
HAL Id: hal-03265059
https://hal.science/hal-03265059v3

Submitted on 18 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical influence of ReLU’(0) on backpropagation
David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, Edouard Pauwels

To cite this version:
David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, Edouard Pauwels. Numerical influence of
ReLU’(0) on backpropagation. Advances in Neural Information Processing Systems, Dec 2021, Paris,
France. �hal-03265059v3�

https://hal.science/hal-03265059v3
https://hal.archives-ouvertes.fr

Numerical influence of ReLU’(0) on backpropagation
Erratum

David Bertoin
IRT Saint Exupéry
ISAE-SUPAERO

ANITI
Toulouse, France

david.bertoin@irt-saintexupery.com

Jérôme Bolte
Toulouse School of Economics
Université Toulouse 1 Capitole

ANITI
Toulouse, France

jbolte@ut-capitole.fr

Sébastien Gerchinovitz
IRT Saint Exupéry

Institut de Mathématiques de Toulouse
ANITI

Toulouse, France
sebastien.gerchinovitz@irt-saintexupery.com

Edouard Pauwels
CNRS

IRIT, Université Paul Sabatier
ANITI

Toulouse, France
edouard.pauwels@irit.fr

Erratum

This is an erratum for the paper ”Numerical influence of ReLU’(0) on backpropagation” [1]. We
would like to express our gratitude to Wonyeol Lee, Sanghyuk Chun, and Sejun Park for bringing to
our attention an important issue in our implementation. Their feedback helped us identify a simple,
yet impactful bug in the code used for our experiments, specifically in the backward implementation
of our modified version of the ReLU function. We deeply regret this error and sincerely apologize
for any confusion it may have caused. The purpose of this note is to report results of the same
experiments as in [1] with a correct implementation. We then replicate the published paper, without
any modification.

Impact on results of the paper: Despite this error in our implementation, the main results of our
paper regarding the existence and relative size of the bifurcation zone remain valid. After correcting
the bug we obtain qualitatively similar results.

Nevertheless, upon further investigation, we have discovered that the magnitude of relative change
(in norm) due to the choice made for the value of ReLU’(0) is much smaller than what we initially
announced. This is a consistent observation throughout all experiments. As a consequence, the
impact of this phenomenon on actual neural network training is much less significant compared to
what we initially believed; see details in Section 4. We found that, on benchmark training scenarios,
a significant degradation occurs for very large values, around 10000. Therefore, as stated in [1],
the value of ReLU’(0) can numerically influence neural network training, contrary to what (infinite
precision) theory predicts, but the corresponding values are unrealistic in practical scenarios.

Content of this note: We provide corrections and discuss the experiments reported in [1] that were
impacted by this implementation error. We present revised empirical results obtained after correcting
our mistake, that reflect the actual influence of ReLU’(0) on backpropagation. For ease of reading we
keep the overall structure of the original paper [1] (numbering of sections and figures) unchanged
and only make brief comments focused on qualitative or quantitative change in the experimental
results. To keep this note short we refer to [1] for all the experimental details (see also the paper
after this note).

Preprint.

0 25 50 75 100
Iteration counter

0.00000

0.00025

0.00050

0.00075

0.00100

W
ei

gh
t d

iff
er

en
ce

 3
2b

its

1 vs 0
0 vs 0

0 25 50 75 100
Iteration counter

10 8

10 7

10 6

M
in

im
al

 a
ct

iv
at

io
n

32
bi

ts

5.0 2.5 0.0 2.5
1e 6

4

2

0

2

4
1e 6

10 910 810 710 610 510 410 310 210 1100101102103104105

Figure 1: This is similar to [1, Figure 1], the only difference is the order of magnitude of differences
on the left plot.

Nature of the mistake: In our original pytorch implementation, we unintentionally neglected to
properly multiply ReLU’(0) by the output gradients as required by the chain rule. For example the
following code provides first an incorrect implementation of ReLU’(0) = 0.5 based on the relu func-
tion given in pytorch, the one which we used in [1]. A correct implementation is given below and
should implement a multiplication, not an absolute assignment, to be in line with the implementation
of automatic differentiation in pytorch.

I n c o r r e c t backward method
g r a d i n p u t [input == 0] = 0 . 5

C o r r e c t backward method
g r a d i n p u t [input == 0] ∗= 0 . 5

1 Introduction

The main message of this section is not impacted by the implementation error and the observation
reported in our preliminary experiments remain valid, see Figure 1. The only noticable difference
is a modification of the order of magnitude of weight differences which does not affect the main
message.

2 On the mathematics of backpropagation for ReLU networks

The bug has no impact on this section which is a theoretical description of the mechanisms at stake.
Let us recall that from a theoretical point of view, any choice of ReLU’(0) in R provides a valid
nonsmooth optimization oracle, even beyond the subgradient [0, 1].

3 Surprising experiments on a simple feedforward network

This section was mostly centered on the volume of the bifurcation zone. Our empirical observations
remain unchanged regarding this respect, see Proportions in Table 1 and Figure 2. On the other
hand, the relative difference in L2 norm reported in Table 1 are reduced by several orders of mag-
nitude compared to results reported in [1]. This is consistent with our observation in Figure 1 and
constitutes the main difference with the results reported in [1].

Floating-point precision 16 bits 32 bits 64 bits
Proportion of {θi}Mi=1 in S 100% 43% 0%
Proportion of impacted mini-batches 0.005% 0.0002% 0%
Relative L2 difference for impacted mini-batches
(1st quartile, median, 3rd quartile) (1e-3, 2e-3, 3e-3) (1e-3, 2e-3, 3e-3) (0, 0, 0)

Table 1: The proportions presented in this table are similar as the ones given in [1, Table 1], up to
non-significant variations. The main difference is in the L2 amplitude of the differences which is
reduced by a factor 105. This is consistent with the preliminary experiment in Figure 1 and explains
the behavior of training algorithms described in the next section.

2

Sample size (1000s) Number of neurons Number of layers Batch size

1 10 20 30 40 50 60 16 64 256 512 1024 1 2 3 5 6 16 32 64 128 256

0

20

40

60

80

100

P
ro

po
rt

io
n

% Precision

16

32

64

Figure 2: This figure is completly similar to [1, Figure 2], up to non-significant variations.

0.0 0.1 1.0 100.0 1000.0 10000.0
ReLU'(0)

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
lo

ss

ReLU'(0)
0.0
0.1
1.0
100.0
1000.0
10000.0

Figure 3: Quantitatively, the behavior described in this figure is drastically different from the one in
[1, Figure 3]: the effect of the choice of ReLU’(0) is not significant for reasonable choices (between
0 and 1). There is still an effect, for ReLU’(0) = 10000, which is unreasonably large. We observe
oscillations during training and the test error considerably devreases for some runs.

4 Consequences for learning

The implementation error we encountered has a significant impact on the findings presented in
Section 4 of [1], where we analyzed the impact of different choices of ReLU’(0) in terms of training
on different benchmark architectures.

After correcting our mistake, we found that the choice of ReLU’(0) does have an impact on neural
network training, which is qualitatively similar to what was reported in [1]. However, and consis-
tently with preliminary results in Section 3, the magnitude of this impact is considerably smaller
than originally described in [1], and occurs only for very large values of ReLU’(0), typically greater
than 1000 (see Figure 3 and appendix D).

It is important to note that such large values are not realistic in practical scenarios. When ReLU’(0)
takes on these extreme values, it leads to pronounced training oscillations, often resulting in non-
numeric (NaN) values. Although qualitatively similar, these observations are quantitatively very
different from results reported in [1], which considerably diminishes the overall potential conse-
quences of our findings.

Consistently with [1], we observe that the Adam optimizer as well as batch normalization tame the
phenomenon by mitigating the adverse effects caused by the large values of ReLU’(0) and stabilize
the training process (see Figure 4). Furthermore, similarly to Section 3, the experiments related to
volume and frequency estimation are very similar to the results reported in [1].

4.2 Effect on training and test errors

Our conclusions regarding the impact of the choice of ReLU’(0) in term of deep neural network
training are affected by the bug. For reasonable choices of ReLU’(0), we do not observe any effect
in term of training loss or test accuracy. We do observe an effect, qualitatively similar as reported
in [1], but only for very large values, which do not correspond to practical scenarios. The corrected
results are presented in Figure 3 for a VGG network trained on CIFAR 10 with SGD, in Figure 4 for
the same problem with the Adam optimizer and for the same network on SVHN trained with SGD.
We provide an additional experiment with a ResNet in the appendix (Figure 11), to confirm the
effect of very large values for ReLU’(0). For the larger experiment on ImageNet with a ResNet50
reported in [1], we did not observe qualitative changes and we therefore do not report these results.

3

4.3 Mitigating factors: numerical precision, batch-normalization and Adam

Since the observed effect is much less significant than what we initially believed, the discussion
regarding mitigating factors is much less relevant and we will not put emphasis on this aspect. We
still reproduced our experiments as reported in Figure 4 which shows that the Adam optimizer as
well as batch normalization tame the oscillations for large values of ReLU’(0).

0.0 0.1 1.0 10.0 100.0 1000.0 10000.0
ReLU'(0)

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

0 1 10 100 1000 5000
ReLU'(0)

0.94

0.95

0.96

0.97

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

Figure 4: Reproduction of [1, Figure 4], using the Adam optimizer tames the oscillations, even
for very large values of ReLU’(0) (left). On the right the experiment on SVHN does not show a
significant effect, but some runs (not represented in the figure) did not converge due to oscillations.

4.4 Back to the bifurcation zone: more neural nets and the effects of batch-norm

The experiments of this section are reported in Figure 5 and are qualitatively coherent with the same
experiment in [1]. Numerical precision is the main factor behind the bifurcation zone, and we do not
observe any bifurcation zone at 64 bits precision. Furthermore batch normalization seems to reduce
the size of the bifurcation zone.

0 50000 100000
sample size

0.0

0.5

1.0

P(
S 0

1)

CIFAR-VGG11

Precision
32b
16b

0 50000 100000
sample size

0.0

0.5

1.0

P(
S 0

1)

CIFAR-VGG11-BatchNorm

Precision
32b
16b

0 200000 400000
sample size

0.0

0.5

1.0

P(
S 0

1)

SVHN-VGG11-BatchNorm

Precision
64 b
32 b

Figure 5: The results reported in this figure are qualitatively similar as the results presented in
[1, Figure 5]. The effect of batch norm in 32 bits precision is different and coherent with 16 bits
precision, we did not investigate further the significance of this variation.

5 Conclusions and future work

In conclusion, this erratum highlights the correction of the implementation error and provides in-
sights into the revised impact of ReLU’(0) on backpropagation. The primary message of the paper,
emphasizing the existence of an effect due to the choice of the value of ReLU’(0) on neural network
training, remains intact. However, the practical consequences and impact of this finding on actual
training is more mitigated than previously believed. Indeed, in reasonable practical scenarios, the
quantitative impact experimentally measured on leaning benchmarks is not significant.

References

[1] Bertoin, D., Bolte, J., Gerchinovitz, S., Pauwels, E. (2021). Numerical influence of ReLU’(0)
on backpropagation. Advances in Neural Information Processing Systems, 34, 468-479.

4

D Complements on experiments

D.2 Additional Experiments with MNIST and fully connected networks

Here again the corrected experiments show an impact for large values of ReLU’(0) (around 10000).
Experimental details are in [1].

-10000.0 -1000.0 -100.0 -10.0 -5.0 -1.0 -0.5 0.0 0.5 1.0 5.0 10.0 100.0 1000.0 10000.0
ReLU'(0)

0.976
0.978
0.980
0.982
0.984
0.986
0.988
0.990
0.992

te
st

_a
cc

ur
ac

y

batch_norm
False
True

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

_lo
ss

ReLU'(0)
-10000.0
-1000.0
0.0
1.0
10.0
100.0
1000.0
10000.0

0 20000 40000 60000
sample size

0.0

0.5

1.0

P(
S 0

1)

MNIST

Precision
32b
16b

0 20000 40000 60000
sample size

0.0

0.5

1.0

P(
S 0

1)

MNIST-Batchnorm

Precision
32b
16b

Figure 7: Reproduction of the results presented in [1, Figure 9], the results are coherent with obser-
vations in Figure 3.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Dropout probability

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

ur
ac

y

relu
1.0
100.0
1000.0
5000.0
10000.0

Figure 8: Reproduction of the results presented in [1, Figure 7] illustrating that dropout has a non
significative effect on taming oscillations.

D.3 Additional experiments with VGG11

As reported in [1] batch normalization tames oscillations for large values of ReLU’(0) (Figure 9).
Regarding the combined influence of ReLU’(0) and numerical precision (16, 32, or 64 bits) [1,
Figure 14], the revised experiments reveal a notable impact for higher values of ReLU’(0) (around
10,000). This impact manifests as non-convergence when using 16-bit precision and a decline in
test performance when employing 32-bit precision. (Figure 10). Experimental details are in [1].

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
lo

ss

relu
0
1
100
1000
5000
10000

0 20 40 60
epoch

0.00

0.05

0.10

0.15

Tr
ai

n
lo

ss

ReLU'(0)
1
10
100
1000
5000
10000

Figure 9: Training loss with VGG11 and batch norm, on CIFAR 10 (left) and SVHN (right). The
instability induced by the choice of ReLU′(0) completely disappears with batch normalization.

5

16.0 32.0 64.0
precision

0.84

0.86

0.88

te
st

_a
cc

ur
ac

y

16.0 32.0 64.0
precision

0.84

0.86

0.88

te
st

_a
cc

ur
ac

y

16.0 32.0 64.0
precision

0.84

0.86

0.88

te
st

_a
cc

ur
ac

y

Figure 10: Test accuracy for different numerical precisions with a VGG11 network on CIFAR10.
Left: ReLU′(0) = 0. Center:ReLU′(0) = 1. Right: ReLU′(0) = 1000. For this last experiment,
we did not manage to get training to converge in 16 bit precision.

D.4 Additional experiments with ResNet18

The revised experiments in Figure 11 confirm that the impact of ReLU’(0) on performance is ob-
served for larger values, specifically when ReLU’(0) exceeds 100. This is coherent with results re-
ported in [1] which observed that Resnet architectures are more sensitive to the choice of ReLU’(0).

0.0 0.1 1.0 10.0 100.0 1000.0 10000.0
relu

0.0

0.2

0.4

0.6

0.8

te
st

_a
cc

ur
ac

y

False
True

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
lo

ss

ReLU'(0)
0.0
0.1
1.0
10.0
100.0
1000.0
10000.0

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
lo

ss

ReLU'(0)
0.0
0.1
1.0
10.0

100.0
1000.0
10000.0

Figure 11: Training experiment on CIFAR10 with Resnet18 and the SGD optimizer. Top left: test
accuracy with and without batch normalization (true / false). Top right: training loss during training
without batch normalization (runs for ReLU’(0)=10000 led to NaNs). Bottom: training loss during
training with batch normalization.

D.5 Additional experiments with ResNet50 on ImageNet

Contrary to our initial findings, which indicated a potential influence of ReLU’(0) on performance,
the revised experiments showed no substantial effects. These results were consistent across various
choices of ReLU’(0), including large values that were previously believed to have an impact.

6

Numerical influence of ReLU’(0) on backpropagation

David Bertoin
IRT Saint Exupéry
ISAE-SUPAERO

ANITI
Toulouse, France

david.bertoin@irt-saintexupery.com

Jérôme Bolte
Toulouse School of Economics
Université Toulouse 1 Capitole

ANITI
Toulouse, France

jbolte@ut-capitole.fr

Sébastien Gerchinovitz
IRT Saint Exupéry

Institut de Mathématiques de Toulouse
ANITI

Toulouse, France
sebastien.gerchinovitz@irt-saintexupery.com

Edouard Pauwels
CNRS

IRIT, Université Paul Sabatier
ANITI

Toulouse, France
edouard.pauwels@irit.fr

Abstract

In theory, the choice of ReLU′(0) in [0, 1] for a neural network has a negligible
influence both on backpropagation and training. Yet, in the real world, 32 bits
default precision combined with the size of deep learning problems makes it a
hyperparameter of training methods. We investigate the importance of the value
of ReLU′(0) for several precision levels (16, 32, 64 bits), on various networks
(fully connected, VGG, ResNet) and datasets (MNIST, CIFAR10, SVHN, Ima-
geNet). We observe considerable variations of backpropagation outputs which
occur around half of the time in 32 bits precision. The effect disappears with dou-
ble precision, while it is systematic at 16 bits. For vanilla SGD training, the choice
ReLU′(0) = 0 seems to be the most efficient. For our experiments on ImageNet
the gain in test accuracy over ReLU′(0) = 1 was more than 10 points (two runs).
We also evidence that reconditioning approaches as batch-norm or ADAM tend to
buffer the influence of ReLU′(0)’s value. Overall, the message we convey is that
algorithmic differentiation of nonsmooth problems potentially hides parameters
that could be tuned advantageously.

1 Introduction

Nonsmooth algorithmic differentiation: The training phase of neural networks relies on first-
order methods such as Stochastic Gradient Descent (SGD) [14, 9] and crucially on algorithmic dif-
ferentiation [15]. The fast “differentiator” used in practice to compute mini-batch descent directions
is the backpropagation algorithm [29, 4]. Although designed initially for differentiable problems,
it is applied indifferently to smooth or nonsmooth networks. In the nonsmooth case this requires
surrogate derivatives at the non regularity points. We focus on the famous ReLU := max(0, ·), for
which a value for s = ReLU′(0) has to be chosen. A priori, any value in [0, 1] bears a variational
sense as it corresponds to a subgradient [27]. Yet in most libraries s = 0 is chosen; it is the case for
TensorFlow [2], PyTorch [26] or Jax [10]. Why this choice? What would be the impact of a different
value of s? How this interacts with other training strategies? We will use the notation backprops to
denote backpropagation implemented with ReLU′(0) = s for any given real number s.1

1Definition in Section 2. This can be coded explicitly or cheaply emulated by backprop0. Indeed, consid-
ering fs : x 7→ ReLU(x) + s(ReLU(−x)− ReLU(x) + x) = ReLU(x), we have backprop0[fs](0) = s.

Preprint.

0 25 50 75 100
Iteration counter

0

1

2

3

W
ei

gh
t d

iff
er

en
ce

 3
2b

its

1 vs 0
0 vs 0

0 25 50 75 100
Iteration counter

10 8

10 7

10 6

M
in

im
al

 a
ct

iv
at

io
n

32
bi

ts

5.0 2.5 0.0 2.5
1e 6

4

2

0

2

4
1e 6

10 8

10 7

10 6

Figure 1: Left: Difference between network parameters (L1 norm), 100 iterations within an epoch.
“0 vs 0” indicates ‖θk,0 − θ̃k,0‖1 where θ̃k,0 is a second run for sanity check, “0 vs 1” indicates
‖θk,0 − θk,1‖1. Center: minimal absolute activation of the hidden layers within the k-th mini-batch,
before ReLU. At iteration 65, the jump on the left coincides with the drop in the center, and an exact
evaluation of ReLU′(0). Right: illustration of the bifurcation zone at iteration k = 65 in a randomly
generated network weight parameter plane (iteration 65 in the center). The quantity represented is
the absolute value of the neuron of the first hidden layer which is found to be exactly zero within the
mini-batch before application of ReLU (exact zeros are represented in white).

What does backpropagation compute? A popular thinking is that the impact of s = ReLU′(0)
should be limited as it concerns the value at a single point. This happens to be exact in theory but for
surprisingly complex reasons related to Whitney stratification (see Section 2 and references therein):

— For a given neural network architecture, backprops outputs a gradient almost everywhere,
independently of the choice of s ∈ R, see [7] and [5] for a detailed treatment of ReLU networks.

— Under proper randomization of the initialization and the step-size of SGD, with probability 1
the value of s has no impact during training with backprops as a gradient surrogate, see [8, 6].

In particular, the set of network parameters such that backprop0 6= backprop1 is negligible and the
vast majority of SGD sequences produced by training neural networks are not impacted by changing
the value of s = ReLU′(0). These results should in principle close the question about the role of
ReLU′(0). Yet, this is not what we observe in practice with the default settings of usual libraries.

A surprising experiment and the bifurcation zone: An empirical observation on MNIST trig-
gered our investigations: consider a fully connected ReLU network, and let (θk,0)k∈N and (θk,1)k∈N
be two training weights sequences obtained using SGD, with the same random initialization and the
same mini-batch sequence but choosing respectively s = 0 and s = 1 in PyTorch [26]. As depicted
in Figure 1 (left), the two sequences differ. A closer look shows that the sudden divergence is related
to what we call the bifurcation zone, i.e., the set S0,1 of weights such that backprop0 6= backprop1.
As mentioned previously this contradicts theory which predicts that the bifurcation zone is met with
null probability during training. This contradiction is due to the precision of floating point opera-
tions and, to a lesser extent, to the size of deep learning problems. Indeed, rounding schemes used
for inexact arithmetics over the reals (which set to zero all values below a certain threshold), may
“thicken” negligible sets. This is precisely what happens in our experiments (Figure 1).

The role of numerical precision: Contrary to numerical linear algebra libraries such as numpy,
which operates by default under 64 bits precision, the default choice in PyTorch is 32 bits precision
(as in TensorFlow or Jax). We thus modulated machine precision to evaluate the importance of
the bifurcation zone in Section 3. In 32 bits, we observed that empirically the zone occupies from
about 10% to 90% of the network weight space. It becomes invisible in 64 bits precision even
for quite large architectures, while, in 16 bits, it systematically fills up the whole space. Although
numerical precision is the primary cause of the apparition of the zone, we identify other factors such
as network size, sample size. Let us mention that low precision neural network training is a topic of
active research [33, 20, 11, 16], see also [28] for an overview. Our investigations are complementary
as we focus on the interplay between nonsmoothness and numerical precision.

Impact on learning: The next natural question is to measure the impact of the choice of s =
ReLU′(0) in machine learning terms. In Section 4, we conduct extensive experiments combin-
ing different architectures (fully connected, VGG, ResNet), datasets (MNIST, SVHN, CIFAR10,

8

ImageNet) and other learning factors (Adam optimizer, batch normalization, dropout). In 32 bits
numerical precision (default in PyTorch or Tensorflow), we consistently observe an effect of choos-
ing s 6= 0. We observe a significant decrease in terms of test accuracy as |s| increases; this can be
explained by chaotic oscillatory behaviors induced during training. In some cases gradients even ex-
plode and learning cannot be achieved. The sensitivity to this effect highly depends on the problem
at hand, in particular, on the network structure and the dataset. On the other hand the choice s = 0
seems to be the most stable. We also observe that both batch normalization [21] and—to a lesser
degree—the Adam optimizer [22] considerably mitigate this effect. All our experiments are done
using PyTorch [26]; we provide the code to generate all figures presented in this manuscript.

One important message is that, even if the default choice s = 0 seems to be the most stable, our
experiments show a counter-intuitive phenomenon that illustrates the interplay between numerical
precision and nonsmoothness, and calls for caution when learning nonsmooth networks.

Outline of the paper: In Section 2 we recall elements of nonsmooth algorithmic differentiation
which are key to understand the mathematics underlying our experiments. Most results were pub-
lished in [7, 8]; we provide more detailed pointers to this literature in Appendix A.1. In Section 3
we describe investigations of the bifurcation zone and factors influencing its importance using fully
connected networks on the MNIST dataset. Neural network training experiments are detailed in
Section 4 with further experimental details and additional experiments reported in Appendix D.

2 On the mathematics of backpropagation for ReLU networks

This section recalls recent advances on the mathematical properties of backpropagation, with in
particular the almost sure absence of impact of ReLU′(0) on the learning phase (assuming exact
arithmetic over the reals). The main mathematical tools are conservative fields developed in [7]; we
provide a simplified overview which is applicable to a wide class of neural networks.

2.1 Empirical risk minimization and backpropagation

Given a training set {(xi, yi)}i=1...N , the supervised training of a neural network f consists in
minimizing the empirical risk:

min
θ∈RP

J(θ) :=
1

N

N∑
i=1

`(f(xi, θ), yi) (1)

where θ ∈ RP are the network’s weight parameters and ` is a loss function. The problem can be
rewritten abstractly, for each i = 1, . . . , N and θ ∈ RP , `(f(xi, θ), yi) = li(θ) where the function
li : RP → R is a composition of the form

li = gi,M ◦ gi,M−1 ◦ . . . ◦ gi,1 (2)

where for each j = 1, . . . ,M , the function gi,j is locally Lipschitz with appropriate input and output
dimensions. A concrete example of what the functions gi,j look like is given in Appendix A.2 in
the special case of fully connected ReLU networks. Furthermore, we associate with each gi,j a
generalized Jacobian Ji,j which is such that Ji,j(w) = Jacgi,j (w) whenever gi,j is differentiable at
w and Jac denotes the usual Jacobian. The value of Ji,j at the nondifferentiability loci of gi,j can
be arbitrary for the moment. The backpropagation algorithm is an automatized implementation of
the rules of differential calculus: for each i = 1, . . . , N , we have

backprop li(θ) = Ji,M (gi,M−1 ◦ . . . ◦ gi,1(θ))× Ji,M−1 (gi,M−2 ◦ . . . ◦ gi,1(θ))× . . .× Ji,1(θ).
(3)

Famous autograd libraries such as PyTorch [26] or TensorFlow [1] implement dictionaries of func-
tions g with their corresponding generalized Jacobians J , as well as efficient numerical implemen-
tation of the quantities defined in (3).

2.2 ReLU networks training

Our main example is based on the function ReLU: R→ R defined by ReLU(x) = max{x, 0}. It is
differentiable save at the origin and satisfies ReLU′(x) = 0 for x < 0 and ReLU′(x) = 1 for x > 0.

9

The value of the derivative at x = 0 could be arbitrary in [0, 1] as we have ∂ReLU(0) = [0, 1], where
∂ denotes the subgradient from convex analysis. Let us insist on the fact that any value within [0, 1]
has a variational meaning. For example PyTorch and TensorFlow use ReLU′(0) = 0.

Throughout the paper, and following the lines of [8], we say that a function g : Rp → Rq is
elementary log-exp if it can be described by a finite compositional expression involving the basic
operations +,−,×, / as well as the exponential and logarithm functions, inside their domains of
definition. Examples include the logistic loss log(1 + e−x) on R, the multivariate Gaussian density
(2π)−K/2 exp(−∑K

k=1 x
2
k/2) on RK , and the softmax function

(
exi/

∑K
k=1 e

xk
)
1≤i≤K on RK .

The expressions x3/x2 and exp(−1/x2) do not fit this definition because evaluation at x = 0
cannot be defined by the formula. Roughly speaking a computer evaluating an elementary log-exp
expression should not output any NaN error for any input.

Definition 1 (ReLU network training). Assume that in (1), the function ` is elementary log-exp, the
network f has an arbitrary structure and the functions gi,j in (2) are either elementary log-exp or
consist in applying the ReLU function to some coordinates of their input. We then call the problem
in (1) a ReLU network training problem. Furthermore, for any s ∈ R, we denote by backprops the
quantity defined in (3) when ReLU′(0) = s for all ReLU functions involved in the composition (2).

Other nonsmooth activation functions: The ReLU operation actually allows to express many
other types of nonsmoothness such as absolute values, maxima, minima, quantiles (med for me-
dian) or soft-thresholding (st). For any x, y, z ∈ R, we indeed have |x| = ReLU(2x) −
x, 2 max(x, y) = (|x − y| + x + y), min(x, y) = −max(−x,−y), med(x, y, z) =
min(max(x, y),max(x, z),max(y, z)), st(x) = ReLU(x− 1)− ReLU(−x− 1).

Definition 1 is thus much more general than it may seem since it allows, for example, to express
convolutional neural networks with max-pooling layers such as VGG or ResNet architectures which
correspond to the models considered in the experimental section (although we do not re-program
pooling using ReLU). The following theorem is due to [7], with an alternative version in [8].

Theorem 1 (Backprop returns a gradient a.e.). Consider a ReLU network training problem (1) as
in Definition 1 and T ≥ 1. Define S ⊂ RP as the complement of the set{
θ ∈ RP , li differentiable at θ, backpropsli(θ) = ∇li(θ), ∀i ∈ {1, . . . , N}, s ∈ [−T, T]

}
.

Then S is contained in a finite union of embedded differentiable manifolds of dimension at most
P − 1 (and in particular has Lebesgue measure zero).

Although this theorem looks natural, this is a nontrivial result about the backpropagation algorithm
that led to the introduction of conservative fields [7]. It implies that all choices for s = ReLU′(0) in
[0, 1] = ∂ReLU(0) are essentially equivalent modulo a negligible set S. Perhaps more surprisingly,
s can be chosen arbitrarily in R without breaking this essential property of backprop. The set S is
called the bifurcation zone throughout the manuscript. For ReLU network training problems, the
bifurcation zone is a Lebesgue zero set and is actually contained locally in a finite union of smooth
objects of dimension strictly smaller than the ambient dimension. This geometric result reveals a
surprising link between backpropagation and Whitney stratifications, as described in [7, 8]. In any
case the bifurcation zone is completely negligible. Note that the same result holds if we allow each
different call to the ReLU function to use different values for ReLU′(0).

2.3 ReLU network training with SGD

Let (Bk)k∈N denote a sequence of mini-batches with sizes |Bk| ⊂ {1, . . . , N} for all k and αk > 0
the learning rate. Given initial weights θ0 ∈ RP and any parameter s ∈ R, the SGD training
procedure of f consists in applying the recursion

θk+1,s = θk,s − γ
αk
|Bk|

∑
n∈Bk

backprops[`(f(xn, θk,s), yn)], (4)

where γ > 0 is a step-size parameter. Note that we explicitly wrote the dependency of the sequence
in s = ReLU′(0). According to Theorem 1 if the initialization θ0 is chosen randomly, say, uniformly
in a ball, a hypercube, or with iid Gaussian entries, then with probability 1, θ0 does not fall in the
bifurcation zone S. Intuitively, since S is negligible, the odds that one of the iterates produced by the

10

algorithm fall on S are very low. As a consequence, varying s in the recursion (4) does not modify
the sequence. This rationale is actually true for almost all values of γ. This provides a rigorous
statement of the idea that the choice of ReLU′(0) “does not affect” neural network training. The
following result is based on arguments developed in [8], see also [6] in a probabilistic context.
Theorem 2 (ReLU′(0) does not impact training with probability 1). Consider a ReLU network
training problem as in Definition 1. Let (Bk)k∈N be a sequence of mini-batches with |Bk| ⊂
{1, . . . , N} for all k and αk > 0 the associated learning rate parameter. Choose θ0 uniformly at
random in a hypercube and γ uniformly in a bounded interval I ⊂ R+. Let s ∈ R, set θ0,s = θ0,
and consider the recursion given in (4). Then, with probability one, for all k ∈ N, θk,s = θk,0.

3 Surprising experiments on a simple feedforward network

3.1 ReLU′(0) has an impact

Even though the ReLU activation function is non-differentiable at 0, autograd libraries such as
PyTorch [26] or TensorFlow [1] implement its derivative with ReLU′(0) = 0. What happens if
one chooses ReLU′(0) = 1? The popular answer to this question is that it should have no effect.
Theorems 1 and 2 provide a formal justification which is far from being trivial.

A 32 bits MNIST experiment We ran a simple experiment to confirm this answer. We initialized
two fully connected neural networks f0 and f1 of size 784×2000×128×10 with the same weights
θ0,0 = θ0,1 ∈ RP which are chosen at random. Using the MNIST dataset [24], we trained f0 and
f1 with the same sequence of mini-batches (Bk)k∈N (minibatch size 128), using the recursion in (4)
for s = 0 and s = 1 and with a fixed αk = 1, and γ chosen uniformly at random in [0.01, 0.012].
At each iteration k, we computed the sum ‖θk,0 − θk,1‖1 of the absolute differences between the
coordinates of θk,0 and θk,1. As a sanity check, we actually computed θk,0 a second time, denoting
this by θ̃k,0, using a third network to control for sources of divergence in our implementation. Results
are reported in Figure 1. The experiment was run using PyTorch [26] on a CPU.

ReLU’(0) has an impact First we observe no difference between θk,0 and θ̃k,0, which shows that
we have controlled all possible sources of divergence in PyTorch. Second, while no differences
between θ0,0 and θ0,1 is expected (Theorem 2), we observe a sudden deviation of ‖θk,0 − θk,1‖1 at
iteration 65 which then increases in a smooth way. The deviation is sudden as the norm is exactly
zero before iteration 65 and jumps above one after. Therefore this cannot be explained by an accu-
mulation of small rounding errors throughout iterations, as this would produce a smooth divergence
starting at the first iteration. So this suggests that there is a special event at iteration 65.

The center part of Figure 1 displays the minimal absolute value of neurons of the first hidden layer
evaluated on the current mini-batch, before the application of ReLU. It turns out that at iteration
65, this minimal value is exactly 0, resulting in a drop in the center of Figure 1. This means that
the divergence is actually due to an iterate of the sequence falling exactly on the bifurcation zone.
According to Theorem 2, this event is so exceptional that it should never been seen.

Practice and Theory: Numerical precision vs Genericity This contradiction can be solved as
follows: the minimal absolute value in Figure 1 oscillates between 10−6 and 10−8 which is roughly
the value of machine precision in 32 bits float arithmetic. This machine precision value is of the
order 10−16 in 64 bits floating arithmetic which is orders of magnitude smaller than the typical
value represented in Figure 1. And indeed, performing the same experiment in 64 bits precision,
the divergence of ‖θk,0 − θk,1‖1 disappears and the algorithm can actually be run for many epochs
without any divergence between the two sequences. This is represented in Figure 7 in Appendix B.
We also report similar results using ReLU6 [19] in place of ReLU on a similar network.

3.2 Relative volume of the bifurcation zone and relative gradient variation

The previous experiment suggests that mini-batch SGD algorithm (4) crossed the bifurcation zone:

S01 = {θ ∈ RP : ∃i ∈ {1, . . . , N}, backprop0[li](θ) 6= backprop1[li](θ)} ⊂ S. (5)
This unlikely phenomenon is due to finite numerical precision arithmetic which thickens the neg-
ligible set S01 in proportion to the machine precision threshold. This is illustrated on the right of

11

Figure 1, which represents the bifurcation zone at iteration 65 in a randomly generated hyperplane
(uniformly among 2 dimensional hyperplanes) centered around the weight parameters which gener-
ated the bifurcation in the previous experiment (evaluation on the same mini-batch). The white area
corresponds to some entries being exactly zero, i.e., below the 32 bits machine precision threshold,
before application of ReLU. On the other hand, in 64 bits precision, the same representation is
much smoother and does not contain exact zeros (see Figure 7 in Appendix B). This confirms that
the level of floating point arithmetic precision explains the observed divergence. We now estimate
the relative volume of this bifurcation zone by Monte Carlo sampling (see Appendix C for details).
All experiments are performed using PyTorch [26] on GPU.

Experimental procedure – weight randomization: We randomly generate a set of parameters
{θj}Mj=1, with M = 1000, for a fully connected network architecture f composed of L hidden lay-
ers. Given two consecutive layers, respectively composed of m and m′ neurons, the weights of the
corresponding affine transform are drawn independently, uniformly in [−α, α] where α =

√
6/
√
m.

This is the default weight initialization scheme in PyTorch (Kaiming-Uniform [17]). Given this
sample of parameters, iterating on the whole MNIST dataset, we approximate the proportion of θj
for which backprop0(li)(θj) 6= backprop1(li)(θj) for some i, for different networks and under
different conditions (see Appendix C for details).

Impact of the floating-point precision: Using a fixed architecture of three hidden layers of 256
neurons each, we empirically measured the relative volume of S01 using the above experimental
procedure, varying the numerical precision. Table 1 reports the obtained estimates. As shown in
Table 1, line 1, at 16 bits floating-point precision, all drawn weights {θi}Mi=1 fall within S01. In
sharp contrast, when using a 64 bits precision, none of the sampled weights belong to S01. This
proportion is 40% in 32 bits precision. For the rare impacted mini-batches (Table 1 line 2), the
relative change in norm is above a factor 20, higher in 16 bits precision (Table 1 line 3). These results
confirm that the floating-point arithmetic precision is key in explaining the impact of ReLU′(0)
during backpropagation, impacting both frequency and magnitude of the differences.

Floating-point precision 16 bits 32 bits 64 bits
Proportion of {θi}Mi=1 in S (CI ± 5%) 100% 40% 0%
Proportion of impacted mini-batches (CI ± 13%) 0.05% 0.0002% 0%
Relative L2 difference for impacted mini-batches
(1st quartile, median, 3rd quartile) (98, 117, 137) (19, 25, 47) (0, 0, 0)

Table 1: Impact of S according to the floating-point precision on a fully connected neural network
(784×256×256×256×10) on MNIST. First line: proportion of drawn weights θi such that at least
one mini-batch results in difference between backprop0 and backprop1. CI stands for Confidence
Interval with 5% risk (Hoeffding CI, see Appendix C). Second line: overall proportion of mini-
batch-weight vector pairs causing a difference between backprop0 and backprop1 (McDiarmid CI,
see Appendix C). Third line: distribution of ‖backprop0 − backprop1‖2/‖backprop0‖2 for the
affected mini-batch-weight vector pairs.

Impact of sample and mini-batch size: Given a training set {(xn, yn)}n=1...N and a random
variable θ ∈ RP with distribution Pθ, we estimate the probability that θ ∈ S01 ⊂ S. Intuitively, this
probability should increase with sample size N . We perform this estimation for a fixed architecture
of 4 hidden layers composed of 256 neurons each while varying the sample size. Results are reported
in Figure 2. For both the 16 and the 32 bits floating-point precisions, our estimation indeed increases
with the sample size while we do not find any sampled weights in S01 in 64 bits precision. We also
found that the influence of mini-batch size is not significative.

Impact of network size: To evaluate the impact of the network size, we carried out a similar
Monte Carlo experiment, varying the depth and width of the network. Firstly, we fixed the number
of hidden layers to 3. Following the same experimental procedure, we empirically estimated the
relative volume of S01, varying the width of the hidden layers. The results, reported in Figure 2,
show that increasing the number of neurons by layer increases the probability to find a random θ ∼
Pθ in S01 for both 16 and 32 floating-point precision. In 64 bits, even with the largest width tested
(1024 neurons), no sampled weight parameter is found in S01. Similarly we repeated the experiment
varying the network depth and fixing, this time, the width of the layers to 256 neurons. Anew, the

12

Sample size (1000s) Number of neurons Number of layers Batch size

1 10 20 30 40 50 60 16 64 256 512 1024 1 2 3 5 6 16 64 256 512 1024

0

20

40

60

80

100

P
ro

po
rt

io
n

% Precision

16

32

64

Figure 2: Influence of different size parameters on the proportion of drawn weight vector θi such that
at least one mini-batch results in difference between backprop0 and backprop1 on MNIST dataset.
Confidence interval at risk level 5% results in a variation of ±5% for all represented proportions.
First: 4 hidden layers with 256 neurons and batch size 256, varying the size of the training set.
Second: 3 hidden layer network with mini-batch size 256, varying the number of neuron per layer.
Third: 256 neurons per layer and mini-batch size 256, varying the number of layers. Fourth: 3
hidden layers with 256 neurons per layer, varying mini-batch size.

results, reported in Figure 2, show that increasing the network depth increases the probability that
θ ∼ Pθ belongs to S01 for both 16 and 32 bits floating-point precision while this probability is zero
in 64 bits precision. This shows that the size of the network, both in terms of number of layers and
size of layers is positively related to the effect of the choice of s in backpropagation. On the other
hand, the fact that neither the network depth, width, or the number of samples impact the 64 bits
case suggests that, within our framework, numerical precision is the primary factor of deviation.

4 Consequences for learning

4.1 Benchmarks and implementation

Datasets and networks We further investigate the effect of the phenomenon described in Section 3
in terms of learning using the CIFAR10 dataset [23] and the VGG11 architecture [31]. To confirm
our findings in alternative settings, we also use the MNIST [24], SVHN [25] and ImageNet [12]
datasets, fully connected networks (3 hidden layers of size 2048), and the ResNet18 and ResNet50
architectures [18]. Additional details on the different architectures and datasets are found in Ap-
pendix D.1. By default, unless stated otherwise, we use the SGD optimizer. We also investigated
the effect of batch normalization [21], dropout [32], the Adam optimizer [22] as well as numerical
precision. All the experiments in this section are run in PyTorch [26] on GPU. For each training
experiment presented in this section (except ImageNet experiments), we use the optuna library [3]
to tune learning rates for each experimental condition; see also Appendix D.2.

4.2 Effect on training and test errors

We first consider training a VGG11 architecture on CIFAR10 using the SGD optimizer. For differ-
ent values of ReLU′(0), we train this network ten times with random initializations under 32 bits
arithmetic precision. The results are depicted in Figure 3. Without batch normalization, varying the
value of ReLU′(0) beyond a magnitude of 0.1 has a detrimental effect on the test accuracy, resulting
in a concave shaped curve with maximum around ReLU′(0) = 0. On the other hand, the decrease of
the training loss with the number of epochs suggests that choosing ReLU′(0) 6= 0 induces jiggling
behaviors with possible sudden jumps during training. Note that the choice ReLU′(0) = 0 leads to a
smooth decrease and that the magnitude of the jumps for other values is related to the magnitude of
the chosen value. This is consistent with the interpretation that changing the value of ReLU′(0) has
an excitatory effect on training. We observed qualitatively similar behaviors for a fully connected
network on MNIST and a ResNet18 on CIFAR10 (Appendix D). Sensitivity to the magnitude of
ReLU′(0) depends on the network architecture: our fully connected network on MNIST is less sen-
sitive to this value than VGG11 and ResNet18. The latter shows a very high sensitivity since for
values above 0.2, training becomes very unstable and almost impossible.

13

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
ReLU'(0)

0.82

0.84

0.86

0.88

0.90

0.92

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
lo

ss

ReLU'(0)
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

Figure 3: Training a VGG11 network on CIFAR10 with SGD. Left: test accuracy with and without
batch normalization. Right: training loss without batchnorm. For each experiment we performed
10 random initializations, depicted by the boxplots on the left and the filled contours on the right
(standard deviation).

These experiments complement the preliminary results obtained in Section 3. In particular choosing
different values for ReLU′(0) has an effect, it induces a chaotic behavior during training which
affects test accuracy. The default choice ReLU′(0) = 0 seems to provide the best performances.

To conclude, we conducted four training experiments for ResNet50 on the ImageNet dataset [12]
using the SGD optimizer. These were conducted with fixed learning rate, contrary to results reported
above. We observe that switching from ReLU′(0) = 0 to 1 results in a massive drop from around
75% to 63% or 55% for two runs.

4.3 Mitigating factors: numerical precision, batch-normalization and Adam

We analyze below the combined effects of the variations of ReLU′(0) with numerical precision or
classical reconditioning methods: Adam, batch-normalization and dropout.

Batch-normalization: As represented in Figure 3, batch normalization [21] not only allows to
attain higher test accuracy, but it also completely filters out the effect of the choice of the value of
ReLU′(0), resulting in a flat shaped curve for test accuracy. This is consistent with what we observed
on the training loss (Figure 12 in Appendix D.3) for which different choices of ReLU′(0) lead to
indistinguishable training loss curves. This experiment suggests that batch normalization has a
significant impact in reducing the effect of the choice of ReLU′(0). This observation was confirmed
with a very similar behavior on the MNIST dataset with a fully connected network (Figure 9 in
Appendix D.2). We could observe a similar effect on CIFAR 10 using a ResNet18 architecture (see
Appendix D.5), however in this case the value of ReLU′(0) still has a significative impact on test
error, the ResNet18 architecture being much more sensitive.

Using the Adam optimizer: The Adam optimizer [22] is among the most popular algorithms for
neural network training; it combines adaptive step-size strategies with momentum. Adaptive step-
size acts as diagonal preconditioners for gradient steps [22, 13] and therefore can be seen as having
an effect on the loss landscape of neural network training problems. We trained a VGG11 network
on both CIFAR 10 and SVHN using the Adam optimizer. The results are presented in Figure 4.
We observe a qualitatively similar behavior as in the experiments of Section 4.2 but a much lower
sensitivity to the magnitude of ReLU′(0). In other words, the use of the Adam optimizer mitigates
the effect of this choice, both in terms of test errors and by buffering the magnitude of the sometimes
chaotic effect induced on training loss optimization (Figure 13 in Appendix D.3).

Increasing numerical precision: As shown in Appendix D.3, using 64 bits floating precision on
VGG11 with CIFAR10 cancels out the effect of ReLU′(0) = 1, in coherence with Section 3. More
specifically ReLU′(0) = 1 in 64 bits precision obtains similar performances as ReLU′(0) = 0 in
32 bits precision. Furthermore, the numerical precision has barely any effect when ReLU′(0) = 0.
Finally, we remark that in 16 bits with ReLU′(0) = 1, training is extremely unstable so that we
were not able to train the network in this setting.

14

0.0 2.0 4.0 6.0 8.0 10.0 50.0
ReLU'(0)

0.75

0.80

0.85

0.90

Te
st

 a
cc

ur
ac

y
Batch norm

False
True

Figure 4: Similar to Fig.3, with VGG11 and Adam optimizer, on CIFAR 10 (left) and SVHN (right).

0 5000 10000
sample size

0.0

0.5

1.0

P(
S 0

1)

CIFAR-VGG11

Precision
32b
16b

0 5000 10000
sample size

0.0

0.5

1.0

P(
S 0

1)

CIFAR-VGG11-BatchNorm

Precision
32 b
16 b

0 200000 400000
sample size

0.0

0.5

1.0

P(
S 0

1)

SVHN-VGG11-BatchNorm

Precision
64 b
32 b

Figure 5: Monte Carlo estimation of relative volume on CIFAR10 and SVHN with VGG11 network

Combination with dropout: Dropout [32] is another algorithmic process to regularize deep neu-
ral networks. We investigated its effect when combined with varying choices of ReLU′(0). We used
a fully connected neural network trained on the MNIST dataset with different values of dropout
probability. The results are reported in Figure 11 in Appendix D.2. We did not observe any joint
effect of dropout probability and magnitude of ReLU′(0) in this context.

4.4 Back to the bifurcation zone: more neural nets and the effects of batch-norm

The training experiments are complemented by a similar Monte Carlo estimation of the relative
volume of the bifurcation zone as performed in Section 3 (same experimental setting). To avoid
random outputs we force the GPU to compute convolutions deterministically. Examples of results
are given in Figure 5. Additional results on fully connected network with MNIST and ResNet18 on
CIFAR10 are shown in Section D. We consistently observe a high probability of finding an example
on the bifurcation zone for large sample sizes. Several comments are in order.

Numerical precision: Numerical precision is the major factor in the thickening of the bifurcation
zone. In comparison to 32 bits experiments, 16 bits precision dramatically increases its relative
importance. We also considered 64 bits precision on SVHN, a rather large dataset. Due to the com-
putational cost, we only drew 40 random weights and observed no bifurcation on any of the terms
of the loss whatsoever. This is consistent with the experiments conducted in Section 3 and suggests
that, within our framework, 64 bit precision is the main mitigating factor for our observations.

Batch normalization: In all our relative volume estimation experiments, we observe that batch
normalization has a very significant effect on the proportion of examples found in the bifurcation
zone. In 32 bits precision, the relative size of this zone increases with the addition of batch nor-
malization, similar observations were made in all experiments presented in Appendix D. This is a
counter-intuitive behavior as we have observed that batch normalization increases test accuracy and
mitigates the effect of ReLU′(0). Similarly in 16 bits precision, the addition of batch normalization
seems to actually decrease the size of the bifurcation zone. Batch normalization does not result in the
same qualitative effect depending on arithmetic precision. These observations open many questions
which will be the topic of future research.

4.5 Total number of ReLU calls during training

We consider the MNIST dataset with a fully connected ReLU network, varying the number of layers
in 1, . . . , 6 and neuron per layers in 16, 64, 256, 512. For 16 and 32 bits precisions, we perform 100

15

0 50000 100000 150000 200000 250000 300000
Total number of Relu calls

10 4

10 3

Ra
tio

 o
f R

el
u(

0)
 c

al
ls

Ratio of zeros by Relu calls

precision
16
32

Figure 6: Proportion of ReLU(0) calls by total number of ReLU calls after 100 epochs for ReLU
networks on MNIST with number of layers in 1, . . . , 6 and neuron per layers in 16, 64, 256, 512.

epochs and proportion of ReLU(0) over all ReLU calls during training. Figure 6 suggests that,
for a given precision, the number of times the bifurcation zone is met is roughly proportional to
the total number of ReLU calls during training, independently of the architecture used (number
of layers, neurons per layers). This suggests that the total number of ReLU calls during training
is an important factor in understanding the bifurcation phenomenon. Broader investigation of this
conjecture will be a matter of future work.

5 Conclusions and future work

The starting point of our work was to determine if the choice of the value s = ReLU′(0) affects
neural network training. Theory tells that this choice should have negligible effect. Performing a
simple learning experiment, we discovered that this is false in the real world and the first purpose of
this paper is to account for this empirical evidence. This contradiction between theory and practice
is due to finite floating point arithmetic precision while idealized networks are analyzed theoreti-
cally within a model of exact arithmetic on the field of real numbers. Owing to the size of deep
learning problems, rounding errors due to numerical precision occur at a relatively high frequency,
and virtually all the time for large architectures and datasets under 32 bit arithmetic precision (the
default choice for TensorFlow and PyTorch libraries).

Our second goal was to investigate the impact of the choice of s = ReLU′(0) in machine learning
terms. In 32 bits precision it has an effect on test accuracy which seems to be the result of inducing a
chaotic behavior in the course of empirical risk minimization. This was observed consistently in all
our experiments. However we could not identify a systematic quantitative description of this effect;
it highly depends on the dataset at hand, the network structure as well as other learning parameters
such as the presence of batch normalization and the use of different optimizers. Our experiments
illustrate this diversity. We observe an interesting robustness property of batch normalization and
the Adam optimizer, as well as a high sensitivity to the network structure.

Overall, the goal of this work is to draw attention to an overlooked factor in machine learning and
neural networks: nonsmoothness. The ReLU activation is probably the most widely used nonlinear-
ity in this context, yet its nondifferentiability is mostly ignored. We highlight the fact that the default
choice ReLU′(0) = 0 seems to be the most robust, while different choices could potentially lead to
instabilities. For a general nonsmooth nonlinearity, it is not clear a priori which choice would be
the most robust, if any, and our investigation underlines the potential importance of this question.
Our research opens new directions regarding the impact of numerical precision on neural network
training, its interplay with nonsmoothness and its combined effect with other learning factors, such
as network architecture, batch normalization or optimizers. The main idea is that mathematically
negligible factors are not necessarily computationally negligible.

Acknowledgments and Disclosure of Funding

The authors thank anonymous referees for constructive suggestions which greatly improved the pa-
per. The authors acknowledge the support of the DEEL project, the AI Interdisciplinary Institute
ANITI funding, through the French “Investing for the Future – PIA3” program under the Grant
agreement ANR-19-PI3A-0004, Air Force Office of Scientific Research, Air Force Material Com-
mand, USAF, under grant numbers FA9550-19-1-7026, FA9550-18-1-0226, and ANR MaSDOL
19-CE23-0017-01. J. Bolte also acknowledges the support of ANR Chess, grant ANR-17-EURE-
0010 and TSE-P.

16

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasude-
van, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16), pages 265–283,
2016.

[3] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyper-
parameter optimization framework. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 2623–2631, 2019.

[4] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in
machine learning: a survey. Journal of machine learning research, 18, 2018.

[5] J. Berner, D. Elbrächter, P. Grohs, and A. Jentzen. Towards a regularity theory for relu
networks–chain rule and global error estimates. In 2019 13th International conference on
Sampling Theory and Applications (SampTA), pages 1–5. IEEE, 2019.

[6] P. Bianchi, W. Hachem, and S. Schechtman. Convergence of constant step stochastic gradient
descent for non-smooth non-convex functions. arXiv preprint arXiv:2005.08513, 2020.

[7] J. Bolte and E. Pauwels. Conservative set valued fields, automatic differentiation, stochastic
gradient methods and deep learning. Mathematical Programming, pages 1–33, 2020.

[8] J. Bolte and E. Pauwels. A mathematical model for automatic differentiation in machine learn-
ing. In Advances in Neural Information Processing Systems, volume 33, 2020.

[9] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
Siam Review, 60(2):223–311, 2018.

[10] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transfor-
mations of Python+NumPy programs, 2018.

[11] M. Courbariaux, Y. Bengio, and J.-P. David. Training deep neural networks with low precision
multiplications. In Proceedings of the International Conference on Learning Representations
(ICLR), 2015.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierar-
chical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

[13] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

[14] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press Cambridge, 2016.
[15] A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorithmic

differentiation. SIAM, 2008.
[16] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning with limited nu-

merical precision. In International conference on machine learning, pages 1737–1746. PMLR,
2015.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034, 2015.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, 2016.

[19] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861, 2017.

17

[20] K. Hwang and W. Sung. Fixed-point feedforward deep neural network design using weights+
1, 0, and- 1. In 2014 IEEE Workshop on Signal Processing Systems (SiPS), pages 1–6. IEEE,
2014.

[21] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pages 448–456.
PMLR, 2015.

[22] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, Conference Track Proceedings, 2015.

[23] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for advanced research).
URL http://www. cs. toronto. edu/kriz/cifar. html, 5, 2010.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 1998.

[25] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in nat-
ural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning 2011, 2011.

[26] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[27] R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317. Springer Science &
Business Media, 2009.

[28] A. Rodriguez, E. Segal, E. Meiri, E. Fomenko, Y. J. Kim, H. Shen, and B. Ziv. Lower numerical
precision deep learning inference and training. Intel White Paper, 3:1–19, 2018.

[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

[30] S. Scholtes. Introduction to piecewise differentiable equations. Springer Science & Business
Media, 2012.

[31] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-
nition. In International Conference on Learning Representations, 2015.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[33] V. Vanhoucke, A. Senior, and M. Z. Mao. Improving the speed of neural networks on cpus. In
Deep Learning and Unsupervised Feature Learning NIPS Workshop., 2011.

18

A Mathematical details for Section 2

In Section A.1, we provide some elements of proof for Theorems 1 and 2. In Section A.2, we explain
how to check the assumptions of Definition 1 by describing the special case of fully connected ReLU
networks.

A.1 Elements of proof of Theorems 1 and 2

The proof arguments were described in [7, 8]. We simply concentrate on justifying how the results
described in these works apply to Definition 1 and point the relevant results leading to Theorems 1
and 2.

It can be inferred from Definition 1 that all elements in the definition of a ReLU network training
problem are piecewise smooth, where each piece is an elementary log − exp function. We refer
the reader to [30] for an introduction to piecewise smoothness and recent use of such notions in
the context of algorithmic differentiation in [8]. Let us first argue that the results of [8] apply to
Definition 1.

• We start with an explicit selection representation of backprops ReLU. Fix any s ∈ R and
consider the three functions f1 : x 7→ 0, f2 : x 7→ x and f3 7→ sx with the selection index
t(x) = 1 if x < 0, 2 if x > 0 and 3 if x = 0. We have for all x

ft(x) = ReLU(x)

Furthermore, differentiating the active selection as in [8, Definition 4] we have

∇̂tf =


0 if x < 0

1 if x > 0

s if x = 0

and the right hand side is precisely the definition of backprops ReLU. This shows that we
have a selection derivative as used in [8].

• Given a ReLU network training problem as in Definition 1, we have the following property.
– All elements in the ReLU network training problem are piecewise elementary log −
exp. That is each piece can be identified with an elementary log − exp function. Fur-
thermore the selection process describing the choice of active function can similarly
be described by elementary log − exp functions with equalities and inequalities.

Therefore, we meet the definition of log−exp selection function in [8] and all corresponding results
apply to any ReLU network training problem as given in Definition 1. Fix T ≥ 1, getting back
to problem (1), using [8, Definition 5] and the selection derivative described above, for each i =
1, . . . , N , there is a conservative field Di : RP ⇒ RP (definition of conservativity is given in [7]
and largely described in [8]) such that for any s ∈ [0, T], and θ ∈ RP

backpropsli(θ) ∈ Di(θ).

Using [7, Corollary 5] we have Di(θ) = {∇li(θ)} for all θ outside of a finite union of differentiable
manifolds of dimension at most P−1. This leads to Theorem 1 for s ∈ [0, T]. Theorem 2 is deduced
from the proof of [8, Theorem 7] (last paragraph of the proof) that with probability 1, for all k ∈ N,
for all n = 1, . . . , N and s ∈ [0, T]

backprops[`(f(xn, θk,s), yn)] = ∇θ`(f(xn, θk,s), yn)

since we have θ0,s = θ0 for all s, the generated sequence in (4) does not depend on s ∈ [0, T]. This
is Theorem 2 for s ∈ [0, T], note that a similar probabilistic argument was developped in [6]. We
may repeat the same arguments fixing T < 0, so that both results actually hold for all s ∈ [−T, T].

A.2 The special case of fully connected ReLU networks

The functions gi,j in the composition (2) can be described explicitly for any given neural network
architecture. For the sake of clarity, we detail below the well-known case of fully connected ReLU
networks for multiclass classification. We denote by K ≥ 2 the total number of classes.

19

Consider any fully connected ReLU network architecture of depth H , with the softmax function
applied on the last layer. We denote by dh the size of each layer h = 1, . . . ,H , and by d0 the input
dimension. In particular dH = K equals the number of classes. All the functions fθ : Rd0 → RdH
represented by the network when varying the weight parameters θ ∈ RP are of the form:

fθ(x) = f(x, θ) = softmax ◦AH ◦ σ ◦AH−1 ◦ · · ·σ ◦A1(x) ,

where each mapping Ah : Rdh−1 → Rdh is affine (i.e., of the form Ah(z) = Whz + bh), where
σ(u) =

(
ReLU(ui)

)
i

applies the ReLU function component-wise to any vector u, and where
softmax(z) =

(
ezi/

∑dH
k=1 e

zk
)
1≤i≤dH for any z ∈ RdH . The weight parameters θ ∈ RP cor-

respond to stacking all weight matrices Wh and biases bh in a single vector (in particular, we
have here P =

∑H
h=1 dh(dh−1 + 1)). In the sequel, we set Ph =

∑H
j=h dj(dj−1 + 1) and write

θh:H ∈ RPh for the vector of all parameters involved from layer h to the last layer H . We also write
concatenate(x1, . . . , xr) to denote the vector obtained by concatenating any r vectors x1, . . . , xr.
In particular, we have θh:H = concatenate(Wh, bh, θh+1:H).

Note that the decomposition above took x as input, not θ. We now explain how to construct the gi,j
in (2). For each i = 1, . . . , N , the function θ ∈ RP 7→ f(xi, θ) can be decomposed as

f(xi, θ) = softmax ◦ gi,2H−1 ◦ . . . ◦ gi,2 ◦ gi,1(θ) , (6)

where, roughly speaking, the gi,2h−1 apply the affine mapping Ah to the output zh−1 ∈ Rdh−1 of
layer h− 1 and pass forward all parameters θh+1:H ∈ RPh+1 to be used in the next layers, while the
gi,2h apply the ReLU function to the first dh coordinates. More formally, gi,1 : RP → Rd1+P2 is
given by

gi,1(θ) = concatenate(W1xi + b1, θ2:H) ,

gi,2 : Rd1+P2 → Rd1+P2 maps any (z1, θ2:H) ∈ Rd1 × RP2 to

gi,2(z1, θ2:H) = concatenate
(
σ(z1), θ2:H

)
and, for each layer h = 2, . . . ,H , the functions gi,2h−1 : Rdh−1+Ph → Rdh+Ph+1 and gi,2h :
Rdh+Ph+1 → Rdh+Ph+1 are given by

gi,2h−1(zh−1, θh:H) = concatenate(Whzh−1 + bh, θh+1:H)

and
gi,2h(zh, θh+1:H) = concatenate

(
σ(zh), θh+1:H

)
(for h < H).

Consider now the cross-entropy loss function ` : ∆(K) × {1, . . . ,K} → R+ which compares any
probability vector q ∈ ∆(K) of size K (with non-zero coordinates qi > 0) with any true label
y ∈ {1, . . . ,K}, given by

`(q, y) = − log q(y) .

Finally, using (6), the functions li : RP → R appearing in (1)-(2) can be decomposed as

li(θ) = `
(
f(xi, θ), yi

)
=
(
q ∈ ∆(K) 7→ `(q, yi)

)
◦ softmax ◦ gi,2H−1 ◦ . . . ◦ gi,2 ◦ gi,1(θ) .

The last decomposition satisfies (2) with M = 2H + 1. Since ` is the cross-entropy loss func-
tion, all M functions involved in this decomposition are either elementary log-exp or consist in
applying ReLU to some coordinates of their input, and they are all locally Lipschitz, as required in
Definition 1. This provides an explicit description of fully connected ReLU network and a similar
description can be done for all architectures studied in this work.

B First experiment in 64 bits precision, and using a different activation

The code and results associated with all experiments presented in this work are publicly available
here: https://github.com/deel-ai/relu-prime.

20

https://github.com/deel-ai/relu-prime

0 25 50 75 100
Iteration counter

0.050

0.025

0.000

0.025

0.050

W
ei

gh
t d

iff
er

en
ce

 6
4b

its

1 vs 0
0 vs 0

0 25 50 75 100
Iteration counter

10 8

10 7

10 6

M
in

im
al

 a
ct

iv
at

io
n

64
bi

ts

5.0 2.5 0.0 2.5
1e 6

4

2

0

2

4
1e 6

10 9

10 8

10 7

10 6

Figure 7: Same experiment as Figure 1 in 64 bits precision. Left: Difference between network
parameters (L1 norm), 100 iterations within an epoch. “0 vs 0” indicates ‖θk,0 − θ̃k,0‖1 where
θ̃k,0 is a second run for sanity check, “0 vs 1” indicates ‖θk,0 − θk,1‖1. Center: minimal absolute
activation of the hidden layers within the k-th mini-batch, before ReLU. At iteration 65, there is no
jump on the left and no drop in the center anymore. Right: illustration of the bifurcation zone at
iteration k = 65 (same weight parameter plane as in Figure 1, but in 64 bits precision). The quantity
represented is the absolute value of the neuron of the first hidden layer which was exactly zero in 32
bits (see Figure 1) before application of ReLU. Exact zeros are represented in white.

64 bits precision. We reproduce the same bifurcation experiment as in Section 3 under 64 bits
arithmetic precision. The results are represented in Figure 7 which is to be compared with its 32
bits counterpart in Figure 1. As mentioned in the main text, the bifurcation does not occur anymore.
Indeed the magnitude of the smallest activation before application of ReLU is of the same order,
but this time it is well above machine precision which is around 10−16. When depicting the same
neighborhood as in Figure 1, the effect of numerical error completely disappears, the bifurcation
zone being reduced to a segment in the picture, which is consistent with Theorems 1 and 2.

ReLU6 activation. We conducted the same experiment with the ReLU6 activation function in
place of ReLU and found similar results on a slightly larger network (754, 4000, 256). Recall that
ReLU6 is equal to ReLU for x < 6 and equal to 6 for x ≥ 6 and the default choice of derivatives at
non differentiable points are zero. The illustration is given in Figure 8.

0 25 50 75 100
Iteration counter

0

10

20

30

W
ei

gh
t d

iff
er

en
ce

 3
2b

its

1 vs 0
0 vs 0

0 25 50 75 100
Iteration counter

10 8

10 7

10 6

M
in

im
al

 a
ct

iv
at

io
n

32
bi

ts

0 25 50 75 100
Iteration counter

0.050

0.025

0.000

0.025

0.050

W
ei

gh
t d

iff
er

en
ce

 6
4b

its

1 vs 0
0 vs 0

0 25 50 75 100
Iteration counter

10 8

10 7

10 6

M
in

im
al

 a
ct

iv
at

io
n

64
bi

ts

Figure 8: Same experiment as Figure 1 with ReLU6 in place of ReLU. Top: 32 bits weight differ-
ence and minimal activation before application of ReLU6. Bottom: 64 bits weight difference and
minimal activation before application of ReLU6

C Details on Monte Carlo sampling in Table 1

The code and results associated with all experiments presented in this work are publicly available
here: https://github.com/deel-ai/relu-prime.

21

https://github.com/deel-ai/relu-prime

Recall that we want to estimate the relative volume of the set

S01 = {θ ∈ RP : ∃i ∈ {1, . . . , N}, backprop0[li](θ) 6= backprop1[li](θ)} ⊂ S.
by Monte Carlo sampling. We randomly generate a set of parameters {θj}Mj=1, with M = 1000, for
a fully connected network architecture f composed of L hidden layers using Kaiming-Uniform [17]
random weight generator. Given this sample of parameters, iterating on the whole MNIST dataset,
we approximate the proportion of θj for which backprop0(li)(θj) 6= backprop1(li)(θj) for some i,
for different networks and under different conditions. More precisely, denoting by Q the number of
mini-batches considered in the MNIST dataset, and by Bq ⊂ {1, . . . N} the indices corresponding
to the mini-batch q, for q = 1, . . . Q, the first line of Table 1 is given by the formula

1

M

M∑
m=1

I

∃q ∈ {1, . . . , Q}, backprop0

∑
j∈Bq

lj(θm)

 6= backprop1

∑
j∈Bq

lj(θm)

 ,

where the function I takes value 1 or 0 depending on the validity of the statement in its argument.
Similarly, the second line of Table 1 is given by the formula

1

MQ

M∑
m=1

Q∑
q=1

I

backprop0

∑
j∈Bq

lj(θm)

 6= backprop1

∑
j∈Bq

lj(θm)

 ,

while the last line provides statistics of the quantity∥∥∥backprop0

[∑
j∈Bq

lj(θm)
]
− backprop1

[∑
j∈Bq

lj(θm)
]∥∥∥∥∥∥backprop0

[∑
j∈Bq

lj(θm)
]∥∥∥ ,

conditioned on q,m being such that backprop0

[∑
j∈Bq

lj(θm)
]
6= backprop1

[∑
j∈Bq

lj(θm)
]
.

The error margin associated with the confidence interval on the first line of Table 1 is computed
using Hoeffding’s inequality at risk level 5%. It is given by the formula√

ln
(

2
0.05

)
2M

.

As for the confidence interval of the second line of Table 1, we use the bounded differences inequal-
ity (a.k.a. McDiarmid’s inequality) at risk level 5%. The error margin is given by the formula√

1

2

(
1

M
+

1

Q

)
ln

(
2

0.05

)
.

D Complements on experiments

The code and results associated with all experiments presented in this work are publicly available
here: https://github.com/deel-ai/relu-prime.

D.1 Benchmark datasets and architectures

Overview of the datasets used in this work. These are image classification benchmarks, the corre-
sponding references are respectively [24, 23, 25].

Dataset Dimensionality Training set Test set
MNIST 28× 28 (grayscale) 60K 10K

CIFAR10 32× 32 (color) 60K 10K
SVHN 32× 32 (color) 600K 26K

ImageNet 224× 224 (color) 1300K 50K

Overview of the neural network architectures used in this work. The corresponding references are
respectively [32, 31, 18].

22

https://github.com/deel-ai/relu-prime

Name Type Layers Loss function
Fully connected fully connected 4 Cross-entropy

VGG11 convolutional 9 Cross-entropy
ResNet18 convolutional 18 Cross-entropy
ResNet50 convolutional 50 Cross-entropy

Fully connected architecture: This architecture corresponds to the one used in [32]. We only
trained this network on MNIST, the resulting architecture has an input layer of size 784, three hidden
layers of size 2048 and the ouput layer is of size 10.

VGG11 architecture: We used the implementation proposed in the following repository https:
//github.com/kuangliu/pytorch-cifar.git which adapts the VGG11 implementation of the
module torchvision.models for training on CIFAR10. The only modification compared to the
standard implementation is the fully connected last layers which only consist in a linear 512 × 10
layer. When adding batch normalization layers, it takes place after each convolutional layer.

ResNet18 architecture: We use PyTorch implementation for this architecture found in the module
torchvision.models. We only modified the size of the output layer (10 vs 1000), the size of the
kernel in the first convolutional layer (3 vs 7) and replaced batch normalization layers by the identity
(when we did not use batch normalization).

D.2 Additional Experiments with MNIST and fully connected networks

We conducted the same experiments as in Section 4.2 with a fully connected 784-2048-2048-2048-
10 network on MNIST. The results are represented in Figure 9 which parallels the results in Figure 3
on VGG11 with CIFAR10. We observe a similar qualitative behavior, but the fully connected archi-
tecture is less sensitive to the magnitude chosen for ReLU′(0). Note that in this case, learning rate
tuning with optuna [3] induces a lot of spurious variability. Indeed, the same experiment with fixed
learning rate results in a much smoother bell shape in Figure 10.

-50.0 -10.0 -8.0 -6.0 -4.0 -2.0 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 4.0 6.0 8.0 10.0 50.0
ReLU'(0)

0.970

0.975

0.980

0.985

0.990

Te
st

 a
cc

ur
ac

y

Batch norm
False
True

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

_lo
ss

ReLU'(0)
-10.0
0.0
0.5
1.0
10.0

0 20000 40000 60000
sample size

0.0

0.5

1.0

P(
S 0

1)

MNIST

Precision
32b
16b

0 20000 40000 60000
sample size

0.0

0.5

1.0

P(
S 0

1)

MNIST-Batchnorm

Precision
32b
16b

Figure 9: Top: Test error on MNIST with a fully connected 784-2048-2048-2048-10 network. The
boxplots and shaded areas represent variation over ten random initializations. We recover the bell
shaped curve, but the sensitivity to ReLU′(0) is less important. Bottom left: corresponding train-
ing loss, higher magnitude of ReLU′(0) induces chaotic oscillation explaining the decrease in test
accuracy. Bottom center and right: relative volume estimation of the bifurcation zone without and
with batch normalization. Batch normalization increases the size of the bifurcation zone with 32 bits
arithmetic and decreases it under 16 bits arithmetic precision.

We investigated further the effect of combining different choices of ReLU′(0) with dropout [32].
Dropout is another algorithmic way to regularize deep networks and it was natural to wonder if it
could have a similar effect as batch normalization. Using the same network, we combined different
choices of dropout probability with different choices of ReLU′(0). The results are represented in
Figure 11 and suggests that dropout has no conjoint effect.

23

https://github.com/kuangliu/pytorch-cifar.git
https://github.com/kuangliu/pytorch-cifar.git

-50.0-10.0 -8.0 -6.0 -5.0 -4.0 -2.0 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 50.0
ReLU'(0)

0.970

0.975

0.980

0.985

0.990

Te
st

 a
cc

ur
ac

y
Batch norm

False
True

Figure 10: Same experiment as in Figure 9 without learning rate tuning.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Dropout probability

0.983

0.984

0.985

0.986

0.987

0.988

te
st

_a
cc

ur
ac

y
relu

0.0
0.5
1.0

Figure 11: Experiment on combination of the choice of ReLU′(0) with dropout on MNIST with a
fully connected 784-2048-2048-2048-10 network. The boxplots represent 10 random initializations.

D.3 Additional experiments with VGG11

This section complements Sections 4.2 and 4.3, with additional experiments with VGG11.

Batch normalization. As suggested by the experiment shown in Section 4.3, batch normalization
stabilizes the choice of ReLU′(0), leading to higher test performances. We display in Figure 12 the
decrease of training loss on CIFAR 10 and SVHN, for VGG11 with batch normalization. We see
that the choice of ReLU′(0) has no impact and that the chaotic oscillations induced by this choice
have completely disappeared.

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
lo

ss

ReLU'(0)
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

0 20 40 60 80 100
epoch

0.00

0.05

0.10

0.15

Tr
ai

n
lo

ss

ReLU'(0)
0.0
2.0
4.0
6.0
8.0
10.0
50.0

Figure 12: Training loss on CIFAR10 with VGG11 (left) and SVHN with VGG11 (right). The
instability induced by the choice of ReLU′(0) completely disappears with batch normalization.

Adam optimizer. The training curves corresponding to Figure 4 are shown in Figure 13. They
suggest that the Adam optimizer features much less sensitivity than SGD to the choice of ReLU′(0).
This is seen with a relatively efficient buffering effect on the induced oscillatory behavior on training
loss decrease.

Numerical precision. For this neural network we investigated the joint effect of ReLU′(0) and
numerical precision (16, 32 or 64 bits). The results are displayed in Figure 14. The choice
ReLU′(0) = 1 leads to such a high instability in 16 bits precision that we were not able to tune
the learning rate to train the network without explosion of the weights. In 32 bits, a few experiments
resulted in non-convergent training—these were removed. We observe first that for ReLU′(0) = 0
numerical precision has barely any effect while for ReLU′(0) = 1 it leads to an increase in test
accuracy. Furthermore, we observe that ReLU′(0) = 1 with 64 bits precision leads to the same test
accuracy as ReLU′(0) = 0 in 32 bits precision.

24

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
lo

ss

ReLU'(0)
0.0
2.0
4.0
6.0
8.0
10.0
50.0

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
lo

ss

ReLU'(0)
0.0
2.0
4.0
6.0
8.0
10.0

Figure 13: Training losses on CIFAR10 (left) and SVHN (right) on VGG network trained with
Adam optimizer. The filled area represent standard deviation over ten random initializations.

16.0 32.0 64.0
precision

0.894

0.896

0.898

te
st

_a
cc

ur
ac

y

32.0 64.0
precision

0.87

0.88

0.89

te
st

_a
cc

ur
ac

y
Figure 14: Test accuracy for different numerical precisions with a VGG11 network on CIFAR10.
Left: ReLU′(0) = 0. Right: ReLU′(0) = 1.

D.4 Additional experiments with ResNet18

We performed the same experiments as the ones described in Section 4 using a ResNet18 architecture
trained on CIFAR 10. The test error, training loss evolution with or without batch normalization are
represented in Figure 15. We have similar qualitative observations as with VGG11. We note that the
ResNet18 architecture is much more sensitive to the choice of ReLU′(0):

• Test performances degrade very fast. Actually, beyond a magnitude of 0.2, we could not
manage to train the network without using batch normalization.

• Even when using batch normalization, the choice of ReLU′(0) seems to have an effect
for relatively small variations. This is qualitatively different from what we observed with
VGG11 and fully connected architectures.

Similar Monte Carlo relative volume experiments were carried out for this network architecture; the
results are presented in Figure 17. The results are qualitatively similar to what we observed for the
VGG11 architecture: the bifurcation zone is met very often for 16 bits precision, and the addition
of batch normalization increases this frequency in 32 bits precision. Note that we did not observe a
significant variation in 16 bits precision.

D.5 Additional experiments with ResNet50 on ImageNet

E Complimentary information, total amount of compute and resources used

All the experiments were run on a 2080ti GPU. The code corresponding to the experiments and
experiments results are available at https://github.com/deel-ai/relu-prime Details about
each test accuracy experiments are reported on Table 2. CIFAR10 is released under MIT license,
MNIST, SVHN and R are released under GNU general public license, ImageNet is released under
BSD license Numpy and pytorch are released under BSD license, python is released under the
python sofware fondation license.

25

https://github.com/deel-ai/relu-prime

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
ReLU'(0)

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y
Batch norm

False
True

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
lo

ss

ReLU'(0)
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 200
epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
lo

ss
ReLU'(0)

-0.4
-0.2
0.0
0.2

0.4
0.6
0.8
1.0

Figure 15: Training experiment on CIFAR10 with Resnet18 and the SGD optimizer. Top left: test
accuracy with and without batch normalization. Top right: training loss during training without
batch normalization. Bottom: training loss during training with batch normalization.

0 10000 20000
sample size

0.0

0.5

1.0

P(
S 0

1)

CIFAR-ResNet18-Batchnorm

Precision
32b
16b

0 10000 20000
sample size

0.0

0.5

1.0

P(
S 0

1)

CIFAR-ResNet18

Precision
32b
16b

Figure 16: Relative volume Monte Carlo estimation on CIFAR10 with Resnet18 with and without
batch normalization under 16 bits or 32 bits precision.

Dataset Network Optimizer Batch size Epochs Time by epoch Repetitions
CIFAR10 VGG11 SGD 128 200 9 seconds 10 times
CIFAR10 VGG11 Adam 128 200 10 seconds 10 times
CIFAR10 ResNet18 SGD 128 200 13 seconds 10 times
SVHN VGG11 Adam 128 64 85 seconds 10 times
MNIST MLP SGD 128 200 2 seconds 10 times

Table 2: Experimental setup

0 20 40 60 80
step

0

20

40

60

va
lu

e

acc1

relu
0
1

Figure 17: Test accuracy during training of a Resnet50 on ImageNet with SGD. The shaded area
represents two runs. We can see a massive drop in test accuracy with ReLU′(0) = 1.

26

	Introduction
	On the mathematics of backpropagation for ReLU networks
	Empirical risk minimization and backpropagation
	ReLU networks training
	ReLU network training with SGD

	Surprising experiments on a simple feedforward network
	ReLU'(0) has an impact
	Relative volume of the bifurcation zone and relative gradient variation

	Consequences for learning
	Benchmarks and implementation
	Effect on training and test errors
	Mitigating factors: numerical precision, batch-normalization and Adam
	Back to the bifurcation zone: more neural nets and the effects of batch-norm
	Total number of ReLU calls during training

	Conclusions and future work
	Mathematical details for Section 2
	Elements of proof of Theorems 1 and 2
	The special case of fully connected ReLU networks

	First experiment in 64 bits precision, and using a different activation
	Details on Monte Carlo sampling in Table 1
	Complements on experiments
	Benchmark datasets and architectures
	Additional Experiments with MNIST and fully connected networks
	Additional experiments with VGG11
	Additional experiments with ResNet18
	Additional experiments with ResNet50 on ImageNet

	Complimentary information, total amount of compute and resources used

