Yuzhao Yang
email: yuzhao.yang@irit.fr

Jérôme Darmont
email: jerome.darmont@univ-lyon2.fr

Franck Ravat
email: franck.ravat@irit.fr

Olivier Teste
email: olivier.teste@irit.fr

An Automatic Schema-Instance Approach for Merging Multidimensional Data Warehouses

Keywords: Information systems → Data warehouses Multidimensional data warehouse, schema-instance merging, automatic integration

Using data warehouses to analyse multidimensional data is a significant task in company decision-making. The need for analyzing data stored in different data warehouses generates the requirement of merging them into one integrated data warehouse. The data warehouse merging process is composed of two steps: matching multidimensional components and then merging them. Current approaches do not take all the particularities of multidimensional data warehouses into account, e.g., only merging schemata, but not instances; or not exploiting hierarchies nor fact tables. Thus, in this paper, we propose an automatic merging approach for star schema-modeled data warehouses that works at both the schema and instance levels. We also provide algorithms for merging hierarchies, dimensions and facts. Eventually, we implement our merging algorithms and validate them with the use of both synthetic and benchmark datasets.

decision support systems [START_REF] March | Integrated decision support systems: A data warehousing perspective[END_REF]. Data in DWs are usually modeled in a multidimensional way, which allows users to consult and analyze the aggregated data through multiple analysis axes with On-Line Analysis Processing (OLAP) [START_REF] Romero | A Survey of Multidimensional Modeling Methodologies[END_REF]. In a company, various independent DWs containing some common elements and data may be built for different geographical regions or functional departments. There may also exist common elements and data between the DWs of different companies. The ability to accurately merge diverse DWs into one integrated DW is therefore considered as a major issue [START_REF] Kwakye | Merging Multidimensional Data Models: A Practical Approach for Schema and Data Instances[END_REF]. DW merging constitutes a promising solution to provide more opportunities of analysing the consistent data coming from different sources.

A DW organizes data according to analysis subjects (facts) associated with analysis axes (dimensions). Each fact is composed of indicators (measures). Finally, each dimension may contain one or several analysis viewpoints (hierarchies). Hierarchies allow users to aggregate the attributes of a dimension at different levels to facilitate analysis. Hierarchies are identified by attributes called parameters.

Merging two DWs is a complex task that implies solving several problems. The first issue is identifying the common basic components (attributes, measures) and defining semantic relationships between these components. The second issue is merging schemata that bear common components. Merging two multidimensional DWs is difficult because two dimensions can (1) be completely identical in terms of schema, but not necessarily in terms of instances;

(2) have common hierarchies or have sub-parts of hierarchies in common without necessarily sharing common instances. Likewise, two schemata can deal with the same fact or different facts, and even if they deal with the same facts, they may or may not have measures in common, without necessarily sharing common data.

Moreover, a merged DW should respect the constraints of the input multidimensional elements, especially the hierarchical relationships between attributes. When we merge two dimensions having matched attributes of two DWs, the final DW should preserve all the partial orders of the input hierarchies (i.e., the binary aggregation relationships between parameters) of the two dimensions. It is also necessary to integrate all the instances of the input DWs, which may cause the generation of empty values in the merged DW. Thus, the merging process should also include a proper analysis of empty values.

In sum, the DW merging process concerns matching and merging tasks. The matching task consists in generating correspondences between similar schema elements (dimension attributes and fact measures) [START_REF] Bernstein | Generic Schema Matching, Ten Years Later[END_REF] to link two DWs. The merging task is more complex and must be carried out at two levels: the schema level and the instance level. Schema merging is the process of integrating several schemata into a common, unified schema [START_REF] Quix | Generic Schema Merging[END_REF]. Thus, DW schema merging aims at generating a merged unified multidimensional schema. The instance level merging deals with the integration and management of the instances. In the remainder of this paper, the term "matching" designates schema matching without considering instances, while the term "merging" refers to the complete merging of schemata and corresponding instances.

To address these issues, we define an automatic approach to merge two DWs modeled as star schemata (i.e., schemata containing only one fact table), which [START_REF] Ariyan | Structural Repairs of Multidimensional Databases[END_REF] generates an integrated DW conforming to the multidimensional structures of the input DWs, (2) integrates the input DW instances into the integrated DW and copes with empty values generated during the merging process.

The remainder of this paper is organized as follows. In Section 2, we review the related work about matching and merging DWs. In Section 3, we specify an automatic approach to merge different DWs and provide DW merging algorithms at the schema and instance levels. In Section 4, we experimentally validate our approach. Finally, in Section 5, we conclude this paper and discuss future research.

RELATED WORK

DW merging actually concerns the matching and the merging of multidimensional elements. We classify the existing approaches into four levels: matching multidimensional components, matching multidimensional schemata, merging multidimensional schemata and merging DWs.

A multidimensional component matching approach for matching aggregation levels is based on the fact that the cardinality ratio of two aggregation levels from the same hierarchy is nearly always the same, no matter the dimension they belong to [START_REF] Bergamaschi | Semi-automatic Discovery of Mappings Between Heterogeneous Data Warehouse Dimensions[END_REF]. Thus, by creating and manipulating the cardinality matrix for different dimensions, it is possible to discover the matched attributes.

The matching of multidimensional schemata directs at discovering the matching of every multidimensional components between two multidimensional schemata. A process to automatically match two multidimensional schemata is achieved by evaluating the semantic similarity of multidimensional component names [START_REF] Banek | Automating the Schema Matching Process for Heterogeneous Data Warehouses[END_REF]. Attribute and measure data types are also compared in this way. The selection metric of bipartite graph helps determine the mapping choice and define rules aiming at preserving the partial orders of the hierarchies at mapping time. Another approach matches a set of star schemata generated from both business requirements and data sources [START_REF] Elamin | A Semantic Resource Based Approach for Star Schemas Matching[END_REF]. Semantic similarity helps find the matched facts and dimension names. Yet, the DW designer must intervene to manually identify some elements.

A two-phase approach for automatic multidimensional schema merging is achieved by transforming the multidimensional schema into a UML class diagram [START_REF] Feki | A Two-Phase Approach for Multidimensional Schemes Integration[END_REF]. Then, class names are compared and the number of common attributes relative to the minimal number of attributes of the two classes is computed to decide whether two classes can be merged.

DW merging must operate at both schema and instance levels. Two DW merging approaches are the intersection and union of the matched dimensions. Instance merging is realized by a d-chase procedure [START_REF] Torlone | Two approaches to the integration of heterogeneous data warehouses[END_REF]. The second merging strategy exploits similar dimensions based on the equivalent levels in schema merging [START_REF] Olaru | A Dimension Integration Method for a Heterogeneous Data Warehouse Environment[END_REF]. It also uses the d-chase algorithm for instance merging. However, the two approaches above do not consider the fact table. Another DW merging approach is based on the lexical similarity of schema string names and instances, and by considering schema data types and constraints [START_REF] Kwakye | Merging Multidimensional Data Models: A Practical Approach for Schema and Data Instances[END_REF]. Having the mapping correspondences, the merging algorithm takes the preservation requirements of the multidimensional elements into account, and is formulated to build the final consolidated DW. However, merging details are not precise enough and hierarchies are not considered.

To summarize, none of the existing merging methods can satisfy our DW merging requirements. Some multidimensional components are ignored in these approaches, and the merging details of each specific multidimensional components is not explicit enough, which motivates us to propose a complete DW merging approach.

PRELIMINARIES

We introduce in this section the basic concepts of multidimensional DW design [START_REF] Ravat | Algebraic and Graphic Languages for OLAP Manipulations[END_REF]. The multidimensional DW can be modelled by a star or a constellation schema. In the star schema, there is a single fact connected with different dimensions, while the constellation schema consists of more than one fact which share one or several common dimensions. Definition 3.1. A constellation denoted 𝐶 is defined as (𝑁 𝐶 , 𝐹 𝐶 , 𝐷 𝐶 , 𝑆𝑡𝑎𝑟 𝐶) where 𝑁 𝐶 is a constellation name, 𝐹 𝐶 = {𝐹 𝐶 1 , ..., 𝐹 𝐶 𝑚 } is a set of facts, 𝐷 𝐶 = {𝐷 𝐶 1 , ..., 𝐷 𝐶 𝑛 } is a set of dimensions, 𝑆𝑡𝑎𝑟 𝐶 : 𝐹 𝐶 → 2 𝐷 𝐶 associates each fact to its linked dimensions. A star is a constellation where 𝐹 𝐶 contains a single fact; i.e. 𝑚 = 1.

A dimension models an analysis axis and is composed of attributes (dimension properties). Definition 3.2. A dimension, denoted 𝐷 ∈ 𝐷 𝐶 is defined as (𝑁 𝐷 , 𝐴 𝐷 , 𝐻 𝐷 , 𝐼 𝐷) where 𝑁 𝐷 is a dimension name, 𝐴 𝐷 = {𝑎 𝐷 1 , ..., 𝑎 𝐷 𝑢 } ∪{𝑖𝑑 𝐷 } is a set of attributes, where 𝑖𝑑 𝐷 represents the dimension identifier, which is also the parameter of the lowest level and called the root parameter. 𝑗 . A sub-hierarchy is a continuous sub-part of a hierarchy which we call the parent hierarchy of the sub-hierarchy. This concept will be used in our algorithms, but it is not really meaningful. So a subhierarchy has the same elements than a hierarchy, but its lowest level is not considered as "𝑖𝑑". All parameters of a sub-hierarchy are contained in its parent hierarchy and have the same partial orders than those in the parent hierarchy. "Continuous" means that in the parameter set of the parent hierarchy of a sub-hierarchy, between the lowest and highest level parameters of the sub-hierarchy, there is no parameter which is in the parent hierarchy but not in the sub-hierarchy. Definition 3.4. A sub-hierarchy 𝑆𝐻 of 𝐻 ∈ 𝐻 𝐷 is defined as (𝑁 𝑆𝐻 , 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻) where 𝑁 𝑆𝐻 is a sub-hierarchy name, 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 = < 𝑝 𝑆𝐻 1 , ..., 𝑝 𝑆𝐻 𝑣 > is an ordered set of parameters, called parameters, ∀𝑘 ∈ [1...𝑣], 𝑝 𝐻 𝑘 ∈ 𝑃𝑎𝑟𝑎𝑚 𝐻 . According to the relationship between a sub-hierarchy and its parent hierarchy, we have: (1)

𝐻 𝐷 = {𝐻 𝐷 1 , ..., 𝐻 𝐷 𝑣 } is a set of hierarchies, 𝐼 𝐷 = {𝑖 𝐷 1 , ..., 𝑖
∀𝑝 𝑆𝐻 1 , 𝑝 𝑆𝐻 2 ∈ 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 , 𝑝 𝑆𝐻 1 ⪯ 𝑆𝐻 𝑝 𝑆𝐻 2 ⇒ 𝑝 𝑆𝐻 1 , 𝑝 𝑆𝐻 2 ∈ 𝑃𝑎𝑟𝑎𝑚 𝐻 ∧ 𝑝 𝑆𝐻 1 ⪯ 𝐻 𝑝 𝑆𝐻 2 , (2) ∀𝑝 𝐻 1 , 𝑝 𝐻 2 , 𝑝 𝐻 3 ∈ 𝑃𝑎𝑟𝑎𝑚 𝐻 , 𝑝 𝐻 1 ⪯ 𝐻 𝑝 𝐻 2 ∧ 𝑝 𝐻 2 ⪯ 𝐻 𝑝 𝐻 3 ∧ 𝑝 𝐻 1 , 𝑝 𝐻 3 ∈ 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 ⇒ 𝑝 𝐻 2 ∈ 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 .
A fact reflects information that has to be analysed according to dimensions and is modelled through one or several indicators called measures. 𝐼𝑆𝑡𝑎𝑟 𝐹 associates fact instances to their linked dimension instances.

We complete these definitions by a function 𝑒𝑥𝑡𝑒𝑛𝑑 (𝐻 1 , 𝐻 2) allowing to extend the parameters of the first (sub)hierarchy 𝐻 1 by the other one (𝐻 2).

AN AUTOMATIC APPROACH FOR DW MERGING

Like illustrated in Figure 1, merging two DWs implies matching steps and steps dedicated to the merging of dimensions and facts. The matching of parameters and measures are based on syntactic and semantic similarities [10][6] for the attribute or measure names. Since the matching is intensively studied in the literature, we focus in this paper only on the merging steps of our process (green rectangle in Figure 1). In regard to the merging, we firstly define an algorithm for the merging of hierarchies by decomposing two hierarchies into sub-hierarchy pairs and merging them to get the final hierarchy set. Then, we define an algorithm of dimension merging concerning both instance and schema levels and which completes some empty values. Finally, we define an algorithm of the star merging based on the dimension merging algorithm which merges the dimensions and the facts at the schema and instance levels and corrects the hierarchies after the merging. In this section, we define the schema merging process of two hierarchies coming from two different dimensions. The first challenge is that we should preserve the partial orders of the parameters. The second one is how to decide the partial orders of the parameters coming from different original hierarchies. These challenges are solved in the algorithm proposed below which is achieved by 4 steps: record of the matched parameters, generation of the subhierarchy pairs, merging of the sub-hierarchy pairs and generation of the final hierarchy set.

Algorithm 1 𝑀𝑒𝑟𝑔𝑒𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑒𝑠 (𝐻 1 , 𝐻 2)
Output: A set of merged hierarchies 𝐻 ′ or two sets of merged hierarchies 𝐻 1 ′ and 𝐻 2 ′ 1: 𝑀, 𝑆𝐻 ′ , 𝐻 ′ ← ∅; //𝑀 is an ordered set of the couples of matched parameters with possibly the couple of the last parameters, for the 𝑛th

parameter couple 𝑀 [𝑛 -1], 𝑀 [𝑛 -1] [0] represents the parameter of 𝐻 1 in 𝑀 [𝑛 -1], while 𝑀 [𝑛 -1] [1] represents the one of 𝐻 2 . 2: 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 1 , 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 1 ′ , 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 2 , 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 2 ′ ← ∅; 3: for each 𝑝 𝐻 1 𝑖 ∈ 𝑃𝑎𝑟𝑎𝑚 𝐻 1 do 4: for each 𝑝 𝐻 2 𝑗 ∈ 𝑃𝑎𝑟𝑎𝑚 𝐻 1 do 5: if 𝑝 𝐻 1 𝑖 ≃ 𝑝 𝐻 2 𝑗 then 6: 𝑀 ← 𝑀+ < 𝑝 𝐻 1 𝑖 , 𝑝 𝐻 2 𝑗 >; 7: end if 8:
end for 9: end for 10: if 𝑀 = ∅ then 11:

𝐻 1 ′ ← {𝐻 1 }; 𝐻 2 ′ ← {𝐻 2 }; 12: return 𝐻 1 ′ , 𝐻 2 ′ 13: else 14: 𝑚 𝑙 ←< 𝑃𝑎𝑟𝑎𝑚 𝐻 1 [|𝑃𝑎𝑟𝑎𝑚 𝐻 1 | -1], 𝑃𝑎𝑟𝑎𝑚 𝐻 2 [|𝑃𝑎𝑟𝑎𝑚 𝐻 2 | -1] >; //
for 𝑖 = 0 to |𝑀 | -2 do 19: 𝑝 𝑆𝐻 1 1 ← 𝑀 [𝑖] [0]; //first parameter of 𝑆𝐻 1 20: 𝑝 𝑆𝐻 1 𝑣 1 ← 𝑀 [𝑖 + 1] [0]; //last parameter of 𝑆𝐻 1 21: 𝑝 𝑆𝐻 2 1 ← 𝑀 [𝑖] [1]; //first parameter of 𝑆𝐻 2 22: 𝑝 𝑆𝐻 2 𝑣 2 ← 𝑀 [𝑖 + 1] [1]; //last parameter of 𝑆𝐻 2 23: if 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 1 ⊆ 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 2 then 24: 𝑆𝐻 ′ ← {𝑆𝐻 2 }; 25: else if 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 2 ⊆ 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 1 then 26: 𝑆𝐻 ′ ← {𝑆𝐻 1 }; 27: else if 𝐹 𝐷 𝑆𝐻 1 _𝑆𝐻 2 ≠ ∅ then 28: for each 𝑃𝑎𝑟𝑎𝑚 ′ ∈ 𝑀𝑒𝑟𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝐹 𝐷 𝑆𝐻 1 _𝑆𝐻 2) do 29: 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻𝑎 ← 𝑃𝑎𝑟𝑎𝑚 ′ ; 𝑆𝐻 ′ ← 𝑆𝐻 ′ +
𝑆𝐻 ′ ← {𝑆𝐻 1 , 𝑆𝐻 2 }; 33: end if 34: 𝐻 ′ ← {𝐻 ′ 𝑎 .𝑒𝑥𝑡𝑒𝑛𝑑 (𝑆𝐻 ′ 𝑏) | (𝐻 ′ 𝑎 ∈ 𝐻 ′) ∧ (𝑆𝐻 ′ 𝑏 ∈ 𝑆𝐻 ′) }; 35:
end for 36: end if

37: if 𝑖𝑑 𝐷 1 ≃ 𝑖𝑑 𝐷 2 then 38: 𝐻 ′ ← 𝐻 ′ ∪ {𝐻 1 , 𝐻 2 }; 39: return 𝐻 ′ 40: else 41: 𝑝 𝑆𝐻 1 ′ 1 ← 𝑝 𝐻 1 1 ; //first parameter of 𝑆𝐻 1 ′ 42: 𝑝 𝑆𝐻 1 ′ 𝑣 ′ 1 ← 𝑀 [0] [0]; //last parameter of 𝑆𝐻 1 ′ 43: 𝑝 𝑆𝐻 2 ′ 1 ← 𝑝 𝐻 2 1 ; //first parameter of 𝑆𝐻 2 ′ 44: 𝑝 𝑆𝐻 2 ′ 𝑣 ′ 2 ← 𝑀 [0] [1]; //last parameter of 𝑆𝐻 2 ′ 45: for each 𝐻 ′ 𝑐 ∈ 𝐻 ′ do 46: 𝐻 1 ′ ← 𝑆𝐻 1 ′ .𝑒𝑥𝑡𝑒𝑛𝑑 (𝐻 ′ 𝑐); 𝐻 2 ′ ← 𝑆𝐻 2 ′ .𝑒𝑥𝑡𝑒𝑛𝑑 (𝐻 ′ 𝑐); 47:
end for 48:

𝐻 1 ′ ← 𝐻 1 ′ ∪ {𝐻 1 }; 𝐻 1 ′ ← 𝐻 2 ′ ∪ {𝐻 2 }; 49: return 𝐻 1 ′ , 𝐻 2 ′ 50: end if 4.1.
1 Record of the matched parameters. The first step of the algorithm consists in matching the parameters of the two hierarchies and record the matched parameter pairs(𝐿 1 -𝐿 9). If there is no matched parameter between the two hierarchies, the merging process stops (𝐿 11 -𝐿 12). 4.1.2 Generation of the sub-hierarchy pairs. Then the algorithm generates pairs containing 2 sub-hierarchies (𝑆𝐻 1 and 𝑆𝐻 2) of the original hierarchies whose lowest and highest level parameters are adjacent in the list of matched parameter pairs that we created in the previous step (𝐿 18 -𝐿 22). To make sure that the last parameters of the two hierarchies are included in the sub-hierarchies, we also add the pair of the last parameters into the matched parameter pair (𝐿 14 -𝐿 17).

Example 4.1. In Figure 2, for (a), we have 𝐻 1.𝐶𝑜𝑑𝑒 ≃ 𝐻 2.𝐶𝑜𝑑𝑒, 𝐻 1.𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 ≃ 𝐻 2.𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝐻 1.𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 ≃ 𝐻 2.𝐶𝑜𝑛𝑡𝑖-𝑛𝑒𝑛𝑡. So for the first sub-hierarchy pair, the first parameter of 𝑆𝐻 1 and 𝑆𝐻 2 is 𝐶𝑜𝑑𝑒 and their last parameter is 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, so we have:

𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 1 =< 𝐶𝑜𝑑𝑒, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 >, 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 2 =< 𝐶𝑜𝑑𝑒, 𝐶𝑖𝑡𝑦, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 >.
In the second sub-hierarchy pair, we get the subhierarchy of 𝐻 1 from 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 to 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 : 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 1 =< 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛, 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 >, and the sub-hierarchy of 𝐻 2 from 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 to 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 : 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 2 =< 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝐶𝑜𝑢𝑛-𝑡𝑟𝑦, 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 >. If the last parameters of the two original hierarchies do not match, like 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 of 𝐻 1 and 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 of 𝐻 3 in (b), < 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡, 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 > is added into the matched parameter pair 𝑀 of the algorithm so that the last sub-hierarchies of 𝐻 1 and 𝐻 3 are 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 1 =< 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛, 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 > and 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 3 =< 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 >.

Merging of the sub-hierarchies.

We then merge each subhierarchy pair to get a set of merged sub-hierarchies (𝑆𝐻 ′) and The matched parameters will be merged into one parameter, so it's the unmatched parameters that we should deal with. We have 2 cases in terms of the unmatched parameters.

If one of the sub-hierarchies has no unmatched parameter, we obtain a sub-hierarchy set containing one sub-hierarchy whose parameter set is the same as the other sub-hierarchy (𝐿 23 -𝐿 26).

Example 4.2. For the first parameter pair 𝑆𝐻 1 =< 𝐶𝑜𝑑𝑒, 𝐷𝑒𝑝𝑎𝑟𝑡-𝑚𝑒𝑛𝑡 > and 𝑆𝐻 2 =< 𝐶𝑜𝑑𝑒, 𝐶𝑖𝑡𝑦, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 > of 𝐻 1 and 𝐻 2 in Figure 4. We see that 𝑆𝐻 1 does not have any unmatched parameter, so the obtained sub-hierarchy set contains one sub-hierarchy whose parameter set is the same as 𝑆𝐻 2 which is 𝑃𝑎𝑟𝑎𝑚 𝑆𝐻 ′ =<< 𝐶𝑜𝑑𝑒, 𝐶𝑖𝑡𝑦, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 >>.

The second case is that both two sub-hierarchies have unmatched parameters (𝐿 27 -𝐿 30). We then see if these unmatched parameters can be merged into one or several hierarchies and discover their partial orders. Our solution is based on the functional dependencies (FDs) of these parameters. To be able to detect the FDs of the parameters of the two sub-hierarchies, we should make sure that there are intersections between the instances of these two sub-hierarchies which means that they should have same values on the root parameter of the sub-hierarchies. We keep only the FDs which have a single parameter in both hands and which can not be inferred by transitivity. These FDs are represented in the form of ordered set (𝐹 𝐷 𝑆𝐻 1 _𝑆𝐻 2) are then treated by algorithm 2 𝑀𝑒𝑟𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 to get the parameter sets of the merged sub-hierarchies. If it's not possible to discover the FDs, the two sub-hierarchies are impossible to be merged (𝐿 31 -𝐿 32).

Algorithm 2 𝑀𝑒𝑟𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 constructs recursively the parameter sets from the FDs in the form of ordered sets. In each recursion loop, for each one of these sets, we search for the other ones whose non-last (or non-first) elements have the same values and order as its non-first (or non-last) elements and then merge them (𝐿 6 -𝐿 21). The recursion is finished until there are no more two sets being able to be merged (𝐿 22 -𝐿 31).

Example 4.3. If we have 𝐹 𝐷 =<< 𝐴, 𝐵 >, < 𝐵, 𝐶 >, < 𝐵, 𝐹 > , < 𝐶, 𝐸 >, < 𝐷, 𝐵 >>. Like illustrated in Figure 3, in the first recursion, by merging the ordered set, we get 𝑃𝑎𝑟𝑎𝑚 =<< 𝐴, 𝐵, 𝐶 > , < 𝐴, 𝐵, 𝐹 >, < 𝐵, 𝐶, 𝐸 >, < 𝐷, 𝐵, 𝐶 >, < 𝐷, 𝐵, 𝐹 >>, all the ordered sets in 𝐹 𝐷 are merged, so there are only merged ordered set in 𝑃𝑎𝑟𝑎𝑚. 𝑃𝑎𝑟𝑎𝑚 is then inputted to the second recursion, we then get the next 𝑃𝑎𝑟𝑎𝑚 =<< 𝐴, 𝐵, 𝐶, 𝐸 >, < 𝐷, 𝐵, 𝐶, 𝐸 >> after the merging of the ordered sets, since < 𝐴, 𝐵, 𝐹 > and < 𝐷, 𝐵, 𝐹 > are not merged, they are also added into 𝑃𝑎𝑟𝑎𝑚, and we get 𝑃𝑎𝑟𝑎𝑚 =<< 𝐴, 𝐵, 𝐶, 𝐸 >, < 𝐷, 𝐵, 𝐶, 𝐸 >, < 𝐴, 𝐵, 𝐹 >, < 𝐷, 𝐵, 𝐹 >>. In the final recursion, it's no more possible to merge any two ordered sets, so the parameter set of the final result of the hierarchy set is << 𝐴, 𝐵, 𝐶, 𝐸 >, < 𝐷, 𝐵, 𝐶, 𝐸 >, < 𝐴, 𝐵, 𝐹 >, < 𝐷, 𝐵, 𝐹 >>. for 𝑗 ← 𝑖 + 1 to 𝑙 do 4.1.4 Generation of the final hierarchy set. 𝐿 37 -𝐿 49 concerns the generation of the final hierarchy set. The two original hierarchies may have different instances, so there may be empty values in the instances of the merged hierarchies. Some empty values can be completed, which is introduced in the next section of dimension merging. But not all empty values can be completed. The empty values generate the incomplete hierarchies and make the analysis difficult. Inspired by the concept of the structural repair [START_REF] Ariyan | Structural Repairs of Multidimensional Databases[END_REF], we also add the two original hierarchies into the final hierarchy set. Then for a parameter which appears in different hierarchies, it can be divided into different parameters in different hierarchies of the hierarchy set so that each hierarchy is complete. Thus, for the multidimensional schema that we get, we provide an analysis form like shown in Figure 4. In the analysis form, one parameter can be marked with different numbers if it is in different hierarchies.

For the generation of the final hierarchy set, we discuss 2 cases where the 2 hierarchies have the matched root parameters which means their dimensions are the same analysis axis and the opposite case which will lead to 2 kinds of output results (one or two sets of merged hierarchies).

If the root parameters of the two original hierarchies match, we simply add the two original hierarchies into the merged hierarchy set obtained in the previous step to get one final merged hierarchy set. (𝐿 37 -𝐿 39).

Example 4.4. For the hierarchies 𝐻 1 and 𝐻 2 in Figure 4, we combine the merged hierarchy obtained in 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 4.4 with the result gained in 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 4.2 to get the merged hierarchy 𝐻 𝑚 : < 𝐶𝑜𝑑𝑒, 𝐶𝑖𝑡𝑦, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛, 𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 >. We add 𝐻 𝑚 into the hierarchy set 𝐻 ′ and then also add the original hierarchies 𝐻 1 and 𝐻 2 . Thus 𝐻 ′ is the final merged hierarchy set. If the root parameters of the two original hierarchies do not match, we will get two merged hierarchy sets instead of one. For each original hierarchy, the final merged hierarchy set will be the extension of the sub-hierarchy containing all the parameters which are not included in any one of the sub-hierarchies created before (𝑆𝐻 1 ′ and 𝑆𝐻 2 ′) with the merged hierarchy set that we get plus this original hierarchy itself (𝐿 41 -𝐿 49).

Example 4.5. In Figure 5, between 𝐻 1 and 𝐻 3 , we have 𝐻 1 .𝐷𝑒𝑝𝑎𝑟𝑡-𝑚𝑒𝑛𝑡 ≃ 𝐻 3 .𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 and 𝐻 1 .𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 ≃ 𝐻 3 .𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡. We can then get one sub-hierarchy pair in which there are 2 subhierarchies containing parameter sets < 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛, 𝐶𝑜𝑛-𝑡𝑖𝑛𝑒𝑛𝑡 > and < 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 >. By merging the sub-hierarchy pairs, we get the merged hierarchy whose parameter set is < 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛, 𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 >. For 𝐻 1 , the remaining part < 𝐶𝑜𝑑𝑒 > is associated to it to get the merged hierarchy 𝐻 1 13 . We then get the merged hierarchy set of 𝐻 1 containing 𝐻 1 and 𝐻 1 13 . We do the same thing for 𝐻 3 and get the merged hierarchy set containing 𝐻 3 and 𝐻 2 13 .

Dimension merging

This section concerns the merging of two dimensions having matched attributes which is realized by algorithm 3 𝑀𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠. We consider both the schema and instance levels for the merging of dimensions. The schema merging is based on the merging of hierarchies. Concerning the instances, we have 2 tasks: merging the instances and completing the empty values.

Algorithm 3 𝑀𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝐷 1 , 𝐷 2)

Output: One merged dimension 𝐷 ′ or two merged dimensions 𝐷 1 ′ and 𝐷 2 ′

1: if 𝑖𝑑 𝐷 1 ≃ 𝑖𝑑 𝐷 2 then 2:
𝐻 𝐷 ′ ← ∅;

3:

for each 𝐻

𝐷 1 𝑖 ∈ 𝐻 𝐷 1 do 4:
for each 𝐻

𝐷 2 𝑗
∈ 𝐻 𝐷 2 do 5: end for 8:

𝐻 𝐷 ′ ← 𝐻 𝐷 ′ ∪ 𝑀𝑒𝑟𝑔𝑒𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑒𝑠 (𝐻 𝐷 1 𝑖 , 𝐻
𝐴 𝐷 ′ ← 𝐴 𝐷 1 ∪ 𝐴 𝐷 2 ; 𝐻 𝑚 ← 𝐻 𝐷 ′ \ (𝐻 𝐷 1 ∪ 𝐻 𝐷 2); 9:
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡 𝑦 (𝐷 ′ , 𝐷 ′ , 𝐻 𝑚);

10:

return 𝐷 ′ 11: else 12:

𝐻 𝐷 1 ′ , 𝐻 𝐷 2 ′ , 𝐴 𝐷 1 ′ , 𝐴 𝐷 2 ′ ← ∅; 13:
for each 𝐻

𝐷 1 𝑖 ∈ 𝐻 𝐷 1 do 14:
for each 𝐻

𝐷 2 𝑗 ∈ 𝐻 𝐷 2 do 15: 𝐻 1 ′ , 𝐻 2 ′ ← 𝑀𝑒𝑟𝑔𝑒𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑒𝑠(𝐻 𝐷 1 𝑖 , 𝐻 𝐷 2 𝑗); 16: 𝐻 𝐷 1 ′ ← 𝐻 𝐷 1 ′ ∪ 𝐻 1 ′ ; 𝐻 𝐷 2 ′ ← 𝐻 𝐷 2 ′ ∪ 𝐻 2 ′ ; 17:
end for 18:

end for 19: return 𝐷 1 ′ , 𝐷 2 ′ 29: end if 4.2.1 Schema merging. If the root parameters of the two dimensions match, the algorithm generates a merged dimension (𝐿 1 -𝐿 8). The hierarchy set of the merged dimension is the union of the hierarchy sets generated by merging every 2 hierarchies of the original dimensions (𝐿 3 -𝐿 7). We also get a hierarchy set containing only the merged hierarchies but no original hierarchies (𝐻 𝑚) which is to be used for the complement of the empty values (𝐿 8). The attribute set of the merged dimension is the union of the attribute sets of the original dimensions (𝐿 8).

for each 𝐻 𝐷 1 ′ 𝑢 ∈ 𝐻 𝐷 1 ′ do 20: 𝐴 𝐷 1 ′ ← 𝐴 𝐷 1 ′ ∪ 𝑃𝑎𝑟𝑎𝑚 𝐻 𝐷
Example 4.6. Given 2 original dimensions 𝐷 1 and 𝐷 2 in Figure 8 and their instances in Figure 6, we can get the merged dimension schema 𝐷 ′ in Figure 8. In 𝐷 ′ , 𝐻 1 and 𝐻 2 are the original hierarchies of 𝐷 1 , 𝐻 3 and 𝐻 4 are those of 𝐷 2 , 𝐻 13 is a merged hierarchy of 𝐻 1 and 𝐻 3 , and 𝐻 24 is a merged hierarchy of 𝐻 2 and 𝐻 4 . We can thus get 𝐻 𝐷 ′ = {𝐻 1 , 𝐻 2 , 𝐻 3 , 𝐻 4 , 𝐻 13 , 𝐻 24 }, 𝐻 𝑚 = {𝐻 13 , 𝐻 24 }, 𝐴 𝐷 ′ = {𝐶𝑜𝑑𝑒, 𝐶𝑖𝑡𝑦, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛, 𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡, 𝑃𝑟𝑜 𝑓 𝑒𝑠𝑠𝑖𝑜𝑛, 𝑆𝑢𝑏𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦} When the root parameters of the two dimensions don't match, we will get a merged dimension for each original dimension, which is realized by 𝐿 13 -𝐿 25 . For each original dimension, the hierarchy set of its corresponding merged dimension is the union of all hierarchy sets generated by merging every 2 hierarchies of the original dimensions (𝐿 13 -𝐿 18), the attribute set is the union of the attributes of each hierarchy in the merged dimension (𝐿 19 -𝐿 24). Similar to the first case, we get a hierarchy set containing only the merged hierarchies for each original dimension (𝐻 𝑚 1 and 𝐻 𝑚 2) (𝐿 26 -𝐿 27).

Example 4.7. Given 2 original dimensions 𝐷 1 and 𝐷 2 in Figure 5 and their instances in Figure 7, after the execution of algorithm 3 𝑀𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠, we can get the merged dimension schema 𝐷 1 ′ and 𝐷 2 ′ in Figure 5. In 𝐷 1 ′ , 𝐻 1 and 𝐻 2 are the original hierarchies of 𝐷 1 , 𝐻 1 13 is the merged hierarchy of 𝐻 1 and 𝐻 3 . In 𝐷 2 ′ , 𝐻 3 is the original hierarchy of 𝐷 2 , 𝐻 2 13 is the merged hierarchy of 𝐻 1 and 𝐻 3 . So for 𝐷 1 , we have

𝐻 𝐷 1 ′ = {𝐻 1 , 𝐻 2 , 𝐻 1 13 }, 𝐻 𝑚1 = {𝐻 1 13 }, 𝐴 𝐷 1 ′ = {𝐶𝑜𝑑𝑒, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛, 𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡, 𝑃𝑟𝑜 𝑓 𝑒𝑠𝑠𝑖𝑜𝑛, 𝐶𝑎𝑡𝑒- 𝑔𝑜𝑟𝑦}, while for 𝐷 2 , we get 𝐻 𝐷 2 ′ = {𝐻 3 , 𝐻 2 13 }, 𝐻 𝑚2 = {𝐻 2 13 }, 𝐴 𝐷 2 ′
= {𝐶𝑖𝑡𝑦, 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝑅𝑒𝑔𝑖𝑜𝑛, 𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝐶𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡 } 4.2.2 Instance merging and complement. When the root parameters of the two dimensions match, the instance of the merged dimension is obtained by the union of the two original dimension instances which means that we insert the data of the two original dimension tables into the merged dimension table and merge the lines which have the same root parameter instance (𝐿 9).

Example 4.8. The instance merging result of Example 4.2.1 is presented in Figure 6. All the data in the original dimension tables 𝐷 1 , 𝐷 2 are integrated into the merged dimension table 𝐷 ′ . The original tables of the instances are marked on the left of the merged table 𝐷 ′ with different colors. There are instances coming from both 𝐷 1 and 𝐷 2 , which means that they have the same root parameter in 𝐷 1 and 𝐷 2 , and are therefore merged together.

The attribute set of the merged dimension contains all the attributes of two original dimensions, while the original dimensions may contain their unique attributes. So there may be empty values in the merged dimension table on the instances coming from only one of the original dimension tables and we should complete the empty values on the basis of the existing data (𝐿 9).

The complement of the empty values is realized by Algorithm 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡𝑦 where the input 𝐷 𝐼 𝑛 ← ∅;

3:

𝐼 𝑛 ← 𝐼 𝑛 ∪ {𝑖 𝐷 1 ′ 𝑘 ∈ 𝐼 𝐷 1 ′ | (𝑖 𝐷
𝑃 𝑟 ← {𝑝 𝐻 𝑚 𝑎 𝑣 ∈ 𝑃𝑎𝑟𝑎𝑚 𝐻 𝑚 𝑎 | (𝑖 𝑛 𝑏 .𝑝 𝐻 𝑚 𝑎 𝑣 is not null) ∧(∀𝑝 𝑛 𝑠 ∈ 𝑃 𝑛 , 𝑝 𝐻 𝑚 𝑎 𝑣 ⪯ 𝐻 𝑝 𝑛 𝑠) }; 7: if ∃𝑖 𝐷 2 ′ 𝑢 ∈ 𝐼 𝐷 2 ′ ∃𝑝 𝑟 𝑤 ∈ 𝑃 𝑟 , (𝑖 𝐷 2 ′ 𝑢 .𝑝 𝑟 𝑤 = 𝑖 𝑛 𝑏 .𝑝 𝑟 𝑤) ∧ (∀𝑝 𝑛 𝑞 ∈ 𝑃 𝑛 , 𝑖 𝐷 2 ′ 𝑢 .𝑝 𝑛 𝑞 is not null) then 8:
for each 𝑝 𝑛 𝑐 ∈ 𝑃 𝑛 do end for 13: end for For an empty value, we search for an instance which has the same value as the instance of this empty value on one of the parameters rolling up to the parameter of the empty value and whose value of the parameter of the empty value is not empty, we can then fill the empty by this non-empty value. The complement of the empty values is also possibly a change of hierarchies. Nevertheless, after completing the empty values of an instance, there may be some completed parameters which are not included in the hierarchies of the instance, so the complement of such values does not make sense in this case. The possible change of the hierarchy is from the hierarchies containing less parameters to those containing more parameters. We know that the merged hierarchies contain more parameters than their corresponding original hierarchies. Hence, before the complement of an instance, we will first look at the merged hierarchies to decide which parameter values can be completed.

In algorithm 4 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡𝑦 which aims to complete the empty values, for each hierarchy in the merged hierarchy set we see, if (a) there exists instances in the merged dimension table which contains empty values on the parameters of this hierarchy (𝐿 3) and (b) where the value of the second lowest parameter is not empty (𝐿 3). The condition a is basic because we need empty values to be completed. Since we will complete the empty values by the other lines of the merged dimension table, we can only complete the empty values based on the non-id parameters since the id is unique, so if the second lowest parameter is empty, it can never be completed so that the hierarchy can never be completed. That's why we have the condition b. For each one of the instances satisfying these conditions (𝐼 𝑛), we search for the parameters (𝑃 𝑛) having empty values (𝐿 5) and to make sure that each one of them can be completed, we search also for the parameters (𝑃 𝑟) which roll up to the lowest of them and to which we refer to complete the empty values (𝐿 6). We can then complete the empty values like discussed in the previous paragraph (𝐿 7 -𝐿 11).

Example 4.9. After the merging in 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 4.9, we get the empty values of 𝐷 ′ which are in red in Figure 6. The merged hierarchies are 𝐻 13 and 𝐻 24 as illustrated in Figure 5. For 𝐻 13 , the instances of code 𝐶3 and 𝐶5 have empty values on the second root parameter 𝐶𝑖𝑡𝑦, which do not satisfy the condition b. As we can see, for the instance of 𝐶3, although the value of 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 can be retrieved through the value of 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 which is the same as the instance of 𝐶1, the value of 𝐶𝑖𝑡𝑦 can not be completed and thus we should give up this complement. For the instance of 𝐶9, the value of 𝑅𝑒𝑔𝑖𝑜𝑛 is completed by 𝐶7 which has the same value of 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 and whose value of 𝑅𝑒𝑔𝑖𝑜𝑛 is not empty. When it's the turn of 𝐻 24 , values of 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 of 𝐶8 and 𝐶9 are completed in the same way.

When the root parameters of the two dimensions don't match, the instance merging and complement are done by 𝐿 26 -𝐿 27 . The values of the attributes of one of the dimension tables coming from the other dimension table are empty, so there is only instance complement but no merging. We also call algorithm 4 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡𝑦 to complete the instances for each one of the merged dimension tables.

Example 4.10. The instance merging and complement of the example for 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 4.8 is demonstrated in Figure 7. For 𝐷 1 ′ , 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 comes from the dimension table 𝐷 2 , so the values of 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 are completed by the values in 𝐷 2 ′ . The same operation is also done for 𝑅𝑒𝑔𝑖𝑜𝑛 of 𝐷 2 ′ .

Star merging

In this section, we discuss the merging of two stars. Having two stars, we can get a star schema or a constellation schema because the fact table of each schema may be merged into one schema or not. The star merging is related to the dimension merging and fact merging. Two stars are possible to be merged only if there are dimensions having matched root parameters between them.

Algorithm 5 𝑀𝑒𝑟𝑔𝑒𝐴𝑙𝑙𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑆 1 , 𝑆 2)

Output:A set of merged dimensions 𝐷 𝑆 ′ 1: for each 𝐷 𝑆 1 𝑖 ∈ 𝐷 𝑆 1 do 2:
for each 𝐷

𝑆 2 𝑗 ∈ 𝐷 𝑆 2 do 3: if 𝑖𝑑 𝐷 𝑆 1 𝑖 𝑖𝑑 𝐷 𝑆 2 𝑗 then 4: 𝐷 𝑆 1 𝑖 , 𝐷 𝑆 2 𝑗 ← 𝑀𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝐷 𝑆 1 𝑖 , 𝐷 𝑆 2
𝑗); end for 22: end for 23: return 𝐷 𝑆 ′ For the dimensions of the two stars, we have two cases: 1. The two stars have the same number of dimensions and for each dimension of one schema, there is a dimension having matched root parameters in the other schema. 2. There exists at least one dimension between the two stars which does not have a dimension having a matched root parameter in the other.

The dimension merging of two stars is common for the two cases which is done by algorithm 5 𝑀𝑒𝑟𝑔𝑒𝐴𝑙𝑙𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛. We first merge every two dimensions of the two stars which have unmatched root parameters because the merging of such dimensions is able to complete the original dimensions with complementary attributes (𝐿 1 -𝐿 7). Then the dimensions having matched root parameters are merged to generate the merged dimensions of the merged multidimensional schema (𝐿 8 -𝐿 15). After the merging and complement of the instances of the dimension tables, there may be some merged hierarchies to which none of the instances belong. In this case, if there will be no more update of the data, such hierarchies should be deleted. There may also be original hierarchies in the merged dimensions such that there is no instance which belongs to them but does not belong to any merged hierarchy containing all the parameters of this original hierarchy. The instances belonging to this kind of hierarchies belong also to other hierarchies which contains more parameters,so they become useless and should also be deleted (𝐿 18 -𝐿 19).

Example 4.11. For the merging of the dimensions of two stars 𝑆 1 and 𝑆 2 in Figure 8. The dimension 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 of 𝑆 1 and the dimension 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 of 𝑆 2 are firstly merged since their root parameters don't match but they have other matched parameters. There are then attributes of dimension 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 of 𝑆 2 added into dimension 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 of 𝑆 1 . The two dimensions 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and the two dimensions 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 have matched root parameters, so they are merged into the final star schema. After the merging and complement of the instance, we verify each hierarchy in the merged dimension tables. If the merging of 𝑆 1 .𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝑆 2 .𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 is as shown in Figure 5 at the schema level and in Figure 6 at the instance level. In their merged dimension table 𝐷 ′ . We can find that all the instances belonging to 𝐻 4 also belong to 𝐻 24 which is a merged hierarchy containing all the parameters of 𝐻 4 , so 𝐻 4 should be deleted.

We then discuss the merging of the other elements in the two cases which is processed by algorithm 6 𝑀𝑒𝑟𝑔𝑒𝑆𝑡𝑎𝑟 : Algorithm 6 𝑀𝑒𝑟𝑔𝑒𝑆𝑡𝑎𝑟 (𝑆 1 , 𝑆 2) Output:A merged multidimensional schema which may be a star schema 𝑆 ′ or a merged constellation schema 𝐶 ′

1: if (|𝐷 𝑆 1 | = |𝐷 𝑆 1 |) ∧ (∀𝐷 𝑆 1 𝑖 ∈ 𝐷 𝑆 1 ∃𝐷 𝑆 2 𝑗 ∈ 𝐷 𝑆 2 , 𝑖𝑑 𝐷 𝑆 1 𝑖 ≃ 𝑖𝑑 𝐷 𝑆 2
𝑗) then 2:

𝐷 𝑆 ′ ← 𝑀𝑒𝑟𝑔𝑒𝐴𝑙𝑙𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑆 1 , 𝑆 2); 3: 𝑀 𝐹 𝑆 ′ ← 𝑀 𝐹 𝑆 1 ∪ 𝑀 𝐹 𝑆 2 ; 𝐼 𝐹 𝑆 ′ ← 𝐼 𝐹 𝑆 1 ∪ 𝐼 𝐹 𝑆 2 ;
4:

𝐼𝑆𝑡𝑎𝑟 𝐹 𝑆 ′ ← 𝐼𝑆𝑡𝑎𝑟 𝐹 𝑆 1 ∪ 𝐼𝑆𝑡𝑎𝑟 𝐹 𝑆 2 ; 5:
return 𝑆 ′ 6: else 7:

𝐷 𝑆 ′ ← 𝑀𝑒𝑟𝑔𝑒𝐴𝑙𝑙𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝑆 1 , 𝑆 2); 𝐹 𝐶 ′ ← {𝐹 𝑆 ′ 1 , 𝐹 𝑆 ′ 2 }; 8:
return 𝐶 ′ 9: end if For the first case, we merge the two fact tables into one fact table and get a star schema. The measure set of the merged star schema is the union of the 2 original measures (𝐿 3). The fact instances are the union of the measure instances of the two input star schemata (𝐿 4). The function associating fact instances to their linked dimension instances of the merged schema is also the union of the functions of the original schemata (𝐿 4). Example 4.12. For the two original star schemata in Figure 8, the dimension merging is discussed above so we mainly focus on the merging of fact table instances here. The dimensions 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 of 𝑆 1 have respectively matched root parameters in the dimensions 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 of 𝑆 2 . They also have the same number of dimensions. Therefore we get a merged star schema 𝑆 ′ , the original fact tables are merged by merging the measures of 𝑆 1 and 𝑆 2 to get the fact table of 𝑆 ′ . At the instance level, in Figure 9, we have the instances of the fact tables, for the instances of 𝐹 𝑆 1 and 𝐹 𝑆 2 , the framed parts are the instances having the common linked dimension instances, so they are merged into the merged fact table 𝐹 𝑆 ′ , the other instances are also integrated in 𝐹 𝑆 ′ but with empty values in the merged instances, but they will not have big impacts on the analysis, so they will not be treated particularly.

EXPERIMENTAL ASSESSMENTS

To validate the effectiveness of our approach, we applied our algorithms on benchmark data. Unfortunately, we did not find a suitable benchmark for our problem. So, we adapted the datasets of the TPC-H benchmark to generate different DWs. Originally, the TPC-H benchmark serves for benchmarking decision support systems by examining the execution of queries on large volumes of data. Because of space limit, we put the test results in github 1 .

1 https://github.com/Implementation111/Multidimensional-DW-merging

Technical environment and Datasets

The algorithms were implemented by Python 3.7 and were executed on a processor of Intel(R) Core(TM) i5-8265U CPU@ 1.60GHz with a 16G RAM. The data are implemented in R-OLAP format through the Oracle 11g DBMS. The TPC-H benchmark provides a pre-defined relational schema 2 with 8 tables and a generator of massive data.

First, we generated 100M of data files, there are respectively 600572, 15000, 25, 150000, 20000, 80000, 5, 1000 tuples in the table of 𝐿𝑖𝑛𝑒𝑖𝑡𝑒𝑚, 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , 𝑁 𝑎𝑡𝑖𝑜𝑛, 𝑂𝑟𝑑𝑒𝑟𝑠, 𝑃𝑎𝑟𝑡, 𝑃𝑎𝑟𝑡𝑠𝑢𝑝𝑝, 𝑅𝑒𝑔𝑖𝑜𝑛 and 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 . Second, to have more deeper hierarchies, we included the data of 𝑁 𝑎𝑡𝑖𝑜𝑛 and 𝑅𝑒𝑔𝑖𝑜𝑛 into 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 , and those of 𝑃𝑎𝑟𝑡𝑠𝑢𝑝𝑝 into 𝑃𝑎𝑟𝑡. Third, we transformed these files to generate two use cases by creating 2 DWs for each case. To make sure that there are both common and different instances in different DWs, for each dimension, instead of selecting all the corresponding data, we selected randomly 3/4 of them. For the fact table, we selected the measures related to these dimension data. Since the methods in the related work do not have exactly the same treated components or objective as the ours, we do not have comparable baseline in our experiments. The objective of this experiment is to merge two star schemata having the same 4 dimensions with the matched lowest level of granularity for each dimension.

Star schema generation

After executing our algorithms, we obtain one star schema as shown in Figure 11 which is consistent with the expectations. The parameters of the hierarchies satisfy the relationships of functional dependency. The run time is 30.70s. The 3 dimensions 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 , 𝑃𝑎𝑟𝑡, 𝐷𝑎𝑡𝑒 of the original DWs are merged. Between the different dimensions 𝑆 1 .𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 and 𝑆 2 .𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , there is a matched attribute 𝑁 𝑎𝑡𝑖𝑜𝑛, so they are also merged such that 𝑆 1 .𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 provides 𝑆 2 .𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 with the attribute 𝑅𝑒𝑔𝑖𝑜𝑛. Then the 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 in the merged DW also has the attribute 𝑅𝑒𝑔𝑖𝑜𝑛. We can also observe that normally, in the merged schema, there should be the original hierarchy 𝑂𝑟𝑑𝑒𝑟𝑑𝑎𝑡𝑒 → 𝑀𝑜𝑛𝑡ℎ → 𝑌𝑒𝑎𝑟 of 𝑆 2 .𝐷𝑎𝑡𝑒 but which is deleted. By looking up in the table, we find that there is no tuple which belongs to this hierarchy but not to 𝑂𝑟𝑑𝑒𝑟𝑑𝑎𝑡𝑒 → 𝑀𝑜𝑛𝑡ℎ → 𝑆𝑒𝑚𝑒𝑠𝑡𝑒𝑟 → 𝑦𝑒𝑎𝑟 , that's why it is removed.

At the instance level, the result is shown in github. Table 1 shows the number of tuples of the original DWs (𝑁 1 , 𝑁 2), of the merged DW (𝑁 ′) and the number of the common tuples (𝑁 ∩) (tuples having the same dimension key in the original DWs). For each dimension or fact table, 𝑁 ′ = 𝑁 1 + 𝑁 2 -𝑁 ∩ , we can thus confirm that there is no addition or loss of data. For each tuple in the original tables, we verify that the all the values are the same with the values in the merged table. We also find that there are some empty values of the attribute 𝑅𝑒𝑔𝑖𝑜𝑛 in the dimension 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 and the attribute 𝑆𝑒𝑚𝑒𝑠𝑡𝑒𝑟 of the dimension 𝑂𝑟𝑑𝑒𝑟𝑑𝑎𝑡𝑒 which are completed. Table 2 shows the number of these attributes in the original DWs (𝑁 1 , 𝑁 2) and in the merged DW (𝑁 ′), we can then get the number of the completed values 𝑁 + for these attributes. They meet the relationship 𝑁 ′ = 𝑁 1 + 𝑁 2 + 𝑁 + .

Constellation schema generation

The objective of this experiment is to merge two star schemata having the same 2 dimensions (𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟) with the same lowest level of granularity for each dimension, as well as 2 different dimensions (𝑆 1 .𝑃𝑎𝑟𝑡 and 𝑆2.𝐷𝑎𝑡𝑒).

Figure 12: Constellation schema generation

At the schema level, the second test generates a constellation schema like shown in Figure 12. The run time is 32.13s. As expected, the 2 dimensions 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 of the original DWs are merged, the other dimension and fact tables are not merged. The dimension 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 gains a new attribute 𝑅𝑒𝑔𝑖𝑜𝑛 by the merging between 𝑆 1 .𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 and 𝑆 2 .𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 . We can see that the hierarchy 𝐶𝑢𝑠𝑡𝑘𝑒𝑦 → 𝑛𝑎𝑡𝑖𝑜𝑛 of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 which should be in the merged schema is deleted because there is no tuple which belongs to this hierarchy but not to 𝐶𝑢𝑠𝑡𝑘𝑒𝑦 → 𝑛𝑎𝑡𝑖𝑜𝑛 → 𝑅𝑒𝑔𝑖𝑜𝑛. The hierarchy 𝑆𝑢𝑝𝑝𝑘𝑒𝑦 → 𝑛𝑎𝑡𝑖𝑜𝑛 of 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 is removed due to the same reason.

At the instance level, the data of experiment can be found in github. They also meet 𝑁 ′ = 𝑁 1 + 𝑁 2 -𝑁 ∩ . There are empty values of the attribute 𝑅𝑒𝑔𝑖𝑜𝑛 in the dimension 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 which are completed which meet 𝑁 ′ = 𝑁 1 + 𝑁 2 + 𝑁 + .

We got the results conforming to our expectations in the tests, we can thus conclude that our algorithms work well for the different cases discussed at both schema and instance levels.

CONCLUSION AND FUTURE WORK

In this paper, we define an automatic approach to merge two different star schema-modeled DWs, by merging multidimensional schema elements including hierarchies, dimensions and facts at the schema and instance levels. We define the corresponding algorithms, which consider different cases. Our algorithms are implemented and illustrated by various examples.

Since we only discuss the merging of DWs modeled as star schemata in this paper, which is only one (albeit common) possible DW design, we plan to extend our approach by adding the merging of DWs modelled as constellation schemata in the future. There may also be so-called weak attributes in DW components. Thus, we will consider them in future work. Our goal is to provide a complete approach that is integrated in our previous work concerning the automatic integration of tabular data in DWs.

Figure 1 :

 1 Figure 1: Overview of the merging process

Figure 2 :

 2 Figure 2: Example of generation of the sub-hierarchy pairs

Figure 3 :

 3 Figure 3: Example of parameter merging based on FDs Algorithm 2 𝑀𝑒𝑟𝑔𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝐹 𝐷) Output: A set of parameter sets 𝑃𝑎𝑟𝑎𝑚 1: 𝑙 ← |𝐹 𝐷 |; 2: for 𝑛 ← 0 to 𝑙 -1 do 3: 𝑓 𝑑𝑚𝑒𝑟𝑔𝑒𝑑 [𝑛] ← 𝐹𝑎𝑙𝑠𝑒; //Boolean indicating whether an element in 𝐹 𝐷 is mergerd 4: end for 5: 𝑒𝑥𝑖𝑠𝑡𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒; //Boolean indicating whether there are elements that are merged in a recursion loop 6: for 𝑖 ← 0 to 𝑙 -1 do7:

8 :

 8 if 𝐹 𝐷 [𝑖] [1 : 𝑙 -1] = 𝐹 𝐷 [𝑗] [0 : 𝑙 -2] //𝐹 𝐷 [𝑎] [𝑏 : 𝑐] represents the ordered set having the values and order from the 𝑏th element to the 𝑐th element of 𝐹 𝐷 [𝑎] then 9: 𝑃𝑎𝑟𝑎𝑚 𝑡 ← 𝐹 𝐷 [𝑖] [1 : 𝑙 -1] ; 10: 𝑃𝑎𝑟𝑎𝑚 𝑡 ← 𝑃𝑎𝑟𝑎𝑚 𝑡 + 𝐹 𝐷 [𝑗] [𝑙 -1]; 11: 𝑃𝑎𝑟𝑎𝑚 ← 𝑃𝑎𝑟𝑎𝑚 + 𝑃𝑎𝑟𝑎𝑚 𝑡 ; 12: 𝑓 𝑑𝑚𝑒𝑟𝑔𝑒𝑑 [𝑖], 𝑓 𝑑𝑚𝑒𝑟𝑔𝑒𝑑 [𝑗], 𝑒𝑥𝑖𝑠𝑡𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝑇 𝑟𝑢𝑒; if 𝐹 𝐷 [𝑖] [0 : 𝑙 -2] = 𝐹 𝐷 [𝑗] [1 : 𝑙 -1] then 15: 𝑃𝑎𝑟𝑎𝑚 𝑡 ← 𝐹 𝐷 [𝑗] [1 : 𝑙 -1] ; 16: 𝑃𝑎𝑟𝑎𝑚 𝑡 ← 𝑃𝑎𝑟𝑎𝑚 𝑡 + 𝐹 𝐷 [𝑖] [𝑙 -1]; 17: 𝑃𝑎𝑟𝑎𝑚 ← 𝑃𝑎𝑟𝑎𝑚 + 𝑃𝑎𝑟𝑎𝑚 𝑡 ; 18: 𝑓 𝑑𝑚𝑒𝑟𝑔𝑒𝑑 [𝑖], 𝑓 𝑑𝑚𝑒𝑟𝑔𝑒𝑑 [𝑗], 𝑒𝑥𝑖𝑠𝑡𝑚𝑒𝑟𝑔𝑒𝑑 ← 𝑇 𝑟𝑢𝑒; for 22: if 𝑒𝑥𝑖𝑠𝑡𝑚𝑒𝑟𝑔𝑒𝑑 = 𝑇 𝑟𝑢𝑒 then 23: for 𝑚 ← 0 to 𝑙 -1 do 24: if 𝑓 𝑑𝑚𝑒𝑟𝑔𝑒𝑑 [𝑚] = 𝐹𝑎𝑙𝑠𝑒 then 25: 𝑃𝑎𝑟𝑎𝑚 ← 𝑃𝑎𝑟𝑎𝑚 + 𝐹 𝐷 [𝑚]; 𝑃𝑎𝑟𝑎𝑚 ← 𝐹 𝐷; 31: end if 32: return 𝑃𝑎𝑟𝑎𝑚 After the merging of each sub-hierarchy pair, we extend the final merged hierarchy set by the new merging result (𝐿 34).

Figure 4 :

 4 Figure 4: Hierarchy merging example

Figure 5 :

 5 Figure 5: Dimension merging example (schema)

Figure 6 :

 6 Figure 6: Dimension merging example (instance)

Figure 7 :

 7 Figure 7: Dimension merging example (instance)

Figure 8 :

 8 Figure 8: Star merging example (schema)

Figure 9 :

 9 Figure 9: Star merging example (instance)

 For the second case, since there are unmatched dimensions, the merged schema should be a constellation schema. The facts of the original schemata have no change at both the schema and instance levels and compose the final constellation. (𝐿 8) Example 4.13. This example is simplified in Figure10due to the space limit. For the original star schemata 𝑆 1 and 𝑆 2 , they have dimensions 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 which have the matched root parameters. They also have their unique dimensions: 𝑇𝑖𝑚𝑒 of 𝑆 1 and 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 of 𝑆 2 . So the merged schema is a constellation schema generated by merging the dimensions 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 and by keeping the other dimensions and fact tables. At the instance level, we just have a new merged dimension table of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , the other dimension and fact tables remain unchanged.

Figure 10 :

 10 Figure 10: Star merging example (schema)

Figure 11 :

 11 Figure 11: Star schema generation

 Definition 3.3. A hierarchy of a dimension 𝐷, denoted 𝐻 ∈ 𝐻 𝐷 is defined as (𝑁 𝐻 , 𝑃𝑎𝑟𝑎𝑚 𝐻) where 𝑁 𝐻 is a hierarchy name, 𝑃𝑎𝑟𝑎𝑚 𝐻 =< 𝑖𝑑 𝐷 , 𝑝 𝐻 2 , ..., 𝑝 𝐻 𝑣 > is an ordered set of dimension attributes, called parameters, which represent useful graduations along the dimensions, ∀𝑘 ∈ [1...𝑣], 𝑝 𝐻 𝑘 ∈ 𝐴 𝐷 . The roll up relationship between two parameters can be denoted by 𝑝 𝐻 1 ⪯ 𝐻 𝑝 𝐻 for the case where 𝑝 𝐻 1 roll up to 𝑝 𝐻 2 in 𝐻 . For 𝑃𝑎𝑟𝑎𝑚 𝐻 , we have 𝑖𝑑 𝐷 ⪯ 𝐻 𝑝 𝐻 1 , 𝑝 𝐻 1 ⪯ 𝐻 𝑝 𝐻 2 , ..., 𝑝 𝐻 𝑣-1 ⪯ 𝐻 𝑝 𝐻 𝑣 . The matching of multidimensional schemata is based on the matching of parameters, the matching relationship between two parameters of two hierarchies 𝑝 𝐻 1 𝑖 and 𝑝 𝐻 2 𝑗 is denoted as 𝑝 𝐻 1 𝑖 ≃ 𝑝 𝐻 2

	𝐷 𝑝 } is a set of dimension instances. The value of the
	instance 𝑖 𝐷 𝑝 for an attribute 𝑎 𝐷 𝑢 is annotated as 𝑖 𝐷 𝑝 .𝑎 𝐷 𝑢 .
	Dimension attributes (also called parameters) are organised ac-
	cording to one or more hierarchies. Hierarchies represent a partic-
	ular vision (perspective) and each parameter represents one data
	granularity according to which measures could be analysed.

𝐹 is a function where D 𝐹 is the cartesian product over sets of dimension instances, which is defined as D 𝐹 = 𝐷 𝑘 ∈𝑆𝑡𝑎𝑟 𝐶 (𝐹) 𝐼 𝐷 𝑘 .

 Definition 3.5. A fact, noted 𝐹 ∈ 𝐹 𝐶 is defined as (𝑁 𝐹 , 𝑀 𝐹 , 𝐼 𝐹 , 𝐼𝑆𝑡𝑎𝑟 𝐹) where 𝑁 𝐹 is a fact name, 𝑀 𝐹 = {𝑚 𝐹

	1 , ..., 𝑚 𝐹 𝑤 } is a set of
	measures. 𝐼 𝐹 = {𝑖 𝐹 1 , ..., 𝑖 𝐹 𝑞 } is a set of fact instances. The value of a
	measure 𝑚 𝐹 𝑤 of the instance 𝑖 𝐹 𝑞 is denoted as 𝑖 𝐹 𝑞 .𝑚 𝐹 𝑤 . 𝐼𝑆𝑡𝑎𝑟 𝐹 : 𝐼 𝐹 →
	D

 pair of the last parameters

	15:	if 𝑚 𝑙 ∉ 𝑀 then
	16:	𝑀 ← 𝑀 + 𝑚 𝑙 ;
	17:	end if
	18:	

 𝑆𝐻 𝑎 ;

	30:	end for
	31:	else
	32:	

 𝐻 𝑚 1 ← 𝐻 𝐷 ′ \ 𝐻 𝐷 1 ; 𝐻 𝑚 2 ← 𝐻 𝐷 ′ \ 𝐻 𝐷 2 ;

				1 ′
				𝑢	;
	21: 22: 23:	end for for each 𝐻 𝐷 2 ′ 𝑣 𝐴 𝐷 2 ′ ← 𝐴 𝐷 2 ′ ∈ 𝐻 𝐷 2 ′ ∪ 𝑃𝑎𝑟𝑎𝑚 𝐻 𝐷 2 ′ do 𝑣	;
	24:	end for		
	25: 26: 27:	𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡 𝑦 (𝐷 1 ′ 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡 𝑦 (𝐷 2 ′	, 𝐷 2 ′ , 𝐷 1 ′	, 𝐻 𝑚 1); , 𝐻 𝑚 2);
	28:			

 1 ′ is the merged dimension table having empty values to be completed, 𝐷 2 ′ is the merged dimension table which provides the completed values and 𝐻 𝑚 is the hierarchy set of 𝐷 1 ′ containing only merged hierarchies but no original hierarchies. In this discussed case, 𝐷 ′ is inputted as both 𝐷 1 ′ and 𝐷 2 ′ in 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝐸𝑚𝑝𝑡𝑦 since we get one merged dimension including all data of two original dimensions (𝐿 11).

 𝐷 𝑆 ′ ← 𝐷 𝑆 ′ ∪ 𝑀𝑒𝑟𝑔𝑒𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 (𝐷

	5:	end if	
	6:	end for	
	7: end for 8: 𝐷 𝑆 ′ ← ∅;	
	9: for each 𝐷 𝑢 ∈ 𝐷 𝑆 1 do 𝑆 1
	10:	for each 𝐷	𝑆 2 𝑣 ∈ 𝐷 𝑆 2 do
	11:	if 𝑖𝑑 𝐷 𝑆 1 𝑢 ≃ 𝑖𝑑 𝐷 𝑆 2 𝑣 then
	12:		𝑆 1 𝑢 , 𝐷	𝑆 2 𝑣);
	13:	end if	
	14:	end for	
	15: end for 16: for each 𝐷 𝑆 ′ 𝑘 ∈ 𝐷 𝑆 ′ 17: for each 𝐻 𝐷 𝑆 ′ 𝑘 𝑚 ∈ 𝐻 𝐷 𝑆 ′ do 𝑘 do 18: if 𝑖 𝐷 𝑆 ′ 𝑘 𝑟 𝐷 𝑆 ′ ∈ 𝐼 𝐷 𝑆 ′ 𝑘 , (𝑖 𝑘 𝑟 is on 𝐻 𝑚) ∨ (𝑖 𝐷 𝑆 ′ 𝑘 𝐻 𝐷 𝑆 ′ 𝑘 𝑚 ∧ (𝐻 𝐷 𝑆 ′ 𝑘 𝑚 ∈ 𝐻 𝐷 𝑆 1 ∨ 𝐻 𝐷 𝑆 ′ 𝑘 𝑚 ∈ 𝐻 𝐷 𝑆 2)) then 𝐷 𝑆 ′ 𝑘 𝑟 is only on 19: 𝐻 𝐷 𝑆 ′ 𝐷 𝑆 ′ 𝑘 ← 𝐻 𝐷 𝑆 ′ 𝑘 -𝐻 𝑘 𝑚 ;
	20:	end if	
	21:		

Table 1 :

 1 Number of tuples

		Customer Supplier Part Orderdate Lineorder
	𝑁 1	11250	750	15000	1804	252689
	𝑁 2	11250	750	15000	1804	252821
	𝑁 ∩	8439	556	11261	1349	105345
	𝑁 ′	14061	944	18739	2259	400165
	Customer.Region Supplier.Region Orderdate.Semester
	𝑁 1	X		X	1804
	𝑁 2	X		750	X	
	𝑁 ′	9713		846	2259
	𝑁 +	9713		96	455

Table 2 :

 2 Number of attributes

ACKNOWLEDGMENTS

The research depicted in this paper is funded by the French National Research Agency (ANR), project ANR-19-CE23-0005 BI4people (Business Intelligence for the people).