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Numerical influence of ReLU'(0) on backpropagation Erratum

This is an erratum for the paper "Numerical influence of ReLU'(0) on backpropagation" [1]. We would like to express our gratitude to Wonyeol Lee, Sanghyuk Chun, and Sejun Park for bringing to our attention an important issue in our implementation. Their feedback helped us identify a simple, yet impactful bug in the code used for our experiments, specifically in the backward implementation of our modified version of the ReLU function. We deeply regret this error and sincerely apologize for any confusion it may have caused. The purpose of this note is to report results of the same experiments as in [1] with a correct implementation. We then replicate the published paper, without any modification.

Impact on results of the paper: Despite this error in our implementation, the main results of our paper regarding the existence and relative size of the bifurcation zone remain valid. After correcting the bug we obtain qualitatively similar results.

Nevertheless, upon further investigation, we have discovered that the magnitude of relative change (in norm) due to the choice made for the value of ReLU'(0) is much smaller than what we initially announced. This is a consistent observation throughout all experiments. As a consequence, the impact of this phenomenon on actual neural network training is much less significant compared to what we initially believed; see details in Section 4. We found that, on benchmark training scenarios, a significant degradation occurs for very large values, around 10000. Therefore, as stated in [1], the value of ReLU'(0) can numerically influence neural network training, contrary to what (infinite precision) theory predicts, but the corresponding values are unrealistic in practical scenarios.

Content of this note:

We provide corrections and discuss the experiments reported in [1] that were impacted by this implementation error. We present revised empirical results obtained after correcting our mistake, that reflect the actual influence of ReLU'(0) on backpropagation. For ease of reading we keep the overall structure of the original paper [1] (numbering of sections and figures) unchanged and only make brief comments focused on qualitative or quantitative change in the experimental results. To keep this note short we refer to [1] for all the experimental details (see also the paper after this note).

Preprint. Figure 1: This is similar to [1, Figure 1], the only difference is the order of magnitude of differences on the left plot.

Nature of the mistake: In our original pytorch implementation, we unintentionally neglected to properly multiply ReLU'(0) by the output gradients as required by the chain rule. For example the following code provides first an incorrect implementation of ReLU'(0) = 0.5 based on the relu function given in pytorch, the one which we used in [1]. A correct implementation is given below and should implement a multiplication, not an absolute assignment, to be in line with the implementation of automatic differentiation in pytorch.

# I n c o r r e c t backward method g r a d i n p u t [ i n p u t == 0 ] = 0 . 5 # C o r r e c t backward method g r a d i n p u t [ i n p u t == 0 ] * = 0 . 5

Introduction

The main message of this section is not impacted by the implementation error and the observation reported in our preliminary experiments remain valid, see Figure 1. The only noticable difference is a modification of the order of magnitude of weight differences which does not affect the main message.

2 On the mathematics of backpropagation for ReLU networks

The bug has no impact on this section which is a theoretical description of the mechanisms at stake. Let us recall that from a theoretical point of view, any choice of ReLU'(0) in R provides a valid nonsmooth optimization oracle, even beyond the subgradient [0, 1].

3 Surprising experiments on a simple feedforward network

This section was mostly centered on the volume of the bifurcation zone. Our empirical observations remain unchanged regarding this respect, see Proportions in Table 1 and Figure 2. On the other hand, the relative difference in L 2 norm reported in Table 1 are reduced by several orders of magnitude compared to results reported in [1]. This is consistent with our observation in Figure 1 and constitutes the main difference with the results reported in [1].

Floating-point precision 16 bits 32 bits 64 bits Proportion of {θ i } M i=1 in S 100% 43% 0% Proportion of impacted mini-batches 0.005% 0.0002% 0% Relative L 2 difference for impacted mini-batches (1st quartile, median, 3rd quartile) (1e-3, 2e-3, 3e-3) (1e-3, 2e-3, 3e-3) (0, 0, 0) 1], up to non-significant variations. The main difference is in the L 2 amplitude of the differences which is reduced by a factor 10 5 . This is consistent with the preliminary experiment in Figure 1 and explains the behavior of training algorithms described in the next section. 3]: the effect of the choice of ReLU'(0) is not significant for reasonable choices (between 0 and 1). There is still an effect, for ReLU'(0) = 10000, which is unreasonably large. We observe oscillations during training and the test error considerably devreases for some runs.

Consequences for learning

The implementation error we encountered has a significant impact on the findings presented in Section 4 of [1], where we analyzed the impact of different choices of ReLU'(0) in terms of training on different benchmark architectures.

After correcting our mistake, we found that the choice of ReLU'(0) does have an impact on neural network training, which is qualitatively similar to what was reported in [1]. However, and consistently with preliminary results in Section 3, the magnitude of this impact is considerably smaller than originally described in [1], and occurs only for very large values of ReLU'(0), typically greater than 1000 (see Figure 3 and appendix D).

It is important to note that such large values are not realistic in practical scenarios. When ReLU'(0) takes on these extreme values, it leads to pronounced training oscillations, often resulting in nonnumeric (NaN) values. Although qualitatively similar, these observations are quantitatively very different from results reported in [1], which considerably diminishes the overall potential consequences of our findings.

Consistently with [1], we observe that the Adam optimizer as well as batch normalization tame the phenomenon by mitigating the adverse effects caused by the large values of ReLU'(0) and stabilize the training process (see Figure 4). Furthermore, similarly to Section 3, the experiments related to volume and frequency estimation are very similar to the results reported in [1].

Effect on training and test errors

Our conclusions regarding the impact of the choice of ReLU'(0) in term of deep neural network training are affected by the bug. For reasonable choices of ReLU'(0), we do not observe any effect in term of training loss or test accuracy. We do observe an effect, qualitatively similar as reported in [1], but only for very large values, which do not correspond to practical scenarios. The corrected results are presented in Figure 3 for a VGG network trained on CIFAR 10 with SGD, in Figure 4 for the same problem with the Adam optimizer and for the same network on SVHN trained with SGD.

We provide an additional experiment with a ResNet in the appendix (Figure 11), to confirm the effect of very large values for ReLU'(0). For the larger experiment on ImageNet with a ResNet50 reported in [1], we did not observe qualitative changes and we therefore do not report these results.

Mitigating factors: numerical precision, batch-normalization and Adam

Since the observed effect is much less significant than what we initially believed, the discussion regarding mitigating factors is much less relevant and we will not put emphasis on this aspect. We still reproduced our experiments as reported in Figure 4 which shows that the Adam optimizer as well as batch normalization tame the oscillations for large values of ReLU'(0). 4], using the Adam optimizer tames the oscillations, even for very large values of ReLU'(0) (left). On the right the experiment on SVHN does not show a significant effect, but some runs (not represented in the figure) did not converge due to oscillations.

Back to the bifurcation zone: more neural nets and the effects of batch-norm

The experiments of this section are reported in Figure 5 and are qualitatively coherent with the same experiment in [1]. Numerical precision is the main factor behind the bifurcation zone, and we do not observe any bifurcation zone at 64 bits precision. Furthermore batch normalization seems to reduce the size of the bifurcation zone. 5]. The effect of batch norm in 32 bits precision is different and coherent with 16 bits precision, we did not investigate further the significance of this variation.

Conclusions and future work

In conclusion, this erratum highlights the correction of the implementation error and provides insights into the revised impact of ReLU'(0) on backpropagation. The primary message of the paper, emphasizing the existence of an effect due to the choice of the value of ReLU'(0) on neural network training, remains intact. However, the practical consequences and impact of this finding on actual training is more mitigated than previously believed. Indeed, in reasonable practical scenarios, the quantitative impact experimentally measured on leaning benchmarks is not significant.

D Complements on experiments D.2 Additional Experiments with MNIST and fully connected networks

Here again the corrected experiments show an impact for large values of ReLU'(0) (around 10000). Experimental details are in [1].

- 

D.3 Additional experiments with VGG11

As reported in [1] batch normalization tames oscillations for large values of ReLU'(0) (Figure 9). Regarding the combined influence of ReLU'(0) and numerical precision [START_REF] Gupta | Deep learning with limited numerical precision[END_REF][START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF], or 64 bits) [1, Figure 14], the revised experiments reveal a notable impact for higher values of ReLU'(0) (around 10,000). This impact manifests as non-convergence when using 16-bit precision and a decline in test performance when employing 32-bit precision. (Figure 10). Experimental details are in [1]. 

D.4 Additional experiments with ResNet18

The revised experiments in Figure 11 confirm that the impact of ReLU'(0) on performance is observed for larger values, specifically when ReLU'(0) exceeds 100. This is coherent with results reported in [1] which observed that Resnet architectures are more sensitive to the choice of ReLU'(0). 

D.5 Additional experiments with ResNet50 on ImageNet

Contrary to our initial findings, which indicated a potential influence of ReLU'(0) on performance, the revised experiments showed no substantial effects. These results were consistent across various choices of ReLU'(0), including large values that were previously believed to have an impact.

Introduction

Nonsmooth algorithmic differentiation: The training phase of neural networks relies on firstorder methods such as Stochastic Gradient Descent (SGD) [START_REF] Goodfellow | Deep learning[END_REF][START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF] and crucially on algorithmic differentiation [START_REF] Griewank | Evaluating derivatives: principles and techniques of algorithmic differentiation[END_REF]. The fast "differentiator" used in practice to compute mini-batch descent directions is the backpropagation algorithm [START_REF] Rumelhart | Learning representations by backpropagating errors[END_REF][START_REF] Baydin | Automatic differentiation in machine learning: a survey[END_REF]. Although designed initially for differentiable problems, it is applied indifferently to smooth or nonsmooth networks. In the nonsmooth case this requires surrogate derivatives at the non regularity points. We focus on the famous ReLU := max(0, •), for which a value for s = ReLU (0) has to be chosen. A priori, any value in [0, 1] bears a variational sense as it corresponds to a subgradient [START_REF] Rockafellar | Variational analysis[END_REF]. Yet in most libraries s = 0 is chosen; it is the case for TensorFlow [START_REF] Abadi | Tensorflow: A system for large-scale machine learning[END_REF], PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] or Jax [START_REF] Bradbury | JAX: composable transformations of Python+NumPy programs[END_REF]. Why this choice? What would be the impact of a different value of s? How this interacts with other training strategies? We will use the notation backprop s to denote backpropagation implemented with ReLU (0) = s for any given real number s. Figure 1: Left: Difference between network parameters (L 1 norm), 100 iterations within an epoch. "0 vs 0" indicates θ k,0 -θk,0 1 where θk,0 is a second run for sanity check, "0 vs 1" indicates θ k,0θ k,1 1 . Center: minimal absolute activation of the hidden layers within the k-th mini-batch, before ReLU. At iteration 65, the jump on the left coincides with the drop in the center, and an exact evaluation of ReLU (0). Right: illustration of the bifurcation zone at iteration k = 65 in a randomly generated network weight parameter plane (iteration 65 in the center). The quantity represented is the absolute value of the neuron of the first hidden layer which is found to be exactly zero within the mini-batch before application of ReLU (exact zeros are represented in white).

What does backpropagation compute? A popular thinking is that the impact of s = ReLU (0) should be limited as it concerns the value at a single point. This happens to be exact in theory but for surprisingly complex reasons related to Whitney stratification (see Section 2 and references therein):

-For a given neural network architecture, backprop s outputs a gradient almost everywhere, independently of the choice of s ∈ R, see [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF] and [START_REF] Berner | Towards a regularity theory for relu networks-chain rule and global error estimates[END_REF] for a detailed treatment of ReLU networks.

-Under proper randomization of the initialization and the step-size of SGD, with probability 1 the value of s has no impact during training with backprop s as a gradient surrogate, see [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF][START_REF] Bianchi | Convergence of constant step stochastic gradient descent for non-smooth non-convex functions[END_REF].

In particular, the set of network parameters such that backprop 0 = backprop 1 is negligible and the vast majority of SGD sequences produced by training neural networks are not impacted by changing the value of s = ReLU (0). These results should in principle close the question about the role of ReLU (0). Yet, this is not what we observe in practice with the default settings of usual libraries.

A surprising experiment and the bifurcation zone: An empirical observation on MNIST triggered our investigations: consider a fully connected ReLU network, and let (θ k,0 ) k∈N and (θ k,1 ) k∈N be two training weights sequences obtained using SGD, with the same random initialization and the same mini-batch sequence but choosing respectively s = 0 and s = 1 in PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF]. As depicted in Figure 1 (left), the two sequences differ. A closer look shows that the sudden divergence is related to what we call the bifurcation zone, i.e., the set S 0,1 of weights such that backprop 0 = backprop 1 . As mentioned previously this contradicts theory which predicts that the bifurcation zone is met with null probability during training. This contradiction is due to the precision of floating point operations and, to a lesser extent, to the size of deep learning problems. Indeed, rounding schemes used for inexact arithmetics over the reals (which set to zero all values below a certain threshold), may "thicken" negligible sets. This is precisely what happens in our experiments (Figure 1).

The role of numerical precision: Contrary to numerical linear algebra libraries such as numpy, which operates by default under 64 bits precision, the default choice in PyTorch is 32 bits precision (as in TensorFlow or Jax). We thus modulated machine precision to evaluate the importance of the bifurcation zone in Section 3. In 32 bits, we observed that empirically the zone occupies from about 10% to 90% of the network weight space. It becomes invisible in 64 bits precision even for quite large architectures, while, in 16 bits, it systematically fills up the whole space. Although numerical precision is the primary cause of the apparition of the zone, we identify other factors such as network size, sample size. Let us mention that low precision neural network training is a topic of active research [START_REF] Vanhoucke | Improving the speed of neural networks on cpus[END_REF][START_REF] Hwang | Fixed-point feedforward deep neural network design using weights+ 1, 0, and-1[END_REF][START_REF] Courbariaux | Training deep neural networks with low precision multiplications[END_REF][START_REF] Gupta | Deep learning with limited numerical precision[END_REF], see also [START_REF] Rodriguez | Lower numerical precision deep learning inference and training[END_REF] for an overview. Our investigations are complementary as we focus on the interplay between nonsmoothness and numerical precision.

Impact on learning:

The next natural question is to measure the impact of the choice of s = ReLU (0) in machine learning terms. In Section 4, we conduct extensive experiments combining different architectures (fully connected, VGG, ResNet), datasets (MNIST, SVHN, CIFAR10, ImageNet) and other learning factors (Adam optimizer, batch normalization, dropout). In 32 bits numerical precision (default in PyTorch or Tensorflow), we consistently observe an effect of choosing s = 0. We observe a significant decrease in terms of test accuracy as |s| increases; this can be explained by chaotic oscillatory behaviors induced during training. In some cases gradients even explode and learning cannot be achieved. The sensitivity to this effect highly depends on the problem at hand, in particular, on the network structure and the dataset. On the other hand the choice s = 0 seems to be the most stable. We also observe that both batch normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] and-to a lesser degree-the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] considerably mitigate this effect. All our experiments are done using PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF]; we provide the code to generate all figures presented in this manuscript.

One important message is that, even if the default choice s = 0 seems to be the most stable, our experiments show a counter-intuitive phenomenon that illustrates the interplay between numerical precision and nonsmoothness, and calls for caution when learning nonsmooth networks.

Outline of the paper: In Section 2 we recall elements of nonsmooth algorithmic differentiation which are key to understand the mathematics underlying our experiments. Most results were published in [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF][START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF]; we provide more detailed pointers to this literature in Appendix A.1. In Section 3 we describe investigations of the bifurcation zone and factors influencing its importance using fully connected networks on the MNIST dataset. Neural network training experiments are detailed in Section 4 with further experimental details and additional experiments reported in Appendix D.

On the mathematics of backpropagation for ReLU networks

This section recalls recent advances on the mathematical properties of backpropagation, with in particular the almost sure absence of impact of ReLU (0) on the learning phase (assuming exact arithmetic over the reals). The main mathematical tools are conservative fields developed in [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF]; we provide a simplified overview which is applicable to a wide class of neural networks.

Empirical risk minimization and backpropagation

Given a training set {(x i , y i )} i=1...N , the supervised training of a neural network f consists in minimizing the empirical risk:

min θ∈R P J(θ) := 1 N N i=1 (f (x i , θ), y i ) (1) 
where θ ∈ R P are the network's weight parameters and is a loss function. The problem can be rewritten abstractly, for each i = 1, . . . , N and θ ∈ R P , (f (x i , θ), y i ) = l i (θ) where the function l i : R P → R is a composition of the form

l i = g i,M • g i,M -1 • . . . • g i,1 (2) 
where for each j = 1, . . . , M , the function g i,j is locally Lipschitz with appropriate input and output dimensions. A concrete example of what the functions g i,j look like is given in Appendix A.2 in the special case of fully connected ReLU networks. Furthermore, we associate with each g i,j a generalized Jacobian J i,j which is such that J i,j (w) = Jac gi,j (w) whenever g i,j is differentiable at w and Jac denotes the usual Jacobian. The value of J i,j at the nondifferentiability loci of g i,j can be arbitrary for the moment. The backpropagation algorithm is an automatized implementation of the rules of differential calculus: for each i = 1, . . . , N , we have

backprop l i (θ) = J i,M (g i,M -1 • . . . • g i,1 (θ)) × J i,M -1 (g i,M -2 • . . . • g i,1 (θ)) × . . . × J i,1 (θ). (3) 
Famous autograd libraries such as PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] or TensorFlow [1] implement dictionaries of functions g with their corresponding generalized Jacobians J, as well as efficient numerical implementation of the quantities defined in (3).

ReLU networks training

Our main example is based on the function ReLU : R → R defined by ReLU(x) = max{x, 0}. It is differentiable save at the origin and satisfies ReLU (x) = 0 for x < 0 and ReLU (x) = 1 for x > 0.

The value of the derivative at x = 0 could be arbitrary in [0, 1] as we have ∂ReLU(0) = [0, 1], where ∂ denotes the subgradient from convex analysis. Let us insist on the fact that any value within [0, 1] has a variational meaning. For example PyTorch and TensorFlow use ReLU (0) = 0.

Throughout the paper, and following the lines of [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF], we say that a function g : R p → R q is elementary log-exp if it can be described by a finite compositional expression involving the basic operations +, -, ×, / as well as the exponential and logarithm functions, inside their domains of definition. Examples include the logistic loss log(1 + e -x ) on R, the multivariate Gaussian density

(2π) -K/2 exp(- K k=1 x 2 k /2
) on R K , and the softmax function e xi / K k=1 e x k 1≤i≤K on R K . The expressions x 3 /x 2 and exp(-1/x 2 ) do not fit this definition because evaluation at x = 0 cannot be defined by the formula. Roughly speaking a computer evaluating an elementary log-exp expression should not output any NaN error for any input. Definition 1 (ReLU network training). Assume that in (1), the function is elementary log-exp, the network f has an arbitrary structure and the functions g i,j in (2) are either elementary log-exp or consist in applying the ReLU function to some coordinates of their input. We then call the problem in (1) a ReLU network training problem. Furthermore, for any s ∈ R, we denote by backprop s the quantity defined in (3) when ReLU (0) = s for all ReLU functions involved in the composition [START_REF] Abadi | Tensorflow: A system for large-scale machine learning[END_REF].

Other nonsmooth activation functions: The ReLU operation actually allows to express many other types of nonsmoothness such as absolute values, maxima, minima, quantiles (med for median) or soft-thresholding (st). For any x, y, z ∈ R, we indeed have |x| = ReLU(2x)x, 2 max(x, y) = (|x -y| + x + y), min(x, y) =max(-x, -y), med(x, y, z) = min(max(x, y), max(x, z), max(y, z)), st(x) = ReLU(x -1) -ReLU(-x -1). Definition 1 is thus much more general than it may seem since it allows, for example, to express convolutional neural networks with max-pooling layers such as VGG or ResNet architectures which correspond to the models considered in the experimental section (although we do not re-program pooling using ReLU). The following theorem is due to [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF], with an alternative version in [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF]. Theorem 1 (Backprop returns a gradient a.e.). Consider a ReLU network training problem (1) as in Definition 1 and T ≥ 1. Define S ⊂ R P as the complement of the set

θ ∈ R P , l i differentiable at θ, backprop s l i (θ) = ∇l i (θ), ∀i ∈ {1, . . . , N }, s ∈ [-T, T ] .
Then S is contained in a finite union of embedded differentiable manifolds of dimension at most P -1 (and in particular has Lebesgue measure zero).

Although this theorem looks natural, this is a nontrivial result about the backpropagation algorithm that led to the introduction of conservative fields [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF]. It implies that all choices for s = ReLU (0) in [0, 1] = ∂ReLU(0) are essentially equivalent modulo a negligible set S. Perhaps more surprisingly, s can be chosen arbitrarily in R without breaking this essential property of backprop. The set S is called the bifurcation zone throughout the manuscript. For ReLU network training problems, the bifurcation zone is a Lebesgue zero set and is actually contained locally in a finite union of smooth objects of dimension strictly smaller than the ambient dimension. This geometric result reveals a surprising link between backpropagation and Whitney stratifications, as described in [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF][START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF]. In any case the bifurcation zone is completely negligible. Note that the same result holds if we allow each different call to the ReLU function to use different values for ReLU (0).

ReLU network training with SGD

Let (B k ) k∈N denote a sequence of mini-batches with sizes |B k | ⊂ {1, . . . , N } for all k and α k > 0 the learning rate. Given initial weights θ 0 ∈ R P and any parameter s ∈ R, the SGD training procedure of f consists in applying the recursion

θ k+1,s = θ k,s -γ α k |B k | n∈B k backprop s [ (f (x n , θ k,s ), y n )], (4) 
where γ > 0 is a step-size parameter. Note that we explicitly wrote the dependency of the sequence in s = ReLU (0). According to Theorem 1 if the initialization θ 0 is chosen randomly, say, uniformly in a ball, a hypercube, or with iid Gaussian entries, then with probability 1, θ 0 does not fall in the bifurcation zone S. Intuitively, since S is negligible, the odds that one of the iterates produced by the algorithm fall on S are very low. As a consequence, varying s in the recursion (4) does not modify the sequence. This rationale is actually true for almost all values of γ. This provides a rigorous statement of the idea that the choice of ReLU (0) "does not affect" neural network training. The following result is based on arguments developed in [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF], see also [START_REF] Bianchi | Convergence of constant step stochastic gradient descent for non-smooth non-convex functions[END_REF] in a probabilistic context. 3 Surprising experiments on a simple feedforward network 3.1 ReLU (0) has an impact

Even though the ReLU activation function is non-differentiable at 0, autograd libraries such as PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] or TensorFlow [1] implement its derivative with ReLU (0) = 0. What happens if one chooses ReLU (0) = 1? The popular answer to this question is that it should have no effect. Theorems 1 and 2 provide a formal justification which is far from being trivial.

A 32 bits MNIST experiment We ran a simple experiment to confirm this answer. We initialized two fully connected neural networks f 0 and f 1 of size 784 × 2000 × 128 × 10 with the same weights θ 0,0 = θ 0,1 ∈ R P which are chosen at random. Using the MNIST dataset [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], we trained f 0 and f 1 with the same sequence of mini-batches (B k ) k∈N (minibatch size 128), using the recursion in (4) for s = 0 and s = 1 and with a fixed α k = 1, and γ chosen uniformly at random in [0.01, 0.012].

At each iteration k, we computed the sum θ k,0θ k,1 1 of the absolute differences between the coordinates of θ k,0 and θ k,1 . As a sanity check, we actually computed θ k,0 a second time, denoting this by θk,0 , using a third network to control for sources of divergence in our implementation. Results are reported in Figure 1. The experiment was run using PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] on a CPU.

ReLU'(0) has an impact First we observe no difference between θ k,0 and θk,0 , which shows that we have controlled all possible sources of divergence in PyTorch. Second, while no differences between θ 0,0 and θ 0,1 is expected (Theorem 2), we observe a sudden deviation of θ k,0θ k,1 1 at iteration 65 which then increases in a smooth way. The deviation is sudden as the norm is exactly zero before iteration 65 and jumps above one after. Therefore this cannot be explained by an accumulation of small rounding errors throughout iterations, as this would produce a smooth divergence starting at the first iteration. So this suggests that there is a special event at iteration 65.

The center part of Figure 1 displays the minimal absolute value of neurons of the first hidden layer evaluated on the current mini-batch, before the application of ReLU. It turns out that at iteration 65, this minimal value is exactly 0, resulting in a drop in the center of Figure 1. This means that the divergence is actually due to an iterate of the sequence falling exactly on the bifurcation zone. According to Theorem 2, this event is so exceptional that it should never been seen.

Practice and Theory: Numerical precision vs Genericity This contradiction can be solved as follows: the minimal absolute value in Figure 1 oscillates between 10 -6 and 10 -8 which is roughly the value of machine precision in 32 bits float arithmetic. This machine precision value is of the order 10 -16 in 64 bits floating arithmetic which is orders of magnitude smaller than the typical value represented in Figure 1. And indeed, performing the same experiment in 64 bits precision, the divergence of θ k,0θ k,1 1 disappears and the algorithm can actually be run for many epochs without any divergence between the two sequences. This is represented in Figure 7 in Appendix B. We also report similar results using ReLU6 [START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF] in place of ReLU on a similar network.

Relative volume of the bifurcation zone and relative gradient variation

The previous experiment suggests that mini-batch SGD algorithm (4) crossed the bifurcation zone:

S 01 = {θ ∈ R P : ∃i ∈ {1, . . . , N }, backprop 0 [l i ](θ) = backprop 1 [l i ](θ)} ⊂ S.
(5) This unlikely phenomenon is due to finite numerical precision arithmetic which thickens the negligible set S 01 in proportion to the machine precision threshold. This is illustrated on the right of Figure 1, which represents the bifurcation zone at iteration 65 in a randomly generated hyperplane (uniformly among 2 dimensional hyperplanes) centered around the weight parameters which generated the bifurcation in the previous experiment (evaluation on the same mini-batch). The white area corresponds to some entries being exactly zero, i.e., below the 32 bits machine precision threshold, before application of ReLU. On the other hand, in 64 bits precision, the same representation is much smoother and does not contain exact zeros (see Figure 7 in Appendix B). This confirms that the level of floating point arithmetic precision explains the observed divergence. We now estimate the relative volume of this bifurcation zone by Monte Carlo sampling (see Appendix C for details). All experiments are performed using PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] on GPU.

Experimental procedure -weight randomization: We randomly generate a set of parameters {θ j } M j=1 , with M = 1000, for a fully connected network architecture f composed of L hidden layers. Given two consecutive layers, respectively composed of m and m neurons, the weights of the corresponding affine transform are drawn independently, uniformly in [-α, α] where α = √ 6/ √ m. This is the default weight initialization scheme in PyTorch (Kaiming-Uniform [START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF]). Given this sample of parameters, iterating on the whole MNIST dataset, we approximate the proportion of θ j for which backprop 0 (l i )(θ j ) = backprop 1 (l i )(θ j ) for some i, for different networks and under different conditions (see Appendix C for details).

Impact of the floating-point precision: Using a fixed architecture of three hidden layers of 256 neurons each, we empirically measured the relative volume of S 01 using the above experimental procedure, varying the numerical precision. Table 1 reports the obtained estimates. As shown in Table 1, line 1, at 16 bits floating-point precision, all drawn weights {θ i } M i=1 fall within S 01 . In sharp contrast, when using a 64 bits precision, none of the sampled weights belong to S 01 . This proportion is 40% in 32 bits precision. For the rare impacted mini-batches (Table 1 line 2), the relative change in norm is above a factor 20, higher in 16 bits precision (Table 1 line 3). These results confirm that the floating-point arithmetic precision is key in explaining the impact of ReLU (0) during backpropagation, impacting both frequency and magnitude of the differences. Impact of sample and mini-batch size: Given a training set {(x n , y n )} n=1...N and a random variable θ ∈ R P with distribution P θ , we estimate the probability that θ ∈ S 01 ⊂ S. Intuitively, this probability should increase with sample size N . We perform this estimation for a fixed architecture of 4 hidden layers composed of 256 neurons each while varying the sample size. Results are reported in Figure 2. For both the 16 and the 32 bits floating-point precisions, our estimation indeed increases with the sample size while we do not find any sampled weights in S 01 in 64 bits precision. We also found that the influence of mini-batch size is not significative.

Floating

Impact of network size:

To evaluate the impact of the network size, we carried out a similar Monte Carlo experiment, varying the depth and width of the network. Firstly, we fixed the number of hidden layers to 3. Following the same experimental procedure, we empirically estimated the relative volume of S 01 , varying the width of the hidden layers. The results, reported in Figure 2, show that increasing the number of neurons by layer increases the probability to find a random θ ∼ P θ in S 01 for both 16 and 32 floating-point precision. In 64 bits, even with the largest width tested (1024 neurons), no sampled weight parameter is found in S 01 . Similarly we repeated the experiment varying the network depth and fixing, this time, the width of the layers to 256 neurons. Anew, the results, reported in Figure 2, show that increasing the network depth increases the probability that θ ∼ P θ belongs to S 01 for both 16 and 32 bits floating-point precision while this probability is zero in 64 bits precision. This shows that the size of the network, both in terms of number of layers and size of layers is positively related to the effect of the choice of s in backpropagation. On the other hand, the fact that neither the network depth, width, or the number of samples impact the 64 bits case suggests that, within our framework, numerical precision is the primary factor of deviation.

4 Consequences for learning

Benchmarks and implementation

Datasets and networks We further investigate the effect of the phenomenon described in Section 3 in terms of learning using the CIFAR10 dataset [START_REF] Krizhevsky | Cifar-10 (canadian institute for advanced research[END_REF] and the VGG11 architecture [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF]. To confirm our findings in alternative settings, we also use the MNIST [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], SVHN [START_REF] Netzer | Reading digits in natural images with unsupervised feature learning[END_REF] and ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] datasets, fully connected networks (3 hidden layers of size 2048), and the ResNet18 and ResNet50 architectures [START_REF] He | Deep residual learning for image recognition[END_REF]. Additional details on the different architectures and datasets are found in Appendix D.1. By default, unless stated otherwise, we use the SGD optimizer. We also investigated the effect of batch normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF], dropout [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF], the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] as well as numerical precision. All the experiments in this section are run in PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] on GPU. For each training experiment presented in this section (except ImageNet experiments), we use the optuna library [START_REF] Akiba | Optuna: A next-generation hyperparameter optimization framework[END_REF] to tune learning rates for each experimental condition; see also Appendix D.2.

Effect on training and test errors

We first consider training a VGG11 architecture on CIFAR10 using the SGD optimizer. For different values of ReLU (0), we train this network ten times with random initializations under 32 bits arithmetic precision. The results are depicted in Figure 3. Without batch normalization, varying the value of ReLU (0) beyond a magnitude of 0.1 has a detrimental effect on the test accuracy, resulting in a concave shaped curve with maximum around ReLU (0) = 0. On the other hand, the decrease of the training loss with the number of epochs suggests that choosing ReLU (0) = 0 induces jiggling behaviors with possible sudden jumps during training. Note that the choice ReLU (0) = 0 leads to a smooth decrease and that the magnitude of the jumps for other values is related to the magnitude of the chosen value. This is consistent with the interpretation that changing the value of ReLU (0) has an excitatory effect on training. We observed qualitatively similar behaviors for a fully connected network on MNIST and a ResNet18 on CIFAR10 (Appendix D). Sensitivity to the magnitude of ReLU (0) depends on the network architecture: our fully connected network on MNIST is less sensitive to this value than VGG11 and ResNet18. The latter shows a very high sensitivity since for values above 0.2, training becomes very unstable and almost impossible. Combination with dropout: Dropout [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF] is another algorithmic process to regularize deep neural networks. We investigated its effect when combined with varying choices of ReLU (0). We used a fully connected neural network trained on the MNIST dataset with different values of dropout probability. The results are reported in Figure 11 in Appendix D.2. We did not observe any joint effect of dropout probability and magnitude of ReLU (0) in this context.

Back to the bifurcation zone: more neural nets and the effects of batch-norm

The training experiments are complemented by a similar Monte Carlo estimation of the relative volume of the bifurcation zone as performed in Section 3 (same experimental setting). To avoid random outputs we force the GPU to compute convolutions deterministically. Examples of results are given in Figure 5. Additional results on fully connected network with MNIST and ResNet18 on CIFAR10 are shown in Section D. We consistently observe a high probability of finding an example on the bifurcation zone for large sample sizes. Several comments are in order.

Numerical precision: Numerical precision is the major factor in the thickening of the bifurcation zone. In comparison to 32 bits experiments, 16 bits precision dramatically increases its relative importance. We also considered 64 bits precision on SVHN, a rather large dataset. Due to the computational cost, we only drew 40 random weights and observed no bifurcation on any of the terms of the loss whatsoever. This is consistent with the experiments conducted in Section 3 and suggests that, within our framework, 64 bit precision is the main mitigating factor for our observations.

Batch normalization: In all our relative volume estimation experiments, we observe that batch normalization has a very significant effect on the proportion of examples found in the bifurcation zone. In 32 bits precision, the relative size of this zone increases with the addition of batch normalization, similar observations were made in all experiments presented in Appendix D. This is a counter-intuitive behavior as we have observed that batch normalization increases test accuracy and mitigates the effect of ReLU (0). Similarly in 16 bits precision, the addition of batch normalization seems to actually decrease the size of the bifurcation zone. Batch normalization does not result in the same qualitative effect depending on arithmetic precision. These observations open many questions which will be the topic of future research.

Total number of ReLU calls during training

We consider the MNIST dataset with a fully connected ReLU network, varying the number of layers in 1, . . . , epochs and proportion of ReLU(0) over all ReLU calls during training. Figure 6 suggests that, for a given precision, the number of times the bifurcation zone is met is roughly proportional to the total number of ReLU calls during training, independently of the architecture used (number of layers, neurons per layers). This suggests that the total number of ReLU calls during training is an important factor in understanding the bifurcation phenomenon. Broader investigation of this conjecture will be a matter of future work.
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Conclusions and future work

The starting point of our work was to determine if the choice of the value s = ReLU (0) affects neural network training. Theory tells that this choice should have negligible effect. Performing a simple learning experiment, we discovered that this is false in the real world and the first purpose of this paper is to account for this empirical evidence. This contradiction between theory and practice is due to finite floating point arithmetic precision while idealized networks are analyzed theoretically within a model of exact arithmetic on the field of real numbers. Owing to the size of deep learning problems, rounding errors due to numerical precision occur at a relatively high frequency, and virtually all the time for large architectures and datasets under 32 bit arithmetic precision (the default choice for TensorFlow and PyTorch libraries).

Our second goal was to investigate the impact of the choice of s = ReLU (0) in machine learning terms. In 32 bits precision it has an effect on test accuracy which seems to be the result of inducing a chaotic behavior in the course of empirical risk minimization. This was observed consistently in all our experiments. However we could not identify a systematic quantitative description of this effect; it highly depends on the dataset at hand, the network structure as well as other learning parameters such as the presence of batch normalization and the use of different optimizers. Our experiments illustrate this diversity. We observe an interesting robustness property of batch normalization and the Adam optimizer, as well as a high sensitivity to the network structure.

Overall, the goal of this work is to draw attention to an overlooked factor in machine learning and neural networks: nonsmoothness. The ReLU activation is probably the most widely used nonlinearity in this context, yet its nondifferentiability is mostly ignored. We highlight the fact that the default choice ReLU (0) = 0 seems to be the most robust, while different choices could potentially lead to instabilities. For a general nonsmooth nonlinearity, it is not clear a priori which choice would be the most robust, if any, and our investigation underlines the potential importance of this question.

Our research opens new directions regarding the impact of numerical precision on neural network training, its interplay with nonsmoothness and its combined effect with other learning factors, such as network architecture, batch normalization or optimizers. The main idea is that mathematically negligible factors are not necessarily computationally negligible.

A Mathematical details for Section 2

In Section A.1, we provide some elements of proof for Theorems 1 and 2. In Section A.2, we explain how to check the assumptions of Definition 1 by describing the special case of fully connected ReLU networks.

A.1 Elements of proof of Theorems 1 and 2

The proof arguments were described in [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF][START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF]. We simply concentrate on justifying how the results described in these works apply to Definition 1 and point the relevant results leading to Theorems 1 and 2.

It can be inferred from Definition 1 that all elements in the definition of a ReLU network training problem are piecewise smooth, where each piece is an elementary logexp function. We refer the reader to [START_REF] Scholtes | Introduction to piecewise differentiable equations[END_REF] for an introduction to piecewise smoothness and recent use of such notions in the context of algorithmic differentiation in [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF]. Let us first argue that the results of [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF] apply to Definition 1.

• We start with an explicit selection representation of backprop s ReLU. Fix any s ∈ R and consider the three functions f 1 : x → 0, f 2 : x → x and f 3 → sx with the selection index t(x) = 1 if x < 0, 2 if x > 0 and 3 if x = 0. We have for all x f t(x) = ReLU(x)

Furthermore, differentiating the active selection as in [8, Definition 4] we have

∇t f =    0 if x < 0 1 if x > 0 s if x = 0
and the right hand side is precisely the definition of backprop s ReLU. This shows that we have a selection derivative as used in [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF].

• Given a ReLU network training problem as in Definition 1, we have the following property.

-All elements in the ReLU network training problem are piecewise elementary logexp. That is each piece can be identified with an elementary logexp function. Furthermore the selection process describing the choice of active function can similarly be described by elementary logexp functions with equalities and inequalities.

Therefore, we meet the definition of logexp selection function in [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF] and all corresponding results apply to any ReLU network training problem as given in Definition 1. Fix T ≥ 1, getting back to problem (1), using [8, Definition 5] and the selection derivative described above, for each i = 1, . . . , N , there is a conservative field D i : R P ⇒ R P (definition of conservativity is given in [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF] and largely described in [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF]) such that for any s ∈ [0, T ], and θ ∈ R P backprop s l i (θ) ∈ D i (θ).

Using [7, Corollary 5] we have D i (θ) = {∇l i (θ)} for all θ outside of a finite union of differentiable manifolds of dimension at most P -1. This leads to Theorem 1 for s ∈ [0, T ]. Theorem 2 is deduced from the proof of [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF]Theorem 7] (last paragraph of the proof) that with probability 1, for all k ∈ N, for all n = 1, . . . , N and s

∈ [0, T ] backprop s [ (f (x n , θ k,s ), y n )] = ∇ θ (f (x n , θ k,s ), y n )
since we have θ 0,s = θ 0 for all s, the generated sequence in (4) does not depend on s ∈ [0, T ]. This is Theorem 2 for s ∈ [0, T ], note that a similar probabilistic argument was developped in [START_REF] Bianchi | Convergence of constant step stochastic gradient descent for non-smooth non-convex functions[END_REF]. We may repeat the same arguments fixing T < 0, so that both results actually hold for all s ∈ [-T, T ].

A.2 The special case of fully connected ReLU networks

The functions g i,j in the composition (2) can be described explicitly for any given neural network architecture. For the sake of clarity, we detail below the well-known case of fully connected ReLU networks for multiclass classification. We denote by K ≥ 2 the total number of classes.

Consider any fully connected ReLU network architecture of depth H, with the softmax function applied on the last layer. We denote by d h the size of each layer h = 1, . . . , H, and by d 0 the input dimension. In particular d H = K equals the number of classes. All the functions f θ : R d0 → R d H represented by the network when varying the weight parameters θ ∈ R P are of the form:

f θ (x) = f (x, θ) = softmax • A H • σ • A H-1 • • • • σ • A 1 (x) ,
where each mapping for any z ∈ R d H . The weight parameters θ ∈ R P correspond to stacking all weight matrices W h and biases b h in a single vector (in particular, we have here P = H h=1 d h (d h-1 + 1)). In the sequel, we set P h = H j=h d j (d j-1 + 1) and write θ h:H ∈ R P h for the vector of all parameters involved from layer h to the last layer H. We also write concatenate(x 1 , . . . , x r ) to denote the vector obtained by concatenating any r vectors x 1 , . . . , x r . In particular, we have θ h:H = concatenate(W h , b h , θ h+1:H ).

A h : R d h-1 → R d h is
Note that the decomposition above took x as input, not θ. We now explain how to construct the g i,j in (2). For each i = 1, . . . , N , the function θ ∈ R P → f (x i , θ) can be decomposed as

f (x i , θ) = softmax • g i,2H-1 • . . . • g i,2 • g i,1 (θ) , (6) 
where, roughly speaking, the g i,2h-1 apply the affine mapping A h to the output z h-1 ∈ R d h-1 of layer h -1 and pass forward all parameters θ h+1:H ∈ R P h+1 to be used in the next layers, while the g i,2h apply the ReLU function to the first d h coordinates. More formally, g i,1 : R P → R d1+P2 is given by

g i,1 (θ) = concatenate(W 1 x i + b 1 , θ 2:H ) , g i,2 : R d1+P2 → R d1+P2 maps any (z 1 , θ 2:H ) ∈ R d1 × R P2 to g i,2 (z 1 , θ 2:H ) = concatenate σ(z 1 ), θ 2:H
and, for each layer h = 2, . . . , H, the functions g i,2h-1 : R d h-1 +P h → R d h +P h+1 and g i,2h : R d h +P h+1 → R d h +P h+1 are given by

g i,2h-1 (z h-1 , θ h:H ) = concatenate(W h z h-1 + b h , θ h+1:H ) and g i,2h (z h , θ h+1:H ) = concatenate σ(z h ), θ h+1:H (for h < H).
Consider now the cross-entropy loss function : ∆(K) × {1, . . . , K} → R + which compares any probability vector q ∈ ∆(K) of size K (with non-zero coordinates q i > 0) with any true label y ∈ {1, . . . , K}, given by (q, y) =log q(y) .

Finally, using (6), the functions l i : R P → R appearing in ( 1)-( 2) can be decomposed as

l i (θ) = f (x i , θ), y i = q ∈ ∆(K) → (q, y i ) • softmax • g i,2H-1 • . . . • g i,2 • g i,1 (θ) .
The last decomposition satisfies (2) with M = 2H + 1. Since is the cross-entropy loss function, all M functions involved in this decomposition are either elementary log-exp or consist in applying ReLU to some coordinates of their input, and they are all locally Lipschitz, as required in Definition 1. This provides an explicit description of fully connected ReLU network and a similar description can be done for all architectures studied in this work.

B First experiment in 64 bits precision, and using a different activation

The code and results associated with all experiments presented in this work are publicly available here: https://github.com/deel-ai/relu-prime. Figure 7: Same experiment as Figure 1 in 64 bits precision. Left: Difference between network parameters (L 1 norm), 100 iterations within an epoch. "0 vs 0" indicates θ k,0 -θk,0 1 where θk,0 is a second run for sanity check, "0 vs 1" indicates θ k,0θ k,1 1 . Center: minimal absolute activation of the hidden layers within the k-th mini-batch, before ReLU. At iteration 65, there is no jump on the left and no drop in the center anymore. Right: illustration of the bifurcation zone at iteration k = 65 (same weight parameter plane as in Figure 1, but in 64 bits precision). The quantity represented is the absolute value of the neuron of the first hidden layer which was exactly zero in 32 bits (see Figure 1) before application of ReLU. Exact zeros are represented in white.

64 bits precision. We reproduce the same bifurcation experiment as in Section 3 under 64 bits arithmetic precision. The results are represented in Figure 7 which is to be compared with its 32 bits counterpart in Figure 1. As mentioned in the main text, the bifurcation does not occur anymore. Indeed the magnitude of the smallest activation before application of ReLU is of the same order, but this time it is well above machine precision which is around 10 -16 . When depicting the same neighborhood as in Figure 1, the effect of numerical error completely disappears, the bifurcation zone being reduced to a segment in the picture, which is consistent with Theorems 1 and 2.

ReLU6 activation. We conducted the same experiment with the ReLU6 activation function in place of ReLU and found similar results on a slightly larger network (754, 4000, 256). Recall that ReLU6 is equal to ReLU for x < 6 and equal to 6 for x ≥ 6 and the default choice of derivatives at non differentiable points are zero. The illustration is given in Figure 8. 

C Details on Monte Carlo sampling in Table 1

The code and results associated with all experiments presented in this work are publicly available here: https://github.com/deel-ai/relu-prime.

Recall that we want to estimate the relative volume of the set S 01 = {θ ∈ R P : ∃i ∈ {1, . . . , N }, backprop 0 [l i ](θ) = backprop 1 [l i ](θ)} ⊂ S.

by Monte Carlo sampling. We randomly generate a set of parameters {θ j } M j=1 , with M = 1000, for a fully connected network architecture f composed of L hidden layers using Kaiming-Uniform [START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF] random weight generator. Given this sample of parameters, iterating on the whole MNIST dataset, we approximate the proportion of θ j for which backprop 0 (l i )(θ j ) = backprop 1 (l i )(θ j ) for some i, for different networks and under different conditions. More precisely, denoting by Q the number of mini-batches considered in the MNIST dataset, and by B q ⊂ {1, . . . N } the indices corresponding to the mini-batch q, for q = 1, . . . Q, the first line of Table 1 is given by the formula where the function I takes value 1 or 0 depending on the validity of the statement in its argument. Similarly, the second line of Table 1 is given by the formula , conditioned on q, m being such that backprop 0 j∈Bq l j (θ m ) = backprop 1 j∈Bq l j (θ m ) . The error margin associated with the confidence interval on the first line of Table 1 is computed using Hoeffding's inequality at risk level 5%. It is given by the formula ln 2 0.05

2M

.

As for the confidence interval of the second line of Table 1, we use the bounded differences inequality (a.k.a. McDiarmid's inequality) at risk level 5%. The error margin is given by the formula

1 2 1 M + 1 Q ln 2 0.05 .

D Complements on experiments

The code and results associated with all experiments presented in this work are publicly available here: https://github.com/deel-ai/relu-prime.

D.1 Benchmark datasets and architectures

Overview of the datasets used in this work. These are image classification benchmarks, the corresponding references are respectively [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF][START_REF] Krizhevsky | Cifar-10 (canadian institute for advanced research[END_REF][START_REF] Netzer | Reading digits in natural images with unsupervised feature learning[END_REF]. Overview of the neural network architectures used in this work. The corresponding references are respectively [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF][START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF][START_REF] He | Deep residual learning for image recognition[END_REF].

Dataset
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D.3 Additional experiments with VGG11

This section complements Sections 4.2 and 4.3, with additional experiments with VGG11.

Batch normalization. As suggested by the experiment shown in Section 4.3, batch normalization stabilizes the choice of ReLU (0), leading to higher test performances. We display in Figure 12 the decrease of training loss on CIFAR 10 and SVHN, for VGG11 with batch normalization. We see that the choice of ReLU (0) has no impact and that the chaotic oscillations induced by this choice have completely disappeared. 13. They suggest that the Adam optimizer features much less sensitivity than SGD to the choice of ReLU (0). This is seen with a relatively efficient buffering effect on the induced oscillatory behavior on training loss decrease.

Numerical precision. For this neural network we investigated the joint effect of ReLU (0) and numerical precision [START_REF] Gupta | Deep learning with limited numerical precision[END_REF][START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF] or 64 bits). The results are displayed in Figure 14. The choice ReLU (0) = 1 leads to such a high instability in 16 bits precision that we were not able to tune the learning rate to train the network without explosion of the weights. In 32 bits, a few experiments resulted in non-convergent training-these were removed. We observe first that for ReLU (0) = 0 numerical precision has barely any effect while for ReLU (0) = 1 it leads to an increase in test accuracy. Furthermore, we observe that ReLU (0) = 1 with 64 bits precision leads to the same test accuracy as ReLU (0) = 0 in 32 bits precision.

Figure 2 :Figure 3 :

 23 Figure 2: This figure is completly similar to [1, Figure 2], up to non-significant variations.

Figure 5 :

 5 Figure 5: The results reported in this figure are qualitatively similar as the results presented in [1, Figure5]. The effect of batch norm in 32 bits precision is different and coherent with 16 bits precision, we did not investigate further the significance of this variation.

Figure 7 :Figure 8 :

 78 Figure 7: Reproduction of the results presented in [1, Figure9], the results are coherent with observations in Figure3.

Figure 9 :

 9 Figure 9: Training loss with VGG11 and batch norm, on CIFAR 10 (left) and SVHN (right). The instability induced by the choice of ReLU (0) completely disappears with batch normalization.

Figure 10 :

 10 Figure 10: Test accuracy for different numerical precisions with a VGG11 network on CIFAR10. Left: ReLU (0) = 0. Center:ReLU (0) = 1. Right: ReLU (0) = 1000. For this last experiment, we did not manage to get training to converge in 16 bit precision.

Figure 11 :

 11 Figure 11: Training experiment on CIFAR10 with Resnet18 and the SGD optimizer. Top left: test accuracy with and without batch normalization (true / false). Top right: training loss during training without batch normalization (runs for ReLU'(0)=10000 led to NaNs). Bottom: training loss during training with batch normalization.
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Theorem 2 (

 2 ReLU (0) does not impact training with probability 1). Consider a ReLU network training problem as in Definition 1. Let (B k ) k∈N be a sequence of mini-batches with |B k | ⊂ {1, . . . , N } for all k and α k > 0 the associated learning rate parameter. Choose θ 0 uniformly at random in a hypercube and γ uniformly in a bounded interval I ⊂ R + . Let s ∈ R, set θ 0,s = θ 0 , and consider the recursion given in (4). Then, with probability one, for all k ∈ N, θ k,s = θ k,0 .

Figure 4 :Figure 5 :

 45 Figure 4: Similar to Fig.3, with VGG11 and Adam optimizer, on CIFAR 10 (left) and SVHN (right).

Figure 8 :

 8 Figure 8: Same experiment as Figure 1 with ReLU6 in place of ReLU. Top: 32 bits weight difference and minimal activation before application of ReLU6. Bottom: 64 bits weight difference and minimal activation before application of ReLU6

  the last line provides statistics of the quantity backprop 0 j∈Bq l j (θ m )backprop 1 j∈Bq l j (θ m ) backprop 0 j∈Bq l j (θ m )

Figure 10 :Figure 11 :

 1011 Figure 10: Same experiment as in Figure 9 without learning rate tuning.

Figure 12 :

 12 Figure 12: Training loss on CIFAR10 with VGG11 (left) and SVHN with VGG11 (right). The instability induced by the choice of ReLU (0) completely disappears with batch normalization.
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The proportions presented in this table are similar as the ones given in

[1, Table 

Table 1 :
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	-point precision	16 bits	32 bits	64 bits
	Proportion of {θ i } M i=1 in S (CI ± 5%) Proportion of impacted mini-batches (CI ± 13%) Relative L 2 difference for impacted mini-batches (1st quartile, median, 3rd quartile)	100% 0.05% (98, 117, 137) (19, 25, 47) (0, 0, 0) 40% 0% 0.0002% 0%

Impact of S according to the floating-point precision on a fully connected neural network (784 × 256 × 256 × 256 × 10) on MNIST. First line: proportion of drawn weights θ i such that at least one mini-batch results in difference between backprop 0 and backprop 1 . CI stands for Confidence Interval with 5% risk (Hoeffding CI, see Appendix C). Second line: overall proportion of minibatch-weight vector pairs causing a difference between backprop 0 and backprop 1 (McDiarmid CI, see Appendix C). Third line: distribution of backprop 0backprop 1 2 / backprop 0 2 for the affected mini-batch-weight vector pairs.

  Influence of different size parameters on the proportion of drawn weight vector θ i such that at least one mini-batch results in difference between backprop 0 and backprop 1 on MNIST dataset. Confidence interval at risk level 5% results in a variation of ±5% for all represented proportions. First: 4 hidden layers with 256 neurons and batch size 256, varying the size of the training set. Second: 3 hidden layer network with mini-batch size 256, varying the number of neuron per layer. Third: 256 neurons per layer and mini-batch size 256, varying the number of layers. Fourth: 3 hidden layers with 256 neurons per layer, varying mini-batch size.

		100						
	Proportion %	20 40 60 80							Precision 16 32 64
		0						
			Number of neurons		Number of layers		Batch size
		1 10 20 30 40 50 60	16 64 256 512 1024	1	2	3	5	6	16 64 256 512 1024
	Figure 2:						

  Figure 6: Proportion of ReLU(0) calls by total number of ReLU calls after 100 epochs for ReLU networks on MNIST with number of layers in 1, . . . , 6 and neuron per layers in 16, 64, 256, 512.

		Ratio of zeros by Relu calls	
	Ratio of Relu(0) calls	10 4 10 3	precision 16 32
		0 50000 100000 150000 200000 250000 300000 Total number of Relu calls

and neuron per layers in 16, 64, 256, 512. For 16 and 32 bits precisions, we perform 100

  affine (i.e., of the form A h (z) = W h z + b h ), where σ(u) = ReLU(u i ) i applies the ReLU function component-wise to any vector u, and where softmax(z) = e zi /

	d H k=1 e z k	1≤i≤d H

Definition in Section

This can be coded explicitly or cheaply emulated by backprop 0 . Indeed, considering fs : x → ReLU(x) + s(ReLU(-x) -ReLU(x) + x) = ReLU(x), we have backprop 0 [fs](0) = s.Preprint.
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These experiments complement the preliminary results obtained in Section 3. In particular choosing different values for ReLU (0) has an effect, it induces a chaotic behavior during training which affects test accuracy. The default choice ReLU (0) = 0 seems to provide the best performances.

To conclude, we conducted four training experiments for ResNet50 on the ImageNet dataset [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] using the SGD optimizer. These were conducted with fixed learning rate, contrary to results reported above. We observe that switching from ReLU (0) = 0 to 1 results in a massive drop from around 75% to 63% or 55% for two runs.

Mitigating factors: numerical precision, batch-normalization and Adam

We analyze below the combined effects of the variations of ReLU (0) with numerical precision or classical reconditioning methods: Adam, batch-normalization and dropout.

Batch-normalization: As represented in Figure 3, batch normalization [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] not only allows to attain higher test accuracy, but it also completely filters out the effect of the choice of the value of ReLU (0), resulting in a flat shaped curve for test accuracy. This is consistent with what we observed on the training loss (Figure 12 in Appendix D.3) for which different choices of ReLU (0) lead to indistinguishable training loss curves. This experiment suggests that batch normalization has a significant impact in reducing the effect of the choice of ReLU (0). This observation was confirmed with a very similar behavior on the MNIST dataset with a fully connected network (Figure 9 in Appendix D.2). We could observe a similar effect on CIFAR 10 using a ResNet18 architecture (see Appendix D.5), however in this case the value of ReLU (0) still has a significative impact on test error, the ResNet18 architecture being much more sensitive.

Using the Adam optimizer: The Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] is among the most popular algorithms for neural network training; it combines adaptive step-size strategies with momentum. Adaptive stepsize acts as diagonal preconditioners for gradient steps [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF][START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF] and therefore can be seen as having an effect on the loss landscape of neural network training problems. We trained a VGG11 network on both CIFAR 10 and SVHN using the Adam optimizer. The results are presented in Figure 4. We observe a qualitatively similar behavior as in the experiments of Section 4.2 but a much lower sensitivity to the magnitude of ReLU (0). In other words, the use of the Adam optimizer mitigates the effect of this choice, both in terms of test errors and by buffering the magnitude of the sometimes chaotic effect induced on training loss optimization (Figure 13 in Appendix D.3).

Increasing numerical precision:

As shown in Appendix D.3, using 64 bits floating precision on VGG11 with CIFAR10 cancels out the effect of ReLU (0) = 1, in coherence with Section 3. More specifically ReLU (0) = 1 in 64 bits precision obtains similar performances as ReLU (0) = 0 in 32 bits precision. Furthermore, the numerical precision has barely any effect when ReLU (0) = 0. Finally, we remark that in 16 bits with ReLU (0) = 1, training is extremely unstable so that we were not able to train the network in this setting. Fully connected architecture: This architecture corresponds to the one used in [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF]. We only trained this network on MNIST, the resulting architecture has an input layer of size 784, three hidden layers of size 2048 and the ouput layer is of size 10.

VGG11 architecture: We used the implementation proposed in the following repository https: //github.com/kuangliu/pytorch-cifar.git which adapts the VGG11 implementation of the module torchvision.models for training on CIFAR10. The only modification compared to the standard implementation is the fully connected last layers which only consist in a linear 512 × 10 layer. When adding batch normalization layers, it takes place after each convolutional layer.

ResNet18 architecture: We use PyTorch implementation for this architecture found in the module torchvision.models. We only modified the size of the output layer (10 vs 1000), the size of the kernel in the first convolutional layer (3 vs 7) and replaced batch normalization layers by the identity (when we did not use batch normalization).

D.2 Additional Experiments with MNIST and fully connected networks

We conducted the same experiments as in Section 4.2 with a fully connected 784-2048-2048-2048-10 network on MNIST. The results are represented in Figure 9 which parallels the results in Figure 3 on VGG11 with CIFAR10. We observe a similar qualitative behavior, but the fully connected architecture is less sensitive to the magnitude chosen for ReLU (0). Note that in this case, learning rate tuning with optuna [START_REF] Akiba | Optuna: A next-generation hyperparameter optimization framework[END_REF] induces a lot of spurious variability. Indeed, the same experiment with fixed learning rate results in a much smoother bell shape in Figure 10.

-50.0 -10.0 -8.0 -6.0 -4.0 -2.0 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0. We investigated further the effect of combining different choices of ReLU (0) with dropout [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF].

Dropout is another algorithmic way to regularize deep networks and it was natural to wonder if it could have a similar effect as batch normalization. Using the same network, we combined different choices of dropout probability with different choices of ReLU (0). The results are represented in Figure 11 and suggests that dropout has no conjoint effect. 

D.4 Additional experiments with ResNet18

We performed the same experiments as the ones described in Section 4 using a ResNet18 architecture trained on CIFAR 10. The test error, training loss evolution with or without batch normalization are represented in Figure 15. We have similar qualitative observations as with VGG11. We note that the ResNet18 architecture is much more sensitive to the choice of ReLU (0):

• Test performances degrade very fast. Actually, beyond a magnitude of 0.2, we could not manage to train the network without using batch normalization.

• Even when using batch normalization, the choice of ReLU (0) seems to have an effect for relatively small variations.