and Ck may be different. This space can be endowed with the
norm ‖ · ‖H1

∂Ω(Ω) = ‖grad ·‖ (see [3], Prop. 2.1.66).
We assume that there exist J connected open surfaces Σj , j = 1, . . . , J , called “cuts”, contained in Ω, such

that:

i) each surface Σj is a smooth, orientable two-dimensional manifold;
ii) the boundary of Σj is contained in ∂Ω;
iii) the intersection Σj ∩ Σi is empty for i 6= j;

iv) (if ΓA 6= ∅:) ΓA \ ∂Σ, where Σ =
⋃J
j=1 Σj , has a finite number of connected components, denoted ΓA,i,

i = 1, . . . , N , whose closures are compact Lipschitz submanifolds of Γ;
v) the open set Ω̇ := Ω \ Σ is pseudo-Lipschitz ([1], Def. 3.1) and topologically trivial (i.e., any vector field

with vanishing curl is the gradient of a scalar field on Ω̇).

If Ω is topologically trivial, J = 0 and Ω̇ = Ω. The extension operator from L2(Ω̇) to L2(Ω) is denoted ·̃, whereas
[·]Σj denotes the jump across the surface Σj , j = 1, . . . , J . Being orientable, each cut is assumed to have a
“plus” and a “minus” side, so [w]Σj = w|

Σ
+
j

− w|
Σ
−
j

. For all j, we denote 〈·, ·〉Σj the duality pairing between

H
1
2 (Σj) and its dual H−

1
2 (Σj).
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Figure 2. Exemple of non-topologically trivial domain with a non-connected boundary. The
domain Ω is made of the interior of the torus minus the green cylinders. The boundary ∂Ω
is the union of the boundary of the torus and the cylinders which are all disjoint. The purple
surface is a cut Σ1, and the set Ω̇ = Ω \ Σ1 is simply connected.

5.2. Hodge decompositions and topology-related spaces

Let B : Ω −→M3(C) be a matrix-valued function. We make the following assumption:

∃ η, ζ > 0, η(v∗v) ≥ ‖v∗B(x)v‖ ≥ ζ(v∗v), ∀v ∈ C3, ∀x ∈ Ω. (5.1)

Define the Hilbert space

H(divB; Ω) := {v ∈ L2(Ω) : divBv ∈ L2(Ω)}.

This space is equipped with the canonical norm v 7→ (‖v‖2 + ‖ divBv‖2)
1
2 . The subspace H(divB0; Ω) := {v ∈

L2(Ω) : divBv = 0} is obviously a closed subspace of both H(divB; Ω) and L2(Ω). If v ∈ H(divB; Ω), the

normal trace of v is a well-defined element of H
1
2 (Γ) and the integration by parts formula holds

∀v ∈ H(divB; Ω), ∀q ∈ H1(Ω), (Bv | grad q) + (divBv | q) = 〈Bv · n, q〉
H

1
2 (Γ)

. (5.2)

If q ∈ H1
0(Ω), the above formula can be extended to v ∈ L2(Ω). Then, divBv ∈ H−1(Ω) and one gets

(Bv | grad q) + 〈divBv, q〉H1
0(Ω) = 0. (5.3)

In this paragraph, we introduce some other spaces and notations associated to a matrix B satisfying (5.1),
and we prove some useful results. We start with a result on elliptic problems, whose proof is straightforward
and left to the reader.

Lemma 5.1. For any f ∈ H−1(Ω), the elliptic problem:{
Find q ∈ H1

0(Ω) such that
−∆Bq := −div(Bgrad q) = f

(5.4)

admits a unique solution. Furthermore, there exists a constant C > 0 such that

‖q‖H1(Ω) ≤ C ‖f‖H−1(Ω). (5.5)
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Lemma 5.2. For any v ∈ L2(Ω), there exists a unique pair (q,vT ) ∈ H1
0(Ω)× L2(Ω) satisfying the conditions

v = grad q + vT , div(BvT ) = 0. (5.6)

Moreover, there exists C > 0 independent constant of v such that

‖grad q‖ ≤ C ‖v‖, ‖vT ‖ ≤ C ‖v‖. (5.7)

Proof. Let v ∈ L2(Ω). As B is bounded and the application div is continuous from L2(Ω) to H−1(Ω), we
have divBv ∈ H−1(Ω) and ‖ divBv‖H−1(Ω) ≤ C1 ‖v‖. According to Lemma 5.1, there exists one, and only one,
q ∈ H1

0(Ω) that solves the problem (5.4) with data f = −divBv and satisfies ‖grad q‖ ≤ C ‖divBv‖H−1(Ω).

Finally, let vT = v− grad q. By construction, we have vT ∈ L2(Ω) and divBvT = 0. The estimates of (5.7) are
also established.

We now characterize the following space:

ZN (Ω;B) := H0(curl 0; Ω) ∩H(divB0; Ω).

Proposition 5.3. The dimension of the vector space ZN (Ω;B) is equal to K, the number of connected compo-
nents of the boundary, minus one. Furthermore, a basis of ZN (Ω;B) is the set of the functions (grad qk)1≤k≤K ,
where each qk is the unique solution in H1(Ω) to the problem

∆Bqk = divBgrad qk = 0, in Ω,

qk|Γ0
= 0 and qk|Γi = csti, 1 ≤ i ≤ K,

〈Bgrad qk · n, 1〉
H

1
2 (Γ0)

= −1 and 〈Bgrad qk · n, 1〉
H

1
2 (Γi)

= δki, 1 ≤ i ≤ K.
(5.8)

Proof. Entirely similar to Proposition 3.18 of [1], using the integration-by-parts formulas (5.3) and (5.2), and
the well-posedness of elliptic problems involving the operator ∆B, as in Lemma 5.1.

Remark 5.4. All norms being equivalent on the finite-dimensional space ZN (Ω;B), we may use any norm to
measure elements of this space; for example

v 7→ ‖v‖, or v 7→ |(〈Bv · n, 1〉
H

1
2 (Γk)

)1≤1≤K |p,

with 1 ≤ p ≤ ∞. Also, we easily check that ZN (Ω;B) = grad[QN (Ω;B)], where

QN (Ω;B) := {q ∈ H1
∂Ω(Ω) : divBgrad q = 0 in Ω},

so, v = grad q 7→ |(q|Γk)1≤k≤K |p, with 1 ≤ p ≤ ∞, is another norm. Hereafter, we denote | · |ZN (Ω;B) the chosen
norm.

5.3. A compactness result

We introduce the function space

XN,Γ(Ω;B) := {w ∈ H(curl; Ω) : divBw ∈ L2(Ω) and w × n|Γ ∈ L2(Γ)} ;
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obviously, w × n|Γ can be replaced with w>|Γ in the above definition. It is endowed with its canonical norm

‖w‖2XN,Γ(Ω;B) = ‖w‖2 + ‖ curlw‖2 + ‖divBw‖2 + ‖w>‖2L2(Γ). (5.9)

Below, we derive some useful properties of the space XN,Γ(Ω;B): it is compactly embedded into L2(Ω), which
yields an a inequality in L2 norm for elements of XN,Γ(Ω;B), and finally a new norm equivalent to (5.9).
These results parallel and generalize those of Theorem 3.22 of [13] (for the boundary condition w × n = 0 and
Γ connected) and Theorem 8.1.3 of [3] (where B is assumed to be real and symmetric, and w × n = 0 on ΓP ),
both of which grounded in the pioneering work ([26], Thm. 2.2). However, we choose to present the proof, as
the two simultaneous negative features (non-Hermitianness of B and non-connectedness of Γ) call for a careful
demonstration.

5.3.1. Compact embedding of XN,Γ(Ω;B) into L2(Ω)

We denote

ZN (Ω) := H0(curl 0; Ω) ∩H(div 0; Ω) = ZN (Ω; I).

As the identity matrix I obviously satisfies the condition (5.1), ZN (Ω) is of dimension K and a basis is given
by (5.8). Next, we introduce the (closed) subspace of H(div 0; Ω):

HΓ(div 0; Ω) := {v ∈ H(div 0; Ω) : 〈v · n, 1〉
H

1
2 (Γk)

= 0, 1 ≤ k ≤ K}.

As an immediate consequence of Proposition 5.3, we have. . .

Proposition 5.5. Let Ω a domain. The following orthogonal decomposition of the space H(div 0; Ω) holds:

H(div 0; Ω) = ZN (Ω)
⊥
⊕ HΓ(div 0; Ω).

Now, we can prove the following compactness result.

Theorem 5.6. Let Ω be a domain. The embedding of the space XN,Γ(Ω;B) into L2(Ω) is compact.

Proof. Let (vn)n∈N be a bounded sequence of XN,Γ(Ω;B). According to Lemma 5.2, there exists two sequences
(qn)n∈N and (vTn )n∈N of elements, respectively, of H1

0(Ω) and L2(Ω), such that vn = grad qn + vTn for all n.
Our aim, using this decomposition, is to prove that a subsequence of (vn)n converges strongly in L2(Ω). This
is done in two steps.
Step 1. According to (5.7), the sequence (qn)n satisfies, for all n: ‖grad qn‖ ≤ C‖vn‖, with C independent
of vn. So, (qn)n is bounded in H1

0(Ω), and since H1
0(Ω) is compactly embedded into L2(Ω), there exists a

subsequence, still denoted by (qn)n, that converges strongly in L2(Ω). Now, let us show that the subsequence
(grad qn)n converges in L2(Ω). Denote vnm := vn − vm and qnm := qn − qm. By construction, the sequence
(qn)n verifies divBvn = divBgrad qn, for all n ∈ N. This leads to the inequality

|(div(Bgrad qnm) | qnm)| = |(div(Bvnm) | qnm)|
≤ ‖ div(Bvnm)‖ · ‖qnm‖
≤ 2 sup

n
‖vn‖XN,Γ(Ω;B) ‖qnm‖ ≤ C ′ ‖qnm‖.
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On the other hand, from (5.1) and the integration-by-parts formula (5.2), we deduce:

|(div(Bgrad qnm) | qnm)| = |(Bgrad qnm | grad qnm)| ≥ ζ ‖grad qnm‖2.

Combining the above, we conclude:

‖grad qn − grad qm‖2 ≤
C ′

ζ
‖qnm‖.

So, (grad qn)n is a Cauchy sequence in L2(Ω), and therefore it converges in this space.
Step 2. Recall that the sequence (vTn )n verifies divBvTn = 0, curlvTn = curlvn and vTn ×n|Γ = vn ×n|Γ. By
Proposition 5.5, there exists a sequence (yn)n of elements of HΓ(div 0; Ω) and a sequence (zn)n on ZN (Ω) such
that BvTn = zn + yn for all n. The sequence (zn)n is bounded in the finite-dimensional space ZN (Ω), so there
exists a subsequence, still denoted by (zn)n, which converges in any norm, e.g., that of L2(Ω). Then, according
to Theorem 3.4.1 of [3], there exists a sequence (wn)n of elements of H1(Ω) such that yn = curlwn for all n,
and it satisfies:

‖wn‖H1(Ω) ≤ ξ ‖yn‖

for some ξ > 0. As (yn)n is bounded in L2(Ω), it follows that (wn)n is bounded in H1(Ω). As the trace mapping

is continuous from H1(Ω) to H
1
2 (Γ), it follows that (wn|Γ)n is bounded in H

1
2 (Γ). Therefore, by Sobolev’s

compact embedding theorem, we can extract a subsequence, still denoted by (wn)n, that converges in L2(Ω)
and such that (wn|Γ)n converges in L2(Γ). Denote vTnm := vTn − vTm, wnm := wn −wm and znm := zn − zm.
According to the condition (5.1), B is invertible, and we find∣∣(B−1(znm + curlwnm) | znm + curlwnm

)∣∣ =
∣∣(vTnm | BvTnm)∣∣

≥ ζ ‖vTnm‖
2
.

Next, by integration by parts (3.1), we obtain∣∣(B−1(znm + curlwnm) | znm + curlwnm

)∣∣
=
∣∣(vTnm | znm + curlwnm

)∣∣
=
∣∣∣(vTnm | znm)+

(
curlvTnm | wnm

)
+
(
vTnm × n | (wnm)>

)
L2(Γ)

∣∣∣
=
∣∣∣(vTnm | znm)+ (curlvnm | wnm) + (vnm × n | (wnm)>)L2(Γ)

∣∣∣
≤ 2 sup

n
‖vnm‖XN,Γ(Ω;B)(‖znm‖+ ‖wnm‖+ ‖wnm‖L2(Γ)).

≤ C ′ (‖znm‖+ ‖wnm‖+ ‖wnm‖L2(Γ)).

Combining the above, we find

‖vTn − vTm‖
2

L2(Ω) ≤
C ′

ζ
(‖znm‖+ ‖wnm‖+ ‖wnm‖L2(Γ)).

So, (vTn )n is a Cauchy sequence in L2(Ω), and it converges in this space. Finally, the subsequence (vn)n, defined
by vn := grad qn + vTn , converges in L2(Ω).
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5.3.2. Equivalent norms on XN,Γ(Ω;B)

As a consequence of Theorem 5.6, there holds a basic inequality. The proof follows the lines of ([3], Thm 3.4.3)
and ([12], Prop. 7.4).

Proposition 5.7. There exists a constant C > 0 such that

∀v ∈ XN,Γ(Ω;B), ‖v‖ ≤ C
{
‖ curlv‖+ ‖ divBv‖+ ‖v>‖L2(Γ) + |PZN (Ω;B)v|ZN (Ω;B)

}
. (5.10)

Corollary 5.8. The semi-norm

|v|XN,Γ(Ω;B) =
(
‖ curlv‖2 + ‖ divBv‖2 + ‖v>‖2L2(Γ) + |PZN (Ω;B)v|ZN (Ω;B)

) 1
2

.

is a norm in XN,Γ(Ω;B), equivalent to the natural norm.

6. Spectral properties of some useful matrices

We still denote ||| · |||M the operator norm ofM3(C) induced by the Hermitian norm of C3. In the rest of the
paper, in addition to Hypothesis 1, we shall make the following. . .

Hypothesis 2. For each species s, the real functions νs and ωps are bounded below by a strictly positive
constant on Ω, i.e., there exist ν∗ > 0 and ω∗ > 0 such that:

ωps(x) ≥ ω∗, νs(x) ≥ ν∗, ∀s ∈ {1, 2}, ∀x ∈ Ω a.e. (6.1)

Proposition 6.1. Let s ∈ {1, 2} and α ∈ R. Then, the matrix iα I + Ms is invertible for all x ∈ Ω. Moreover,
its inverse is uniformly bounded on Ω.

Proof. First, we determine the matrix Ms. At each point x ∈ Ω, we consider an orthonormal Stix frame [24]
(e1(x), e2(x), e3(x) = b(x)). In this frame, the expression of Ms writes:

Ms =

 νs −Ωcs 0
Ωcs νs 0
0 0 νs

 .

Hence we deduce the expression

iαI + Ms =

iα+ νs −Ωcs 0
Ωcs iα+ νs 0
0 0 iα+ νs

 .

The determinant of this matrix is:

det(iαI + Ms) = (iα+ νs)
[
(iα+ νs)

2 +Ω2
cs

]
= (iα+ νs)

[
(Ω2

cs + ν2
s − α2) + 2iανs

]
:= ds.
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By Hypothesis 2, for α ∈ R fixed it holds that |ds(x)| ≥ dα > 0 a.e. on Ω. Thus, the matrix iαI+Ms is invertible,
and the usual inversion formula gives:

(iαI + Ms)
−1 =

1

ds

 (iα+ νs)
2 Ωcs(iα+ νs) 0

−Ωcs(iα+ νs) (iα+ νs)
2 0

0 0 (iα+ νs)
2 +Ω2

cs

 .

We can check that the above matrix is normal (i.e., it commutes with its conjugate transpose). By Theorem 1.4-
2 of [10], we deduce that the ||| · |||M norm of (iαI + Ms)

−1 is equal to its spectral radius. Therefore, to prove
that (iαI + Ms)

−1 is uniformly bounded it suffices to bound its spectral radius on Ω. Its eigenvalues are:

(iα+ νs)
2 ± iΩcs(iα+ νs)

ds
and

(iα+ νs)
2 +Ω2

cs

ds
.

According to Hypothesis 1 and the above, these eigenvalues are bounded on Ω.

From Hypotheses 1 and 2 there follows:

Proposition 6.2. Let α ∈ R. Let Dα : Ω −→M3(C) be the matrix

Dα(x) :=
∑
s

ω2
ps(x)(iαI + Ms(x))−1, for x ∈ Ω. (6.2)

Then, Dα is uniformly bounded on Ω.

Let α ∈ R. We now introduce another matrix which will play an important role in the proofs of stability.

Bα := iαI + Dα :=

 P Q 0
−Q P 0
0 0 R

 (6.3)

where the functions P , Q and R are given by

P (x) := iα +
∑
s

ω2
ps(x)(iα+ νs(x))

(iα+ νs(x))2 +Ω2
cs(x)

, (6.4)

Q(x) :=
∑
s

ω2
ps(x)Ωcs(x)

(iα+ νs(x))2 +Ω2
cs(x)

, (6.5)

R(x) := iα +
∑
s

ω2
ps(x)

iα+ νs(x)
. (6.6)

The matrix Bα is normal (BαB∗α = B∗αBα), and its eigenvalues are

λα,1 = P + iQ, λα,2 = P − iQ, λα,3 = R.

According to Proposition 6.2, we deduce that Bα is uniformly bounded on Ω, i.e there exists a constant ηα > 0
depending on α such that

sup
x∈Ω
|||Bα(x)|||M ≤ ηα.
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Proposition 6.3. Let α ∈ R. Then, the real parts of (λα,j)j=1, 2, 3 are uniformly bounded below on Ω. We then
define ζα to be

ζα := min
j=1, 2, 3

inf
x∈Ω
<(λα,j(x)) > 0. (6.7)

Proof. From (6.4)–(6.6), one obtains the expression of the real parts of the eigenvalues of Bα:

<(λα,1(x)) =
∑
s

ω2
ps(x)νs(x)

(Ω2
cs(x) + ν2

s (x)− α2)2 + 4α2ν2
s (x)

[(Ωcs(x) + α)2 + ν2
s (x)],

<(λα,2(x)) =
∑
s

ω2
ps(x)νs(x)

(Ω2
cs(x) + ν2

s (x)− α2)2 + 4α2ν2
s (x)

[(Ωcs(x)− α)2 + νs(x)2],

<(λα,3(x)) =
∑
s

ω2
ps(x)νs(x)

ν2
s (x) + α2

.

Due to Hypothesis 2 and assumption (4.3), one deduces that these real parts are strictly positive. The rest of
the proof follows by Hypotheses 1 and 2.

Lemma 6.4. Given α ∈ R, it holds that

ηα(v∗v) ≥ |v∗Bα(x)v| ≥ <[v∗Bα(x)v] ≥ ζα(v∗v), ∀v ∈ C3, ∀x ∈ Ω. (6.8)

Remark 6.5. According to Lemma 6.4, we can apply all the results of Subsection 5.2 to the matrix Bα, for
α ∈ R.

7. Strong stability

We define the energy of our model as E(t) := 1
2‖U(t)‖2X. With the definition (2.6) of the plasma pulsation, the

term given by the Js variables is interpreted as the kinetic energy of the particles:

∣∣∣∣ Jsωps
∣∣∣∣2 ∝ ns |Us|2 at dominant

order; while the (E,B) part is the electromagnetic energy of the wave. If U0 satisfies the condition (4.43), then,
using the Green formula (3.1), one easily finds that:

d

dt
E(t) = − 1

ε0

∑
s

∥∥∥∥√νs Jsωps

∥∥∥∥2

− ε0c
2

∫
ΓA

(c |B>|2 − g ·B>) dΓ. (7.1)

Here, ΓA is arbitrary. The above equation shows that the energy is non-increasing if ΓA = ∅ or g = 0. (On
the other hand, if ΓA = ∅ and νs = 0, the derivative vanishes and E(t) = E(0) for all t > 0; this justifies
Hypothesis 2.)

Therefore, we will study the decay of the energy in both cases: perfectly conducting (ΓA = ∅) and homo-
geneous Silver–Müller (ΓA 6= ∅ and g = 0). Notice that, as a consequence of Hypotheses 1 and 2, the spaces
L2

(s)(Ω) are equal to L2(Ω), and the norms ‖ · ‖(s) and ‖ · ‖ are equivalent. Similarly, the norm ‖ · ‖X is equivalent

to the canonical norm of L2(Ω)4.
For ` = 1, 2, the domain D(A`) is not compactly embedded into X; thus, the resolvent of A` is not compact,

as said in the Introduction. This fact precludes the use of many operator-theoretical results. To show the strong
stability we shall use the general criterion of Arendt–Batty and Lyubich–Vu [2, 17].
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Theorem 7.1 (Arendt–Batty / Lyubich–Vu). Let X be a reflexive Banach space and (T (t))t≥0 be a C0-
semigroup on X generated by L. Assume that (T (t))t≥0 is bounded and no eigenvalue of L lies on the imaginary
axis. If σ(L) ∩ iR is countable, then (T (t))t≥0 is strongly stable.

7.1. Perfectly conducting case

Proposition 7.2. For all α ∈ R \ {0}, the operator iαI + A1 is injective, i.e.,

ker(iαI + A1) = {0}.

Furthermore, 0 is an eigenvalue of A1 and the corresponding set of eigenvectors is:

kerA1 = {(0, 0, 0,V ) : V ∈ H(curl 0; Ω)}.

Proof. Let α ∈ R and U = (U1,U2,U3,U4)> ∈ D(A1) such that

(iα I + A1)U = 0. (7.2)

This is equivalent to the system

iαU1 + M1U1 − ε0ω
2
p1U3 = 0, (7.3)

iαU2 + M2U2 − ε0ω
2
p2U3 = 0, (7.4)

iαU3 +
1

ε0
U1 +

1

ε0
U2 − c2 curlU4 = 0, (7.5)

iαU4 + curlU3 = 0. (7.6)

Taking the real part of the inner product of (7.2) with U in X, one gets:

<(iα ‖U‖2X) = < (A1U ,U)X = 0.

By the monotonicity of A1, see equation (4.15), one obtains:(
νsU s

ε0ωps

∣∣∣∣∣ U s

ωps

)
= 0, s = 1, 2. (7.7)

By Hypothesis 2: (
νsU s

ε0ωps

∣∣∣∣∣ U s

ωps

)
≥ ν∗
ε0
‖U s‖2(s), s = 1, 2. (7.8)

From Equations (7.7) and (7.8), we deduce that

U1 = 0 and U2 = 0 in Ω. (7.9)

This, together with equation (7.3), implies that

U3 = 0 in Ω. (7.10)
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If α 6= 0, U4 = 0 follows from (7.10) and (7.6). And if α = 0, we deduce from (7.5), (7.9) and (7.10) that
curlU4 = 0. The proof of the proposition is complete.

Therefore, kerA1 consists of the space of stationary solutions to Problem (2.10)–(2.14) with boundary condi-
tion (2.15), and it is of infinite dimension. From Remark 4.11, we can define the operator A1|X1

: D(A1)∩X1 →
X1 the restriction of A1 on the space X1. In this case, the set of stationary solutions of the problem formed by
Equations (2.10)–(2.14) and (2.9), with the boundary conditions (2.15) and (2.17), is equal to

ker(A1|X1
) = {0}3 × ZT (Ω),

where the kernel

ZT (Ω) := H(curl 0; Ω) ∩H0(div 0; Ω).

We recall that the space ZT (Ω) is of dimension J , the number of cuts [1, 3] (if Ω is topologically trivial then

ZT (Ω) = {0}). Consider (g̃rad q̇j)1≤j≤J a basis of ZT (Ω) given by Proposition 3.14 of [1] where q̇j ∈ H1(Ω̇)

is a function such that (among other conditions) 〈g̃rad q̇j · n, 1〉Σi = δji for i = 1, . . . , J . From this basis we
deduce the following orthogonal decomposition in H0(div 0; Ω):

H0(div 0; Ω) = ZT (Ω)
⊥
⊕ HΣ

0 (div 0; Ω), (7.11)

where

HΣ
0 (div 0; Ω) := {v ∈ H0(div 0; Ω) : 〈v · n, 1〉Σj = 0, 1 ≤ j ≤ J}.

Then, according to (7.11) and by Propositions 3.7.3 and 3.7.4 of [3], we have the following decomposition

L2(Ω) = H(curl 0; Ω)
⊥
⊕ HΣ

0 (div 0; Ω). (7.12)

Proposition 7.3. For all α ∈ R \ {0}, the operator iα I + A1 is surjective, i.e.,

im (iα I + A1) = X.

Proof. We take any α ∈ R \ {0} and any F = (F 1,F 2,F 3,F 4)> ∈ X, and we look for U =
(U1,U2,U3,U4, )

> ∈ D(A1), which solves

(iα I + A1)U = F . (7.13)

Equivalently, according to (4.7), we consider the following system

iαU1 + M1U1 − ε0ω
2
p1U3 = F 1, (7.14)

iαU2 + M2U2 − ε0ω
2
p2U3 = F 2, (7.15)

iαU3 +
1

ε0
U1 +

1

ε0
U2 − c2 curlU4 = F 3, (7.16)

iαU4 + curlU3 = F 4. (7.17)
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Using (7.14), (7.15) and (7.17), we keep U3 as the main unknown and eliminate the others:

U1 = (iαI + M1)−1(F 1 + ε0 ω
2
p1U3), (7.18)

U2 = (iαI + M2)−1(F 2 + ε0 ω
2
p2U3), (7.19)

U4 = (iα)−1(F 4 − curlU3). (7.20)

Inserting these expressions into (7.16), we obtain an equation in U3:

iαU3 +
c2

iα
curl curlU3 + DαU3 = F 3 +

c2

iα
curlF 4 −

1

ε0

∑
s

(iαI + Ms)
−1F s. (7.21)

Here, we cannot apply the Lax–Milgram theorem as in Proposition 4.5: the operator on the left-hand side
(even suitably rescaled) is not positive. So, we shall solve this problem with a suitable version of the Fredholm
alternative for constrained problems, as in §4.5.1 of [3]. Taking account of the constraints is necessary in order
to give some compactness properties (by Thm. 5.6), which are not furnished by the definition of our evolution
operator.

Thus, we introduce the following mixed formulation for (7.21):
Find (U3, p) ∈ H0(curl; Ω)×H1

∂Ω(Ω) such that

aα(U3,v) + cα(U3,v) + bα(v, p) = Lα(v), ∀v ∈ H0(curl; Ω), (7.22)

bα(U3, q) = (G | grad q) , (7.23)

where the sesquilinear forms aα, cα and bα are respectively defined on H0(curl; Ω) ×H0(curl; Ω), L2(Ω) ×
H0(curl; Ω) and H0(curl; Ω)×H1

∂Ω(Ω) as:

aα(w,v) := (iα)−1c2(curlw | curlv), (7.24)

cα(w,v) := (Bαw | v), where Bα = iαI + Dα, (7.25)

bα(v, q) := (Bαv | grad q). (7.26)

The anti-linear form Lα on H0(curl; Ω) is given by:

Lα(v) := (F 3 | v) +
c2

iα
(F 4 | curlv)− 1

ε0

∑
s

(
(iαI + Ms)

−1F s | v
)
, (7.27)

and G is an element of L2(Ω) which will be chosen later.
To show the well-posedness of the variational formulation (7.22)–(7.23), we first verify that the assumptions

of Theorem 4.5.9 in [3] on Helmholtz-like problems with constraints are fulfilled, and we conclude by the
Fredholm alternative.

i) Continuity: it is clear that the sesquilinear forms aα, bα and cα, and the anti-linear from Lα, are continuous
on their respective spaces.

ii) Coercivity on the kernel: the kernel of bα is defined by

K = {v ∈ H0(curl; Ω) : bα(v, q) = 0, ∀q ∈ H1
∂Ω(Ω)}

which, by Green’s formulas (5.3) and (5.2), can be written as

K = {v ∈ H0(curl; Ω) ∩H(divBα0; Ω) : 〈Bαv · n, 1〉
H

1
2 (Γk)

= 0, ∀1 ≤ k ≤ K}
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= {v ∈ H0(curl; Ω) ∩H(divBα0; Ω) : PZN (Ω;Bα)v = 0}.

According to Corollary 5.8 applied to the closed subspace K of XN,Γ(Ω;B), the sesquilinear form aα is coercive
on K×K. Furthermore, the embedding K ⊂ L2(Ω) is compact by Theorem 5.6.

iii) Inf-sup condition: let q ∈ H1
∂Ω(Ω) and set v = grad q ∈ H0(curl 0; Ω), thus v checks ‖v‖H(curl;Ω) =

(‖v‖2 + ‖ curlv‖2)
1
2 = ‖v‖. On the other hand, according to Lemma 6.4, one has

|bα(v, q)| = | (Bαv | grad q) | = | (Bαv | v) |
≥ ζα‖v‖2 = ζα‖v‖ ‖grad q‖. (7.28)

Combining the above, it follows that

|bα(v, q)|
‖v‖H(curl;Ω)

≥ ζα‖grad q‖ = ζα‖q‖H1
∂Ω(Ω). (7.29)

Consequently, there exists Cb = ζα > 0 such that

∀q ∈ H1
∂Ω(Ω), sup

v∈H0(curl;Ω)

|bα(v, q)|
‖v‖H(curl;Ω)

≥ Cb ‖q‖H1
∂Ω(Ω).

Hence, the assumptions of Theorem 4.5.9 in [3] are satisfied: we can apply the usual Fredholm alternative ([3],
Thm. 4.5.7). So, we show that the variational formulation (7.22) is injective on the kernel, i.e., its solution is
unique. Let Z3 be a solution to

∀v ∈ K, aα(Z3,v) + cα(Z3,v) = 0. (7.30)

Since Z3 belongs to K, one has Z3 ∈ H(curl; Ω) with divBαZ3 = 0 in Ω and Z3 × n|Γ = 0. Next, consider
y ∈ D(Ω). Introduce the scalar field ϕ ∈ H1

∂Ω(Ω) that solves the variational formulation: for all ψ ∈ H1
∂Ω(Ω),

(Bα gradϕ | gradψ) = (Bαy | gradψ). By construction, v := y − gradϕ belongs to K with curlv = curly.
Using it as a test function in (7.30) yields

〈(iα)−1c2 curl curlZ3 + BαZ3,y〉 = (iα)−1c2 (curlZ3 | curly) + (BαZ3 | y)

= (iα)−1c2 (curlZ3 | curlv) + (BαZ3 | v + gradϕ)

= (iα)−1c2 (curlZ3 | curlv) + (BαZ3 | v) = 0.

The last line is obtained by integration by parts, using the facts that div(BαZ3) = 0 in Ω and 〈BαZ3 ·
n, 1〉

H
1
2 (Γk)

= 0, for all 1 ≤ k ≤ K. Recall that Bα = iαI + Dα; as y is arbitrary, it follows that:

iαZ3 + (iα)−1c2 curl curlZ3 + DαZ3 = 0, in D′(Ω). (7.31)

Let now Z1, Z2 and Z4 defined as

(iαI + Ms)Zs = ε0 ω
2
psZ3, s = 1, 2 ; Z4 = −(iα)−1 curlZ3. (7.32)

Clearly, these fields belong to L2
(s)(Ω) = L2(Ω). Replacing the matrix Dα with its expression in (7.31) and using

the definitions above, we get

iαZ3 +
1

ε0
Z1 +

1

ε0
Z2 − c2 curlZ4 = 0, (7.33)
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which implies that curlZ4 ∈ L2(Ω). The equations (7.32)–(7.33) are equivalent to (iαI + A1)Z = 0, with
Z = (Z1,Z2,Z3,Z4)> ∈ D(A1). Therefore, according to Proposition 7.2, one finds Z = 0, and so Z3 = 0 in Ω.
Thus, the formulation (7.30) is injective. Finally, according to Theorem 4.5.9 and Proposition 4.5.8 of [3], the
problem (7.22)–(7.23) has a unique solution (U3, p) ∈ H0(curl; Ω)×H1

∂Ω(Ω).
To show the equivalence between (7.22) and the strong formulation (7.21), we have to check that the Lagrange

multiplier p vanishes. Taking v = grad p ∈ H0(curl; Ω) as a test function in (7.22), we obtain

(BαU3 | grad p) + (Bα grad p | grad p) = (F 3 | grad p)− 1

ε0

∑
s

(
(iαI + Ms)

−1F s | grad p
)
. (7.34)

The first term above is the left-hand side of the constraint equation (7.23). Thus, choosing

G := F 3 −
1

ε0

∑
s

(iαI + Ms)
−1F s ∈ L2(Ω), (7.35)

we get, according to (7.34) and (7.23),

(Bα grad p | grad p) = 0.

Thanks to Lemma 6.4, we deduce that grad p = 0 in Ω. As p belongs to H1
∂Ω(Ω), we find p = 0.

Returning to Problem (7.13), we define U1 ∈ L2
(1)(Ω), U2 ∈ L2

(2)(Ω) respectively by (7.18) and (7.19). Also,

we define U4 ∈ L2(Ω) by (7.20). Taking v ∈ D(Ω) as a test function in (7.22), replacing Bα with its expression
and using Green’s formula (3.1), we obtain equation (7.21), and by the definition (7.20) of U4 we find

iαU3 − c2 curlU4 + DαU3 = F 3 −
1

ε0

∑
s

(iαI + Ms)
−1F s in D′(Ω). (7.36)

This implies that curlU4 ∈ L2(Ω). To finish the proof, it remains to check that equation (7.16) is satisfied: to
this end, it is enough to replace in (7.36) the matrix Dα with its definition and to use (7.18) and (7.19).

Let us introduce a closed subspace of X:

X̃1 := L2(Ω)× L2(Ω)× L2(Ω)×HΣ
0 (div 0; Ω). (7.37)

Of course, X̃1 is a Hilbert space when endowed with the inherited inner product.

Proposition 7.4. The range im (A1) of A1 is included in X̃1.

Proof. ConsiderU = (U1,U2,U3,U4)> an element of D(A1). Then, by the definition (4.11) of A1, A1U belongs

to X̃1 if, and only if, curlU3 belongs to HΣ
0 (div0; Ω). But U3 ∈ H0(curl; Ω), and it is well-known (see, e.g.,

[3], Rem. 3.5.2) that v ∈ H0(curl; Ω) implies curlv ∈ HΣ
0 (div0; Ω).

The spectral analysis of the operator A1 shows that no stabilization can take place in the whole space X:
an initial data U0 ∈ kerA1 generates a constant-in-time solution. The above results lead us to introduce the
unbounded operator Ã1 : D(Ã1)→ X̃1 defined by

D(Ã1) = D(A1) ∩ X̃1 and Ã1U = A1U , ∀U ∈ D(Ã1). (7.38)

The spectral properties of Ã1 are easily deduced from Propositions 7.2 and 7.3.

Proposition 7.5. For all α ∈ R, the operator iαI + Ã1 is injective. For α ∈ R \ {0}, it is surjective.
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Proof. The injectivity for α 6= 0 directly follows from Proposition 7.2. For α = 0, Ã1U = 0 means U ∈ X̃1

and A1U = 0, hence U1 = U2 = U3 = 0, U4 ∈ H(curl 0; Ω) and U4 ∈ HΣ
0 (div 0; Ω). According to (7.12), this

implies U4 = 0.
Taking account of Proposition 7.3, the surjectivity property means that, if F ∈ X̃1, the unique solution U

to iαU + A1 U = F belongs to X̃1. This, in turn, is an obvious consequence of Proposition 7.4.

We notice that X̃1 is an invariant space for the problem (4.12), see Lemma 7.8. We then define Ť1 :=
T1|D(A1)∩X̃1

.

Theorem 7.6. The semigroup of contractions (Ť1(t))t≥0 with generator −Ã1 is strongly stable on the energy

space X̃1, i.e.,

lim
t→+∞

‖Ť1(t)Ũ0‖X̃1
= 0, ∀Ũ0 ∈ X̃1. (7.39)

Proof. According to Proposition 7.5, we conclude that

σ(−Ã1) ∩ iR = ∅ or {0},

which is countable in both cases, and that 0 is not an eigenvalue. On the other hand, Ã1 is monotone in X̃1, so
−Ã1 is dissipative in X̃1. The rest of the proof follows from Theorem 7.1.

Remark 7.7. As we shall see in Section 8, 0 actually does not belong to σ(−Ã1).

We denote by P1 the orthogonal projection in L2(Ω) onto ZT (Ω).

Lemma 7.8. Let U0 ∈ X1 and U be the solution of problem (4.12). It holds that

P1(B(t)) = P1(B0), ∀ t > 0. (7.40)

Proof. Just multiply equation (2.13) by a element of ZT (Ω) and integrate by parts on Ω.

Lemma 7.8 shows that the projection of the solution U onto ker(A1|X1
) does not depend on the time. Then

we conclude. . .

Corollary 7.9. It holds that

lim
t→+∞

∥∥∥∥∥∥T1(t)U0 −
∑

1≤j≤J

ξj (0, 0, 0, g̃rad q̇j)
>

∥∥∥∥∥∥
X1

= 0, ∀U0 ∈ X1,

where ξj = 〈B0 · n, 1〉Σj , for j = 1, . . . , J .

Proof. Let U0 ∈ X1. From the orthogonal decomposition (7.11) and Lemma 7.8, we deduce that the solution
U to the system (2.10)–(2.14) and (2.9), with boundary conditions (2.15) and (2.17), can be written as:

U(t) = Ũ(t) + (0, 0, 0, P1B0),

and Ũ(t) ∈ X̃1 is the solution of problem

∂tŨ(t) + Ã1Ũ(t) = 0, for t > 0, Ũ(0) = Ũ0,
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where the initial condition Ũ0 = U0 − (0, 0, 0, P1B0) belongs to X̃1. Next, let ξj , j = 1, . . . , J be a constants

such that P1B0 =
∑

1≤j≤J ξj g̃rad q̇j . Therefore, B0 − P1B0 belongs to HΣ
0 (div 0; Ω), which yields:

〈B0 · n, 1〉Σi =
∑
j

ξj〈g̃rad q̇j · n, 1〉Σi = ξi.

Finally, from Theorem 7.6, Ũ satisfies lim
t→+∞

‖Ũ(t)‖X̃1
= 0, hence the result.

7.2. Homogeneous Silver–Müller case

Proposition 7.10. For all α ∈ R \ {0}, the operator iαI + A2 is injective, i.e.,

ker(iαI + A2) = {0}.

Furthermore, 0 is an eigenvalue of A2 and the set of its eigenvectors is

ker(A2) = {(0, 0, 0,V ) : V ∈ H0,ΓA(curl 0; Ω)}.

Proof. Let α ∈ R and U = (U1,U2,U3,U4)> ∈ D(A2) be such that

(iα I + A2)U = 0, (7.41)

which is equivalent, in Ω, to the system (7.3)–(7.6). Taking the inner product of (7.41) with U , one gets:

<(iα‖U‖2X) = < (A2U | U)X = 0.

By the monotonicity of A2, see (4.33), one obtains(
νsU s

ε0ωps

∣∣∣∣∣ U s

ωps

)
= 0, s = 1, 2, and ‖U4>‖2L2(ΓA) = 0.

The rest of the proof follows the same arguments as Proposition 7.2.

The above Proposition states that kerA2 coincides with the set of stationary solutions to the problem (2.10)–
(2.14) with boundary condition (2.15) and (2.16) (with g = 0). Similarly to the operator A1, if we define the
operator A2|X2

: D(A2) ∩X2 → X2 as the restriction of A2 to the space X2, then we obtain

ker(A2|X2
) = {0}3 × Z(Ω; ΓA),

where the kernel

Z(Ω; ΓA) := H0,ΓA(curl 0; Ω) ∩H0,ΓP (div 0; Ω).

Note that the set of stationary solution to equations (2.10)–(2.14) and (2.9), with boundary conditions (2.15)–
(2.17) and g = 0, is equal to ker(A2|X2

).
The space Z(Ω; ΓA) has been studied by Fernandes and Gilardi in [12]. It is of finite dimension and from Corol-

larly 5.2 of [12] one has dim Z(Ω; ΓA) ≤ N + J − 1. (We recall that N is the number of connected components
of ΓA \ ∂Σ.)
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We now recall some orthogonal decompositions from [12]; we mostly keep the same notations. Picking a

vector a ∈ RN such that
∑N
i=1 ai 6= 0, we define the space

H
1
2

const ΓA,Σ
(∂Ω̇; a) := {p ∈ H

1
2 (∂Ω̇) : ∃c ∈ RN , ∃c′ ∈ RJ : c · a = 0,

p|ΓA,i = ci for i = 1, . . . , N ; [p]Σj = c′j for j = 1, . . . , J}.

Moreover we introduce

H0,ΓP ;flux,ΓA,Σ(div 0; Ω) := {v ∈ H0,ΓP (div 0; Ω) :

〈v · n, p〉
H

1
2 (ΓA∪Σ)

= 0 ∀ p ∈ H
1
2

const ΓA,Σ
(∂Ω̇; a)}.

For the proof, we refer the reader to Proposition 3.3 and Remark 2.1 of [12]. Then, we have the orthogonal
decompositions in L2(Ω) which are proven in Propositions 6.3 and 6.4 of [12]:

H0,ΓP (div 0; Ω) = Z(Ω; ΓA)
⊥
⊕ H0,ΓP ;flux,ΓA,Σ(div 0; Ω), (7.42)

L2(Ω) = H0,ΓA(curl 0; Ω)
⊥
⊕ H0,ΓP ;flux,ΓA,Σ(div 0; Ω). (7.43)

Proposition 7.11. For all α ∈ R \ {0}, the operator iαI + A2 is surjective, i.e

im (iαI + A2) = X.

Proof. We follow the lines of the proof of Proposition 7.3. Let α ∈ R \ {0} and F = (F 1,F 2,F 3,F 4)> ∈ X; we
look for U = (U1,U2,U3,U4)> ∈ D(A2) which solves:

(iα I + A2)U = F , (7.44)

which is equivalent to the system (7.14)–(7.17), with different boundary conditions. Again, we eliminate U1,
U2 and U4 by (7.18), (7.19) and (7.20) respectively, while U3 verifies the equation (7.21) in Ω. Given the
Silver–Müller boundary condition, the mixed formulation of (7.21) writes — recall the space V from (4.31):

Find (U3, p) ∈ V ×H1
∂Ω(Ω) such that

ãα(U3,v) + cα(U3,v) + bα(v, p) = Lα(v), ∀v ∈ V, (7.45)

bα(U3, q) = (G | grad q) , ∀q ∈ H1
∂Ω(Ω), (7.46)

where the sesquilinear form ãα is defined on V × V as:

ãα(w,v) := aα(w,v) + c (w> | v>)ΓA
, (7.47)

the form aα being defined in (7.24); on the other hand, bα, cα, Lα are as in (7.25)–(7.27), except that the
variable v now belongs to V. Again, G is an element of L2(Ω) which will be chosen later.

Checking the hypotheses of Theorem 4.5.9 in [3] proceeds as in Proposition 7.3.

i) Continuity: obvious.

ii) Coercivity on the kernel: the kernel of bα(., .) is defined by

K = {v ∈ V : bα(v, q) = 0, ∀q ∈ H1
∂Ω(Ω)}
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which, by the Green formulas (5.3) and (5.2), can be written as:

K = {v ∈ V ∩H(divBα0; Ω) : 〈Bαv · n, 1〉
H

1
2 (Γk)

= 0, ∀1 ≤ k ≤ K}

= {v ∈ V ∩H(divBα0; Ω) : PZN (Ω;Bα)v = 0}.

This kernel is compactly embedded into L2(Ω) by Theorem 5.6. Furthermore, according to Corollary 5.8, the
sesquiliear form ãα is coercive on K×K. Indeed, taking v ∈ K, we find

|ãα(v,v)| =
∣∣∣(iα)−1c2‖ curlv‖2 + c ‖v>‖2L2(ΓA)

∣∣∣ =
(

(|α|−1c2‖ curlv‖2)2 + (c ‖v>‖2L2(ΓA))
2
) 1

2

.

But, we have the inequality

(z2 + y2)
1
2 ≥ 1√

2
|z + y|, ∀(z, y) ∈ R2.

Consequently,

|ãα(v,v)| ≥ 1√
2

(
|α|−1c2‖ curlv‖2 + c ‖v>‖2L2(ΓA)

)
≥ 1√

2
min{|α|−1c2, c}

(
‖ curlv‖2 + ‖v>‖2L2(ΓA)

)
= C |v|2XN,Γ(Ω;Bα) .

iii) Inf-sup condition: take any q ∈ H1
∂Ω(Ω) and set v = grad q. Then, we have curlv = 0 ∈ L2(Ω)

and v> = 0 ∈ L2(Γ), thus v ∈ V and verifies ‖v‖V = ‖v‖. The conclusion follows from the inequalities (7.28)
and (7.29).

As in the perfect conductor case, we can apply the Fredholm alternative. So, we show that the variational
formulation (7.45) is injective on the kernel. Let Z3 be a solution to the variational formulation

∀v ∈ K, ãα(Z3,v) + cα(Z3,v) = 0. (7.48)

Since Z3 belongs to K, one has Z3 ∈ H(curl; Ω) with divBαZ3 = 0 in Ω and Z3 × n|ΓP = 0. As in Propo-
sition 7.3, we obtain the existence of Z1, Z2 ∈ L2(Ω) and Z4 ∈ H(curl; Ω) such that (iαI + A)Z = 0, with
Z = (Z1,Z2,Z3,Z4)>. To apply Proposition 7.10, we must check that Z ∈ D(A2), i.e., the Silver–Müller
condition is satisfied. For v ∈ K, using the integration-by-parts formula (3.2) in (7.48) and equation (7.31), we
get

(Z3> | v>)ΓA
− c γA〈Z4 × n,v>〉π0

A
= 0, ∀v ∈ K. (7.49)

Now, consider any y ∈ V. Let ϕ be the unique element of H1
∂Ω(Ω) such that

(Bα gradϕ | gradψ) = (Bαy | gradψ) , ∀ψ ∈ H1
∂Ω(Ω).

So, v := y − gradϕ belongs to K with v> = y> on ΓA. Using it as a test function in (7.49), we find

(Z3> | y>)ΓA
− c γA〈Z4 × n,y>〉π0

A
= 0, ∀y ∈ V.

The above equation is the same as (4.37), thus we obtain the Silver–Müller boundary condition as in the proof of
Proposition 4.7. Consequently, Z belongs to D(A2), and from Proposition 7.10 we infer that Z = 0, so Z3 = 0:
the formulation (7.48) is injective.
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We deduce by Theorem 4.5.9 and Proposition 4.5.8 of [3] that the problem (7.45)–(7.46) admits a unique
solution (U3, p) ∈ V ×H1

∂Ω(Ω). Choosing G as in (7.35), we get once again p = 0. Thus, U3 satisfies (7.21), or
equivalently

c2

iα
curl(curlU3 − F 4) + BαU3 = F 3 −

1

ε0

∑
s

(iαI + Ms)
−1F s (7.50)

in the sense of distributions. Defining U1, U2, U4 respectively by (7.18), (7.19), and (7.20), these fields clearly
belong to L2(Ω). Combining (7.50) and (7.20) with the definition of Bα, one sees that U4 ∈ H(curl; Ω). Thus,
the quadruple (U1,U2,U3,U4) verifies the system (7.14)–(7.17). For this quadruple to belong to D(A2), we
have to check that the Silver–Müller condition holds. To this end, we use the Green formula (3.2) in (7.45), and
find that

c (U3> | v>)ΓA
− c2γA〈U4 × n,v>〉π0

A
= 0, ∀v ∈ V. (7.51)

Following the same argument as in the proof of Proposition 4.7, we deduce that equation (7.51) implies that

U3> − cU4 × n = 0 in H̃−
1
2 (ΓA) which is equivalent to U3 × n+ cU4> = 0 in H̃−

1
2 (ΓA) and thus in L2(ΓA)

because U3> belongs to L2(ΓA). The proof is complete.

Let us introduce yet another closed subspace of X:

X̃2 := L2(Ω)× L2(Ω)× L2(Ω)×H0,ΓP ;flux,ΓA,Σ(div0; Ω). (7.52)

It is a Hilbert space when endowed with the inner product of X.

Proposition 7.12. The range im (A2) of A2 is included in X̃2.

Proof. Let U = (U1,U2,U3,U4)> be an element of D(A2). Then, by the definition (4.29) of A2, A2U belongs

to X̃2 if, and only if, curlU3 belongs to H0,ΓP ;flux,ΓA,Σ(div0; Ω). Recall that U3 belongs to H0,ΓP (curl; Ω),
therefore one can conclude by Lemma 7.7 of [12].

The results of the spectral analysis of the operator A2 lead us to introduce the unbounded operator
(D(Ã2), Ã2) on X̃2 defined by

D(Ã2) = D(A2) ∩ X̃2 and Ã2U = A2U , ∀U ∈ D(Ã2). (7.53)

Proposition 7.13. For all α ∈ R, the operator iαI + Ã2 is injective. For α ∈ R \ {0}, it is surjective.

Proof. Similar to Proposition 7.5, using Propositions 7.10, 7.11, 7.12, and the orthogonal decomposition (7.43).

Observe that X̃2 is an invariant space for Problem (4.30), see Lemma 7.15. We define Ť2 := T2|D(A2)∩X̃2
.

Theorem 7.14. The semigroup of contractions (Ť2(t))t≥0 with generator −Ã2 is strongly stable on the energy

space X̃2 in the sense that

lim
t→+∞

‖Ť2(t)Ũ0‖X = 0, ∀Ũ0 ∈ X̃2.

Proof. It is sufficient to repeat the proof of Theorem 7.6.

We denote by P2 the orthogonal projection in L2(Ω) onto Z(Ω; ΓA).
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Lemma 7.15. Let U0 ∈ X2 and U is the solution of problem (4.30). It holds that

P2(B(t)) = P2(B0), ∀ t > 0.

Combining this result with Theorem 7.14, we conclude

Corollary 7.16. It holds that

lim
t→+∞

‖T2(t)U0 − (0, 0, 0, P2B0)>‖X2
= 0, ∀U0 ∈ X2.

8. Stronger stability

We now establish explicit decay rates (polynomial or exponential) for the energy. Our results are based on
theorems relating decay of the resolvent of an operator with respect to frequency and decay of the generated
semigroup with respect to time.

Namely, exponential decay will be derived from the following Theorem [14, 21]:

Theorem 8.1 (Prüss / Huang). A C0-semigroup (T (t))t≥0 of contractions on a Hilbert space X generated by
L is exponentially stable, i.e., it satisfies

∀t ≥ 0, ∀u0 ∈ X , ‖T (t)u0‖ ≤ C e−γt‖u0‖X ,

for some positive constants C and γ if, and only if,

iR = {iβ : β ∈ R} ⊂ ρ(L), (8.1)

the resolvent set of the operator L, and

sup
β∈R
|||(iβ I− L)−1||| < +∞. (8.2)

On the other hand, polynomial decay will follow from this other one ([6], Thm. 2.4):

Theorem 8.2. A C0-semigroup (T (t))t≥0 of contractions on a Hilbert space X generated by L satisfies

∀t > 1, ∀u0 ∈ D(L), ‖T (t)u0‖ ≤ C t−
1
` ‖u0‖D(L),

as well as

∀t > 1, ∀u0 ∈ D(L`), ‖T (t)u0‖ ≤ C t−1‖u0‖D(L`),

for some constant C > 0 and for some positive integer ` if (8.1) holds and if

lim sup
|β|→∞

1

β`
|||(iβ I− L)−1||| < +∞. (8.3)

8.1. Polynomial stability, perfectly conducting case

Proposition 8.3. Let ρ(−Ã1) denote the resolvent set of −Ã1. Then, 0 ∈ ρ(−Ã1).
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Proof. By Proposition 7.5, we know that 0 ∈ iR is not an eigenvalue, so in order to prove that 0 ∈ ρ(−Ã1), we

need to check that Ã1 is surjective and has a bounded inverse. Both properties follow from the fact that the
resolvent of −Ã1 is uniformly bounded in the neighborhood of 0, which we shall now prove by a contradiction
argument.

Suppose the above condition is false, then there exists a sequence (βn)n∈N on R\{0} with βn → 0 as n→ +∞,

and a sequence of vector fields (Un)n∈N =
(
(Un

1 ,U
n
2 ,U

n
3 ,U

n
4 )>

)
n

on D(Ã1), with

‖Un‖X = 1, ∀n, (8.4)

such that

‖(iβnI + A1)Un‖X → 0 as n→ +∞, (8.5)

which is equivalent to

iβnU
n
1 + M1U

n
1 − ε0ω

2
p1U

n
3 → 0 in L2(Ω), (8.6)

iβnU
n
2 + M2U

n
2 − ε0ω

2
p2U

n
3 → 0 in L2(Ω), (8.7)

iβnε0U
n
3 +Un

1 +Un
2 − ε0c

2 curlUn
4 → 0 in L2(Ω), (8.8)

iε0c
2βnU

n
4 + ε0c

2 curlUn
3 → 0 in L2(Ω). (8.9)

Since, by (4.15) and (8.4),

∑
s

(
νsU

n
s

ε0ωps

∣∣∣∣∣ Un
s

ωps

)
= <((iβnI + A1)Un,Un)X ≤ ‖(iβnI + A1)Un‖X, (8.10)

we obtain from (8.5) that (
νsU

n
s

ε0ωps

∣∣∣∣∣ Un
s

ωps

)
→ 0, as n→ +∞, s = 1, 2 (8.11)

which leads by (7.8) to

‖Un
s ‖(s) → 0, as n→ +∞, s = 1, 2. (8.12)

The matrix Ms is bounded on Ω, so it follows from to (8.12) and (8.6) that

Un
3 → 0 in L2(Ω), as n→ +∞ (8.13)

and then we deduce from (8.8) that

curlUn
4 → 0 in L2(Ω), as n→ +∞. (8.14)

This shows that (curlUn
4 )n is bounded in L2(Ω). Taking account of (8.4), the sequence (Un

4 )n is bounded
in H(curl; Ω), and more specifically in the closed subspace J1(Ω) := H(curl; Ω) ∩HΣ

0 (div 0; Ω) to which all

its terms belong given the definition of D(Ã1), see (7.38) and (7.37). But J1(Ω) is also a closed subspace of
H(curl; Ω) ∩H0(div; Ω), which is compactly embedded into L2(Ω) ([3], Thm. 3.5.4); thus, we can extract a
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subsequence still denoted by (Un
4 )n which converges strongly in L2(Ω) to some U4 ∈ J1(Ω). As a consequence,

(curlUn
4 )n converges in the sense of distributions to curlU4; this combined with (8.14) implies that

curlUn
4 → curlU4 = 0 in L2(Ω), as n→ +∞.

So, U4 ∈ H(curl 0; Ω). Together with U4 ∈ J1(Ω), this means that U4 belongs to ZT (Ω) = H(curl 0; Ω) ∩
H0(div 0; Ω) and its orthogonal HΣ

0 (div 0; Ω) (cf. (7.11)), whence U4 = 0.
On the other hand, (8.4), (8.12) and (8.13) imply that

1 = lim
n→+∞

‖Un‖2X = lim
n→+∞

ε0 c
2‖Un

4‖2 = ε0 c
2‖U4‖2,

in particular, U4 6= 0, and the above conclusion is contradicted. Hence the resolvent is uniformly bounded in
the neighborhood of 0:

∃C > 0, ∀β ∈ [−1, 1] \ {0}, |||(iβ I + Ã1)−1||| ≤ C. (8.15)

The surjectivity of −Ã1 and the boundedness of its inverse then follow from a standard argument. Pick any
F ∈ X̃1. By Proposition 7.5, for any k ∈ N \ {0} there exists a unique Uk ∈ D(Ã1) such that (ik−1 + A)Uk =
−F , and ‖Uk‖X ≤ C ‖F ‖X.

Being bounded, the sequence (Uk)k admits a subsequence (still denoted (Uk)k) that converges weakly toward

U ∈ X̃1, as the latter is a closed subspace of X, which still satisfies ‖U‖X ≤ C ‖F ‖X. Moreover, −AUk ⇀ −AU
in the sense of distributions. But, on the other hand

−AUk = F + ik−1Uk → F in X.

Hence, −AU = F , i.e., U ∈ D(Ã1). As F is arbitrary, this proves that −Ã1 is surjective, hence bijective,

between D(Ã1) and X̃1, and its inverse is bounded: |||(−Ã1)−1||| ≤ C and |||(−Ã1)−1|||X̃1→D(Ã1) ≤ C + 1.

Remark 8.4. The surjectivity of −Ã1 could have been easily obtained by a direct argument. We gave this
proof because it provides a pattern for subsequent ones.

Proposition 8.5. The resolvent of the operator −Ã1 satisfies the condition (8.3) with ` = 2.

Proof. We again use a contradiction argument, i.e., we assume that (8.3) is false for some ` ∈ N, which will
be specified later. Then, there exists a sequence (βn)n∈N on R with |βn| → +∞ as n → +∞, and a sequence

(Un)n∈N =
(
(Un

1 ,U
n
2 ,U

n
3 ,U

n
4 )>

)
n

of elements of D(Ã1), such that

‖Un‖X = 1, ∀n, (8.16)

and

β`n ‖(iβnI + A1)Un‖X → 0 as n→ +∞, (8.17)

which is equivalent to

β`n (iβnU
n
1 + M1U

n
1 − ε0ω

2
p1U

n
3 )→ 0 in L2(Ω), (8.18)

β`n (iβnU
n
2 + M2U

n
2 − ε0ω

2
p2U

n
3 )→ 0 in L2(Ω), (8.19)

β`n (iβnε0U
n
3 +Un

1 +Un
2 − ε0c

2 curlUn
4 )→ 0 in L2(Ω), (8.20)

β`n (iε0c
2βnU

n
4 + ε0c

2 curlUn
3 )→ 0 in L2(Ω). (8.21)
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As, according to (4.15) and (8.16),

|β`n|
∑
s

(
νsU

n
s

ε0ωps

∣∣∣∣∣ Un
s

ωps

)
= |β`n| <((iβnI + A1)Un,Un)X ≤ |β`n| ‖(iβnI + A1)Un‖X, (8.22)

we infer from (8.17) that

|β`n|

(
νsU

n
s

ε0ωps

∣∣∣∣∣ Un
s

ωps

)
→ 0 as n→ +∞, s = 1, 2,

which implies, by Hypotheses 1 and 2,

β
`
2
n U

n
s → 0 in L2(Ω), as n→ +∞, s = 1, 2. (8.23)

(For the sake of simplicity, one may assume ` even, so that β
`
2
n is unambiguously defined; otherwise, one may

choose a principal determination for the square root of a negative real number. This is of little importance, as
all the limits we consider are zero.)

Multiplying (8.18) by β
− `2−1
n , we get:

iβ
`
2
n U

n
1 + β

`
2−1
n M1U

n
1 − ε0ω

2
p1 β

`
2−1
n Un

3 → 0 in L2(Ω),

together with (8.23), this yields

β
`
2−1
n Un

3 → 0, in L2(Ω) as n→ +∞. (8.24)

Similarly, multiplying (8.20) by β
− `2−2
n yields:

iβ
`
2−1
n ε0U

n
3 + β

`
2−2
n Un

1 + β
`
2−2
n Un

2 − ε0c
2β

`
2−2
n curlUn

4 → 0 in L2(Ω),

taking (8.23) and (8.24) into account, we arrive at:

β
`
2−2
n curlUn

4 → 0 in L2(Ω), as n→ +∞. (8.25)

Now, let us multiply (8.21) by β
− `2−2
n :

iε0c
2β

`
2−1
n Un

4 + ε0c
2β

`
2−2
n curlUn

3 → 0 in L2(Ω),

then we take the inner product (on the right side) of this equation by Un
4 and find

iε0c
2β

`
2−1
n ‖Un

4‖2 + ε0c
2β

`
2−2
n (curlUn

3 | U
n
4 )→ 0, as n→ +∞. (8.26)

On the other hand, using the Green formula (3.1) and the condition Un
3 × n = 0 on Γ, we obtain:

β
`
2−2
n (curlUn

3 | U
n
4 ) =

(
Un

3

∣∣∣ β `
2−2
n curlUn

4

)
≤ ‖Un

3‖ ‖β
`
2−2
n curlUn

4‖. (8.27)
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Assuming ` ≥ 2, we deduce from (8.24) that:

‖Un
3‖ → 0, as n→ +∞. (8.28)

Thus, from equations (8.27), (8.28) and (8.25), we deduce

β
`
2−2
n (curlUn

3 | U
n
4 )→ 0, as n→ +∞. (8.29)

Together with (8.26), the latter property implies

β
`
2−1
n ‖Un

4‖2 → 0, as n→ +∞ (8.30)

if ` ≥ 2. In this case, the exponent `
2 − 1 ≥ 0, and there holds a fortiori :

‖Un
4‖ → 0, as n→ +∞. (8.31)

As (8.23) implies, for all ` > 0, that

‖Un
s ‖ → 0, as n→ +∞, s = 1, 2, (8.32)

taking (8.28) and (8.31) into account and using the equivalence of norms, we obtain ‖Un‖X → 0 as n→ +∞,
which contradicts (8.16).

Hence, according to Theorem 8.2 we conclude. . .

Theorem 8.6. The semigroup of contractions (Ť1(t))t≥0, with generator −Ã1, is polynomially stable on X̃1,
i.e., there exist a constant C > 0 such that

∀t > 1, ‖Ť1(t)Ũ0‖X̃1
≤ C t− 1

2 ‖Ũ0‖D(Ã1), ∀Ũ0 ∈ D(Ã1). (8.33)

Furthermore, under the assumptions of Theorem 4.10 on B0, there exists a constant M > 0 such that the
solution to Problem (4.12) satisfies

∀t > 1, ‖T1(t)U0 −
∑

1≤j≤J

ξj (0, 0, 0, g̃rad q̇j)
>‖X1

≤M t−
1
2 ‖U0‖D(A1)∩X1

, (8.34)

for all U0 ∈ D(A1) ∩X1, where ξj = 〈B0 · n, 1〉Σj , for j = 1, . . . , J .

Proof. Equation (8.34) is a consequence of (8.33) and Corollary 7.9.

8.2. Polynomial stability, homogeneous Silver–Müller case

Proposition 8.7. Let ρ(−Ã2) denote the resolvent set of −Ã2. Then, 0 ∈ ρ(−Ã2).

Proof. We follow the same argument in the proof of Proposition 8.3, and we prove that the resolvent of −Ã2

is uniformly bounded in the neighborhood of 0 by using a contradiction argument. Suppose it is not the case,
then there exists a sequence (βn)n∈N on R \ {0} with βn → 0 as n → +∞, and a sequence of vectors fields

(Un)n∈N =
(
(Un

1 ,U
n
2 ,U

n
3 ,U

n
4 )>

)
n

on D(Ã2), with

‖Un‖X = 1, ∀n, (8.35)
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such that

‖(iβnI + A2)Un‖X → 0 as n→ +∞, (8.36)

this again implies the system (8.6)–(8.9), with different boundary conditions.
By the monotonicity of A2 (Eq. (4.33)) and (8.35):

∑
s

(
νsU

n
s

ε0ωps

∣∣∣∣∣ Un
s

ωps

)
+ ε0c

3 ‖Un
4>‖2L2(ΓA) = < ((iβnI + A2)Un,Un)X

≤ ‖(iβnI + A2)Un‖X,

we obtain from (8.36) (
νsU

n
s

ε0ωps

∣∣∣∣∣ Un
s

ωps

)
→ 0, as n→ +∞ ∀s = 1, 2 (8.37)

and

‖Un
4>‖2L2(ΓA) → 0, as n→ +∞. (8.38)

As already said, the condition Un
4> ∈ L2(ΓA) follows from the Silver–Müller boundary condition, in the absence

of pathological vertices.
Reasoning as in Proposition 8.3, we deduce that

‖Un
s ‖(s) → 0, as n→ +∞, s = 1, 2, 3 ; (8.39)

curlUn
4 → 0 in L2(Ω), as n→ +∞. (8.40)

Hence, (curlUn
4 )n is bounded in L2(Ω). Taking account of (8.35) and (8.38), the sequence (Un

4 )n is bounded
in W = {w ∈ H(curl; Ω) : w × n|ΓA ∈ L2

t (ΓA)}, and more specifically in the closed subspace J2(Ω) := W ∩
H0,ΓP ;flux,ΓA,Σ(div0; Ω) to which all its terms belong given the definition of D(Ã2), see (7.53) and (7.52). Yet,
J2(Ω) also appears as a closed subspace of{

w ∈ H(curl; Ω) ∩H(div; Ω) : w · n|ΓP ∈ L2(ΓP ) and w × n|ΓA ∈ L2
t (ΓA)

}
,

which is compactly embedded into L2(Ω) ([12], Prop. 7.3). Therefore, we can extract a subsequence, still
denoted (Un

4 )n, which converges strongly in L2(Ω), and weakly in J2(Ω), to some U4 ∈ J2(Ω). Combining the
weak convergence in J2(Ω) with (8.40) and (8.38), we find

curlUn
4 → curlU4 = 0 in L2(Ω), Un

4> → U4> = 0 in L2
t (ΓA), as n→ +∞.

So, U4 ∈ H0,ΓA(curl 0; Ω). Together with U4 ∈ J2(Ω), this means that U4 belongs both to Z(Ω; ΓA) =
H0,ΓA(curl 0; Ω) ∩H0,ΓP (div 0; Ω) and to its orthogonal H0,ΓP ;flux,ΓA,Σ(div 0; Ω) (cf. (7.42)), whence U4 = 0.

On the other hand, (8.35) and (8.39) imply that

1 = lim
n→+∞

‖Un‖2X = lim
n→+∞

ε0 c
2‖Un

4‖2 = ε0 c
2‖U4‖2,

in particular, U4 6= 0, and the above conclusion is contradicted. The proof is complete.
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Proposition 8.8. The resolvent of the operator −Ã2 satisfies the condition (8.3) with ` = 2.

Proof. We follow the lines of the proof of Proposition 8.5, only insisting on the differences. Assume that (8.3)
does not hold, with ` ∈ N to be specified later, then there exists a sequence (βn)n∈N on R with |βn| → ∞ as

n→ +∞, and a sequence (Un)n∈N =
(
(Un

1 ,U
n
2 ,U

n
3 ,U

n
4 )>

)
n

on D(Ã2), such that:

‖Un‖X = 1, ∀n, (8.41)

and

β`n ‖(iβnI + A2)Un‖X → 0 as n→ +∞; (8.42)

again, the latter condition is equivalent to the system (8.18)–(8.21), with different boundary conditions.
Using the monotonicity of A2 (Eq. (4.33)) and (8.41):

|β`n|
∑
s

(
νsU

n
s

ε0ωps

∣∣∣∣∣ Un
s

ωps

)
+ ε0c

3 |β`n| ‖U
n
4>‖2L2(ΓA) = |β`n| < ((iβnI + A2)Un,Un)X

≤ |β`n| ‖(iβnI + A2)Un‖X,

we infer from (8.42) that:

β
`
2
n U

n
s → 0, in L2(Ω) as n→ +∞, s = 1, 2, (8.43)

and

β`n ‖U
n
4>‖2L2(ΓA) → 0, as n→ +∞. (8.44)

Reasoning as in Proposition 8.5, we deduce:

β
`
2−1
n Un

3 → 0 in L2(Ω), as n→ +∞, (8.45)

β
`
2−2
n curlUn

4 → 0, in L2(Ω) as n→ +∞, (8.46)

which yields (8.26) again. Then, using the Green formula (3.2) and the Silver–Müller boundary condition, we
find:

β
`
2−2
n (curlUn

3 | U
n
4 ) = β

`
2−2
n (Un

3 | curlUn
4 )− β

`
2−2
n γ0

A
〈Un

3 × n,U
n
4>〉πA

=
(
Un

3

∣∣∣ β `
2−2
n curlUn

4

)
+ c β

`
2−2
n ‖Un

4>‖2L2(ΓA). (8.47)

But, on the other hand, according to (8.44)

β
`
2−2
n ‖Un

4>‖2L2(ΓA) = β
− `2−2
n ×

(
β`n ‖U

n
4>‖2L2(ΓA)

)
→ 0 as n→ +∞,

for all ` > 0. Moreover, equation (8.45) implies that the first term on the right-hand side of (8.47) converges
to 0 if ` ≥ 2. As a consequence,

β
`
2−2
n (curlUn

3 | U
n
4 )→ 0, as n→ +∞ (8.48)
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for ` ≥ 2, which together with (8.26) implies (8.31). Again, this implies ‖Un‖X → 0, contradicting the
assumption (8.41).

The above results allow us to conclude. . .

Theorem 8.9. The semigroup of contractions (Ť2(t))t≥0, with generator −Ã2, is polynomially stable on X̃2,
i.e., there exist a constant C > 0 such that

∀t > 1, ‖Ť2(t)Ũ0‖X̃2
≤ C t− 1

2 ‖Ũ0‖D(Ã2), ∀Ũ0 ∈ D(Ã2). (8.49)

Furthermore, under the assumptions of Theorem 4.10 on B0, there exists a constant M > 0 such that the
solution to Problem (4.30) satisfies

∀t > 1, ‖T2(t)U0 − (0, 0, 0, P2B0)>‖X2
≤M t−

1
2 ‖U0‖D(A2)∩X2

, ∀U0 ∈ D(A2) ∩X2. (8.50)

8.3. Conditional exponential stability in the Silver–Müller case

Proposition 8.10. Suppose that the divergence-free, source-free Maxwell system with Silver–Müller, or mixed,
boundary condition: 

∂tE = c2 curlB, ∂tB = − curlE, in Ω× R>0,

divE = 0, divB = 0, in Ω× R>0,

E × n = 0, B · n = 0, on ΓP × R>0,

E × n+ cB> = 0, on ΓA × R>0.

(8.51)

is exponentially stable. Then, the resolvent of the operator −Ã2 satisfies:

sup
β∈R
|||(iβ + Ã2)−1||| <∞. (8.52)

Proof. Again, we use a contradiction argument. Assume there exists a sequence (βn)n on R, with |βn| → +∞ as

n→ +∞, and a sequence of fields (Un)n =
(
(Un

1 ,U
n
2 ,U

n
3 ,U

n
4 )>

)
n

on D(Ã2) satisfying (8.35) and (8.36), the
latter being equivalent to the system (8.6)–(8.9). Following the same reasoning as in Proposition 8.7, we get

‖Un
s ‖ → 0, as n→ +∞, s = 1, 2 ; (8.53)

‖Un
4>‖2L2(ΓA) → 0, as n→ +∞. (8.54)

In order to use the exponential stability of (8.51), we need to correct Un
3 since it does not satisfy divUn

3 = 0
in Ω. Let ϕ ∈ H1

0(Ω) be the unique solution to

(gradϕn | gradψ) = (Un
3 | gradψ) , ∀ψ ∈ H1

0(Ω). (8.55)

Now, define

Û
n

3 = Un
3 − gradϕn, in Ω.

Then, Û
n

3 belongs to H0,ΓP (curl; Ω) and it satisfies

div Û
n

3 = 0 in Ω. (8.56)
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Introduce

Ln := iβnε0U
n
3 +

∑
s

Un
s − ε0c

2 curlUn
4 ,

the l.h.s. of (8.8); by assumption ‖Ln‖ → 0. By choosing ψ = ϕn in (8.55) and using the Green formula (3.1),
we find

‖gradϕn‖2 =
1

iβnε0

∫
Ω

(Ln −
∑
s

Un
s + ε0c

2 curlUn
4 ) · gradϕn dΩ

=
1

iβnε0

∫
Ω

(Ln −
∑
s

Un
s ) · gradϕn dΩ

≤ C

|βn|
(‖Ln‖+

∑
s

‖Un
s ‖) ‖gradϕn‖.

Then, by (8.8) and (8.53) we deduce that

‖βn gradϕn‖ → 0, as n→ +∞. (8.57)

We now introduce

L̂n = Ln −
∑
s

Un
s − iβnε0 gradϕn,

Qn = iε0c
2βnU

n
4 + ε0c

2 curlUn
3 .

By (8.9), (8.53) and (8.57), it holds that:

L̂n, Qn → 0 ∈ L2(Ω), as n→ +∞. (8.58)

To summarize, the pair (Û
n

3 ,U
n
4 ) satisfies the perfectly conducting boundary condition on ΓP , the Silver–Müller

boundary condition on ΓA, and the divergence-free harmonic Maxwell problem in Ω:{
iβnε0 Û

n

3 − ε0c
2 curlUn

4 = L̂n,

iε0c
2βnU

n
4 + ε0c

2 curl Û
n

3 = Qn.
(8.59)

By assumption, the system (8.51) is exponentially stable; thus, according to Theorem 8.1, its resolvent is
uniformly bounded on the imaginary axis. In other words, there exists a positive constant C, independent of n,
such that the solution (Û

n

3 ,U
n
4 ) to (8.59) satisfies

‖Û
n

3‖+ ‖Un
4‖ ≤ C

(
‖L̂n‖+ ‖Qn‖

)
.

From (8.58), we deduce that

‖Û
n

3‖ + ‖Un
4‖ → 0, as n→ +∞,

and finally by (8.57) we get

‖Un
3‖ + ‖Un

4‖ → 0, as n→ +∞,
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which together with (8.53) gives the desired contradiction of (8.4).

Using again Theorem 8.1, we obtain a conditional improved version of the decay Theorem 8.9.

Theorem 8.11. Assume that the divergence-free Maxwell system (8.51) is exponentially stable. Then, the

semigroup of contractions (Ť2(t))t≥0, with generator −Ã2, is exponentially stable on X̃2, i.e., there exist two
constants C, γ > 0 such that

∀t ≥ 0, ‖Ť2(t)Ũ0‖X̃2
≤ C e−γt‖Ũ0‖X̃2

, ∀Ũ0 ∈ X̃2. (8.60)

Furthermore, under the assumptions of Theorem 4.10 on B0, there exists a constant M > 0 such that the
solution to Problem (4.30) satisfies

∀t ≥ 0, ‖T2(t)U0 − (0, 0, 0, P2B0)>‖X2
≤M e−γt‖U0‖X2

, ∀U0 ∈ X2.

Remark 8.12. Examples of sufficient conditions for the exponential stability of the Maxwell system with pure
Silver–Müller or mixed boundary conditions are given in the seminal papers [15, 22].

Remark 8.13. On the other hand, our model with perfectly conduction boundary condition everywhere (ΓA =
∅) is never exponentially stable: there exists no improved version of Theorem 8.6. In this case, the Maxwell
operator has an infinite number of eigenvalues on the imaginary axis: the associated evolution operator cannot
be exponentially stable.

Consider the eigenvalue problem with perfectly conducting boundary condition:

c2 curl curlEk = λ2
kEk, divEk = 0 in Ω, Ek × n = 0 on Γ. (8.61)

It is well-known (see, e.g., [3], §8.2.1) that it admits a nondecreasing sequence of eigenvalues tending to infinity.

Assume that the corresponding eigenvectors are normalized by ‖Ek‖ = 1, and introduce the sequence
(
Uk
)
k∈N

on D(Ã1) as:

Uk
s = (iλk I + Ms)

−1 ε0ω
2
psEk, s = 1, 2, Uk

3 = Ek, Uk
4 = − 1

iλk
curlEk.

Thanks to Section 6, it is easily shown that λk → +∞ implies |||(iλk I + Ms)
−1|||M → 0. Therefore, ‖Uk

s‖ → 0
as k → +∞, and:

(iλk I + Ã1)Uk =
(

0, 0, 1
ε0

(Uk
1 +Uk

2), 0
)>
→ 0 in L2(Ω), as k → +∞.

On the other hand, taking Ek as a test function in (8.61), one finds ‖Uk
4‖ = 1/c. All in all, 0 < U∗ ≤ ‖Uk‖ ≤

U∗ < +∞, for some U∗, U
∗ independent of k. This shows that the counterpart of (8.2) or (8.52) cannot hold

for −Ã1.

8.4. Convergence to the harmonic regime

A time-harmonic solution to the model (2.10)–(2.16) is a particular solution such that U(t,x) =
<
[
U(x) e−iωt

]
. Such a solution may only exist if two conditions are satisfied: (i) the forcing or Silver–Müller

data is time-harmonic (g(t,x) = <
[
g(x) e−iωt

]
) and (ii) the initial data match (U0(x) = < [U(x)]). Of course,

the general condition (4.43) must also hold.
The time-harmonic version of (2.10)–(2.13), i.e., with ∂t 7→ −iω, has been studied in [4]. Under Hypotheses 1

and 2, its well-posedness has been established with slightly different boundary conditions, but the adaptation
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to the Silver–Müller case is not difficult. Indeed, the solution to time-harmonic problem, supplemented with
boundary conditions formally similar to (2.15)–(2.16), can be expressed with the tools introduced in this paper.

The harmonic variables will be denoted with upright bold letters: Js, E, B, etc..

Let g ∈ T̃T(ΓA) + TC(ΓA). As in Section 4.2.2, set:

(g3,g4) ∈ H0,ΓP (curl; Ω)×H(curl; Ω) s.t. g3 × n+ cg4> = g on ΓA,

J?1 = J1, J?2 = J2, E? = E− g3, B? = B− g4.

The variable U? ∈ D(A2) is solution to

− iωU? + A2U
? =

(
ε0ω

2
p1 g3, ε0ω

2
p2 g3, iω g3 + c2 curl g4, iω g4 − curl g3

)>
, (8.62)

a well-posed equation according to Proposition 7.11. Then U := U? + (0, 0,g3,g4)> is solution to the time-
harmonic problem. Obviously, the difference of two solutions belongs to D(A2) and satisfies −iωU + AU = 0,
hence it vanishes by Proposition 7.10.

Definition 8.14. For any g ∈ T̃T(ΓA) + TC(ΓA), we denote H[g] := U, the unique solution to the time-
harmonic problem constructed by the above procedure.

By uniqueness, any lifting (g3,g4) of the boundary data g can actually be used. For instance, it is possible to
take g4 ∈ H0,ΓP ;flux,ΓA,Σ(div 0; Ω). Starting with (g0

3,g
0
4) = RA[g], one defines ϕ ∈ H1

0,ΓA
(Ω) := {w ∈ H1(Ω) :

w|ΓA = 0} as the solution to

(gradϕ | gradψ) = (g0
4 | gradψ), ∀ψ ∈ H1

0,ΓA(Ω),

and g1
4 := g0

4 − gradϕ. By (5.2), g1
4 ∈ H0,ΓP (div 0; Ω) and g1

4> = g0
4> on ΓA. Then one sets:

g3 = g0
3, g4 = g1

4 − P2 g1
4 ;

recall that P2 is the orthogonal projection onto Z(Ω; ΓA). By (7.42), g4 ∈ H0,ΓP ;flux,ΓA,Σ(div 0; Ω), and g4> =
g1

4> = g0
4> on ΓA, i.e., g3 × n+ cg4> = g.

Proposition 8.15. The range of the mapping H is included in X̃2.

Proof. Let g ∈ T̃T(ΓA) + TC(ΓA). Take g4 ∈ H0,ΓP ;flux,ΓA,Σ(div 0; Ω) as above. As g3 ∈ H0,ΓP (curl; Ω) by
definition, its curl also belongs to H0,ΓP ;flux,ΓA,Σ(div 0; Ω). Hence, the right-hand side of (8.62) actually belongs

to X̃2. By Proposition 7.13 the solution also belongs to this space, and so does finally U = U? + (0, 0,g3,g4)>.

By uniqueness of the solution to the time-dependent model (2.10)–(2.16), Uω(t,x) = <
[
H[g](x) e−iωt

]
is the

solution to the said system, with the Silver–Müller data g(t,x) = <
[
g(x) e−iωt

]
and the “well-prepared” initial

condition Uω
0 (x) = < [H[g](x)]. Thus, the necessary conditions stated at the beginning of this Subsection are

actually sufficient.
On the other hand, if the forcing is still time-harmonic, but the initial condition is arbitrary, the solu-

tion to (2.10)–(2.16) does not have a time-harmonic form. However, if the initial condition satisfies both the
compatibility condition and the physical requirements for a magnetic field, then the solution converges to the
time-harmonic one as fast as the solution to the homogeneous system converges to 0.

Theorem 8.16. Let U = (J1,J2,E,B)> be the solution to (2.10)–(2.16) with the time-harmonic Silver–Müller

data g(t,x) = <
[
g(x) e−iωt

]
, where g ∈ T̃T(ΓA) + TC(ΓA), and the initial data U0 = (J1,0,J2,0,E0,B0)>
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satisfying (4.43) and B0 ∈ H0,ΓP ;flux,ΓA,Σ(div 0; Ω). There exists K(g,U0) such that:

‖U(t)−Uω(t)‖X ≤ K(g,U0)φ(t), (8.63)

where Uω(t,x) = <
[
H[g](x) e−iωt

]
, and the decay function φ(·) can be taken in all cases as φ(t) = t−

1
2 for

t > 1, and as φ(t) = e−γ t if the divergence-free Maxwell system (8.51) is stable.

Proof. The difference U −Uω is solution to (2.10)–(2.16) with homogeneous Silver–Müller boundary condition.
Furthermore, the initial data U0 − <H[g] satisfies the same boundary condition; by construction, it belongs

to X̃2 by Proposition 8.15; while its third and fourth components belong to H0,ΓP (curl; Ω)×H(curl; Ω). All

in all, U0 − <H[g] ∈ D(Ã2): one can apply the estimate (8.49), and even (8.60) under the assumptions of
Theorem 8.11.

Acknowledgements. The authors are indebted to Serge Nicaise for useful remarks and discussions.
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